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In the picture of eternal inflation, our observable universe resides inside a single bubble nucleated from

an inflating false vacuum. Many of the theories giving rise to eternal inflation predict that we have causal

access to collisions with other bubble universes, providing an opportunity to confront these theories with

observation. We present the results from the first observational search for the effects of bubble collisions,

using cosmic microwave background data from the WMAP satellite. Our search targets a generic set of

properties associated with a bubble-collision spacetime, which we describe in detail. We use a modular

algorithm that is designed to avoid a posteriori selection effects, automatically picking out the most

promising signals, performing a search for causal boundaries, and conducting a full Bayesian parameter

estimation and model selection analysis. We outline each component of this algorithm, describing its

response to simulated CMB skies with and without bubble collisions. Comparing the results for simulated

bubble collisions to the results from an analysis of the WMAP 7-year data, we rule out bubble collisions

over a range of parameter space. Our model selection results based on WMAP 7-year data do not warrant

augmenting �CDM with bubble collisions. Data from the Planck satellite can be used to more definitively

test the bubble-collision hypothesis.
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I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) radiation have ushered in a new era of precision
cosmology. Full-sky temperature maps produced by the
Wilkinson Microwave Anisotropy Probe (WMAP) [1]
have confirmed with high precision that the observed tem-
perature fluctuations are consistent with a nearly Gaussian
and scale invariant primordial power spectrum, as pre-
dicted by inflation. The recently launched Planck satellite
[2] has a resolution 3 times better than that of WMAP, with
an order of magnitude greater sensitivity, and significantly
wider frequency coverage (allowing for far more robust
foreground removal, and therefore reduced systematics).
These high quality data sets allow for the possibility of
observing deviations from the standard inflationary para-
digm, some of which could have drastic consequences for
our understanding of the Universe and its origins.

Perhaps the largest gap in our description of the early
Universe lies in an understanding of its initial conditions.
One possibility, motivated by the proliferation of vacua in
compactifications of string theory (known as the string
theory landscape [3]), is that our observable Universe is
only a tiny piece of a vast multiverse, the majority of which
is still inflating. This picture of eternal inflation (for a

review, see, e.g., Ref. [4]) arises when the rate at which
local regions exit an inflating phase is outpaced by the
accelerated expansion of the inflating background. Eternal
inflation is a fairly generic consequence of any theory
containing positive vacuum energy and multiple vacua,
highlighting the importance of understanding how this
scenario might be confronted with observational tests.
The first attempts to embed our cosmology inside an

eternally inflating universe led to ‘‘open inflation’’ [5,6];
see Ref. [7] for a review. In this scenario, a scalar field (or
set of scalar fields) has a potential with a high energy
metastable minimum that drives the eternally inflating
phase. Transitions out of this vacuum proceed via the
Coleman–De Luccia (CDL) instanton [8,9], resulting in
expanding bubbles inside which the scalar field rests on an
inflationary plateau. The symmetries of the CDL instanton
ensure that there is a very nearly homogeneous and iso-
tropic open universe inside the bubble; inflation, reheating,
and standard cosmological evolution follow.
In any given bubble, the future light cone of the nuclea-

tion event forms the ‘‘big bang’’ (where the scale factor
vanishes) of an open Friedmann-Robertson-Walker (FRW)
universe. The eternally inflating phase outside our bubble
can therefore be thought of as a pre-big bang epoch, and
one might expect inflation to erase any of the scant obser-
vational evidence of our parent vacuum. In single-bubble
open inflation, various anomalies are induced in the CMB
temperature power spectrum (see Ref. [7] and references
therein), but unfortunately, the size of these effects
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decreases with the present energy density in curvature
(related to the number of inflationary e-folds), rendering
them negligible at all but the lowest multipoles where
cosmic variance dominates. However, our bubble does
not evolve in isolation. There are other nucleation events
from the false vacuum, containing a phase that might be
identical to ours, or perhaps very different. If one of these
secondary nucleation events occurs close enough to our
bubble wall, then a collision inevitably results. In fact,
since our bubble grows to reach infinite size, there are an
infinite number of collisions [10–13] (a finite subset of
which are causally accessible to any one observer). This
raises the possibility that if such collisions are both surviv-
able and only small perturbations on top of standard cos-
mology, they might leave observable signatures of eternal
inflation [14]; it is these signatures that our analysis targets.

If we are to detect such bubble collisions, their predicted
signatures must be consistent with our observed cosmol-
ogy, but sufficiently distinct to be differentiated from other
possible signals in the CMB. In addition, the theory must
predict that we expect to have causal access to bubble
collisions. While these criteria are not met in every model
of eternal inflation, recent work [10–26] (for a review, see
Ref. [27]) has established that bubble collisions could in
some theories be both expected and detectable. Bubble
collisions produce a fairly characteristic set of inhomoge-
neities in the very early Universe, which are processed into
temperature anisotropies in the CMB. From the spherical
symmetry of the colliding bubbles, the collision possesses
azimuthal symmetry, and by causality must be confined to
a disk on the sky. The CMB temperature and its derivatives
need not be constant across the causal boundary. Therefore,
the signals we are searching for are localized, and because
they are primordial, consist of a long-wavelength modula-
tion of the standard inflationary density fluctuations inside
the affected region [20]. The amplitude and angular scale
of the signal are dependent upon the underlying model and
kinematics of the collision.

These general features suggest a set of strategies for data
analysis. The localization of the collision implies that
wavelet analysis could be a sensitive tool for picking out
both the location and angular scale of a candidate signal.
The causal boundary, across which the temperature and its
derivatives need not be constant, suggests the use of edge-
detection algorithms similar to those used in searches for
cosmic strings [28–31]. Finally, the prediction that the
temperature modulation induced by the collision is a rather
long wavelength yields a sufficiently generic template to
perform a full Bayesian parameter estimation and model
selection analysis.

In this paper, we describe a modular analysis algorithm
designed to look for the signatures of eternal inflation, and
apply it to the WMAP 7-year data [32]. This algorithm can
easily be adapted to test any model that predicts a popula-
tion of spatially localized sources in addition to the

standard fluctuations predicted by �CDM. A summary of
our results was presented in Ref. [33]; in this paper we
describe our analysis in detail. Currently available full-sky
CMB data are rather limited in their sensitivity to the
signatures of bubble collisions listed above; the main
current limitation is the low resolution. Therefore, we
apply our algorithm to current data mainly as a validation
exercise; to exploit its full power would require future high
resolution data, e.g., from Planck.
The individual steps of our analysis pipeline are cali-

brated using realistic simulations of the WMAP experi-
ment with and without bubble collisions. The calibrated
pipeline applied to data is fully automated, identifying the
candidate signals and processing them without any human
intervention. This removes any a posteriori choices from
our analysis, which must be carefully avoided in any
analysis of a large data set such as the WMAP 7-year
data [34].
The plan of the paper is as follows. In Sec. II, we review

some of the background on bubble collisions in eternal
inflation and outline the predicted observable signatures.
Our analysis pipeline is summarized in Sec. III. We de-
scribe some properties of the WMAP experiment and our
simulations in Sec. IV and detail our analysis tools in
Sec. V. Section VI summarizes the results of our analysis
of the WMAP 7-year data, and we conclude in Sec. VII.

II. THE OBSERVABLE EFFECTS OF BUBBLE
COLLISIONS

The simplest model of eternal inflation involves a single
scalar field in four dimensions, with a double-well poten-
tial. In many models (as long as the average curvature of
the potential between the minima is small compared to the
Planck scale), the CDL instanton [8,9] mediates a transi-
tion from the false (higher energy) to the true (lower
energy) vacuum. This tunneling event corresponds to the
appearance of an expanding bubble of the true vacuum
embedded in the false. As long as the probability that a
bubble nucleates in each horizon volume of the false
vacuum during a Hubble time is less than 1 (so that the
background expansion of the false vacuum on average
prevents bubbles from merging), the phase transition never
completes and inflation is eternal [10] (see Ref. [35] for a
modern treatment of the percolation problem in eternal
inflation). The O(4) invariance of the instanton guarantees
that the bubble interior possesses SO(3,1) symmetry,
and therefore contains an infinite open FRW universe.
Although homogeneity is ensured by the symmetries of
the instanton, if the interior of a bubble is to resemble our
own Universe, a second epoch of inflation inside the bubble
is necessary to dilute the negative curvature and provide
the correct spectrum of primordial density perturbations
to seed structure. Models of this type are known in the
literature as open inflation and have been explored in detail
(see Ref. [7]).
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The signatures of single-bubble open inflation include
negative curvature and modifications to the power spec-
trum. These modifications are most important at large
angular scales (see Ref. [7], and references therein), where
cosmic variance is dominant and would be very difficult
to detect. Since curvature alone would not be a very dis-
tinguishing prediction, we do not consider these signals
further.

A less ambiguous signature of eternal inflation would be
the visible remnants of collisions between bubbles.
Although the bubbles formed during eternal inflation do
not percolate, there are many (in fact, an infinite number
of) collisions. These collisions lead to inhomogeneities in
the inner-bubble cosmology, perhaps leaving observable
signatures in the CMB. Assessing the observational con-
sequences of bubble collisions in an eternally inflating
universe has been an active area of research [13,14,17–
26] (for a review, see Ref. [27]). These studies have
established that a number of criteria necessary for the
observation of bubble collisions [14] can be satisfied, at
least in some models:

Compatibility: In order to satisfy this criterion, there
must be a bubble we can collide with that only minimally
disturbs the homogeneity of the observable portion of the
surface of last scattering. Such collisions do seem to exist,
as evidenced by thin-wall junction condition analysis
[17,19] as well as numerical simulations [18] and a study
of the inflaton field in a background thin-wall collision
geometry [20].

Probability: We should expect to have a collision in
our causal past. The number of collisions in our past is
�N ¼ �VF

4 , where � is the bubble nucleation probability per
unit four-volume and VF

4 is the four-volume outside the
bubble to which we have causal access. The expected
number (assuming the original open FRW foliation) is
formally infinite [14]; however, collisions that contribute
to this divergence only produce very long-wavelength
fluctuations at last scattering, and so would not be observ-
able [18,22] (this is similar to the infrared divergence
found in models of slow-roll inflation). The average
number of collisions that affect the observable portion of
the surface of last scattering is finite [22,27] and is given by

�N ’ 16�

3
�H�4

F

�
HF

HI

�
2
�1=2

k ; (1)

where HF is the false vacuum Hubble constant, HI is the
inflationary Hubble constant inside our bubble, and �k is
the current component of energy in curvature. For the
expected number of observable collisions to be 1 or larger,
the separation of scales between HF and HI must be large
enough to compensate for the low probability � (which is
exponentially suppressed because this is a tunneling pro-
cess) and the observational constraint �k & :0084 [36].
Given a particular scalar potential underlying eternal

inflation, �N for each possible type of collision is fixed.
However, in a theory with a complicated potential land-
scape for the scalar field(s), it makes sense to think of �N as
a continuous parameter with some prior probability distri-
bution.1 Without detailed knowledge of the theory under-
lying eternal inflation and an associated measure, it is
difficult to assess how likely it is to have �N > 1, but see
Refs. [22,27] for some speculative comments. There is also
an exponential pressure from the nucleation rates toward
�N � 1 or �N � 1. In the following, we assume �N can be of
the order of 1.
Observability: Since the effects of a collision must pass

through the entire inner-bubble cosmology, they can be
thought of as perturbations of the big bang in an FRW
cosmology. As such, they are stretched by inflation, and we
expect the strength of most signatures to scale with (some
power of)�k. We therefore must require that there are not
too many more e-folds than required to satisfy the obser-
vational bound on curvature. Given a field theory model,
the number of e-folds of inflation inside the bubble is
uniquely determined by the instanton. However, if we
consider a landscape of scalar potentials, then it is neces-
sary to find a measure over the number of inflationary
e-folds (or equivalently �k). For some work in this direc-
tion, see, e.g., Refs. [37,38].
Much remains to be learned about the full spectrum of

possible outcomes of a bubble collision and the exact details
of the associated observational signatures. Nevertheless, all
potentially observable bubble collisions involving two bub-
bles share a sufficiently general set of properties to allow for
a meaningful observational search even in the absence of a
detailed model. In summary, we expect all such observable
bubble collisions to possess the following:
(i) Azimuthal symmetry: A collision leaves an imprint

on the CMB sky that has azimuthal symmetry. This
is a consequence of the SO(2,1) symmetry of the
spacetime describing the collision of two vacuum
bubbles [13,14,16].

(ii) A causal boundary: The surface of last scattering
can only be affected inside the future light cone of a
collision event. The intersection of our past light
cone, the future light cone of a collision, and the
surface of last scattering is a ring. This is the causal
boundary of the collision on the CMB sky. The
temperature and its derivatives need not be continu-
ous across this boundary. Neglecting the backreac-
tion of the collision on the geometry of the bubble
interior, the distribution of ring sizes was found in
Ref. [22] to be

d �N

d�crit
� 4��H�4

F

�
HF

HI

�
2
�1=2

k sinð�critÞ; (2)

1We return to this point in Sec. VC when discussing the
Bayesian framework for testing bubble-collision models.
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where �crit is the angular radius measured from the
center of the disk to the causal boundary and the
other quantities are as defined in Eq. (1).

(iii) An overall modulation of the background fluctua-
tions: We assume that the temperature fluctuations,
including the effects of the collision, at a location
on the sky n̂ can be written as [20,39]

�Tðn̂Þ
T0

¼ ð1þ fðn̂ÞÞð1þ �ðn̂ÞÞ � 1; (3)

where fðn̂Þ is the modulation induced by the colli-
sion and �ðn̂Þ are the temperature fluctuations in-
duced by modes set down during inflation. This is
motivated by the observation that the main effect of
the bubble collision is to slightly advance or retard
the inflaton inside our bubble. The modulation is
multiplicative under the assumption that the normal
inflationary density fluctuations simply ‘‘paint’’ the
perturbed surface of last scattering and have iden-
tical statistical properties in the regions both af-
fected and unaffected by the collision.

(iv) Long-wavelength modulation: A collision is a pre-
inflationary relic. The effects of a collision inside
the causal boundary are stretched by inflation, and
so we can expect that the relevant fluctuations are
large scale. As we describe below, this implies that
the temperature modulation due to a collision cen-
tered on the north pole (� ¼ 0) has the form

fðn̂Þ ¼ ðc0 þ c1 cos�þOðcos2�ÞÞ�ð�crit � �Þ;
(4)

where the ci are constants related to the properties
of the collision, � is the angle measured from the
center of the affected disk, and�ð�crit � �Þ is a step
function at the causal boundary �crit. Truncating the
sum at Oðcos�Þ, the constants c0 and c1 can be
expressed in terms of a central amplitude z0 and
edge discontinuity zcrit:

c0 ¼ zcrit � z0 cos�crit
1� cos�crit

; c1 ¼ z0 � zcrit
1� cos�crit

; (5)

as shown in Fig. 1. Allowing the collision to be
centered on an arbitrary location f�0; �0g on the
celestial sphere, the induced temperature modula-
tion can be expressed as a function of five parame-
ters: fz0; zcrit; �crit; �0; �0g. A modulation of this
form was first derived in Ref. [20], where it was
obtained from the observed modulation of a field
representing the inflaton inside our bubble, numeri-
cally evolved in a background thin-wall bubble-
collision geometry. These authors did not predict
the existence of a temperature discontinuity zcrit.
While further work is needed to better predict the
precise form of the template, in our analysis we

allow bubble collisions to produce modulations
with and without discontinuities.

In Fig. 2, we show the Poincaré-disk representation (see
Ref. [14] for the details of this construction) of the surface
of last scattering inside our parent bubble. The collision
affects the shaded portion of this surface. The observed
CMB is formed at the intersection of our past light cone
(dashed circle) with the surface of last scattering, which in
this case includes regions both affected and unaffected by
the collision. From the underlying azimuthal symmetry, the

f

0

zcrit

critz

FIG. 1. The radial temperature modulation Eq. (4) induced by
a bubble collision centered on the north pole (� ¼ 0).

crit2

FIG. 2 (color online). A Poincaré-disk representation of the
surface of last scattering inside our parent bubble, with one
dimension suppressed. The future light cone of the collision at
this time is denoted by the boundary of the shaded region; the
latter represents the portions of the surface of last scattering that
are to the future of the collision. Our past light cone at last
scattering is represented by the dashed circle. From the present
bounds on curvature, the size of our past light cone must be
much smaller than 1 curvature radius. Zooming in on the portion
of the surface of last scattering that we have causal access to
(inset), the Universe is very close to flat, and the region affected
by the collision has approximate planar symmetry. The region
affected by the collision appears as a disk of angular radius �crit
on the CMB sky.
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collision appears as a disk on the observer’s CMB sky.
Zooming in on the neighborhood of our past light cone
(inset), we can treat the Universe as being flat. In addition,
because we have causal access to much less than one
curvature radius at last scattering (again from the observa-
tional bound on �k), the collision has an approximate
planar symmetry.

The collision introduces preinflationary inhomogeneities
into our bubble. The exact nature of these inhomogeneities
depends on the specific model underlying the formation of
our bubble and the subsequent epoch of slow-roll inflation,
as well as the specifics of the collision. In dramatic cases,
the collision ends slow-roll inflation everywhere within its
future light cone [18], induces the transition to another
vacuum state [23,40,41], or produces a postcollision do-
main wall that eats into our bubble interior [17,19]. These
scenarios are obviously in conflict with observation, andwe
do not consider them further. In mild cases, which will be
our focus in the remainder of this paper, collisions satisfy
the ‘‘compatibility’’ criterion defined above: The observ-
able portion of the surface of last scattering is only mini-
mally disturbed by the collision. Thin-wall analysis [17]
and numerical simulations [18,20] indicate that it is indeed
possible to find situationswhere the effects of a collision are
compatible with our observed cosmology.

The disturbance caused by a collision is a preinflationary
relic and thus is stretched by the period of inflation inside
the bubble. From the current bound on curvature [36], we
can infer that our past light cone encompasses less than one
horizon volume at the onset of inflation. This implies that
the initial disturbances caused by a collision, which is
smeared out on the scale of the inflationary horizon after
a few e-folds of inflation, has a wavelength today that is
larger than the current horizon size. Together with the
planar symmetry of the collision at last scattering (by
convention along the y-z plane), this implies that we can
Taylor expand the Newtonian potential (see Ref. [26] for a
translation between the Newtonian potential and the origi-
nally postulated temperature modulation presented in
Ref. [20]) about the causal boundary of the collision at
x ¼ xcrit as

�coll ¼ �ðaÞð �c0 þ �c1ðx� xcritÞ
þOððx� xcritÞ2ÞÞ�ðx� xcritÞ; (6)

where �ðaÞ encodes the evolution of the potential with
scale factor a and the �ci are model-dependent constants.2

There are contributions to the observed temperature
modulation from the Sachs-Wolfe effect, the integrated
Sachs-Wolfe effect, and a Doppler effect (coming from
the induced bulk peculiar velocity v of the fluid in the
region affected by the collision):

�T

T
’ �collðalsÞ

3
þ 2

Z 1

als

da
d�coll

da
þ ðv � n̂þOðv2ÞÞ;

(7)

where als is the scale factor at last scattering, a ¼ 1 today,
and

v / r�coll þ a
d

da
r�coll: (8)

To leading order in v, the temperature induced by the
collision is linear in �coll and its derivatives. Therefore,
since x ¼ xls cos� (where xls is the comoving distance out
to which we can see on the surface of last scattering), the
temperature fluctuations induced by a collision are gener-
ally of the form Eq. (4). Further, even if the Newtonian
potential is continuous across x ¼ xcrit, the resulting tem-
perature fluctuations need not be continuous across the
causal boundary at �crit. This discontinuity arises from
the integrated Sachs-Wolfe and Doppler contributions to
the observed temperature fluctuation. Effects that we have
neglected, including the finite thickness of the surface of
last scattering and uncertainties about how the perturba-
tions caused by a bubble collision propagate through our
bubble interior, are encapsulated by the higher order terms
in Eq. (4). These effects could smear out the causal bound-
ary enclosing the collision on subdegree scales. These
corrections could be incorporated into our analysis as
theoretical understanding improves.
Given a specific model for the scalar fields making up

the bubbles and driving eternal inflation, the kinematics of
a particular collision, and our position inside our bubble, it
is in principle possible to determine the free parameters in
Eq. (4). Treating the colliding bubbles in the thin-wall
approximation, some measure of the strength of a collision
can be specified in terms of the vacuum energies in the
bubbles, wall tensions, and kinematics as in Ref. [17].
The kinematics will induce a probability distribution for
the free parameters in Eq. (4). However, an accurate treat-
ment requires a calculation of the backreaction of
the collision on the behavior of the inflaton inside our
bubble. Preliminary work in this direction has been done
[18,20,23,40], providing a handful of examples. However,
a systematic investigation has not yet been performed. This
is distinct from the case where an ensemble of field theory
models is considered, representing the string theory land-
scape. In this case, the fundamental parameters governing
the structure of the colliding bubbles (wall tensions and
vacuum energies) and the properties of the inner-bubble
cosmology (including the number of inflationary e-folds,
etc.) are drawn from some probability distribution. This

2We are modeling the collision as a collection of supermodes
truncated at the causal boundary, and our treatment is therefore
very similar to the so-called ‘‘tilted universe’’ scenario [42,43].
The important distinction in the case of bubble collisions is that
the perturbation vanishes at the causal boundary xcrit. Because
the collision entered our past light cone only relatively recently,
we are still comoving with respect to the undisturbed FRW
foliation, and the cancellation of the dipolar temperature modu-
lation seen in Refs. [42–44] does not occur.
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again will induce a probability distribution for the free
parameters in Eq. (4), whose nature is presently poorly
understood.

What would a bubble collision embedded in a CMB
temperature map look like? In Fig. 3 we show a large-
amplitude collision with and without background CMB
fluctuations. In the following sections, we apply the various
stages of our analysis pipeline to this example to illustrate
the algorithm. We make extensive use of such simulations
in calibrating our analysis pipeline, and the details of their
construction are presented in Sec. IV. Although there could
conceivably be many overlapping collisions, the predicted
observational signatures of this scenario have yet to be
explored, and we focus on simulations of distinct individ-
ual bubble collisions. Again, as theoretical understanding
improves, our analysis could be extended to include the
possibility of overlapping collisions.

What would the detection, or absence, of a bubble
collision tell us about the underlying theory of eternal
inflation? To examine what the answer to this question
might be, let us make some further assumptions about
the temperature modulations caused by a bubble collision.
First, assume that the potential induced by the collision
[Eq. (6)] is composed mostly of a single long-wavelength
mode of physical wave number k. Second, assume that the
Sachs-Wolfe effect is the dominant contribution to the
observed temperature modulation. Under these assump-
tions, the amplitude of an observed temperature modula-
tion is

z0 ’ 2

3

k

H0

�ðalsÞð1� cos�critÞ; (9)

where als is the scale factor at last scattering. If the initial
wavelength of the disturbance was of the order of 1 infla-
tionary Hubble length k�HI (since any fine structure in
the collision would be smeared within the first few e-folds
of inflation), then �ðalsÞ ¼ �ða ¼ 0Þ, and the physical
size of such a mode at last scattering is given by

k ’ �1=2
k H0: (10)

In this case, we have

z0 ’ �ð0Þ�1=2
k ð1� cos�critÞ: (11)

If a bubble collision is detected, and a similar set of
assumptions is proven correct in a specific model, the
measured values of z0 and �crit allow one to infer the value
of�k.

3 In the absence of a detected collision, Eq. (11) can

be turned into a bound on a combination of�1=2
k and�ð0Þ:

�1=2
k �ð0Þ< ½z0=ð1� cos�critÞ�observational upper bound: (12)

This analysis can be recognized as an example of the
Grishchuk-Zel’dovich effect in an open universe [42,45].
Determining the detailed properties of the theory under-

lying eternal inflation through the observation of bubble
collisions is likely to be a messy business. However, any
model will predict an expectation value for the number of
observable bubble collisions �N, making this a very useful
phenomenological parameter. Any constraints on �N from
data will also yield interesting information about our par-
ent vacuum through Eq. (1). The most naive application of
such a constraint, where we have evidence that �N > 1 or
�N < 1, would yield the inequalities

�H�2
F <

3H2
I

16��1=2
k

ðno detected collisionsÞ;

�H�2
F >

3H2
I

16��1=2
k

ðcollision detectionÞ:
(13)

These bounds would be most useful if we detect�k and/or
B-mode polarization (the amplitude of which can be

FIG. 3 (color online). On the left, we show a bubble-collision template with fz0 ¼ 5:0� 10�5; zcrit ¼ �5:0� 10�5;
�crit ¼ 10:0�; �0 ¼ 57:7�; �0 ¼ 99:2�g. On the right we add simulated background fluctuations, smoothing, and instrumental noise.

3The values of �k that one might be able to infer are con-
ceivably below both the observational bound �k 	 0:0084 and
the theoretical observational bound �k 	 10�5. For example,
assuming z0 � 10�5 and�ð0Þ � 1 (since the collision involves a
relatively large release of energy), if a collision were observed
at large angular scale (where cos�crit � 0), we can infer that
�k � 10�10. This implies that a collision is in principle observ-
able even when a curvature is not. We thank Lam Hui for
elucidating this point.
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related to HI) in future data. In the most optimistic sce-
nario,4 if primordial B-mode polarization is detected by the
Planck satellite, we can infer that HI � 1011 � 1013 GeV.
Further, if curvature is detected at the level �k � 10�3,
then in Eq. (13), �H�2

F would be bounded from above or
below by �1026 GeV2. The condition for eternal inflation
is �H�4

F < 1. Any application of Eq. (13) must be consis-
tent with this inequality. For example, assuming a
Planckian false vacuum energy (HF � 1019 GeV), the nu-
cleation probability �H�4

F could be bounded from above or
below by �10�4, remaining consistent with the condition
for eternal inflation.

III. SUMMARY OF THE ANALYSIS PIPELINE

Before providing a detailed description of our analysis
pipeline, we motivate and summarize its various compo-
nents. Eternal inflation can arise from a wide range of
inflationary potentials, each producing a different expected
number of detectable collisions on the CMB sky, �Ns. We
will therefore use �Ns as a continuous parameter that char-
acterizes particular models of eternal inflation. The stan-
dard cosmological model is given by the special case in
which �Ns ¼ 0. Our primary goal is to determine, given the
WMAP 7-year data, what constraints can be placed on �Ns

and whether models predicting �Ns > 0 should be preferred
over models predicting �Ns ¼ 0.

The optimal approach to achieving this goal would be
to construct the full posterior for �Ns from Bayes’s theorem
given full-resolution CMB data on the whole sky.
Unfortunately, this would require inverting the full-sky
full-resolution CMB covariance matrix as well as
integrating the bubble-collision likelihood over a many-
dimensional parameter space. These tasks are computation-
ally intractable. However, taking advantage of the fact that
bubble collisions produce discrete localized effects on the
CMB sky, it is possible to approximate the full-sky
Bayesian analysis by a patchwise analysis if the most
promising candidate signatures can be identified in ad-
vance. The implementation of such an approximation
scheme requires two assumptions. First, we assume that
the likelihood of models predicting �Ns > 0 is peaked in the
regions of the sky containing the candidate collisions, and
that the integral over the likelihood can therefore be esti-
mated by concentrating on these regions, which make the
largest contribution to the full integral. Second, we assume
that these regions are separated widely enough to be un-

correlated with each other, so much smaller local covari-
ance matrices can be used. These assumptions allow the
results of a small number of localized (and therefore com-
putationally feasible) Bayesian model selection tests to be
combined into estimates of the required full-sky statistics.
Put simply, our algorithm implements a conservative ap-
proximation to the required numerical integral. A complete
treatment of the full-sky analysis and the assumptions on
which it is formed can be found in the Appendix. In addi-
tion, once a set of candidates have been identified, it is
possible to apply further tests of the data in parallel.
The full-sky approximation necessitates the develop-

ment of an algorithm that identifies the most promising
regions of the CMB sky and then processes them individu-
ally. Upon segmenting the full data set, it is important to
avoid biasing oneself with a posteriori selection effects
[34], and it is therefore critical to minimize human inter-
vention in choosing what portions of the sky to analyze.
Thus our analysis pipeline is fully automated, tested, and
calibrated on realistic simulations of the data and frozen
before being applied to the real data. The final pipeline
contains no algorithmic choices tunable via human inter-
vention. As discussed in the Appendix, missing a bubble-
collision candidate which makes a significant contribution
to the full integral leads to a conservative bias toward
models predicting �Ns ¼ 0. This alleviates the worry that
selection effects might lead to a spurious detection.
Our analysis pipeline consists of a candidate identifica-

tion step, followed by two parallel verification procedures:
(i) Blob detection: To begin, we attempt to locate the

most promising candidate signals using wavelets.
Wavelet analysis is a compromise between working
purely in position or harmonic space, and therefore
yields information both about the location and an-
gular scale of particular features in the temperature
map. Specifically, we employ standard [46–50] and
Mexican [51] spherical needlets, two classes of
wavelets defined on the sphere. The statistics of the
needlet representation of a purely Gaussian CMB
temperature map (expected in the absence of a bub-
ble collision at large scales where WMAP is cosmic
variance dominated), combined with simulations of
a bubble-free masked CMB sky, can be used to
quantify the significance of various features. A set
of significance thresholds are then defined to ensure
a manageable number of ‘‘false detections’’ in the
end-to-end simulation of the WMAP experiment
(see Sec. IVA). Regions of the sky passing these
thresholds are sewn into ‘‘blobs,’’ whose size and
location is determined by the needlet responses and
passed onto the next stages of the pipeline.

(ii) Edge detection: Once a set of candidate signatures is
found, we look for circular edges across which the
temperature is discontinuous. As discussed above,
such causal edges are expected to be a generic

4In models where a collision is expected to be in our past, there
might be a good reason to expect a correlation between observed
B modes and the observation of a bubble collision [18]. This is
because large-field models of inflation, which generically predict
a larger value for the tensor to scalar ratio, are much more robust
in the presence of a bubble collision. In models of small-field
inflation, a bubble collision can end inflation everywhere in its
future light cone, implying that collisions in such models are not
compatible with our observed cosmology.
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signature of bubble collisions. We use the Canny
algorithm [52], adding an adaptation of the circular
Hough transform (CHT) [53], to focus our search
on circular edges. The algorithm consists of identi-
fying the most likely center for a noisy circular
edge. The significance of this response is calibrated
from a detailed analysis of bubble-collision simula-
tions including cosmic variance, spatially varying
WMAP instrumental noise, and smoothing due to
the instrumental beam. We verify that this step
produces no false detections in the WMAP end-to-
end simulation.

(iii) Bayesian parameter estimation and model selec-
tion: The regions highlighted by the blob-detection
step can be used to construct an approximation to
the full-sky posterior probability distribution for �Ns

using themethods outlined in theAppendix.Wefirst
perform a pixel-based evaluation of the likelihood
and Bayesian evidence in each blob for bubble-
collision templates of the form given in Eq. (4),
sampling the parameter space using the nested sam-
pler MULTINEST [54]. The likelihood analysis in-
cludes cosmic variance, spatially varying WMAP
instrumental noise, and the smoothing due to the
instrumental beam. Combining the evidences from
each blob we obtain the posterior probability distri-
bution for �Ns, which is used to derive constraints on
�Ns and perform model selection to determine if a
theory with �Ns � 0 is preferred over a theory with
no predicted collisions. The significance of a detec-
tion is again calibrated from an analysis of simu-
lated collisions and an end-to-end collision-free
simulation of the experiment.

The most important output of our pipeline is the ap-
proximation to the full-sky posterior probability distribu-
tion for �Ns. This allows us to derive marginalized
constraints on �Ns and perform model selection between
theories with �Ns ¼ 0 and �Ns � 0. In addition, for each
blob identified by the first set of the pipeline, we obtain a
set of marginalized posterior constraints on the model
parameters fz0; zcrit; �crit; �0; �0g, a maximum needlet sig-
nificance, CHT score, and a local Bayesian evidence ratio
with respect to the no-bubble-collision model.

IV. SIMULATIONS

Our analysis pipeline is general, but each step must be
calibrated using simulations of the particular data set under
consideration, in this case the WMAP 7-year data release
[32].WMAP has measured the intensity and polarization of
the microwave sky in five frequency bands. The resolution
of the instrument in each band is limited by the detectors’
beams and is highest at 0.22� in the 94 GHz W band. We
perform our analysis on the foreground-subtracted W-band
WMAP temperature map, as this combines the highest
resolution full-sky data currently available with the least

foreground contamination. To minimize the effects of the
residual foregrounds we cut the sky with the conservative
KQ75 mask, leaving 70.6% of the sky unmasked.
We carry out extensive simulations to quantify the

thresholds at which areas of the sky are passed from one
step to another. To find the best approximation to the full-
sky Bayesian analysis, we process as much of the sky as is
computationally feasible.
To determine the response of our pipeline to bubble

collisions over the range of possible parameters, we gen-
erate simulations containing a variety of bubble collisions
plus CMB, realistic noise and Gaussian beam smoothing.
However, we also wish to ensure that we have a method to
guard against systematic effects (e.g., foreground residuals
and any map-making artifacts that may be present) that we
do not have capability to simulate. These effects might lead
to false detections in the ‘‘blob-detection’’ stage, or criti-
cally, the edge-detection and Bayesian analysis stages. It is
impossible to claim a detection without first ensuring that
there are no such false detections due to systematics.

A. WMAP end-to-end simulation

A realistic simulation of a WMAP-quality data set that
does not contain a bubble collision is an important tool for
calibrating and quantifying the expected false detection
rate of our analysis pipeline when applied to data which
may include systematics (such as foreground residuals)
that are not captured in our simulations or likelihood
function. For this purpose we use a complete end-to-end
simulation of the WMAP experiment provided by the
WMAP science team.5 The temperature maps in this simu-
lation are produced from a simulated time-ordered data
stream, which is processed using the same algorithm as the
actual data. The data for each frequency band are obtained
separately from simulated sources including diffuse
Galactic foregrounds, CMB fluctuations, realistic noise,
smearing from finite integration time, finite beam size, and
other instrumental effects. In our analysis, we utilize the
foreground-reduced W-band simulation.

B. Simulated bubble collisions

The temperature fluctuations observed in the CMB, in-
cluding the effects of a bubble collision (originally found
in Refs. [20,39]), can be written as

�Tðn̂Þ ¼ ½T0
0ð1þ fðn̂ÞÞð1þ �ðn̂ÞÞ � T0�smoothed

þ �Tnoiseðn̂Þ; (14)

where n̂ ¼ f�;�g is the position on the sky,6 T0 is the
average temperature of the map including the modulation,

5http://lambda.gsfc.nasa.gov/product/map/dr4/sim_maps_info
.cfm.

6These angular positions can be expressed in terms of Galactic
coordinates through longitude l ¼ � and latitude b ¼ 90� � �.
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T0
0 is the average temperature without the modulation,

�Tnoise is the contribution from instrumental noise, and
fðn̂Þ and �ðn̂Þ are defined as in Eq. (3). The quantities in
the brackets are smoothed with a Gaussian beam of 0:22�
(approximating the beam size of the WMAP experiment in
the W band). We use the WMAP best-fit 7-year power
spectrum [55] in the multipole range 2 	 ‘ 	 1024 to
generate fluctuation maps �Tsynðn̂Þ ¼ T0

0�ðn̂Þ at the full

WMAP resolution of Nside ¼ 512 (with 3 145 728 pixels).
The noise term �Tnoise is generated from WMAP 7-year
noise variances at the same resolution. Since the templates
we consider add a relatively small temperature excess/
deficit in one location, the features do not cause the power
spectrum to deviate from that measured by WMAP [20].
Additionally, we can replace T0 
 T0

0, which gives

�Tðn̂Þ ¼ ½ð1þ fðn̂ÞÞðT0 þ �Tsynðn̂ÞÞ � T0�smoothed

þ �Tnoiseðn̂Þ: (15)

We consider collisions with �crit ¼ 5�, 10�, 25� and
choose centers in a high-noise region (�0 ¼ 56:6�, �0 ¼
193:0�) and a low-noise region (�0 ¼ 57:7�, �0 ¼ 99:2�)
of the sky that remain significantly outside of the main
body of the WMAP KQ75 7-year mask. The regions of the
sky affected by 5� and 10� collisions are overplotted in
Fig. 4 on a masked map of the instrumental noise variance.
For each �crit and location, we generate 35 simulated
collisions with parameter values logarithmically spaced
in the ranges 10�6 	 zcrit 	 10�4 and �10�4 	 z0 	
�10�6. The response of our pipeline depends only on the
absolute value of z0 and zcrit, so the choice of sign for z0
and zcrit is arbitrary. We repeat this for three realizations of
the background CMB fluctuations, yielding a total of 210
simulated sky maps for each of the three collision sizes.

V. ANALYSIS TOOLS

We now describe in detail the analysis tools which make
up our pipeline and how they are calibrated with simula-
tions before being applied to the data. Readers wanting to
skip these details may want to study Figs. 11 and 17 and
turn to Sec. VD for a summary of the outputs of the
pipeline at each stage and the conditions under which a
detection can be claimed.

A. Needlets

Wavelet analysis is a powerful tool for identifying fea-
tures localized on the sky, the type of signal expected for
bubble collisions. There exist families of wavelets that are
defined on the sphere known as standard [46–50] and
Mexican [51] spherical needlets. These functions form
what is known as a ‘‘tight frame,’’ allowing for a well-
defined forward and reverse needlet transform. As in other
forms of wavelet analysis, decomposing the temperature
map into a sum over such functions yields information both
about the location and angular scale of specific features.
For a purely Gaussian temperature field, the statistical
properties of the needlet transform can be straightfor-
wardly related to the power spectrum, allowing a quantifi-
cation of the significance of a possible detection. In
addition, the spatial localization properties of the standard
and Mexican needlets make it possible to avoid many of
the problems associated with working on a cut sky. In this
section we outline the properties of needlet transforms and
analyze their utility in searching for bubble collisions.

1. Definition of the spherical needlet transform

The needlet transform is defined as

Tðn̂Þ ¼ X
j;k

�jkc jkðn̂Þ; (16)

where n̂ denotes a direction f�;�g on the sky, �jk are

constant needlet coefficients, and c jkðn̂Þ are the needlet

functions. The members of this family of functions are
labeled by the index k of the pixel at which they are
centered, and their ‘‘frequency’’ j, which is related to the
spatial extent of the needlet profile in real space. The sum
in the needlet transform is over all pixels k, and all fre-
quencies j ¼ 0; 1; 2; . . . ;1. For fixed j, there is one nee-
dlet coefficient �jk for each pixel k, allowing us to

represent the needlet coefficients at fixed j as a map on
the pixelated sky. The needlet functions are defined in
terms of spherical harmonics Y‘mðn̂Þ as

c jkðn̂Þ ¼
ffiffiffiffiffiffiffi
�jk

q X
‘

bð‘; B; jÞ X‘
m¼�‘

Y�
‘mðn̂ÞY‘mðn̂kÞ: (17)

Here, �jk are the cubature weights, which are related to the

area of each pixel. In the equal-area HEALPix pixelization
[56] we employ, all cubature weights are equal to

FIG. 4 (color online). The two locations chosen for our simu-
lated bubble collisions are overplotted on the WMAP 7-year
noise variances with the KQ75 7-year mask applied. The regions
encompassed by the 5� and 10� simulated collisions are shaded
black and gray, respectively. Bubbles are centered in an un-
masked high-noise f�0 ¼ 56:6�; �0 ¼ 193:0�g (left) and low-
noise f�0 ¼ 57:7�; �0 ¼ 99:2�g region (right).
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�jk ¼ 4�=Npix, where Npix is the number of pixels, and we

absorb this constant into the needlet coefficients �jk. The

function bð‘; B; jÞ acts as a filter in harmonic space, where
B is a constant bandwidth parameter. It is chosen such that
the family of functions c jkðn̂Þ forms a tight frame (see,

e.g., Ref. [46]), which guarantees the existence of an
inverse needlet transform given by

�jk ¼
Z

Tðn̂Þc jkðn̂Þd�: (18)

There are a number of possible choices for the function
bð‘; B; jÞ, which distinguish the standard and Mexican
needlets. A description of the explicit form of the function
bð‘; B; jÞ can be found for standard needlets in Ref. [46]
and Mexican needlets in Ref. [51]. We plot b as a function
of the multipole moments ‘ in Fig. 5. For standard needlets,
b only has support for values of ‘ between Bj�1 < ‘<
Bjþ1. The bandwidth parameter B controls the width of
each window function in harmonic space. Mexican nee-
dlets have support over all ‘ at each frequency j, and again
have a bandwidth parameter B which controls the local-
ization properties of the functions in harmonic space.

In Fig. 6 we plot the wavelet functions in pixel space. As
is to be expected, increasing the width of the function
bð‘; B; jÞ in harmonic space corresponds to improved lo-
calization in pixel space. In the limit of large j, there is an
extremely small overlap of the needlet functions at nearby

pixels. The compact support of bð‘; B; jÞ in harmonic space
for standard needlets leads to slightly poorer localization in
pixel space than is enjoyed by the Mexican needlets.
If we decompose the temperature map into spherical

harmonics:

Tðn̂Þ ¼ X
‘;m

a‘mY‘mðn̂Þ; (19)

then Eq. (18), together with the inverse transform

a‘m ¼
Z

Tðn̂ÞY�
‘md� (20)

leads to

�jk ¼
ffiffiffiffiffiffiffi
�jk

q X
‘

bð‘; B; jÞ X‘
m¼�‘

a‘mY‘mðn̂kÞ; (21)

where a‘m are the spherical harmonic coefficients. This
formula allows us to transform directly from the a‘m’s to
the spherical needlet coefficients �jk. In our analysis, the

needlet transforms are accelerated by generating the a‘m’s
at full WMAP resolution (Nside ¼ 512) but limiting the
reconstruction multipoles to 2 	 ‘ 	 256, and needlet
positions k to the pixels at Nside ¼ 128. This retains the
resolution required to reconstruct features from half-sky to
half-degree scales, encompassing the range of all detect-
able collisions.
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FIG. 5. The filter function bð‘; B; jÞ for standard (left panel) and Mexican (right panel) needlets with B ¼ 2:5 for j ¼ 0, 1, 2, 3 (solid,
dashed, dot-dashed, dotted curves).
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FIG. 6 (color online). Standard needlets in pixel space. On the left, we show standard needlets c jk with B ¼ 2:5 for j ¼ 1, 2, 3 (dot-
dashed, dashed, solid curves) at fixed k as a function of the polar angle �. On the right, we show standard needlets c jk for fixed j ¼ 3

at three pixels k (dashed, solid, dot-dashed curves) as a function of the polar angle � (note: since we are projecting onto �, the needlets
appear asymmetric).
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2. Needlet response to the bubble-collision templates

We now quantify the sensitivity of the needlet transform
to the presence of a collision. In the absence of the back-
ground Gaussian fluctuations, we perform the needlet
transform on a set of bare collision templates. As an
illustration, in Fig. 7 we plot the spherical harmonic co-
efficients as a function of ‘ (all coefficients for m � 0
vanish by symmetry if we center the template on the north
pole) for 25� and 5� collision templates, overlaid on top of
the rescaled filter function bð‘; B; jÞ for spherical needlets.
The spherical harmonic coefficients for the collision tem-
plates peak at a value of ‘ related to the angular scale of the
causal boundary. Therefore, the needlet coefficients are
largest at a frequency j that is directly related to the angular
scale of the collision. This can be seen in Fig. 7, where the
5� collision has a maximum response at j ¼ 3 and the 25�
collision has a maximum response at j ¼ 2.

In Fig. 8, we plot the needlet coefficients for the 25�
template at a variety of polar angles, for 0 	 j 	 3. The
needlet coefficients are largest in the center of the region
affected by the collision (here, the template is centered on
� ¼ 0), and at a frequency j correlated with the angular
scale of the collision (j ¼ 2). As expected, the needlet
response is sensitive to both the location and angular scale
of the collision.

By studying the needlet response to a variety of bare
collision templates given by Eq. (4), we can find optimal
values of the bandwidth parameter B for each needlet type.
Larger-bandwidth needlets produce stronger signals, but
also respond to a greater range of bubble sizes. We have
found that the values B ¼ 1:8 and B ¼ 2:5 for the standard
and B ¼ 1:4 for the Mexican needlets are a good compro-
mise between signal strength and angular localization of
response. In our analysis, we use this suite of three needlet
transforms, ensuring that we are sensitive to temperature
modulations with a variety of profiles and allowing us to
cross-check any candidate signals.
As an important step in our analysis pipeline, we build

lookup tables containing the possible range of bubble-
collision scales, �crit;min 	 �crit 	 �crit;max, to which each

needlet type and frequency is sensitive. We first generate a
set of 100 templates at each integer �crit between 1� and
89� by randomly sampling zcrit between �5� 10�5 	
zcrit 	 5� 10�5 with z0 ¼ 5� 10�5 for zcrit > 0, and
z0 ¼ zcrit þ 5� 10�5 for zcrit < 0. This creates a set of
templates with uniform total amplitude [[i.e., constant
fð�;�Þ � fð�crit; �Þ] but a variety of profiles at each an-
gular scale. Next, we calculate the needlet coefficients for
each of the three members of our needlet suite and record
the frequency generating the maximum central needlet
response for each template. The range in �crit recorded at
each frequency is used to generate the lookup tables in
Table I.

3. Needlet coefficients on a cut sky

The CMB is completely dominated by foreground
emission in the region of the Galactic plane and is also
affected by bright point sources. These issues are typically
handled by applying a mask which covers the Galactic
plane and known point sources. The needlet transform
can be applied directly on the masked temperature maps,
and because the needlet functions are localized in pixel
space, needlet coefficients far from the mask for suffi-
ciently high-frequency j are not significantly affected.
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FIG. 7 (color online). The spherical harmonic transform (connected dots) of a �crit ¼ 5� (left panel) and �crit ¼ 25� (right panel)
bare collision template centered on the north pole on top of the filter function bð‘; B; jÞ for standard needlets with B ¼ 2:5 for j ¼ 0, 1,
2, 3 (solid, dashed, dot-dashed, dotted curves). The overlap of the filter function bð‘; B; jÞ with the spherical harmonic transform of the
bubble template [see Eq. (21)] determines for which value of j the needlet transform yields the largest signal. In these examples, the
5� collision has the largest needlet response at j ¼ 3 and the 25� collision at j ¼ 2. The needlet response as a function of angle for
the 25� collision is plotted in Fig. 8.
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FIG. 8 (color online). B ¼ 2:5 for standard needlets and a 25�
collision. j ¼ 0 (circles), j ¼ 1 (squares), j ¼ 2 (diamonds), and
j ¼ 3 (triangles).
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These high-frequency needlets are mainly composed of
high-‘ spherical harmonics, and so cut-sky a‘m’s can safely
be used to calculate the needlet coefficients through
Eq. (21). Unfortunately, the low-frequency needlets are
quite sensitive to the presence of the mask. To partially
mitigate this sensitivity, we calculate the optimal unbiased
maximum-likelihood estimators of the a‘m’s [57] at low ‘.

Such maximum-likelihood estimators are computation-
ally very expensive, and we must balance accuracy against
limited computational resources. Another minor compli-
cation arises from the smoothing that is necessary to band
limit the data when performing the maximum-likelihood
reconstruction algorithm of Ref. [57]: information leaks

from inside the mask. Comparing the reconstruction on
masked and unmasked simulated temperature maps using
10�-FWHMGaussian smoothing, we have determined that
a reasonably small bias is obtained when maximum-
likelihood a‘m’s are used for ‘ < 10.
This set of hybrid a‘m’s—maximum-likelihood recon-

structed a‘m’s for ‘ 	 10 and cut-sky a‘m’s for ‘ > 10—is
used in Eq. (21) to calculate the needlet coefficients in the
analysis that follows.

4. Statistical properties of needlet coefficients

For a Gaussian CMB without sky cuts, the statistical
properties of the spherical harmonic coefficients [46] are

ha‘mi ¼ 0; hja‘mj2i ¼ C‘: (22)

These are related to the statistical properties of the �jk in a

straightforward way by

h�jki ¼ 0; h�2
jki ¼

X
‘

bð‘; B; jÞ 2‘þ 1

4�
C‘; (23)

which are identical at each pixel k. Thus, in a full-sky
analysis, comparison with the Gaussian variance yields a
measure of how likely it is to find a particular needlet
coefficient in a purely Gaussian realization of the CMB
sky.
In the presence of foregrounds, however, it is necessary

to work on a cut sky, which introduces a j- and a
k-dependent bias. Following Ref. [48], we determine the
significance of a needlet coefficient on the cut sky by7

Sjk ¼
j�jk � h�jkiGauss;cutjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h�2
jkiGauss;cut

q ; (25)

where the average, h�jkiGauss;cut, and variance,

h�2
jkiGauss;cut, are calculated at each pixel from the needlet

coefficients of 3000 collision-free Gaussian CMB realiza-
tions with the WMAP 7-year KQ75 sky cut applied.
Simulating only cosmic variance is sufficient here because
the measurements made by WMAP are cosmic variance
limited on the scales of interest, �crit * 5�.
Maps of the needlet variances obtained from simulations

are shown in Fig. 9 for examples with low (top row) and
high needlet (bottom row) frequencies. On the left are the

TABLE I. Angular scale lookup tables for standard needlets
with B ¼ 2:5 (top), standard needlets with B ¼ 1:8 (middle),
and Mexican needlets with B ¼ 1:4 (bottom). For a needlet
frequency j, the needlet transform is sensitive to bubble colli-
sions on scales �crit;min 	 �crit 	 �crit;max. No results are shown

for the standard needlets with B ¼ 1:8, j ¼ 0 as they have no
support over the range of angular scales considered.

j �crit;min �crit;max

0 60� 90�
1 33� 71�
2 12� 32�
3 5� 14�
4 2� 5�
5 1� 2�

j �crit;min �crit;max

1 56� 90�
2 28� 64�
3 17� 38�
4 10� 21�
5 6� 12�
6 3� 7�
7 2� 4�
8 1� 2�

j �crit;min �crit;max

0 86� 90�
1 78� 90�
2 55� 90�
3 36� 71�
4 27� 48�
5 19� 37�
6 14� 27�
7 10� 20�
8 8� 16�
9 5� 12�

10 4� 8�
11 3� 6�
12 2� 4�
13 1� 2�

7One can also define composite significances, involving nee-
dlet coefficients at multiple frequencies. An example is

Sjj0 ¼
j�jk�j0k � h�jk�j0kijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hð�jk�j0kÞ2i
q : (24)

We have evaluated this statistic on a variety of collision tem-
plates modulating Gaussian realizations of the background CMB
fluctuations and found that it returns about half the significance
given by Eq. (25).
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needlet variances calculated without a mask, which agree
at the 5% level with the expected variances from Eq. (23).
On the right are the masked needlet variances, which are
clearly biased within a certain distance from the mask in
both cases. Variances in the low-frequency example are
affected predominantly by the Galactic cut. Variances in
the high-frequency example are affected in a much smaller
region of the Galactic cut (reflecting the increased spatial
localization of needlets at high frequencies), but are much
more significantly affected by the point-source masks.

To illustrate the expected response to a bubble collision,
in Fig. 10 we show the temperature map of our illustrative
example of a simulated bubble collision on the cut sky, and
the significances of its needlet coefficients calculated from
Eq. (25) at j ¼ 3 using standard needlets with B ¼ 2:5.
The location of the collision is clearly highlighted in the
map of needlet coefficients. The significance of the needlet
coefficients in pixels in the center of the collision forms a
global maximum on the entire map.

In order to identify a set of needlet coefficients with a
particular feature, we sew regions with 5 or more pixels
whose needlet coefficients exceed a frequency-dependent
threshold into blobs (we discuss in more detail below how
these thresholds are set). The core of each blob contains all
adjacent pixels that pass the significance threshold. This

core is then extended by first finding the average position
n̂0 of the pixels in a blob and modeling it as a disk of
radius ��=2 (where �� is the maximum separation be-
tween any two pixels in the blob) centered on n̂0. The blob
is then extended to a radius of 1:1� ð�crit;max þ ��=2Þ,
where �crit;max is found from Table I (which is dependent

upon the needlet type and frequency at which a feature is
found) to ensure we include all related pixels. All pixels
not contained in a blob are masked, and this new tempera-
ture map is passed to subsequent steps in the analysis
pipeline. Eliminating irrelevant pixels allows us to drasti-
cally reduce the computational effort needed in the sub-
sequent analysis.

5. Analysis of the WMAP end-to-end simulation

As there are many independent needlet coefficients over
the sky, it is inevitable that highly significant features will
be detected in even a purely Gaussian CMB temperature
map. In addition, residual foregrounds and instrumental
artifacts may give rise to features which are misclassified
as candidate bubble collisions by the pipeline. To under-
stand how these effects might contribute to the needlet
significances, we ran the suite of needlet transforms on
the end-to-end simulation of the WMAP experiment

FIG. 9 (color online). Needlet-coefficient variance maps for standard needlets with B ¼ 2:5, j ¼ 2 (top row) and Mexican needlets
with B ¼ 1:4, j ¼ 11 (bottom row), generated using an ensemble of 3000 Gaussian CMB realizations. The map-averaged variances of
the full-sky maps (left column) agree well with expectations from theory [Eq. (23) predicts 774 �K2 and 150 �K2 respectively], as do
regions of sky sufficiently distant from the 7-year KQ75 mask (right column). The low-frequency needlets are affected predominantly
by the Galactic cut, whereas the high-frequency needlets are affected by point-source masking.
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(described in Sec. IV) with the 7-year KQ75 mask applied.
As an illustration of our results, in Table II we give the
number of blobs of varying significance found in the
masked end-to-end simulation using standard needlets
with B ¼ 2:5. At increasingly high frequency, for which
there are more independent needlet coefficients, more and
more blobs are found that pass relatively large significance
thresholds.

We use the results of Table II (and similar tables for
other members of the needlet suite) to define a set of
needlet frequency-dependent significance thresholds that
allow a manageable number of false positives, while

retaining sensitivity to a fairly large range of collision
template parameters. The significance thresholds we use
in our analysis are shown in Table III. There are a total of
17 blobs in the masked end-to-end simulation that pass
these thresholds. Comparing their locations on the sky, we
can associate these blobs with 13 features (if a feature is
picked up by multiple needlet types or frequencies, it can
have multiple blobs associated with it). For three of these
features, the set of pixels that pass the needlet threshold
intersect the Galactic cut. We associate these with a re-
sponse to the mask and do not consider them further. For
the other ten features, the needlet type and frequency
which yielded the maximum significance are recorded in
Table IV.

6. Analysis of bubble-collision simulations

To assess how robustly the needlet transform can pick
out a collision in the temperature map, we have performed
an analysis of the simulated collisions described in Sec. IV.
If the later steps of the analysis are to have a chance at
detecting a simulated collision, it must be contained within
the set of pixels defined by the blob. To determine if
the needlet analysis has detected a bubble collision, we

FIG. 10 (color online). The temperature (top panels) and needlet-coefficient significance (bottom panels) maps for a simulated
bubble collision with z0 ¼ 5� 10�5, zcrit ¼ �5� 10�5, �crit ¼ 10� on the CMB sky with the WMAP 7-year KQ75 mask applied. We
show the map of needlet coefficients which gives the largest needlet response, in this case j ¼ 3 for standard needlets with B ¼ 2:5.
The right-hand panels provide close-ups of the collision region.

TABLE II. The number of blobs found in the masked
WMAP end-to-end simulation above significances ranging
from 3 	 S 	 4 for standard needlets with B ¼ 2:5.

j S ¼ 3 3.25 3.5 3.75 4

0 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 0

3 10 4 2 1 0

4 23 10 4 0 0
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therefore require that a blob exists which fully contains the
region affected by the collision, and that the true center of
the collision lies within the set of pixels passing the sig-
nificance threshold.

The results of this analysis for the 5� and 10� collisions
are shown in Fig. 11. We define the ‘‘exclusion region’’ of
these plots as the part of parameter space for which all six
realizations/locations yield a detection. If there were a
bubble collision in the WMAP 7-year data with these
parameters, it would be detected with high significance
regardless of its location on the sky (as long as the collision
was not significantly masked). The ‘‘sensitivity region’’ is
defined as the part of parameter space for which any of the
six realizations/locations yields a detection. A bubble

collision in this range of parameter space would be de-
tected only for a favorable location or realization of the
background fluctuations. The exclusion and sensitivity
regions for the 25� collisions are identical to those for
the 10� collisions.
Looking at the simulations in detail, there are a few

general trends. First, for the needlets to pick out a collision,
it is sufficient to have either a relatively large central
amplitude z0 or a relatively large temperature discontinuity
zcrit at the causal edge. This is clear from the shape of the
exclusion region in Fig. 11. From the size of the sensitivity
region in this plot, one can also see that the amount of
instrumental noise and particular realization of the back-
ground fluctuations can greatly affect the significance of
the needlet coefficients in the vicinity of a collision. Many
more collisions were detected in the low-noise region than
the high-noise region of the sky. For collisions in the
exclusion region, there is a significant needlet response
for all three needlet types over a range of frequencies,
with an average significance exceeding S > 5. Collisions
in the sensitivity region are typically detected by only one
needlet type and frequency, with an average significance
near S ’ 4. As our ability to detect 5�, 10�, and 25�
collisions is nearly the same, we conclude that these results
are fairly representative of our detection limits over all
angular scales * 5�.
These general trends can be contrasted with the response

to features found in the end-to-end simulations. Here, blobs
are typically detected with a single needlet type and are
near the significance threshold (not surprisingly, as the
threshold was chosen to have this property). A feature
detected in the data by multiple needlet types and/or fre-
quencies at a significance of S � 4 would be a good
bubble-collision candidate. However, we stress that many
different underlying features could give rise to such a
signal. The following steps in the analysis pipeline, which
we now describe, are designed to verify if these candidates
are in fact bubble collisions.

TABLE III. Sensitivity thresholds Smin and the number of
significant blobs detected in the end-to-end simulations Nblobs

for standard needlets with B ¼ 2:5 (top), standard needlets with
B ¼ 1:8 (middle), and Mexican needlets with B ¼ 1:4 (bottom).
Only blobs that do not intersect the Galactic cut are reported. No
results are shown for the standard needlets with B ¼ 1:8, j ¼ 0
as they have no support over the range of angular scales
considered.

j Smin Nblobs

0 3.0 0

1 3.0 0

2 3.5 0

3 3.5 1

4 3.75 0

j Smin Nblobs

1 3.0 0

2 3.0 0

3 3.25 0

4 3.25 1

5 3.25 3

6 3.5 1

7 3.5 3

j Smin Nblobs

0 3.0 0

1 3.0 0

2 3.0 0

3 3.0 0

4 3.0 0

5 3.0 0

6 3.5 0

7 3.5 0

8 3.5 0

9 3.5 0

10 3.5 1

11 3.5 1

12 3.75 1

TABLE IV. Blobs found by the needlet transform in the
WMAP end-to-end simulations with the 7-year KQ75 mask.

Feature Blob B j S

1 1 2.5 3 3.83

1 2 1.8 5 3.55

2 1 1.8 4 3.99

3 1 1.8 5 3.28

4 1 1.8 5 3.33

4 2 1.4 10 3.77

5 1 1.8 6 3.96

6 1 1.8 7 4.13

7 1 1.8 7 3.97

8 1 1.8 7 4.34

9 1 1.4 11 3.71

10 1 1.4 12 4.14
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B. Edge detection

The first of the two parallel verification steps of the
pipeline tests whether features highlighted by the blob-
detection stage have circular temperature discontinuities.
The unambiguous detection of a circular temperature dis-
continuity would strongly suggest that a particular feature
highlighted by the needlets is in fact a bubble collision. We
employ the Canny edge-detection algorithm [52], whereby
the gradient of an image is generated and thinned into
single-pixel proto-edges, the best of which are stitched
together into ‘‘true’’ edges. We also use an adaptation of
the CHT algorithm [53], which assigns a ‘‘score’’ depen-
dent on how many edge pixels lie on circles of varying
centers and radii. In this section, we describe our edge-
detection algorithm, and study its performance on an
end-to-end simulation of the experiment, as well as on
simulated bubble collisions.

1. The Canny edge-detection algorithm

The Canny edge detector is the standard edge-detection
algorithm in image-processing software and has recently
been used to search for cosmic strings [30,31]. Designed as
the optimal algorithm for localized, duplicate-free detec-
tion of edges within a noisy image, it uses three steps—
smoothed gradient generation, nonmaximal suppression,
and hysteresis thresholding—to extract contiguous edge
sections. In Fig. 12, we depict each of these three steps
as applied to a temperature map containing a circular
discontinuity; each of these steps are in turn described as
follows:

(1) Smoothed gradient generation: The gradient of a
Cartesian image is traditionally generated by con-

volving the image with two small symmetric filters,
each determining one orthogonal component of the
gradient. A number of simple filters—typically
3� 3 pixels—perform the job adequately, but the
optimally adaptable filters are the first partial de-
rivatives of the two-dimensional Gaussian [52].
Using these filters is equivalent to first convolving
the image with a small Gaussian filter (and thus
smoothing out the effects of small-scale noise on
the gradient calculation, an important step given the
small number of pixels involved in the calculation)
and then finding its gradient components.
Unfortunately it is impossible to construct symmet-
ric pixel-based gradient filters that cover the whole
sphere. We therefore carry out both the Gaussian
smoothing and gradient generation steps in har-
monic space, making use of HEALPix’s in-built
alm2mapder subroutine to calculate the magni-
tude and direction of the gradient at each pixel. We
smooth with a Gaussian filter of FWHM 0.22�—
approximately two pixels’ width at the resolution of
our input maps—to minimize features due to pixel
noise while retaining longer edges.
The gradient maps are generated before masking to
reduce ‘‘ringing’’ from the sharp sky cut back into
the map. The smoothing step ensures that any leak-
age from masked features is restricted to areas a few
pixels within the sky cut and affects only areas a few
pixels outside of the cut. Nevertheless, any features
found close to the mask should be carefully exam-
ined to check if they are generated from within the
mask.

(2) Nonmaximal suppression: The second step of the
Canny algorithm reduces the smoothed gradients

FIG. 11. Exclusion (black) and sensitivity (gray) regions for the needlet step of the analysis pipeline applied to a set of 5� (left panel)
and 10� (right panel) simulated bubble collisions. If all realizations at the high- and low-noise locations yield a detection, we include
the collision in the exclusion region; such collisions would certainly be detected as long as they were not significantly masked. If a
detection is made in any realization/location, we include the collision in the sensitivity region; such collisions could be found if they
were in a favorable location of the sky (i.e., low noise, or a region with a specific realization of background CMB fluctuations).
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produced by the first step into local maxima. At this
stage, all pixels are assumed to belong to a local
edge, whose direction is defined to be perpendicular
to the local gradient direction. Taking each pixel at a
time, the two direct neighbors which lie closest to
the local edge are found. The gradient magnitudes of
the three pixels are compared, and the central pixel’s
gradient magnitude is set to zero unless it is the
largest of the three. Processing each pixel in turn
reduces the gradient magnitude map to only the
local maxima (see the central panels of Fig. 12).
As an example, consider the simplest case of cross-
ing a sharp discontinuity along a perpendicular path.
The gradient direction is constant at each pixel,
whereas the smoothed gradient magnitudes increase
until the edge is crossed, when they start to decrease.
A nonmaximal suppression algorithm tracks along
the path setting all of the gradient magnitudes to
zero apart from the pixel on (or closest to) the edge.

(3) Hysteresis thresholding: At this stage of the Canny
algorithm, we have gradient magnitudes and direc-
tions for a set of local maxima of varying amplitude,
some corresponding to true edges (which may have
been disrupted by noise) and others to runs of noisy
pixels or to more slowly varying boundaries of CMB
patches. To filter out true edges from the noise, and
stitch together any edges that have been split, the
final step of the algorithm takes advantage of the
fact that, unlike randomly oriented noise, true edges
conserve their gradient magnitude and direction (to
an extent affected by the shape of the edge, the
pixelization scheme, and the noise level) over their
path.
Hysteresis thresholding involves first setting an
upper threshold for the gradient magnitude: Any
pixels surpassing this threshold are considered to
be part of true edges, and a new ‘‘true edge’’ map is
created with these pixels’ positions marked. A

second, lower threshold is then set. Hysteresis
thresholding then proceeds as follows:

(a) The map is scanned until a true edge pixel is found.
(b) The next potential edge pixel is defined to be the

direct neighbor closest to 90� clockwise from the
local gradient direction. The gradient direction of
this pixel is compared to the current pixel’s. To do
so, the local phase angles to the current pixel’s near-
est neighbors are found and used to define the neigh-
bor closest to the current gradient direction. The
neighbors adjacent to this pixel are then determined.
The gradient direction at the next potential edge pixel
is required to lie between the phase angles of these
neighbors. This rather loose requirement allows the
algorithm to step along pixelated curved edges.

(i) If the two pixels’ gradient directions match within
the tolerance:

(A) If the neighbor’s gradient magnitude passes the low
threshold but not the high, it is considered to be part
of a potential true edge. Its position is marked in a
history array; then the algorithm ‘‘steps onto’’ this
pixel and the process is repeated from step (b) until
one of the other conditions is met.

(B) If the neighbor’s gradient magnitude passes the high
threshold, all pixels found on the way from the
source pixel are confirmed as a true edge. Their
positions are marked on the true edge map, and
the algorithm returns to step (a).

(C) If the neighbor’s gradient magnitude fails both
thresholds, the edge is considered to be false: The
history of potential edge pixels found on the way
from the source pixel is erased, and the algorithm
returns to step (a).

(ii) If the two pixels’ gradient directions do not match
within the required tolerance:

(A) If the neighbor’s gradient magnitude passes the
high threshold or the neighbor is already marked
in the history array, all pixels found on the way from

FIG. 12 (color online). An illustration of the Canny algorithm for edge detection. The input temperature map contains a circular
discontinuity, which can be seen in a map of the gradient magnitude as a local maximum. Nonmaximal suppression selects for local
maxima in the gradient map. The hysteresis thresholding step finds stitched edges by comparing the local direction of the gradient at
adjacent pixels.
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the source pixel are confirmed as a true edge. Their
positions are marked on the true edge map, and the
algorithm returns to step (a). This ensures simple
branched and looped edges can be reconstructed.

(B) If the neighbor’s magnitude does not pass the high
threshold and the pixel is not already marked in the
history array, the edge is considered to be false, the
history of potential edge pixels found on the way
from the source pixel is erased, and the algorithm
returns to step (a).

The entire process is then repeated, choosing the neighbor
closest to 90� counterclockwise to the local gradient di-
rection in step (b).

The end product of the Canny algorithm is a Boolean map
of stitched true edges (see the right-hand panel of Fig. 12).
To reduce computation time, the pipeline from hysteresis
thresholding onwards is restricted to the blobs produced by
extending the regions passing the needlet significance test
to ensure any discontinuity is fully contained.

Care must be taken when setting the thresholds used in
the hysteresis thresholding step. If either threshold is set
too high, very few edges are confirmed. If the low threshold
is set too low, a huge amount of potential edges are
considered, and the algorithm runs extremely slowly. As
the edges we could potentially find must be comparable in
amplitude to the CMB signal and detector noise (as they
have not yet been discovered by eye) and have been
smoothed by the WMAP beam, we set low thresholds to
err on the side of caution. Low and high thresholds of 30%
and 40% of the maximum gradient magnitude found in
each search region are found empirically to confirm edges
generated in simulations in feasible computation time
scales. This means that the gradients associated with the
strongest CMB features—typically�1� in scale—are clas-
sified as edges, as shown in Fig. 12.

2. Circular Hough transform

The maps of stitched candidate edges found using the
Canny algorithm are processed using the circular Hough
transform to search for the presence of circular edges. The
basic idea, as shown in Fig. 13, is to count the number of
intersections between circular arcs of varying radii cen-
tered on each of the candidate edge pixels and oriented
along the local gradient direction. If there is a circular edge
in the map, the number of intersections will be maximized
at the center of the circular edge when the radius of the
circular arc matches that of the edge.
Assuming an edge pixel forms part of a circular edge of

angular radius �crit, one can define a prescription for the set
of pixels that are the potential centers of the edge. The two
most likely candidates in this set are the pixel �crit away in
the direction of the local gradient, and the pixel the same
distance in the opposite direction; the edge could be a step
up or a step down. Building in flexibility to cope with
pixelation and noise effects, this set is expanded to two
annular arcs of radius �crit, oriented in the direction of the
local gradient and centered on the edge pixel.
The CHTworks by assuming that all edge pixels are part

of circular edges. The most likely circle center at a given
radius is defined to be the pixel that is included in the
greatest number of these arcs, counted using an accumu-
lator array. If the search radius matches the radius of a
circular edge within the map, we expect all of the circular
edge pixels’ arcs to include the true center, and the CHT
accumulator will show a single clear peak. If the search and
true radii are discrepant, fewer of the circular edge pixels’
arcs will intersect, and this peak will appear as a ring with
decreased amplitude (see Fig. 13). When the search and
true radii are very discrepant, any rings will disappear
beneath the background due to randomly oriented noise
and other noncircular edges. Note that ‘‘noncircular
edges’’ will include the �1� CMB fluctuations that are
qualified as edges by the hysteresis thresholding step.

FIG. 13 (color online). A depiction of the circular Hough transform (CHT). On the left is a Boolean map of edge pixels, as output by
the Canny algorithm. Centering a pair of arcs oriented in the direction of the local gradient about each edge pixel, the CHT counts the
number of times each pixel is intersected. The presence of a circular edge is indicated by a maximum in the CHT score—the hit count
divided by the arc radius—as the arc radii are varied. On the left, we show a set of arcs, centered on four pixels on the circular edge we
wish to detect; there will be no clear peak in the CHT score for this radius. Increasing the arc radius to match that of the circular edge
(center), there will be a large number of hits at the true center of the edge. On the right, we show the actual map of the CHT score at
each pixel for this example. As this has been scanned at the correct angular scale, there is a large peak at the center of the circular edge.
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To compare the CHT results at different search radii, one
must divide out the approximately linear growth with
angular radius of the number of pixels in each annular
arc. We call this normalized quantity the ‘‘CHT score.’’
The most likely center and radius of a circular edge within
a map can therefore be found by scanning the map with the
CHT at a range of radii and determining the maximum
CHT score.

The blob-detection step provides the range of scales
�crit;min 	 �crit;i 	 �crit;max of potential circular edges

present in each blob. To determine whether a blob contains
a circular edge, we compare the CHT scores obtained by
scanning at every 0.25� increment within this range, using
annular arcs that are 0.25� thick and which cover 45� of
phase about each edge pixel. The annular arcs are therefore
approximately two pixels thick and are fairly wide to
account for the effects of pixelation on the gradient direc-
tion. The thickness of the CHT annular arcs leads to an
uncertainty in the CHT radius of 0.25� and position of
0.50�. If a circular edge is detected, we expect a clear peak
in the CHT results for a particular blob.

In Fig. 14 we show the output of the edge-detection
algorithm on our illustrative example bubble-collision
simulation (see Fig. 10). On the left is the portion of the
temperature map containing the collision. On the right we
plot the CHT score in the pixels that passed the needlet
significance threshold for �crit;i ¼ 10� (the input value).

There is a clear peak at the location of the true center of the
simulated bubble collision, which is �3 times the average
response at other pixels. Since this feature was flagged in
the blob-detection step for standard needlets with B ¼ 2:5
at j ¼ 3, the range of radii scanned during the CHT step is
determined from Table I to be 5� 	 �crit 	 14�. This range
contains the true radius �crit ¼ 10�. In Fig. 15 we plot the
maximum CHT score found in the map for each circular
radius, which contains a clear peak at the true radius of the
causal boundary. This signal is a clear and unambiguous

signature of a bubble collision. From visual inspection of
the temperature map, it can be seen that we are able to
clearly detect the edge even though the background fluc-
tuations, noise, and beam drastically reduce the sharpness
of the observed temperature discontinuity.

3. Analysis of the WMAP end-to-end simulation

We expect strong circular edges to be extremely rare in a
purely Gaussian CMB temperature map. However, it is
possible that foregrounds, instrumental noise, the mask,
and other experimental artifacts could lead to a spurious
detection of a circular edge. To evaluate this, we have
performed the edge-detection step of our analysis pipeline
on the features that passed the significance threshold in the
WMAP end-to-end simulation (see Table IV) with the
KQ75 mask applied.
Comparing each feature in the end-to-end simulation

with the bubble-collision example studied above, the
peak structure of the CHT score as a function of angle
and morphology in pixel space are both drastically differ-
ent. Examining the maximum CHT score as a function of
circular radius, although there are several peaks, the clear-
est of which is shown in Fig. 16, their amplitude relative to
the average score is nowhere near that of the collision
example shown in Fig. 15. In addition, from the plots of
the CHT score at each pixel, there are typically a number of
fairly broad local maxima at different locations with ap-
proximately the same score. This is in contrast to the
collision example of Fig. 14, which yields a highly peaked
score around a small number of pixels.

4. Analysis of bubble-collision simulations

To better understand the response of our edge-detection
algorithm to the signal from a bubble collision in WMAP-
quality data, we have analyzed the simulations described in
Sec. IV.We use as inputs the blobs found using the first step

FIG. 14 (color online). The temperature map (left panel) and
CHT score (right panel) for our illustrative example of a 10�
bubble-collision simulation. The CHT score is recorded at each
pixel passing the needlet significance threshold. For a search
radius of 10� there is a clear peak in the CHT score at the center
of the simulated collision.

FIG. 15. The global maximum of the CHT score at each circle
radius for the collision simulation shown in Fig. 14. The collision
has a maximum response for standard needlets with B ¼ 2:5 at
j ¼ 3, from which Table I sets the search range to be
5� 	 �crit 	 14�. The peak of the CHT score at 10� clearly
identifies the correct angular scale of the simulated collision.
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of the pipeline and search for circular edges over the range
of angular scales appropriate to the needlet type and fre-
quency for each blob (see Table I). We conclude that a true
causal edge has been detected if there is a global maximum
for the CHT score at the radius of the true edge and the
pixel with the highest score is within a typical CHT error
(0.5�) of the actual center. We again present our results in
the form of a contour plot denoting exclusion and sensi-
tivity regions in the parameter space of z0 and zcrit. This is
shown in Fig. 17 for simulated bubbles with �crit ¼ 5� and
10�. The plot for the 25� collisions is identical to the plot
for 10� collisions.

Again, from the size of the sensitivity region, we con-
clude that our ability to make a detection is dependent on
the location of the collision and the particular realization of
the background CMB fluctuations. The exclusion region

for the 10� (and 25�) collisions is far larger than for the
5� collisions. We attribute this to the proliferation of
�1�-sized features in the background fluctuations, which
can both disrupt a significant fraction of the edge pixels in a
small collision and swamp the collision signal with their
own strong gradients. We therefore expect our sensitivity
to edges at small angular scales �crit & 5� to be quite poor
at WMAP resolution. As the performance of the edge-
detection algorithm for 10� and 25� collisions is identical,
we conclude that the 10� results are fairly representative of
our sensitivities over a wide range of angular scales
�crit * 10�. Most of the collisions we mark as a detection
have a clear peak in the CHT score of the type seen in
Fig. 15. If a collision has parameters in the exclusion
region, it would be reliably detected. Based on these re-
sults, the first two steps of our pipeline can detect bubble

FIG. 16 (color online). The most edgelike feature in the WMAP end-to-end simulation. The contrast in scores as a function of
position (left panel) and radius (right panel) is greatly reduced compared to the collision example (Figs. 14 and 15).

FIG. 17. Exclusion (black) and sensitivity (gray) regions (see Fig. 11) for the edge-detection step of the analysis pipeline applied to a
set of 5� (left panel) and 10� (right panel) simulated bubble collisions.

FEENEY et al. PHYSICAL REVIEW D 84, 043507 (2011)

043507-20



collisions with central modulations jz0j * 3� 10�5 and
causal edges jzcritj * 3� 10�5 at �crit * 5� in WMAP-
quality data.

C. Parameter estimation and model selection

In many CMB anomaly analyses (but not all—see, e.g.,
Refs. [58–60]), the significance of a signal is quantified by
calculating the frequentist P value of some relevant statis-
tic. This typically involves doing a large number of
Monte Carlo realizations of the standard cosmological
model (i.e., the ‘‘null hypothesis’’), calculating the above
statistic for each, and finding the fraction for which the
statistic has a ‘‘more extreme’’ value than was actually
observed. There are several problems with this approach.
First, the calculated P value is only a measure of how
(un)likely the measured data were given the null hypothe-
sis of the standard model; no comparison is made to an
alternative model (which is what we are primarily inter-
ested in here). Second, the notion of more extreme is
fundamentally ambiguous—both ‘‘more discrepant’’ (i.e.,
values of the statistic which are farther from some fiducial
expected value than that which was measured) or ‘‘less
likely’’ are common choices.8 The heart of the problem is
that all such P values are integrals over the likelihood,
whereas it is only the likelihood of the actual data that is
relevant. The fact that the likelihood and its integral gen-
erally have a similar qualitative dependence in the tail(s) of
the distribution (i.e., both tend to zero for extreme values of
the statistic) can mask this problem. In particular, if the
tails of the likelihood are Gaussian then the integral that
gives the P value falls off more rapidly than the likelihood
itself, and so the resultant P values are unreasonably harsh
on the null hypothesis. A related problem is that many
attempts to identify CMB anomalies using frequentist
P values are overly sensitive to a posteriori selection
effects (see, e.g., Refs. [34,61] for a discussion of this
effect). Here the issue that the statistics being applied to
the data are often chosen on the basis of interesting features
initially identified in the same data is not intrinsic to
frequentist methods (which, correctly, do not permit any
data to be used more than once); but the need to invent a
statistic from which to calculate a P value can make it hard
to avoid this trap. For these reasons we do not use P values
in our analysis.

Instead, we adopt a Bayesian approach. Bayes’s theorem
provides a prescription for parameter estimation. In addi-
tion, given that we have two well-defined hypotheses, we
can utilize Bayesian model comparison to make probabi-
listic statements about the degree to which the available
data (and theoretical prior information) imply that bubble
collisions have been observed. As shown by Ref. [62],

Bayesian methods are the only self-consistent framework
for such calculations. The optimal Bayesian calculation
would be to evaluate the likelihood of the entire WMAP
data set under the two models; however, this is not com-
putationally feasible at present. In the Appendix, we out-
line a set of simplifications that allow us to approximate the
optimal Bayesian result. As outlined in Sec. III, we utilize
the information on the location and scales of the most
probable bubble-collision sites obtained in the blob-
detection step of the pipeline to implement this procedure.
Even this reduced problem is computationally demanding:
Analysis of the blobs detected in the WMAP 7-year data
during the first steps of the pipeline requires three days’
processing on 28 cores. Working at full resolution is nec-
essary to ensure that any possible circular temperature
discontinuities are examined.
These computational limitations also mean we are only

able to process a limited number of simulated temperature
maps with and without bubble collisions. The WMAP end-
to-end simulation provides a great asset at this stage, giving
the best possible measure of what false detections are to be
expected from experimental effects and any systematic
errors that are not included in our likelihood. We also
analyze a small number of representative bubble-collision
simulations to obtain an estimate of the strength of signal
we are looking for.
We now describe our methods and the results from

simulations in greater detail.

1. Bayesian formalism

Amodel of eternal inflation predicts the average number
of collisions �Ns that are, in principle, detectable by our
pipeline on the full sky.9 The ultimate goal of our Bayesian
analysis is to evaluate the full posterior probability distri-
bution for �Ns, given a CMB data set d covering a sky
fraction fsky. Using Bayes’s theorem, this can be written as

Prð �Nsjd; fskyÞ ¼
Prð �NsÞPrðdj �Ns; fskyÞ

PrðdjfskyÞ : (26)

The form of the posterior depends on the model prior
Prð �NsÞ and the evidence (also known as the model
likelihood) Prðdj �Ns; fskyÞ. The evidence is defined by mar-

ginalizing the likelihood, Prðdjm; �Ns; fskyÞ, over the n

parameters describing a collision, as specified by the model
m. Once the shape of the posterior has been determined, it
is normalized using PrðdjfskyÞ. The posterior leads directly
to constraints on the values of �Ns consistent with a CMB
data set.
In a landscape scenario, �Ns can be considered as a

continuous parameter and the prior Prð �NsÞ would be de-
termined from a measure over the possible values of �Ns.

8For simple, single-peaked, likelihoods these two definitions
are at least equivalent, but in some cases (e.g., a likelihood that is
constant over some finite range) neither definition is satisfactory.

9The number of detectable sources �Ns is a subset of the total
number of sources on the sky �N [Eq. (1)].
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We can also view �Ns as a proxy for different models of
eternal inflation (i.e., selecting a single value of �Ns), as
described further in Sec. II. The standard cosmological
model without bubble collisions is specified by the case
�Ns ¼ 0. Using Eq. (26), the probability of a model which
predicts �Ns collisions (on average) relative to that of the
standard cosmological model is

Prð �Nsjd; fskyÞ
Prð0jd; fskyÞ ¼ Prð �NsÞPrðdj �Ns; fskyÞ

Prð0ÞPrðdj0; fskyÞ : (27)

The model priors and the evidence values play an equal
role in this relationship, but in the absence of a detailed
understanding of the former, it is often useful to proceed
under the assumption that the two models are equally
probable a priori. A theory predicting an expected �Ns

collisions is favored over the standard model when the
relative probability on the left-hand side of Eq. (27) is
greater than unity.

It is also useful to provide heuristic conversions between
the Bayesian evidence ratio and other commonly used
model comparison quantities. The number of ‘‘sigma’’ of
an anomaly statistic, N�, is often used to characterize the
deviation from a null model, but it is unambiguously
defined only in the case in which the null distribution of
the chosen statistic is Gaussian with zero mean. In such a
case the probability of measuring an N� deviation is
PðNÞ / expð�N2=2Þ, which can be identified approxi-
mately with the inverse of the ratio in Eq. (27), so that,
e.g., a 3� detection is comparable to a ratio of approxi-
mately 100. However we emphasize that both the number
of sigma and related statistics such as �	2 are of limited
utility in the context of all but the most trivial model
comparison problems.

Computing Prðdj �Ns; fskyÞ by marginalizing over the

likelihood for the full prior volume is an immense compu-
tational task, requiring the inversion of the full-skyWMAP
covariance matrix at full resolution and marginalizing over
all possible numbers, locations, and sizes of collisions.
However, taking advantage of the fact that bubble colli-
sions produce discrete localized effects on the CMB sky, it
is possible to approximate the full-sky Bayesian analysis
by a patchwise analysis if the most promising candidate
signatures can be identified in advance. We describe in
detail in the Appendix an algorithm to perform such a
patchwise approximation to this full multidimensional
integral.

The key ingredient is determining the regions of parame-
ter space where the likelihood is significantly peaked, and
hence gives the most significant contributions to the evi-
dence. If these regions can be identified, the integral need
only be performed over the restricted ranges to obtain an
estimate of the evidence at greatly reduced computational
cost. We use the results of the blob-detection step of the
analysis pipeline to identify the patches which likely make
the most significant contributions to the integral. Assuming

that the bubble-collision model likelihood is peaked in the
Nb detected blobs, we show in the Appendix that the
unnormalized posterior can be approximated as

Prð �Nsjd; fskyÞ / Prð �NsÞe�fsky �Ns

XNb

Ns¼0

ðfsky �NsÞNs

Ns!

� XNb

b1;b2;...;bNs¼1

�YNs

s¼1


bs

YNs

i;j¼1

ð1� �si;sjÞ
�
;

(28)

where the prefactors reflect the fact that the number of
collisions present on the observable sky, Ns, is the realiza-
tion of a Poisson-like process (of mean fsky �Ns), and 
b is

the evidence ratio evaluated within a candidate collision
region (with data subset db) using a single bubble-collision
template


b ¼ Prðdbj1Þ
Prðdbj0Þ : (29)

The posterior can therefore be built from local measures of
how well the data are described by the standard model with
and without a collision template. Once Eq. (28) is obtained
in a particular case, it can be normalized, although this is
not strictly necessary to perform the parameter estimation
and model selection analyses.
To illustrate some possibilities, in Fig. 18 we plot the

normalized posterior assuming fsky ¼ 0:7 (from the KQ75

mask) and a uniform prior on �Ns, for the case where there
is a single detected blob (left panel), and four detected
blobs (right panel). A theory predicting a particular value
of �Ns will be preferred to a theory without bubble colli-
sions if the ratio in Eq. (27) is larger than 1. This amounts
to comparing the posterior at some value of �Ns to the
posterior at �Ns ¼ 0 (dashed line). To prefer any theory
with bubble collisions, in the one-blob case it is necessary
for the blob to yield a local evidence ratio larger than 1
(here, we plot the posterior assuming 
b ¼ 4). This is not
true when there are multiple blobs, as can be seen in the
right panel of Fig. 18, where we plot the posterior assuming
each blob has a local evidence ratio 
b ¼ 0:5. The bubble-
collision hypothesis (for some values of �Ns) is preferred
even when the local evidence ratios are less than 1: A
number of marginal detections can be significant when
considered together. We can also obtain any desired con-
fidence intervals on �Ns by examining the shape of the
posterior (although it is always the whole distribution
that is the full answer to any parameter estimation
problem).
When the local evidence ratios are large, the posterior

can be approximated by Eq. (A16), appropriately normal-
ized. In Fig. 19, we plot the posterior in the limit of large
evidence ratios (again assuming fsky ¼ 0:7) for no blobs,

two blobs, and four blobs. Even in the presence of large
local evidence ratios, it can be seen that the posterior has a
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significant spread due to cosmic variance: We have access
to only one realization of bubble collisions on the CMB
sky. Note that this is true even when there are no detected
blobs. When there are multiple decisively detected blobs,
the posterior correctly assigns a very small probability to
�Ns ¼ 0.
Our analysis also provides constraints on the parameter

values of each candidate collision. The constraints on the n
template parameters m are encoded in their joint posterior
distribution

Prðmjdb; 1Þ ¼ PrðmÞPrðdbjm; 1Þ
Prðdb; 1Þ : (30)

The marginal distribution of any subset of the parameters is
given by integrating Prðmjdb; 1Þ over the remaining pa-
rameters which are not of interest. For the bubble-collision
model the parameters should include both those describing
the collision and the global cosmological parameters; mar-
ginalizing over the latter would give constraints on the
properties of a (putative) detected collision. We now dis-
cuss the analysis of the likelihood and evidence ratios for a
patch in greater detail.

2. Analysis of candidate bubble-collision patches

At the heart of the above formalism for assessing the full
posterior for �Ns is the evaluation of the patch likelihood for
a single collision, Prðdbjm; 1Þ. Here the data, db, are the
measured temperature values of the pixels in the vicinity of
the detected blob that are not in the sky cut. The bubble-
collision model parameters, m, should include both those
that describe the collision, fz0; zcrit; �crit; �0; �0g, as well as
the cosmological parameters which determine the CMB
power spectrum. However any plausible bubble collision
would be sufficiently localized so that the cosmological
parameters are essentially uncorrelated with them; more-
over they are sufficiently tightly constrained from CMB
measurements so that their uncertainties are minimal in the
context of a template-matching problem such as this.
Hence we fix the cosmological parameters to their best-
fit WMAP values [55] and only the bubble-collision pa-
rameters are varied. Hence m ¼ fz0; zcrit; �crit; �0; �0g for
the bubble-collision model, and there are no free parame-
ters in the null model. Indeed, the no-collision model can
be treated as a special case of the collision model in which
the collision has zero amplitude.
As both the CMB signal and the WMAP noise are

Gaussian, the likelihood has the form

Prðdbjm; 1Þ / expð�1
2	

2Þ
¼ expf�1

2½db � tðmÞ�TC�1
b ½db � tðmÞ�g;

(31)

where tðmÞ is the temperature modulation caused by the
collision and Cb is the pixel-pixel covariance matrix. The
temperature modulation of the pth pixel is given from
Eq. (3) as tp ¼ 1þ fðn̂pÞ, where n̂ is the position on the

sky. The covariance matrix includes CMB cosmic vari-
ance, Gaussian smoothing approximating the WMAP
W-band beam, and the pixel-dependent WMAP noise.
The covariance between two pixels p and q with angular
positions n̂p and n̂q is hence given by
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FIG. 18. The normalized posterior Prð �NsjNb; fskyÞ [see Eq. (A16)] assuming fsky ¼ 0:7. In the left panel, we show the posterior
obtained for one blob Nb ¼ 1 for a local evidence ratio 
b ¼ 4. Comparing with the posterior at �Ns ¼ 0 (dashed line), we see that any
theory predicting �Ns & 4 will be preferred over the theory without bubble collisions. In the right panel, we show the posterior obtained
for four blobs with identical local evidence ratios 
b ¼ 1=2. Again, comparing with the posterior at �Ns ¼ 0, any theory with �Ns & 7
will be preferred over the theory without bubble collisions. When there are multiple blobs, the bubble-collision hypothesis can be
supported even when the evidence ratio for each blob is less than 1.
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FIG. 19. The full posterior Prð �NsjNb; fskyÞ [Eq. (A16)] that
would be obtained from a conclusive detection (i.e., 
bs � 1)

of Nb ¼ 0, 2, 4 (solid, dashed, and dot-dashed curves) blobs
containing bubble collisions assuming fsky ¼ 0:7. The presence

of a sky cut skews the distribution toward �Ns > Nb. Note that
even when features are conclusively detected, there is an intrin-
sic uncertainty in �Ns; this is a form of cosmic variance.
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Cp;q ¼ Np;q þ
X
‘

2‘þ 1

4�
�C‘P‘ðn̂p � n̂qÞ; (32)

where �C‘ is the best-fit WMAP CMB power spectrum
convolved with a Gaussian beam of FWHM 0.22�, P‘ðxÞ
is the Legendre polynomial of degree ‘, and Np;q is the

noise covariance between pixels. This is taken to be

Np;q ¼ �p;q

�2
W

Nobs;p

; (33)

where �p;q is the Kronecker delta function, �W ¼
6:549 mK is the rms noise of the W-band detectors, and
Nobs;p is the number of times WMAP has observed the pth

pixel. To preserve any edges, we must invert Cb at full
resolution. Given available computational resources, the
maximum area of the sky we can study at any one time is
limited to patches of radius�11� surrounding the center of
each detected blob.

The evaluation of the evidence integral Eq. (A12) and
the full characterization of the posterior distribution of the
parameters are both computationally challenging—even
when restricted to small patches—as they require a large
number of likelihood evaluations. In all but the simplest of
cases it is fatally inefficient to evaluate the likelihood over
a multidimensional grid, and so a variety of sampling
algorithms have been developed in which the likelihood
is evaluated only in the high posterior regions that are of
most interest. For both parameter estimation and evidence
calculations we use the nested sampling algorithm [63] as
implemented in the publicly available MULTINEST package
[54]. MULTINEST performs numerical integration in order to
estimate the evidence values; the required convergence of
the integration can be adjusted to balance computation
speed with accuracy. At the settings we use, the evidence
values returned by MULTINEST are accurate to �10%. We
use the getdist routine included in COSMOMC [64] to
extract parameter estimates and uncertainties.

The parameter prior PrðmÞ in Eq. (30) is derived from
theory, previous experimental results, and the limitations
of the data set and pipeline: It encompasses the full prior
understanding of what defines a detectable collision.
Because we lack a detailed theoretical prediction for the
amplitude parameters in each template (as discussed in
Sec. II), we assume a uniform prior on z0 and zcrit over
the ranges �10�4 	 z0 	 10�4 and �10�4 	 zcrit 	
10�4, set by the observed temperature fluctuations in the
CMB. Bubbles with larger values of these parameters
would have been visible to the naked eye in any existing
CMB data set. Bubble collisions are expected to be dis-
tributed isotropically on the CMB sky, and so we assume
uniform priors on the full ranges of fcos�0; �0g to ensure
that the probability of finding a bubble per unit area is
constant across the sphere. Theory predicts that bubble-
collision radii should range from 0� to half-sky, but our
pipeline’s sensitivity is restricted by CMB power at small

scales and computational requirements at large scales. The
nonzero prior range for detectable bubble collisions is
accordingly restricted, and we assume uniform priors on
�crit values in the range 2� 	 �crit 	 11�.10

To minimize computation time, the evidence integrals
are calculated only over the parameter ranges within which
the priors are nonzero and the likelihood is peaked. For
each feature, the angular scale lookup tables (Table I)
indicate the range of interest for �crit. Merging all of the
sets of significant pixels found for each feature yields the
ranges for f�0; �0g. As the needlets are equally sensitive to
cold and hot features with varying profiles, little informa-
tion about the ranges of interest for fz0; zcritg can be ex-
tracted from the blob-detection results, so the full prior
volume must be considered. The accuracy of this proce-
dure has been verified by performing the integral on the
same patch of sky using different parameter ranges for
f�crit; �0; �0g. As long as the likelihood peak is encom-
passed by the parameter ranges given to MULTINEST, the
returned evidence values agree to within numerical
accuracy.
For the fiducial collision example shown in Fig. 10, our

analysis yields an evidence ratio of ln
b ¼ 119:8
 0:3:
The collision model is a very good fit to the data. The full-
sky posterior would favor any theory predicting bubble
collisions over a large range of �Ns. The marginalized
bounds on the parameters are compared to the input pa-
rameters in the first row of Table VI: The agreement is
excellent. However, to make a final judgment about a
detection, we must ask what types of evidence ratios we
get for false detections in the WMAP end-to-end
simulation.

3. Analysis of the WMAP end-to-end simulation

We have performed the full Bayesian parameter estima-
tion and model selection analysis on the blobs found in the
WMAP end-to-end simulation (see Table IV). The total
processing time for the full pipeline to run on this single
map is on the order of 12 hours on 28 cores. Our results for
the evidence ratios and marginalized parameter constraints
for fz0; zcrit; �crit; �0; �0g for each feature are recorded in
Table V.
The evidence ratios for the features identified in the

blob-detection step of the pipeline are all significantly
less than 1. We can therefore approximate the full posterior
for �Ns by Eq. (A20), and rule out �Ns * 1:6 at the 68%
confidence level. The posterior is maximized at �Ns ¼ 0,

10Equation (2) predicts that the angular scale distribution for all
bubbles falling within our past light cone varies with sin�crit.
However, this is derived under the assumption that collisions do
not affect our bubble interior, and a more careful treatment might
lead to a correlation between the values of z0, zcrit, and �crit. To
retain consistency with our uniform priors on z0 and zcrit, we
assume a uniform prior on �crit. Regardless, both choices for the
prior lead to identical conclusions for the WMAP 7-year data.
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and we therefore correctly conclude that the data from the
end-to-end simulation does not warrant augmenting
�CDM with bubble collisions.

These results from the end-to-end simulation yield quan-
titative information on the degree to which systematics and
foregrounds could mimic the signal from a bubble colli-
sion. Reassuringly, no features yield evidence ratios greater
than 1. To be distinguishable from systematics and fore-
grounds, we require the evidence ratios that we find for any
feature to at least exceed the evidence ratios found in the
end-to-end simulation at similar needlet frequencies.

4. Analysis of bubble-collision simulations

The long processing time, even for a single map, pro-
hibits us from running the Bayesian parameter estimation
and model selection analysis on the full set of bubble-
collision simulations. We therefore choose a small number
of representative examples from the set of simulated colli-
sions passing the needlet significance threshold (drawn
from the exclusion and sensitivity regions of Fig. 11). Six
10� collision simulations were chosen to sample distinct
areas of our parameter space, specifically collisions with
(1) a large central amplitude and edge, (2) a small central

amplitude but large edge, (3) a large central amplitude but
small edge, (4) a medium central amplitude and medium
edge, (5) a small central amplitude and medium edge, and
(6) a small central amplitude and small edge. The first two
collisions lie in the CHT exclusion zone, the third in the
needlets exclusion zone, and the others in the sensitivity
region. All collisions were placed at the low-noise location
to maximize the chance of a detection.
The results of the Bayesian analysis of the collision

simulations are displayed in Table VI. The first example
corresponds to the collision in Fig. 10 and is clearly a
highly significant detection with an evidence ratio of
ln
b ’ 120. The second example is, again, an extremely
clear detection, with ln
b ’ 136. While the evidence for
the third example is numerically lower than for the strongly
discontinuous cases, at ln
b ’ 29, it is again a conclusive
detection. In each of these examples, the full-sky posterior
assuming Nb ¼ 1 [which is well approximated by
Eq. (A18)], would prefer models with bubble collisions
over a wide range of �Ns.
For the collisions sampled in the sensitivity region, the

maximum needlet significance recorded in each case
was around S ’ 4, which is on the upper end of the

TABLE VI. The input and marginalized 68% C.L. parameter bounds for the representative sample of simulated 10� collisions. All
simulated collisions are located at �0 ¼ 57:7�, �0 ¼ 99:2�. Hatted quantities are estimates, and unhatted quantities are inputs. No
errors are quoted for the estimated central positions and radii for the cases where there was an extremely strong detection. This is due
to the pixelization of the map: variations in collision- center coordinates or radius of much less than a pixel’s width will not affect the
pixelated template and hence will not affect the likelihood. Angular quantities are quoted in degrees.

Example z0 zcrit ln
b ẑ0 ẑcrit �̂crit �̂0 �̂0

1 5:0� 10�5 �5:0� 10�5 119:8
 0:3 5:1þ1:0
�1:0 � 10�5 �5:0þ0:3

�0:3 � 10�5 10:0 57:7 99:2

2 1:0� 10�5 �5:6� 10�5 136:0
 0:2 2:3þ1:1�1:1 � 10�5 �5:4þ0:3
�0:3 � 10�5 10:0 57:7 99:2

3 1:0� 10�4 �1:0� 10�6 28:9
 0:3 9:4þ0:6
�0:4 � 10�5 �0:2þ0:8

�0:8 � 10�5 10:0þ0:9
�0:9 57:7þ0:5

�0:7 99:8þ0:5
�0:6

4 3:2� 10�5 �3:2� 10�5 9:0
 0:3 6:4þ1:0
�1:1 � 10�5 �2:0þ0:3

�0:3 � 10�5 8:92þ0:09
�0:02 57:01þ0:03

�0:03 100:27þ0:04
�0:04

5 1:0� 10�5 �3:2� 10�5 �1:0
 0:3 4:2þ0:6
�0:6 � 10�5 �1:2þ0:3

�0:4 � 10�5 8:6þ0:4
�0:9 57:3þ0:1

�0:3 100:1þ0:3
�0:1

6 1:0� 10�5 �1:8� 10�5 �7:2
 0:2 4:8þ1:2�1:1 � 10�5 �0:1þ0:7
�0:7 � 10�5 6:5þ0:4

�0:7 58:2þ0:3
�0:3 99:9þ0:3

�0:3

TABLE V. Results of the Bayesian parameter estimation and model selection analysis for the WMAP end-to-end simulation. The
ranges of �crit are determined from the needlet response (see Table I). By computational necessity, the evidence integral is truncated at
11�. Reported error bars are at 68% C.L. Angular quantities are quoted in degrees.

Feature �crit range ln
b z0 zcrit �crit �0 �0

1 5–14 �7:9
 0:1 �3:3þ1:1�1:0 � 10�5 0:0þ0:4
�0:4 � 10�5 8:6þ1:5

�1:5 120:4þ1:5
�1:3 77:8þ1:8

�1:4

2 10–21 �9:9
 0:1 �2:4þ1:3
�1:2 � 10�5 0:0þ0:4

�0:4 � 10�5 10:6þ0:5
�0:6 46:9þ3:2

�2:4 152:0þ3:0
�2:8

3 6–12 �11:9
 0:1 �2:9þ1:0
�1:0 � 10�5 0:0þ0:4

�0:5 � 10�5 8:5þ1:9
�1:9 13:9þ0:3

�0:3 72:1þ1:6
�1:5

4 4–12 �6:9
 0:2 4:6þ1:2
�1:2 � 10�5 �0:1þ0:7

�0:6 � 10�5 5:2þ0:7
�1:2 50:3þ0:6

�0:6 221:7þ0:8
�0:9

5 3–7 �10:7
 0:1 4:1þ1:3
�1:2 � 10�5 0:0þ0:7

�0:7 � 10�5 4:4þ0:5
�0:6 80:5þ0:3

�0:3 218:3þ0:3
�0:4

6 2–4 �11:3
 0:1 �4:2þ1:5
�1:5 � 10�5 0:1þ1:0

�1:0 � 10�5 2:7þ0:4
�0:5 62:6þ0:4

�0:3 146:1þ0:3
�0:4

7 2–4 �6:6
 0:1 6:5þ1:5
�1:4 � 10�5 �0:1þ0:9

�0:8 � 10�5 3:0þ0:3
�0:3 62:6þ0:2

�0:2 142:0þ0:3
�0:3

8 2–4 �8:2
 0:1 6:1þ1:7�1:7 � 10�5 �0:2þ1:1�1:1 � 10�5 2:5þ0:2
�0:3 111:5þ0:2

�0:2 69:7þ0:2
�0:2

9 3–6 �9:7
 0:1 5:0þ1:3
�1:3 � 10�5 0:0þ0:6

�0:6 � 10�5 3:7þ0:5
�0:4 36:4þ0:3

�0:3 131:0þ0:5
�0:5

10 2–4 �9:9
 0:2 5:6þ1:6
�1:5 � 10�5 �0:8þ0:9

�0:9 � 10�5 2:6þ0:2
�0:4 160:2þ0:2

�0:2 235:9þ0:6
�0:7
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significances found in the end-to-end simulation: Similar
features in the data are passed to the Bayesian analysis
section of the pipeline. The evidence ratios were found to
be ln
b ’ 9 for the collision with a medium central am-
plitude and a medium edge, ln
b ’ �1 for the collision
with the medium edge but a smaller central amplitude, and
ln
b ’ �7 for the collision with a small edge. Since the
latter two templates differ only by the value of zcrit, this is
further proof that the presence of a detectable causal
boundary increases our ability to distinguish a collision.
In addition, comparing examples 3 and 4, it can be seen
that changing the central amplitude by a bit more than a
factor of 2 yields an evidence ratio that is orders of magni-
tude larger. Apparently, there are rather sharply defined
limits of detection. For these marginal cases, the parameter
uncertainties are significantly underestimated due to the
relative strength of the CMB and noise. Only in the case of
the collision with a medium amplitude and medium edge
could we conclude that models with bubble collisions are
preferred over those without over a modest range in �Ns.

In conclusion, for the simulated collisions in the needlet
and CHT exclusion regions of parameter space, our pipe-
line can clearly determine that the bubble-collision hy-
pothesis is favored for a variety of �Ns. In the other cases
we have studied, where the collision lies in the needlet
sensitivity region, the conclusion is less clear. The evi-
dence ratios are higher than most of those in the end-to-
end simulation, but not much greater. They are also small
in magnitude and therefore do not yield full-sky posteriors
that favor the bubble-collision hypothesis. Thus, while
we might rule these features out as being systematics or
foregrounds, better data would be needed to definitively
establish the bubble-collision hypothesis. Furthermore, the
bounds on parameter values in detections associated with
the sensitivity regions of parameter space should be re-
garded as rough estimates only. Note also that since the
data sets we consider for each blob are restricted to patches
of the sky smaller than 11�, the gain in sensitivity
that arises from the existence of a circular temperature
discontinuity will not be present for modulations with
�crit * 11�. For large features with an edge, the evidence
ratios we obtain would therefore be an underestimate.

D. Summary of the analysis pipeline and conditions for
claiming a detection

We now summarize the analysis pipeline and the inter-
pretation of its outputs. First, the analysis pipeline seg-
ments the sky into blobs, each of which corresponds to a
region which, for some needlet type and frequency, passes
our needlet significance threshold. A specific region of the
temperature map can be covered by multiple blobs if there
is a response for multiple needlet types/frequencies at the
same location. The output of this first step in our pipeline is
the location, size, and maximum significance associated
with each blob. The edge-detection step of our pipeline

finds the CHT score as a function of assumed circle size
and pixel. If there is a clearly peaked global maximum
for the CHT score, this can be processed into the most
likely circle center and angular scale. In parallel, we cal-
culate the marginalized constraints on the parameters
fz0; zcrit; �crit; �0; �0g and Bayesian evidence ratio 
b for
each feature. These evidence ratios are then used to con-
struct the full-sky posterior Prð �NsjNb; fskyÞ [Eq. (28)]

which is a function of �Ns.
The posterior allows us to put constraints on the possible

values of �Ns that are consistent with the data. Comparing
the value of the posterior at �Ns ¼ 0 and some particular
value of �Ns specifies whether or not the �CDM model
should be superseded by a model that also predicts on
average �Ns bubble collisions. If a large ratio of the poste-
riors is obtained, a conclusive detection of the bubble-
collision hypothesis can be claimed (provided a model
that predicts an appropriate value of �Ns exists). A clear
peak in the CHT score would indicate the presence of a
circular temperature discontinuity in the CMB. This is a
clear signature of bubble collisions and would be nearly
conclusive evidence for the eternal inflation scenario. We
have found using simulations that a clear edge also yields
large evidence ratios, indicating that these two tests are
complementary. However, an edge is not necessary to
verify the bubble-collision hypothesis. There is a clear
expectation obtained from the end-to-end simulation for
the contribution from false detections due to systematics
and foregrounds: the absence of a clear peak in the CHT
score, and evidence ratios for each blob not exceeding
ln
b ��6:6 at detectable scales.

VI. ANALYSIS OF THE WMAP 7-YEAR DATA

Our analysis of the W-band WMAP 7-year foreground-
reduced temperature map with the KQ75 mask produces a
total of 38 blobs passing our needlet sensitivity thresholds.
These blobs can be grouped into 15 distinct features, four
of which either intersect or are within a few pixels of the
main Galactic cut; these features are assumed to be re-
sponses to the mask, and we do not consider them further.
The properties of the blobs belonging to the 11 remaining
features are given in Table VII.
A number of these features have been noted previously.

Feature 2 is at the same position as the famous Cold Spot
[65]. In addition, features 1 and 3 are coincident with the
most significant hot spots identified in the needlet analysis
of Ref. [48]. The number of features we have found is
consistent with the results from the WMAP end-to-end
simulation, although the simulation does not contain as
many high-significance features at low j. In addition, the
most significant features in the WMAP 7-year data
generate responses from multiple needlet types at multiple
frequencies (e.g., the Cold Spot is picked out by seven
needlet frequencies), whereas features in the end-to-end
simulation tend to be highlighted only by a single needlet.
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Interestingly, 9 of the 11 features identified as significant
are in the Southern Galactic hemisphere.

The CHT scores do not have a clear peak at any angular
scale or location for any of the detected features. Indeed,
the detailed outputs for the data are completely consistent
with those obtained for the end-to-end simulation. The
largest CHT peak found in the data is shown in Fig. 20
(which should be compared to the most peaklike feature
found in the end-to-end simulation, shown in Fig. 16). We
therefore find no evidence for circular temperature discon-
tinuities in the WMAP 7-year data and can rule out bubble
collisions in the CHT exclusion region defined by simu-
lated collisions shown in Fig. 17.

The marginalized parameter constraints and local evi-
dence ratio for each of the features is recorded in
Table VIII.11 Features 2, 3, 7, and 10 have evidence ratios

significantly larger than those found in the collision-free
end-to-end simulation ( ln
b ��6:6), specifically �4:6,
�4:1, �5:4, and �3:8, respectively. Assuming Nb ¼ 4,
and using these values for the local evidence ratios in
Eq. (28), we find that the posterior is maximized at
�Ns ¼ 0, and we can constrain �Ns < 1:6 at 68% C.L. One
would need roughly ln
b ��1 for each of the four fea-
tures to prefer the bubble-collision hypothesis for any
value of �Ns. Therefore, the WMAP 7-year data do not
warrant adding bubble collisions to �CDM.
Although the local evidence ratios found for the WMAP

7-year data were not large enough to yield support for the
bubble-collision hypothesis, they are about an order of
magnitude larger than what was expected from systematics
based on the end-to-end simulation. The analysis of future
data sets may increase the significance of these blobs if
they are indications of bubble collisions, or else they will
decrease in significance if they are not; in any case they are
the most significant features on our sky and thus take
priority in being further investigated with better data.
Thus, we now examine these four most significant features

TABLE VII. Features found by the needlet transform in the WMAP 7-year data. Features 1 and 3 correspond to the hot spots found
in Ref. [48]; feature 2 is the Cold Spot [65]. Angular quantities are reported in degrees.

Feature Blob B j �0 �0 Blob radius S

1 1 2.5 2 140.1 173.7 4.5 3.76

1 2 1.8 3 140.9 174.4 5.3 3.48

2 1 2.5 3 147.8 209.5 4.1 4.49

2 2 1.8 4 148.2 207.7 5.5 4.55

2 3 1.8 5 148.5 210.2 1.4 3.37

2 4 1.4 7 147.8 209.5 2.5 3.81

2 5 1.4 8 147.8 209.5 4.1 4.58

2 6 1.4 9 147.4 208.1 2.8 4.30

2 7 1.4 10 146.6 207.5 1.3 3.74

3 1 2.5 3 123.2 321.3 2.5 4.09

3 2 1.8 4 122.8 322.4 4.9 3.82

3 3 1.4 7 122.8 321.0 1.9 3.59

3 4 1.4 8 122.8 321.0 3.2 4.01

3 5 1.4 9 122.8 321.0 2.7 4.30

3 6 1.4 10 122.4 320.6 1.5 3.78

4 1 2.5 4 145.1 33.0 0.9 4.20

4 2 1.8 6 145.5 32.4 0.7 3.72

4 3 1.4 11 145.1 33.0 0.9 3.95

5 1 1.8 5 32.2 74.0 1.2 3.41

6 1 1.8 5 128.7 91.1 1.2 3.37

7 1 1.8 5 169.8 181.6 2.3 3.82

7 2 1.8 6 169.0 187.5 0.8 3.76

7 3 1.4 10 169.4 184.7 1.5 4.12

7 4 1.4 11 168.7 187.3 1.1 4.07

8 1 1.8 6 57.9 115.7 0.7 3.78

9 1 1.8 7 152.3 241.8 0.6 4.12

10 1 1.4 10 167.2 268.7 1.0 3.99

10 2 1.4 11 166.8 271.3 1.0 4.09

11 1 1.4 11 115.0 22.5 0.5 3.80

11 2 1.4 12 114.6 22.1 0.5 4.32

11Since we are limited to patches of the sky 11� in radius, the
evidence ratios we have obtained for features whose �crit priors
extend beyond �11� will be underestimated if a weak edge
exists outside the patch of sky considered.
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in more detail. The location of each of the four features on
the sky is shown in Fig. 21. A closer view of each feature is
shown in Fig. 22, along with plots of the needlet signifi-
cances S triggering the Bayesian analysis step, collision
templates for the marginalized parameter constraints found
in each case, and the CMB sky as it would appear with
these template contributions removed.

To confirm that these features are not due to residual
foregrounds, we have also applied our suite of needlet
transforms to the WMAP 7-year Q (41 GHz) and V
(61 GHz) band foreground-reduced maps. Taking all of
the needlets which generate a significant response for the
four most significant features, we calculate the average

of the needlet coefficients within the regions described
by the estimated bubble templates. The results are plotted
in Fig. 23.We show, for each blob forming part of a feature,
the W-band-normalized needlet-coefficient averages
given by

��jk;Q=V ¼
��jk;Q=V � ��jk;W

��jk;W

; (34)

where ��jk;Q=V=W is the pixel-averaged needlet-coefficient

value in a given WMAP frequency band. The plots are
consistent with no change in the strength of the signal with
frequency, suggesting that the features are not due to fore-
ground contamination.

FIG. 20 (color online). The clearest peak found during the edge-detection analysis of the WMAP data. The contrasts in scores as a
function of position (left panel) and radius (right panel) are comparable to those obtained in the analysis of the end-to-end simulation
(Fig. 16), and greatly reduced compared to the collision example (Figs. 14 and 15).

TABLE VIII. Results of the Bayesian parameter estimation and model selection analysis for the WMAP 7-year data. Reported error
bars are at 68% C.L. Angular quantities are reported in degrees. The ranges of �crit are determined from the needlet response (see
Table I). By computational necessity, the evidence integral is truncated at 11�. Hence, an evidence ratio for feature 1 could not be
calculated as its �crit range lies entirely beyond this upper bound. The angular positions f�0; �0g can be related to Galactic coordinates
through longitude l0 ¼ �0 and latitude b0 ¼ 90� � �0.

Feature �crit range ln
b z0 zcrit �crit �0 �0

1 12–38

2 4–21 �4:6
 0:2 �4:8þ1:4�1:4 � 10�5 �0:1þ0:7
�0:7 � 10�5 6:4þ1:7�1:1 147:3þ0:7

�0:6 208:0þ1:5
�1:4

3 4–21 �4:1
 0:2 5:2þ1:2
�1:2 � 10�5 0:1þ0:5

�0:5 � 10�5 6:5þ0:7
�0:7 123:0þ0:7

�0:7 320:8þ1:0
�1:0

4 2–7 �7:3
 0:1 �5:2þ1:3
�1:3 � 10�5 0:0þ0:9

�0:9 � 10�5 3:2þ0:8
�0:8 145:3þ0:5

�0:4 32:8þ0:9
�1:1

5 6–12 �9:2
 0:2 3:7þ1:2
�1:1 � 10�5 �0:1þ0:4

�0:4 � 10�5 6:9þ0:5
�0:9 32:6þ0:6

�0:6 74:3þ1:3
�1:2

6 6–12 �9:7
 0:1 3:0þ1:1�1:2 � 10�5 �0:1þ0:4
�0:4 � 10�5 7:9þ2:2�1:9 128:6þ0:7

�0:7 91:8þ1:2�1:3

7 3–12 �5:4
 0:2 �5:0þ1:3
�1:4 � 10�5 0:0þ0:6

�0:6 � 10�5 4:6þ0:9
�1:1 169:0þ0:6

�0:6 185:7þ3:9
�3:9

8 3–7 �8:6
 0:1 4:4þ1:3
�1:2 � 10�5 0:0þ0:7

�0:7 � 10�5 4:4þ0:6
�0:6 58:0þ0:4

�0:4 115:7þ0:5
�0:6

9 2–4 �9:0
 0:2 �6:0þ1:6
�1:6 � 10�5 0:0þ1:0

�1:0 � 10�5 2:3þ0:2
�0:3 152:1þ0:2

�0:2 241:9þ0:4
�0:4

10 3–8 �3:8
 0:2 �6:1þ1:3
�1:3 � 10�5 0:1þ0:9

�0:8 � 10�5 4:2þ0:4
�0:4 167:2þ0:3

�0:3 269:1þ1:6
�1:4

11 2–6 �8:1
 0:1 �5:9þ1:5
�1:6 � 10�5 0:2þ0:8

�0:8 � 10�5 2:5þ0:4
�0:5 114:9þ0:4

�0:4 22:4þ0:4
�0:4
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VII. CONCLUSIONS AND OUTLOOK

An exciting opportunity to confront the eternal inflation
scenario with experiment lies in the observation of colli-
sions between other bubble universes and our own. In this
paper, we have described an algorithm to search for the
imprint of bubble collisions on the cosmic microwave
background and applied it to the WMAP 7-year data.
Our search algorithm targets the generic signatures ex-
pected from bubble collisions: azimuthal symmetry, long-
wavelength modulation of the temperature confined to
disks on the sky, and circular temperature discontinuities.
For this reason, we expect our analysis to be fairly robust
under changing assumptions about the underlying theory,
which is presently rather poorly understood.

FIG. 21 (color online). Full-sky map showing the positions and
sizes of the four features with largest evidence ratios, along side
the 7-year KQ75 sky cut. The features are plotted clockwise
from the blob closest to the Galactic mask: feature 3 (red),
feature 2 (orange), feature 7 (light blue), and feature 10 (light
green).

FIG. 22 (color online). Maps of the four features with largest evidence ratios. The top row shows the W-band temperature map in the
locality of the four features, masked with the KQ75 mask. Overlaid are circles indicating the estimated position and angular scale
found in each case. The second row contains plots of the masked needlet significances for the needlets whose �crit priors produced the
largest evidence ratios. These plots appear pixelated as the blob-detection step is carried out at reduced resolution. The third row shows
the bubble-collision templates corresponding to the estimated model parameters; these templates are subtracted from the W-band data
in the fourth row. The width of each plot is �16:7�.
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The analysis pipeline we have developed takes a two-
pronged approach, applied in parallel. The first uses heu-
ristic techniques to test for the presence of features specific
to bubble collisions. The second is a fully Bayesian algo-
rithm for the general problem of non-Gaussian source
detection, implemented as a patchwise approximation to
the full-sky model selection and parameter estimation
problem. The data set is segmented in a completely auto-
mated way, allowing us to avoid a posteriori selection
effects associated with choosing the most ‘‘interesting’’
features on the CMB sky by hand. The algorithm is tested
and thresholds at each step are calibrated using extensive
simulations and then frozen before ever looking at the data,
to follow as much as possible the philosophy of a blind
analysis. Candidate collisions are identified from an input
temperature map based on the response to a suite of needlet
transforms (calibrated using simulations with and without
bubble collisions), and grouped into blobs. These blobs are
scrutinized for circular temperature discontinuities using
an edge-detection algorithm. The quantitative significance
of an edge is characterized using the CHT. The blobs are
also used to construct an approximation to the full-sky
Bayesian parameter estimation and model selection prob-
lem for bubble collisions. The posterior probability distri-
bution over the expectation value for the number of
detectable collisions, �Ns, is then obtained. This allows us
to quantify which of the two models—a theory which
predicts on average �Ns bubble-collision signatures

described by temperature modulations of the form given
in Eq. (4), or else the standard model (specified by �Ns ¼ 0)
with CMB plus realistic noise and beam effects—better
explains the data.
Applying our analysis pipeline to simulations, we have

found that a circular temperature discontinuity at the causal
boundary is a clear signature of bubble collisions.12

Although our analysis can identify collisions without tem-
perature discontinuities, their presence greatly increases
our ability to make a conclusive detection. Both the
edge-detection and Bayesian model selection steps have
the ability to identify a causal boundary in the patches of
the sky that are highlighted as candidate collisions by the
blob-detection step of our analysis pipeline. We have found
no evidence for circular temperature discontinuities in the
WMAP 7-year data using either method. Based on our
analysis of simulations, this allows us to rule out the
presence of collisions in the exclusion region of Fig. 17.
For collisions larger than �crit * 10�, this corresponds to
105jzcritj & 3–6 for the amplitude of the circular tempera-
ture discontinuity defined in Eq. (4). For collisions on
smaller scales, the CHT step loses sensitivity due to the
proliferation of degree-scale blobs in the background CMB
fluctuations.

FIG. 23. WMAP channel frequency dependence of the features highlighted by our pipeline. The W-band-normalized difference in
pixel-averaged needlet coefficients between the Q and W bands (triangles) and V and W bands (diamonds) are plotted for each blob
making up a feature, as highlighted by the full suite of needlet transforms.

12The observational detection of a circular temperature discon-
tinuity is so unlikely to arise spuriously that it provides con-
clusive evidence of a detection.
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The posterior evaluated using the WMAP 7-year data is
maximized at �Ns ¼ 0, and constrains �Ns < 1:6 at 68%
confidence. We therefore conclude that this data set does
not favor the bubble-collision hypothesis for any value of
�Ns. In light of this null detection, comparing with the
simulated bubble collisions, we can constrain the central
amplitude of the temperature modulation caused by the
collision [defined in Eq. (4)] to be z0 & 1� 10�4 over the
range of scales �crit * 5� we have simulated. If the colli-
sion is described by a single super-Hubble wavelength
mode confined to a disk on the sky, from Eq. (12) we can
use these bounds (with the largest collision size we have

simulated �crit ¼ 25�) to constrain �1=2
k �ð0Þ & 7� 10�4

[where�k is the present component in curvature and�ð0Þ
is the initial magnitude of the Newtonian potential caused
by the collision]. More generally, Eq. (13) bounds the
nucleation rate of bubbles in our parent vacuum, provided
gravitational waves and negative curvature are observed
with future experiments.

Although we have obtained a null result, our analysis
pipeline has identified four features in the WMAP 7-year
data that have Bayesian evidence ratios that are signifi-
cantly larger than expected for false detections from an
end-to-end simulation of the WMAP experiment. Two of
these features (features 2 and 3) have been noted in pre-
vious literature. Feature 2 corresponds to the WMAP Cold
Spot [65] (see Ref. [66] for a review of its properties), and
feature 3 was identified using standard needlets in
Ref. [48]. All four features are far from the Galactic cut
of the KQ75 7-year mask (see Fig. 21), and none appear to
be responses to the point source components of the mask
(see Fig. 22). We have confirmed that the signal in each
case is not strongly dependent on the frequency band used
(see Fig. 23), providing evidence that these features are not
due to astrophysical foregrounds. A number of analyses,
most recently the redshift analysis of Ref. [67], suggest that
the Cold Spot is primordial and not associated with the
integrated Sachs-Wolfe effect of a large void. Further
studies of the other three features would be needed to
confirm that they are truly primordial.

Our ability to detect bubble collisions will improve
greatly with data from the Planck satellite. Decreased
instrumental noise will enlarge the exclusion and sensitiv-
ity regions in parameter space for the needlet step of the
analysis, as evidenced by our ability to detect more simu-
lated collisions in low-noise regions of the WMAP data.
The threefold increase in resolution will greatly improve
our ability to detect circular edges. In addition, the polar-
ization data from Planck will be of sufficient resolution to
look for complementary signatures of bubble collisions
[26,68]. Such an analysis should be able to confirm if the
features we have identified are in fact bubble collisions.

It is also important to determine if other theories pre-
dicting azimuthally symmetric features in the CMB
[60,69–71] are better fits to the data. The blob and

edge-detection steps in our analysis pipeline are sensitive
to a variety of possible signatures, and given a model, the
Bayesian model comparison step could be easily tailored to
accommodate different forms of the temperature modula-
tion. Because our pipeline is automated, we can compare
the evidence ratios obtained for different models to decide
which is a better fit, without recourse to a posteriori
choices of which features to analyze.
In conclusion, we have presented a powerful algorithm

for analyzing CMB data for signatures of bubble collisions.
Applying this pipeline to the WMAP 7-year data, we have
constrained the possible parameter space of bubble colli-
sions, as well as identifying interesting candidate signa-
tures in the data for further investigation. Future data from
the Planck experiment will allow us to greatly improve on
these results. If confirmed, the presence of bubble colli-
sions in the CMB would provide extraordinary insight into
the origins of our Universe.
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APPENDIX: STATISTICAL FORMALISM

1. Posterior

In this Appendix, we discuss how Bayesian parameter
estimation and model selection for theories which predict
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localized sources can be approximated by a patchwise
analysis. Consider astronomical observations covering
solid angle �obs ¼ 4�fsky that are of sufficient depth/

resolution to identify sources with a particular range of
properties (which can then be deemed ‘‘detectable’’).
Given a theory that predicts an expectation value of �Ns

sources over the whole sky, we want to know both what
constraints the available data place on �Ns and whether the
data favor a model which predicts one value of �Ns over
another. All the relevant information is encoded in the
posterior distribution Prð �Nsjd; fskyÞ, where d are the pix-

elized flux or temperature measurements (and, optionally,
any statistics derived from them). Bayes’s theorem allows
the posterior to be written as

Prð �Nsjd; fskyÞ ¼
Prð �NsÞ Prðdj �Ns; fskyÞ

PrðdjfskyÞ ; (A1)

where Prð �NsÞ is the prior distribution on �Ns, Prðdj �Ns; fskyÞ
is the likelihood of getting the observed data given the area
of observation and the expected number of sources, and
PrðdjfskyÞ ensures that the posterior is normalized over �Ns.

Constraints on �Ns can be drawn directly from this normal-
ized posterior; the relative probability of models predicting
different values of �Ns can be found by picking out the
posterior at two values of �Ns:

Prð �Ns;1jd; fskyÞ
Prð �Ns;2jd; fskyÞ

¼ Prð �Ns;1Þ Prðdj �Ns;1; fskyÞ
Prð �Ns;2Þ Prðdj �Ns;2; fskyÞ

: (A2)

In the absence of a prescriptive theory, it is useful to
emphasize the role of the data, which can be done by
adopting a flat prior on �Ns. Further assuming that the
data will give an upper limit on �Ns, it is possible to adopt
an improper uniform prior Prð �NsÞ ¼ �ð �NsÞ without any
high- �Ns cutoff. The resultant posterior has the form

Prð �Nsjd; fskyÞ / �ð �NsÞPrðdj �Ns; fskyÞ; (A3)

up to a normalization constant that depends on the data and
fsky but not on �Ns.

In general �Ns is not directly measurable, even for perfect
data, because the number of sources present in the observ-
able sky, Ns, is the realization of a Poisson-like process (of
mean fsky �Ns). The possibility that Ns is itself subject to

some uncertainty (e.g., due to noisy data or confusion
problems) can be incorporated by marginalizing over Ns

to give

Prðdj �Ns; fskyÞ ¼
X1
Ns¼0

PrðNsj �Ns; fskyÞ PrðdjNs; fskyÞ

¼ X1
Ns¼0

ðfsky �NsÞNse�fsky �Ns

Ns!
PrðdjNs; fskyÞ;

(A4)

where the second formula explicitly assumes that the num-
ber of observable sources is drawn from a Poisson process.
Inserting this second expression into Eq. (A3) then gives

Prð �Nsjd;fskyÞ/�ð �NsÞe�fsky �Ns

X1
Ns¼0

ðfsky �NsÞNs

Ns!
PrðdjNs;fskyÞ:

(A5)

The form of the likelihood PrðdjNs; fskyÞ is treated

largely in abstract here, with the specific details of the
likelihood calculation for the bubble-collision hypothesis
given WMAP 7-year data described in Sec. VC. Assuming
the measurements take the form of flux/counts at different
positions on the sky (as for a CMB experiment) and that
they are subject to (possibly correlated) Gaussian noise, the
likelihood would have the form

PrðdjNs; fskyÞ ¼
Z

dm1 � � �dmNs

YNs

s¼1

PrðmsÞ 1

ð2�ÞNpx=2jCj e
�½d�tðm1Þ����tðmNs Þ�C�1½d�tðm1Þ����tðmNs Þ�T=2; (A6)

where tðmÞ is the data template that would result from a
source whose position and profile/scale are defined by the
model parameters m, PrðmsÞ is the prior distribution of
source parameters for detectable sources, and C is the
pixel-pixel covariance matrix of the nonsource noise
(which could include contributions that are considered
signal in other contexts, such as the CMB).

Evaluating the full sum in Eq. (A5) is not always prac-
tical or even possible. In addition, the evaluation of indi-
vidual terms in this sum will be computationally limited by
the size of the covariance matrixC and the cost of perform-
ing the integral over model parameters for each template.
However, it is possible to circumvent these problems and
estimate the posterior Eq. (A5) if one knows in advance
some of the properties of the integrand in Eq. (A6).

To see how this works, assume that one has located a set
of Nb blobs on the sky that are candidate sources. Segment
the sky into Nr ¼ Nb þ 1 regions consisting of those con-
taining blobs and the rest of the sky. Given Nb, we can now
evaluate Eq. (A5) term by term. The likelihood in the first
term, for Ns ¼ 0, is simply given by

Prðdj0; fskyÞ ¼ 1

ð2�ÞNpx=2jCj e
�dC�1dT=2; (A7)

which is the likelihood for the null hypothesis with no
sources. Moving on to the Ns ¼ 1 term, we first expand
the integral over source positions to cover each of the Nr

regions:
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Prðdj1; fskyÞ ¼
XNr

r¼1

Z
region r

dm PrðmÞ

� 1

ð2�ÞNpx=2jCj e
�½d�tðmÞ�C�1½d�tðmÞ�T=2:

(A8)

We now assume that the blobs containing candidate
sources include all of the significant contributions to the
integral, and replace Nr in the sum by Nb. This will give us
a lower bound on the likelihood, even if a number of actual
sources are not contained within the blobs defined by the
candidate sources. We further assume that sources do not
overlap. If the covariance matrix is small enough to invert,
we could stop here. However, in cases where the covari-
ance matrix is too large to feasibly invert (as is the case for
the WMAP 7 year data), we can make one further approxi-
mation:

Z
region b

dm PrðmÞ 1

ð2�ÞNpx=2jCj e
�½d�tðmÞ�C�1½d�tðmÞ�T=2

’
Z
region b

dm PrðmÞYNr

r¼1

LrðmÞ;

(A9)

where the product is overNr disjoint regions on the sky and

LrðmÞ ¼ 1

ð2�ÞNpx=2jCrj
e�½dr�trðmÞ�C�1

r ½dr�trðmÞ�T=2 (A10)

is the contribution to the likelihood of data in region r,
defined in terms of the covariance of the pixels in this
region, Cr, the data in this region, dr, and the source
template in this region, trðmÞ. This is exact for a diagonal
covariance, but is only approximate in the case where there
are off-diagonal elements. Using the assumption that the
integral has a significant contribution only inside the blobs,
in the rest of the sky we can replace t ¼ 0. The one-source
model likelihood then becomes

Prðdj1; fskyÞ ’
XNb

b¼1

YNr

r¼1

Lrð0Þ
b; (A11)

where


b ¼
R
region b dm PrðmÞLbðmÞ

Lbð0Þ : (A12)

This is the evidence ratio for a single source template
centered in region b.
For a general number of blobs and sources, the model

likelihood is

PrðdjNs; fskyÞ ¼
�
0; if Ns > Nb;PNb

b1;b2;...;bNs¼1½
QNs

s¼1 
bs

QNs

i;j¼1ð1� �si;sjÞ
QNr

r¼1 Lrð0Þ�; if Ns 	 Nb;
(A13)

where the combinatorics require some explanation. If there
are fewer blobs on the sky than proposed sources then the
likelihood is very small: By assumption, the likelihood
evaluated outside of a blob is small. If there are at least
as many blobs as proposed sources, then the likelihood
takes the form of a sum that includes every possible
association of the Ns sources with the Nb blobs, provided
that no two sources are matched to the same blob. Hence
the multiple sum generates all possible combinations of
source-blob associations and the product over evidence
ratios gives the relevant weightings; the product over delta
functions removes the terms in which any two sources are
attached to the same blob.

Inserting the likelihood given in Eq. (A13) into Eq. (A5)
yields the unnormalized posterior on �Ns:

Prð �Nsjd; fskyÞ / �ð �NsÞe�fsky �Ns

XNb

Ns¼0

ðfsky �NsÞNs

Ns!

� XNb

b1;b2;...;bNs¼1

�YNs

s¼1


bs

YNs

i;j¼1

ð1� �si;sjÞ
�
;

(A14)

under the assumption that

Prðdj0; fskyÞ ¼
YNr

r¼1

Lrð0Þ; (A15)

in which case regions that do not contain a blob are
irrelevant for determining the posterior. Equation (A14)
is the main result of this calculation, from which all
following results can be derived. In the limit of a single
isolated observation Eq. (A14) reproduces the Bayesian
source detection formalism developed in [72,73].

2. Special cases

a. Perfect data

With infinite, perfect data the number of sources on the
sky would be directly determined by counting the Nb blobs
in the data and so PrðdjNs; fskyÞ ¼ �Ns;Nb

. The posterior in

Eq. (A14) would become

Prð �NsjNb; fskyÞ / �ð �NsÞ �NNb
s e�fsky �Ns ; (A16)

the standard result for constraining a rate variable from a
single measurement, modified slightly to account for the
fact that the constraint on �Ns is weakened if fsky � 1. In

the even more particular case that no blobs were detected
in perfect data, the posterior would be
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Prð �Nsj0; fskyÞ ¼ �ð �NsÞfskye�fsky �Ns : (A17)

If a single blob was detected unequivocally then the pos-
terior would be

Prð �Nsj1; fskyÞ ¼ �ð �NsÞfskyðfsky �NsÞe�fsky �Ns : (A18)

If two blobs were detected unequivocally then the posterior
would be

Prð �Nsj2; fskyÞ ¼ �ð �NsÞ
fsky
2

ðfsky �NsÞ2e�fsky �Ns : (A19)

b. No blobs

If there are no identified blobs then Nb ¼ 0 and there is
no evidence for any sources at all. This is really a weaker
constraint than the above situation if the data are perfect,
but in the approximation used here the final result is the
same. In Eq. (A14) the first sum is truncated at the first term
and so

Prð �Nsj0;d; fskyÞ ¼ �ð �NsÞfskye�fsky �Ns ; (A20)

matching Eq. (A17).
Adopting a flat prior on �Ns, the posterior probability

ratio for a model predicting a generic �Ns > 0 versus one
predicting no collisions in this case is given by

Prð �Nsj0;d; fskyÞ
Prð0j0;d; fskyÞ ¼ e�fsky �Ns : (A21)

This is always less than 1, and so as expected, a theory
which predicts �Ns sources on the sky is always disfavored
when compared to a theory that predicts no sources on
the sky.

c. One blob

Probably the most important simple case is where there
is a single identified blob, which might represent a first
detection of this class of source. Inserting Nb ¼ 1 into
Eq. (A14), the sum includes the possibilities of either one
source on the (observed) sky or no sources; the posterior
evaluates to

Prð �Nsj1;d; fskyÞ ¼ �ð �NsÞfskye�fsky �Ns
1þ fsky �Ns
b

1þ 
b

:

(A22)

In the limit in which the data in this region are much better
fit by a source then 
b � 1, and the posterior becomes

Prð �Nsj1;d; fskyÞ ¼ �ð �NsÞfskyðfsky �NsÞe�fsky �Ns ; (A23)

which matches (A18) above. Conversely, in the limit that
the source is a worse fit to the data (possible given that the
source has been forced to be detectable), then 
b � 1 and

Prð �Nsj1;d; fskyÞ ¼ �ð �NsÞfskye�fsky �Ns ; (A24)

matching Eq. (A17) which was obtained under the assump-
tion that there was no blob in the first place.
Adopting again a flat prior on �Ns, the posterior proba-

bility ratio for a model predicting a generic �Ns > 0 versus
the no-bubble case is given by

Prð �Nsj1;d; fskyÞ
Prð0j1;d; fskyÞ ¼ e�fsky �Nsð1þ fsky �Ns
bÞ: (A25)

Here, it can be seen that two things are necessary to favor
the theory with sources given one detection: �Ns �Oð1Þ
and 
b � 1.

d. Two blobs

If two blobs are identified then the sum in (A13) has
three terms, for which the likelihoods are

Prð2;dj0; fskyÞ ¼
YNr

r¼1

Lrð0Þ; (A26)

Prð2;dj1; fskyÞ ¼ ½
b1 þ 
b2�
YNr

r¼1

Lrð0Þ; (A27)

and

Prð2;dj2; fskyÞ ¼ 
b1
b2

YNr

r¼1

Lrð0Þ: (A28)

Hence the (unnormalized) posterior is

Prð �Nsj2;d; fskyÞ / �ð �NsÞe�fsky �Nsf1þ fsky �Ns½
b1 þ 
b2�
þ ðfsky �NsÞ2
b1
b2g: (A29)

In the limit in which the evidence for both sources is strong
(i.e., 
b1 � 1 and 
b2 � 1) then the third term in the curly

braces dominates and

Prð �Nsj2;d; fskyÞ ¼ �ð �NsÞ
fsky
2

ðfsky �NsÞ2e�fsky �Ns ; (A30)

which matches the perfect data case with Nb ¼ 2, as
expected. In the limit where one blob is a false candidate,
but the other yields a strong evidence (e.g., 
b1 � 1 and


b2 � 1), then we recover the perfect data case with

Nb ¼ 1.
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