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It was recently realized [Y. F. Cai, T. t. Qiu, R. Brandenberger, and X.m. Zhang, Phys. Rev. D 80, 023511

(2009).] that a model constructed from a Lee-Wick type scalar field theory yields, at the level of

homogeneous and isotropic background cosmology, a bouncing cosmology. However, bouncing cosmol-

ogies induced by pressureless matter are in general unstable to the addition of relativistic matter (i.e.

radiation). Here we study the possibility of obtaining a bouncing cosmology if we add radiation coupled to

the Lee-Wick scalar field. This coupling in principlewould allow the energy to flow from radiation tomatter,

thus providing a drain for the radiation energy. However, we find that it takes an extremely unlikely fine-

tuning of the initial phases of the field configurations for a sufficient amount of radiative energy to flow into

matter. For general initial conditions, the evolution leads to a singularity rather than a smooth bounce.

DOI: 10.1103/PhysRevD.84.043505 PACS numbers: 98.80.Cq

I. INTRODUCTION

Both standard [1] and inflationary cosmology [2] suffer
from the initial singularity problem and hence cannot yield
complete descriptions of the very early Universe. If one
were able to construct a nonsingular bouncing cosmology,
this problem would obviously disappear. However, in order
to have a chance to obtain such a nonsingular cosmology,
one must either go beyond Einstein gravity as a theory of
space-time (see e.g. [3] for an early construction), or else
one must make use of matter which violates the ‘‘null
energy condition’’ (see [4] for a review of both types of
approaches).

Interest in nonsingular bouncing cosmologies has in-
creased with the realization that they can lead to alterna-
tives to inflationary cosmology as a theory for the origin of
structure in the Universe. A specific scenario which can
arise at the level of homogeneous and isotropic cosmology
is the ‘‘matter bounce’’ paradigm, which is based on the
realization [5,6] that vacuum fluctuations which exit the
Hubble radius during a matter-dominated contracting
phase evolve into a scale-invariant spectrum of curvature
perturbations on super-Hubble scales before the bounce.
The key point is that the curvature fluctuation variable �
grows on super-Hubble scales in a contracting phase,
whereas it is constant on these large scales in an expanding
phase. Since long wavelength modes exit the Hubble radius
earlier than short wavelength ones, they grow for a longer
period of time. This provides a mechanism for reddening
the initial vacuum spectrum. It turns out that a matter-
dominated contracting phase provides the specific boost
in the power of long wavelength modes which is required
in order to transform a vacuum spectrum into a scale-

invariant one. Studies in the case of various nonsingular
bounce models [7] have shown that on wavelengths long
compared to the duration of the bounce phase, the spec-
trum of fluctuations is virtually unchanged during the
bounce. Thus, a scale-invariant spectrum of curvature fluc-
tuations survives on super-Hubble scales at late times.
Provided that the bounce can occur at energy scalesmuch

below the Planck scale, nonsingular cosmologies solve a
key conceptual problem from which inflationary cosmol-
ogy suffers, namely, the ‘‘trans-Planckian’’ problem for
fluctuations [8,9]: If the period of inflationary expansion
of space lasts for more than 70H�1, whereH is the Hubble
expansion rate during inflation (in order to solve the key
cosmological mysteries it was designed to explain, inflation
has to last at least 50H�1), then the physical wavelengths of
even the largest-scale fluctuation modes we see today will
be even smaller than the Planck length at the beginning of
inflation and thus in the ‘‘zone of ignorance’’ where the
physics on which inflation and the theory of cosmological
perturbations are based, namely, Einstein gravity coupled to
semiclassical field theory matter, will break down. In con-
trast, in a nonsingular bouncing cosmology the wavelength
of modes which are currently probed by cosmological ob-
servations is never much smaller than 1 mm (the physical
wavelength of the mode which corresponds to our current
Hubble radius evaluated when the temperature of the
Universe was 1016 GeV) and hence many orders of magni-
tude larger than the Planck length. Thus, the fluctuations
never enter the ‘‘trans-Planckian zone of ignorance’’ of sub-
Planck-length wavelengths.
Possibly the simplest realization of the matter bounce

scenario is the ‘‘quintom bounce’’ model [10] and is ob-
tained by considering the matter sector to contain two
scalar fields, one of them (the ‘‘ghost field’’) having the
‘‘wrong’’ sign of the kinetic action. The potential of the
ghost scalar field also has the opposite sign to that of
regular scalar fields such that in the absence of interactions,
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the ghost field has a classically stable minimum. As has
been noticed in [11], such a quintom bounce model also
arises from the scalar field sector of the ‘‘Lee-Wick’’
Lagrangian [12] which contains higher derivatives terms.

The quintom and Lee-Wick bouncing cosmologies are
obtained in the following way [10,11]: We begin in the
contracting phase with both the regular and the ghost scalar
field oscillating homogeneously in space about their re-
spective vacua. We assume that the energy density is
dominated by the regular matter field, and that hence the
total energy density is positive. Once the amplitude of the
regular scalar field exceeds the Planck scale, the field
oscillations will freeze out and a slow-climb phase will
begin during which the energy density of the field only
grows slowly (this is the time reverse of the slow-roll phase
in scalar field-driven inflation). However, the ghost field
continues to oscillate and its energy density (which is
negative) continues to grow in absolute value. Hence, the
total energy density drops to zero, at which point the
bounce occurs, as has been studied both analytically and
numerically in the above-mentioned works. Note that the
energy density in this bounce model scales as matter until
the regular scalar field freezes out.

A major problem of bouncing cosmologies realized with
matter which scales as a�3 as a function of the scale factor
aðtÞ is the potential instability of the homogeneous and
isotropic background against the effects of radiation
(which scales as a�4 and anisotropic stress which scales
as a�6 [13]. If we simply add a noninteracting radiation
component to the two scalar field system, then unless the
initial energy density in radiation is tuned to be extremely
small, then the radiation component will become dominant
long before the bounce can arise, and will prevent the
energy density in the ghost field from ever being able to
become important, resulting in a big crunch singularity.
Similarly, unless the initial energy density in anisotropic
stress is very small, it will come to dominate the energy
density of the Universe long before the bounce is expected.
The anisotropies will destabilize the homogeneous back-
ground cosmology, and will prevent a bounce. Note that at
the quantum level, there is an additional severe problem
for bounce models obtained with matter fields with ghost-
like kinetic terms, namely, the quantum instability of the
vacuum (see e.g. [15]).

In this paper we will focus on the radiation instability
problem. For the purpose of this discussion we will simply
assume that anisotropic stress is absent. In a recent paper,
two of us studied the possibility that a bounce could arise if
radiation is supplemented with Lee-Wick radiation [16].
However, we showed that this hope is not realized: the
addition of Lee-Wick radiation does not prevent the big
crunch singularity from occurring. In the presence of ra-
diation, the only hope to obtain a bounce is to introduce a
coupling between radiation and ghost scalar field matter
which could effectively drain energy density from the

radiation field and prevent the energy density of radiation
from becoming dominant. Here we study this possibility.
However, at least for the specific Lagrangian which we
consider, we find that a bounce only emerges for highly
fine-tuned phases of the fields and their velocities in the
initial conditions.
The paper is organized as follows: In Sec. II, we intro-

duce the model we study, namely, the scalar field sector of
Lee-Wick theory coupled to radiation, and write down the
general equations of motion. In Sec. III we set up the
equations of motion linearized about the bounce back-
ground, treating the entire radiation field as an inhomoge-
neous fluctuation. In particular, we study the different terms
which contribute to the energy-momentum tensor and iden-
tify those which could assist in obtaining a nonsingular
bounce. In Sec. IV we study the solutions of the perturbed
equations of motion, and in Sec. Vwe analyze the evolution
of the different terms in the energy-momentum tensor,
identifying the conditions which would be required in order
to obtain a nonsingular bounce. We have also evolved the
general equations of motion for the two inhomogeneous
scalar field configurations and the classical inhomogeneous
radiation field in the homogeneous background cosmology.
Section VI summarizes some of the numerical results. Both
the analytical and numerical results confirm that we need
unnatural fine-tuning of the initial conditions in order to
obtain a nonsingular bounce. In the final section we offer
some conclusions and discussion.

II. THE MODEL

The Lee-Wick scalar field model coupled to electromag-
netic radiation is given by the following Lagrangian:

L ¼ � 1

2
@��@��þ 1

2M2
ð@2�Þ2 � 1

2
m2�2 � Vð�Þ

� 1

4
F��F

�� � fð�; @2�;F��F
��Þ; (1)

where m is the mass of the scalar field �, and Vð�Þ is its
potential. Here we adopt the convention that

ds2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; (2)

where aðtÞ is the scale factor of the Universe. Since it is a
higher derivative Lagrangian in �, the scalar field sector
contains an extra degree of freedom with the ‘‘wrong’’ sign
kinetic term and with a mass set by the scaleM. We choose
m � M � mPl, where mPl is the Planck mass, since we
want the regular scalar field to dominate at low energies,
but at the same time we do not want to worry about
quantum gravity effects. The second line of the Lagrangian
(1) contains the kinetic term of the radiation as well as the
coupling term, where we assumed both for the sake of
generality and because of foresight that the radiation field
couples not only to the scalar field � itself, but also to the
higher derivative term. The electromagnetic tensor, F��, is

related to the radiation field A� through the usual definition
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F�� � r�A� �r�A�; (3)

where r� is the covariant derivative.

It is convenient to extract the extra degree of freedom as
a separate scalar field. To do this, we use the field redefi-
nitions

� � �1 ��2; �2 � @2�=M2: (4)

The Lagrangian (1) then takes on a simpler form:

L ¼ �1
2@��1@

��1 þ 1
2@��2@

��2 � 1
2m

2�2
1 þ 1

2M
2�2

2

� 1
4F��F

�� � fð�1; �2; F��F
��Þ; (5)

where we have chosen the potential to be zero. In this new
form, the Lagrangian describes two massive scalar fields
with one of them (i.e., �2) behaving like a ‘‘ghost,’’ and
both of them coupled to the radiation field.

The coupling term fð�1; �2; F��F
��Þ should in princi-

ple be arbitrary, however, in this paper we will take a
specific form for convenience. The form will be

fð�1; �2; F��F
��Þ ¼ �1

4ðc�2
1 þ d�2

2ÞF��F
��; (6)

where c and d are coupling constants, which have mass
dimension �2. The interaction terms are nonrenormaliz-
able. To make sure that such terms could be thought of as
arising from an effective field theory which is consistent at
the bounce, we must make sure that the coefficients are
chosen such that the contribution of the interaction term to
the Lagrangian density is smaller than that of the other
terms. This must be true even at energy densities at which
the bounce occurs in the pure scalar field model. It is easy
to see that this condition will be satisfied if the coefficients
c and d are both of the order m�2

pl .

It is the purpose of this paper to study the effects which
these coupling terms have on the dynamics of the system.
We know that in the absence of coupling, i.e. when c ¼
d ¼ 0, a bounce will only occur if the initial radiation
energy density is tuned to a very small value compared
to the scalar field energy density. This is because the
positive definite energy density of radiation will scale as
a�4, which is faster than that of the scalar fields, in
particular, the ghost scalar field. Generically, it will domi-
nate the energy of the Universe after some amount of
contraction, it will prevent the ghost scalar field energy
density from catching up and will thus prevent a bounce,
leading to a big crunch singularity instead. With nonvan-
ishing values of c and d, however, the scalars are in
principle able to drain energy from the radiation.

From the Lagrangian (5), one can obtain the stress-
energy tensor T�� by varying the action with respect to

the metric g��. In the hydrodynamical limit, we can take
T�� to be of the form of diagf�; a2ðtÞp1; a

2ðtÞp2; a
2ðtÞp3g

where � and p are energy density and pressure, respec-
tively. As a result of the variation, we obtain the following
form of the stress-energy tensor:

T�� ¼ g��Lþ@��1@��1�@��2@��2

þð1�c�2
1�d�2

2ÞF��F
�
�;

¼ g��

� _�2
1

2
� 1

2a2
@i�1@i�1�1

2
m2�2

1�
_�2
2

2

þ 1

2a2
@i�2@i�2þ1

2
M2�2

2�
1

4
ð1�c�2

1�d�2
2ÞF2�

þ@��1@��1�@��2@��2

þð1�c�2
1�d�2

2ÞF��F
�
�; (7)

where F2 ¼ F��F
��. Since we will be studying the con-

tribution of plane wave perturbations of the scalar fields
and we will treat radiation as a superposition of waves, we
kept the space-derivative terms.
By varying the Lagrangian with respect to the matter

fields �1, �2 and A�, we also get the equations of motion

for all three fields:

h�1 �
�
m2 � c

2
F2

�
�1 ¼ 0; (8)

h�2 �
�
M2 þ d

2
F2

�
�2 ¼ 0; (9)

ð1� c�2
1 � d�2

2Þð@�F�� þ 3HF�0Þ
� 2ðc�1@��1 þ d�2@��2ÞF�� ¼ 0; (10)

which will be analyzed in detail in the rest of the paper.

III. DYNAMICS

Since the equations of motion are nonlinear, we cannot
work in Fourier space, and use plane wave solutions.
However, we are interested in how initially small amounts
of radiation build up and possibly transfer their energy to
scalar field fluctuations. We treat radiation as a superposi-
tion of fluctuations. Therefore it makes sense to linearize
our equations about the homogeneous scalar field back-
ground. Thus, we make the following ansatz for the scalar
fields:

�1ðt; zÞ ¼ �ð0Þ
1 ðtÞ þ ��ð1Þ

1 ðt; zÞ þ �2�ð2Þ
1 ðtÞ (11)

�2ðt; zÞ ¼ �ð0Þ
2 ðtÞ þ ��ð1Þ

2 ðt; zÞ þ �2�ð2Þ
2 ðtÞ; (12)

where the expansion parameter � is taken to be much
smaller than 1 [17]. The first term on the right hand side

of each line, i.e. �ð0Þ
1;2ðtÞ correspond to the background

fields, the terms �ð1Þ
1;2ðt; xÞ are the fluctuations, and the

second order terms �ð2Þ
1;2ðtÞ describe the backreaction of

the fluctuations on the background and can be computed
from the leading second order corrections (averaged over
space) of the equations of motion [18].
To simplify the analysis, we describe radiation in terms

of plane waves in a fixed direction (which we take to be the

INSTABILITY OF THE LEE-WICK BOUNCE PHYSICAL REVIEW D 84, 043505 (2011)

043505-3



z direction). Without loss of generality we can restrict
attention to one polarization mode which we take to be
the electric field in the x direction and the magnetic field in
the y direction. In this case, the only nonzero components
of the field strength tensor are F01 and F13. Using the
temporal gauge where A0 ¼ 0, we find that only the first
component of the gauge field is nonzero. For a single
wavelength fluctuation we can make the ansatz

A1ðk; tÞ ¼ fðtÞ cosðkzÞ � �ðk; tÞ; (13)

or, equivalently,

A1ðk; tÞ ¼ aðtÞ�2�ðk; tÞ: (14)

Since in the linearized equations of motion the Fourier

modes are independent, we can consider �ð1Þ
1 and �ð1Þ

2

also to be plane waves propagating in the z direction, so
they depend only on z and t.

With Eqs. (11)–(14) in hand, we can write down the
energy densities of the various fields at each order in
perturbation theory.

A. The stress-energy tensor

First of all, we insert the above perturbative ansatz for
the fields into the stress-energy tensor of the system. From
the general expression (7) for T��, we get

T��¼g��

� _�2
1

2
� 1

2a2
@z�1@z�1�1

2
m2�2

1�
_�2
2

2

þ 1

2a2
@z�2@z�2þ1

2
M2�2

2�
1

4
ð1�c�2

1�d�2
2ÞF2

�
þ@��1@��1�@��2@��2

þð1�c�2
1�d�2

2ÞF��F
�
�: (15)

The 00 component of Eq. (15) denotes the energy den-
sity of the system

� ¼ 1

2

�
_�2
1 þ

k2

a2
�2

1 þm2�2
1

�
� 1

2

�
_�2
2 þ

k2

a2
�2

2 þM2�2
2

�

þ ð1� c�2
1 � d�2

2Þ
�
F2

4
þ F0�F

�
0

�
; (16)

so at each level in perturbation theory, we have

�ð0Þ ¼ 1

2
ð _�ð0Þ2

1 þm2�ð0Þ2
1 Þ � 1

2
ð _�ð0Þ2

2 þM2�ð0Þ2
2 Þ; (17)

�ð1Þ ¼ ð _�ð0Þ
1

_�ð1Þ
1 þm2�ð0Þ

1 �ð1Þ
1 Þ� ð _�ð0Þ

2
_�ð1Þ
2 þM2�ð0Þ

2 �ð1Þ
2 Þ;
(18)

�ð2Þ ¼ 1

2

�
_�ð1Þ2
1 þ _�ð0Þ

1
_�ð2Þ
1 þ k2

a2
�ð1Þ2

1 þm2�ð1Þ2
1 þm2�ð0Þ

1 �ð2Þ
1

�
� 1

2

�
_�ð1Þ2
2 þ _�ð0Þ

2
_�ð2Þ
2 þ k2

a2
�ð1Þ2

2 þM2�ð1Þ2
2 þM2�ð0Þ

2 �ð2Þ
2

�

þð1� c�ð0Þ2
1 � d�ð0Þ2

2 Þ
�
F2

4
þF0�F

�
0

�
;¼ 1

2

�
_�ð1Þ2
1 þ _�ð0Þ

1
_�ð2Þ
1 þ k2

a2
�ð1Þ2

1 þm2�ð1Þ2
1 þm2�ð0Þ

1 �ð2Þ
1

�

� 1

2

�
_�ð1Þ2
2 þ _�ð0Þ

2
_�ð2Þ
2 þ k2

a2
�ð1Þ2

2 þM2�ð1Þ2
2 þM2�ð0Þ

2 �ð2Þ
2

�
þð1� c�ð0Þ2

1 � d�ð0Þ2
2 Þ

�
k2

2a4
�2 þ _�2

2a2

�
: (19)

We can similarly obtain the pressure of the system from
the ii components of Eq. (15). Note that due to the anisot-
ropy in T�� caused by the gauge field as well as by the
anisotropic fluctuations of the scalar fields, the pressures in
the three directions are no longer identical. The pressure in
each direction can be written as

pi ¼ 1

2

�
_�2
1 �

k2

a2
�2

1 �m2�2
1

�
� 1

2

�
_�2
2 �

k2

a2
�2

2 �M2�2
2

�

� ð1� c�2
1 � d�2

2Þ
�
F2

4
� Fi�F

�
i

a2

�
þ @i�1@i�1

a2

� @i�2@i�2

a2
; (20)

with no summation over the index i. From this formula, we
can see that at both zeroth and first order, the pressure is
isotropic:

pð0Þ
i ¼ 1

2ð _�ð0Þ2
1 �m2�ð0Þ2

1 Þ � 1
2ð _�ð0Þ2

2 �M2�ð0Þ2
2 Þ; (21)

pð1Þ
i ¼ ð _�ð0Þ

1
_�ð1Þ
1 �m2�ð0Þ

1 �ð1Þ
1 Þ� ð _�ð0Þ

2
_�ð1Þ
2 �M2�ð0Þ

2 �ð1Þ
2 Þ;
(22)

while the second order pressure for each direction gives

pð2Þ
i ¼ 1

2

�
_�ð1Þ2
1 þ _�ð0Þ

1
_�ð2Þ
1 � k2

a2
�ð1Þ2

1 þm2�ð1Þ2
1

þm2�ð0Þ
1 �ð2Þ

1

�
� 1

2

�
_�ð1Þ2
2 þ _�ð0Þ

2
_�ð2Þ
2 � k2

a2
�ð1Þ2

2

þM2�ð1Þ2
2 þM2�ð0Þ

2 �ð2Þ
2

�
þ@i�1@i�1

a2

�@i�2@i�2

a2
�ð1� c�ð0Þ2

1 �d�ð0Þ2
2 Þ

�
F2

4
�Fi�F

�
i

a2

�
;

(23)

where i ¼ 1, 2, 3.
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We can thus obtain every component of pð2Þ
i :

pð2Þ
1 ¼ 1

2

�
_�ð1Þ2
1 þ _�ð0Þ

1
_�ð2Þ
1 � k2

a2
�ð1Þ2

1 þm2�ð1Þ2
1

þm2�ð0Þ
1 �ð2Þ

1

�
� 1

2

�
_�ð1Þ2
2 þ _�ð0Þ

2
_�ð2Þ
2 � k2

a2
�ð1Þ2

2

þM2�ð1Þ2
2 þM2�ð0Þ

2 �ð2Þ
2

�

þ ð1� c�ð0Þ2
1 � d�ð0Þ2

2 Þ
�
k2

2a4
�2 � _�2

2a2

�
; (24)

pð2Þ
2 ¼ 1

2

�
_�ð1Þ2
1 þ _�ð0Þ

1
_�ð2Þ
1 � k2

a2
�ð1Þ2

1 þm2�ð1Þ2
1

þm2�ð0Þ
1 �ð2Þ

1

�
� 1

2

�
_�ð1Þ2
2 þ _�ð0Þ

2
_�ð2Þ
2 � k2

a2
�ð1Þ2

2

þM2�ð1Þ2
2 þM2�ð0Þ

2 �ð2Þ
2

�

� ð1� c�ð0Þ2
1 � d�ð0Þ2

2 Þ
�
k2

2a4
�2 � _�2

2a2

�
; (25)

pð2Þ
3 ¼ 1

2

�
_�ð1Þ2
1 þ _�ð0Þ

1
_�ð2Þ
1 � k2

a2
�ð1Þ2

1 þm2�ð1Þ2
1

þm2�ð0Þ
1 �ð2Þ

1

�
� 1

2

�
_�ð1Þ2
2 þ _�ð0Þ

2
_�ð2Þ
2 � k2

a2
�ð1Þ2

2

þM2�ð1Þ2
2 þM2�ð0Þ

2 �ð2Þ
2

�

þ ð1� c�ð0Þ2
1 � d�ð0Þ2

2 Þ
�
k2

2a4
�2 þ _�2

2a2

�
; (26)

and the average is

pð2Þ
eff¼

pð2Þ
1 þpð2Þ

2 þpð2Þ
3

3

¼1

2

�
_�ð1Þ2
1 þ _�ð0Þ

1
_�ð2Þ
1 �k2

a2
�ð1Þ2

1 þm2�ð1Þ2
1 þm2�ð0Þ

1 �ð2Þ
1

�

�1

2

�
_�ð1Þ2
2 þ _�ð0Þ

2
_�ð2Þ
2 �k2

a2
�ð1Þ2

2 þM2�ð1Þ2
2

þM2�ð0Þ
2 �ð2Þ

2

�
þð1�c�ð0Þ2

1 �d�ð0Þ2
2 Þ

�
k2

6a4
�2þ _�2

6a2

�
:

(27)

From the above, we can also see that in order to analyze
the behavior of the energy density up to second order, we
need to know the evolution of scalar fields up to second
order as well as that of the gauge field up to first order,

while the behavior of the gauge field to second order is not
required.
It will be useful in the following to separate the contri-

butions to the energy density and pressure in a different
way, namely,
(i) the contribution from the background homogeneous

part of the scalar fields,

�h
� ¼ �ð0Þ

� ph
� ¼ pð0Þ

� ; (28)

(ii) that of the scalar field perturbations (in slight abuse
of notation we call this the ‘‘inhomogeneous’’
term),

�inh
� ¼ ��ð1Þ

� þ �2�ð2Þ
� pinh

� ¼ �pð1Þ
� þ �2pð2Þ

� ;

(29)

(iii) the contribution of the gauge field,

�g ¼ 1

2a2

�
_�2 þ k2

a2
�2

�
; (30)

pg ¼ 1

6a2

�
_�2 þ k2

a2
�2

�
; (31)

(iv) the contribution of the coupling term,

�c ¼ �ðc�ð0Þ2
1 þ d�ð0Þ2

2 Þ
8a2

�
_�2 þ k2

a2
�2

�
¼ ���g;

(32)

pc ¼ �ðc�ð0Þ2
1 þ d�ð0Þ2

2 Þ
24a2

�
_�2 þ k2

a2
�2

�
¼ ��pg;

(33)

where in the last equation we define � to be the quadratic
combination of the two fields:

� ¼ ðc�ð0Þ2
1 þ d�ð0Þ2

2 Þ=2: (34)

From the above we can deduce the equation of state
parameter for each part:

wh
� ¼

_�ð0Þ2
1 �m2�ð0Þ2

1 � _�ð0Þ2
2 þM2�ð0Þ2

2

_�ð0Þ2
1 þm2�ð0Þ2

1 � _�ð0Þ2
2 �M2�ð0Þ2

2

; (35)
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winh
� ¼ �

�
pð1Þ

�ð1Þ �
pð0Þ�ð1Þ

�ð0Þ2

�
þ �2

�
pð2Þ

�ð0Þ �
pð0Þ�ð2Þ

�ð0Þ2 � pð1Þ�ð1Þ

�ð0Þ2

�
;

(36)

wg ¼ wc ¼ 1
3: (37)

From the equations above, we see that for positive values
of the constants c and d, the coupling of the scalar field
with the gauge field will give rise to a contribution �c to the
energy density which has the same equation of state but
opposite sign to that of the gauge field. Therefore, the
coupling can help drain energy from the gauge field. It is
because of this mechanism that we might hope to achieve a
cosmological bounce in the presence of radiation. A first
indication on whether a bounce might occur can be ob-
tained by considering the scaling of each contribution to
the energy density as a function of the scale factor aðtÞ. To
find these scalings, we need the time dependence of the
linear and quadratic contributions to each field. Therefore,
we need to solve the matter field equations of motion. In
the following subsection, we present the equations for the
fields at each order, while the solutions and detailed analy-
sis will be performed in the next sections.

B. Equations of Motion

Keeping in mind the ansätze for A�, �1 and �2, their

equations of motion at each order can be obtained from
(8)–(10):

(a) At zeroth order,

€� ð0Þ
1 þ 3H _�ð0Þ

1 þm2�ð0Þ
1 ¼ 0;

€�ð0Þ
2 þ 3H _�ð0Þ

2 þM2�ð0Þ
2 ¼ 0:

(38)

Note that there is no equation at this order for A�

because it is of first order in �.
(b) At first order,

€�ð1Þ
1 þ 3H _�ð1Þ

1 þ
�
k2

a2
þm2

�
�ð1Þ

1 ¼ 0;

€�ð1Þ
2 þ 3H _�ð1Þ

2 þ
�
k2

a2
þM2

�
�ð1Þ

2 ¼ 0;

ð1� c�ð0Þ2
1 � d�ð0Þ2

2 Þð@�F�� þ 3HF�0Þ
� 2ðc�ð0Þ

1 @��
ð0Þ
1 þ d�ð0Þ

2 @��
ð0Þ
2 ÞF�� ¼ 0; (39)

Making use of Eqs. (13) and (14), the equation for
the gauge field can also be rewritten as

ð1� c�ð0Þ2
1 � d�ð0Þ2

2 Þ
�
€�þH _�þ k2

a2
�

�
� 2ðc�ð0Þ

1
_�ð0Þ
1 þ d�ð0Þ

2
_�ð0Þ
2 Þ _� ¼ 0: (40)

(c) At second order,

€� ð2Þ
1 þm2�ð2Þ

1 � c

2
hF��F

��i�ð0Þ
1 ¼ 0;

€�ð2Þ
2 þM2�ð2Þ

2 þ d

2
hF��F

��i�ð0Þ
2 ¼ 0:

(41)

Here, pointed parentheses indicate spatial averaging
(since we are only focusing on the zero mode of the
second order field fluctuations). We also neglected
the effect of Hubble friction since it does not give an
important contribution for the second order fluctua-
tions. There is a second reason for neglecting the
effect of Hubble friction: in order for the energy
transfer from radiation to scalar fields to be effective
in draining enough energy from the radiation field to
prevent a big crunch singularity, the time scale of the
draining process must be shorter than the Hubble
time. Hence, it is self-consistent to neglect terms
that induce changes only on longer time scales.

IV. THE GENERAL SOLUTION

In this section we will solve the equations of motion
(38), (39), and (41) to see if and how a bounce will happen.
It is usually useful to perform the analysis in the con-

formal frame where the conformal time 	 � R
a�1ðtÞdt is

used rather than the cosmic time. Additionally, to extract
the dependence on the scale factor, it is convenient to use
the following two variables:

u1ð	Þ � að	Þ�1ð	Þ; u2ð	Þ � að	Þ�2ð	Þ: (42)

Hereafter, we will use uðiÞj ði ¼ 0; 1; 2; j ¼ 1; 2Þ to denote

the i-th order perturbation of the j-th scalar field.
Moreover, for simplicity, we can parameterize the scale
factor aðtÞ as

að	Þ ¼ a0t
p ¼ a0j	jp=ð1�pÞ; (43)

with

p ¼ 2

3ð1þ wÞ ; (44)

where a0 and w are the initial value of the scale factor and
the equation of state of the Universe, respectively. This is a
self-consistent assumption when w is nearly a constant.
The evolution of w in our case will be shown numerically
in Sec. VI.
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A. Solutions for �ð0Þ
1 and �ð0Þ

2

Using the parametrization (43), the equations of motion
at zeroth order of the two scalar fields become

uð0Þ001 þ
�
a20m

2	2p=ð1�pÞ � pð2p� 1Þ
ð1� pÞ2	2

�
uð0Þ1 ¼ 0;

uð0Þ002 þ
�
a20M

2	2p=ð1�pÞ � pð2p� 1Þ
ð1� pÞ2	2

�
uð0Þ2 ¼ 0;

(45)

where a prime denotes the derivative with respect to con-
formal time 	. Their solutions are

uð0Þ1 �
ffiffiffiffiffiffiffi
j	j

q
H�ð1�3pÞ=2ðð1� pÞamj	jÞ; (46)

uð0Þ2 �
ffiffiffiffiffiffiffi
j	j

q
H�ð1�3pÞ=2ðð1� pÞaMj	jÞ; (47)

where H�ð1�3pÞ=2 represents the (� 1�3p
2 )-th order

Hankel function. Far away or close to the bounce, i.e. for
aj	j � m�1, M�1 and aj	j � m�1, M�1, respectively,
the approximate solutions are:

(1) Oscillations for large values of the scale factor
aj	j � m�1, M�1:

uð0Þ1 � j	jp=ð2ðp�1ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ð1� pÞ
a0m

s

	 cosðð1� pÞa0mj	j1=ð1�pÞ þ �ð0Þ1 Þ; (48)

uð0Þ2 � j	jp=ð2ðp�1ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ð1� pÞ
a0M

s

	 cosðð1� pÞa0Mj	j1=ð1�pÞ þ �ð0Þ2 Þ; (49)

(where �1 and �2 are phases set by the initial con-
ditions). In terms of the nonrescaled fields �i one
obtains damped (or antidamped) oscillations
(depending on whether we are in an expanding or
a contracting period)

�ð0Þ
1 � j	j3p=ð2ðp�1ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð1� pÞ
a3=20 m

vuut
	 cosðð1� pÞa0mj	j1=ð1�pÞ þ �ð0Þ1 Þ; (50)

�ð0Þ
2 � j	j3p=ð2ðp�1ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð1� pÞ
a3=20 M

vuut
	 cosðð1� pÞa0Mj	j1=ð1�pÞ þ �ð0Þ2 Þ: (51)

(2) ‘‘Frozen’’ evolution for small values of the scale
factor aj	j � m�1, M�1:

uð0Þ1 � ðð1� pÞa0mÞð1�3pÞ=2j	jð1�2pÞ=ð1�pÞ

�ð3ð1�pÞ
2 Þ

þ ðð1� pÞa0mÞ�ð1�3pÞ=2j	jp=ð1�pÞ

�ð1þ3p
2 Þ ; (52)

uð0Þ2 � ðð1� pÞa0MÞð1�3pÞ=2j	jð1�2pÞ=ð1�pÞ

�ð3ð1�pÞ
2 Þ

þ ðð1� pÞa0MÞ�ð1�3pÞ=2j	jp=ð1�pÞ

�ð1þ3p
2 Þ ; (53)

from which it follows that the nonrescaled fields �i

evolve as

�ð0Þ
1 � ðð1� pÞa0mÞð1�3pÞ=2j	jð1�3pÞ=ð1�pÞ

a0�ð3ð1�pÞ
2 Þ

þ ðð1� pÞa0mÞð3p�1Þ=2

a0�ð1þ3p
2 Þ ; (54)

�ð0Þ
2 � ðð1� pÞa0MÞð1�3pÞ=2j	jð1�3pÞ=ð1�pÞ

a0�ð3ð1�pÞ
2 Þ

þ ðð1� pÞa0MÞð3p�1Þ=2

a0�ð1þ3p
2 Þ ; (55)

from which we can see that the last term of �ð0Þ
i is a

constant mode while the first term is a varying one.
Depending on the value of p (or equivalently w) the
varying mode could be growing (for p > 1=3 or
�1<w< 1), in which case it becomes dominant,
or decaying (for p < 1=3 or for w> 1 or w<�1),
in which case it becomes subdominant. We can
usually neglect the decaying part of the fields.

B. Solutions for �ð1Þ
1 and �ð1Þ

2

Following the steps performed in the last subsection, we
can also get the solutions for the first order components of
the scalar fields. Using the Eqs. (39) for the first order
perturbations we obtain the following equations of motion

for uð1Þ1 and uð1Þ2 :

uð1Þ001 þ
�
k2 þ a20m

2	2p=ð1�pÞ � pð2p� 1Þ
ð1� pÞ2	2

�
uð1Þ1 ¼ 0;

uð1Þ002 þ
�
k2 þ a20M

2	2p=ð1�pÞ � pð2p� 1Þ
ð1� pÞ2	2

�
uð1Þ2 ¼ 0:

(56)

Depending on the value of k, we obtain different ap-
proximation solutions. For wave numbers large compared
both to the Hubble radius and to the mass term, we obtain
oscillatory solutions with fixed amplitude.
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Considering now modes which are still sub-Hubble (i.e.
kj	j> 1) but for which the mass term dominates over the
contribution of the field tension (i.e. the term involving k),
we can neglect both the k2 term and the term involving
pð2p�1Þ
ð1�pÞ2	2 . The simplified equation for these modes is

uð1Þ001 þ a20m
2	2p=ð1�pÞuð1Þ1 ¼ 0;

uð1Þ002 þ a20M
2	2p=ð1�pÞuð1Þ2 ¼ 0;

(57)

whose solutions are

uð1Þ1 �
ffiffiffiffiffiffiffi
j	j

q
Hð1�pÞ=2ðð1� pÞa0mj	jÞ � j	jp=ð2ðp�1ÞÞ

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ð1� pÞ
ma0

s
cosðð1� pÞa0mj	j þ �ð1Þ1 Þ; (58)

uð1Þ2 �
ffiffiffiffiffiffiffi
j	j

q
Hð1�pÞ=2ðð1�pÞa0Mj	jÞ�j	jp=ð2ðp�1ÞÞ

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ð1�pÞ
Ma0

s
cosðð1�pÞa0Mj	jþ�ð1Þ2 Þ: (59)

For modes outside the Hubble radius (k	 � 1), we have

uð1Þ001 þ
�
a20m

2	2p=ð1�pÞ � pð2p� 1Þ
ð1� pÞ2	2

�
uð1Þ1 ¼ 0;

uð1Þ002 þ
�
a20M

2	2p=ð1�pÞ � pð2p� 1Þ
ð1� pÞ2	2

�
uð1Þ2 ¼ 0;

(60)

which have the same form as Eq. (45) so their solution will
be the same as given in Eqs. (52) and (53). Note that on
scales larger than the Hubble radius we cannot neglect the
metric fluctuations. However, the typical time scale asso-
ciated with the growth of metric fluctuations is the Hubble
time scale, and we are looking for effects on shorter time
scales, as already mentioned. Hence, the neglect of metric
fluctuations is justified.

We have thus seen that the first order solutions for the
scalar fields scale the sameway with j	j as the zeroth order
solution. This is because in the small j	j region where the
a00ðtÞ=aðtÞ term dominates over the other ones, the equa-
tions for first order and zeroth order modes are almost the

same. Thus, unless the energy density in the uð1Þi modes
dominates at the initial time, it will never dominate over

the background contribution from the uð0Þi terms. Thus we
can conclude that the first order fluctuations of scalar fields
will not prevent the bounce.

C. Solution for the gauge field �

In this section, wewill analyze the gauge field �which is
also considered to be of first order. The Eq. (40) can
directly be transformed to conformal frame as

�00 þ k2�� 2ðc�ð0Þ
1 �ð0Þ0

1 þ d�ð0Þ
2 �ð0Þ0

2 Þ
1� c�ð0Þ2

1 � d�ð0Þ2
2

�0 ¼ 0: (61)

Since the coefficients c and d are small, we can take the last
term to be a source term. In a first order Born approxima-
tion, we can write the total solution as

� ’ �0 þ ��; (62)

where �0 is the solution for the homogeneous equation
obtained by setting c ¼ d ¼ 0, while �� is the leading
correction term obtained by inserting �0 into the source
term [the last term in (61)].
The zeroth order (homogeneous) equation is easily

solved and gives

�0 � cosðkj	j þ ��Þ: (63)

For the first order equation, it is convenient to define

Pð	Þ � � 2ðc�ð0Þ
1 �ð0Þ0

1 þ d�ð0Þ
2 �ð0Þ0

2 Þ
1� c�ð0Þ2

1 � d�ð0Þ2
2

; (64)

so that the equation becomes

��00 þ k2��þ Pð	Þ�0
0 ¼ 0; (65)

where we neglected the small term Pð	Þ��0. Inserting the
solution of �0 (63), we get the following equation for ��:

��00 þ k2�� ¼ �Pð	Þ�0
0: (66)

We are interested in the scaling of �� as a function of
time. For this purpose, we need to work out the scaling in

time of the source term in (66). Since the solutions for �ð0Þ
1

and �ð0Þ
2 scale differently in time in the two time intervals

discussed in Sec. (IVA), it is necessary to analyze these
two intervals separately.
For times obeying aj	j � m�1, M�1, then by differ-

entiating (50) and (51) with respect to 	, we have

�ð0Þ0
1 �j	jðpþ2Þ=ð2ðp�1ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð1�pÞ
a3=20 m

vuut �
� 3p

p�1
cosðð1�pÞ

	a0mj	j1=ð1�pÞþ�ð0Þ1 Þþa0mj	j1=ð1�pÞsinðð1�pÞ
	a0mj	j1=ð1�pÞþ�ð0Þ1 Þ

�
; (67)

�ð0Þ0
2 �j	jðpþ2Þ=ð2ðp�1ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð1�pÞ
a3=20 M

vuut �
� 3p

p�1
cosðð1�pÞ

	a0Mj	j1=ð1�pÞþ�ð0Þ1 Þþa0Mj	j1=ð1�pÞsinðð1�pÞ
	a0Mj	j1=ð1�pÞþ�ð0Þ1 Þ

�
: (68)

Note that j	j1=ð1�pÞ � t is a decaying mode in the contract-
ing phase and thus the last terms inside the square brackets
in the above formulae can be neglected compared to the
first ones. Since
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Pð	Þ ¼ � 2ðc�ð0Þ
1 �ð0Þ0

1 þ d�ð0Þ
2 �ð0Þ0

2 Þ
1� c�ð0Þ2

1 � d�ð0Þ2
2


 �2ðc�ð0Þ
1 �ð0Þ0

1 þ d�ð0Þ
2 �ð0Þ0

2 Þ; (69)

then combining all these results, we get

��� C1j	jð1�4pÞ=ð1�pÞ: (70)

For aj	j � m�1, M�1, then differentiating (54) and
(55) with respect to 	, we obtain

�ð0Þ0
1 � 1� 3p

1� p

ðð1� pÞa0mÞð1�3pÞ=2j	j�2p=ð1�pÞ

a0�ð3ð1�pÞ
2 Þ ; (71)

�ð0Þ0
2 � 1� 3p

1� p

ðð1� pÞa0MÞð1�3pÞ=2j	j�2p=ð1�pÞ

a0�ð3ð1�pÞ
2 Þ ; (72)

when p > 1=3 and

�ð0Þ0
1 ��ð0Þ0

2 
 0 (73)

when p < 1=3. Then we can solve Eq. (66) to get

��� C2j	jð3�7pÞ=ð1�pÞ; p > 1
3

��� C3 cosðkj	j þ ���Þ; p < 1
3 :

(74)

In the above expressions for ��, C1, C2 and C3 are com-
plicated prefactors in front of the 	-dependent terms.

In summary, we see that the interactions give only a
subleading correction �� to �0.

D. Solutions for �ð2Þ
1 and �ð2Þ

2

Finally, let us consider the homogeneous component of

the second order fluctuations of the scalars, namely, �ð2Þ
1

and �ð2Þ
2 . If we only consider the energy density up to

second order, these second order field perturbations give
a contribution through their coupling to the background
fields. In the following we find the solutions of (41) and
study the effects of the induced terms in the stress-energy
tensor on a possible bounce.

Given the solution for the gauge field � obtained in the
last subsection, it is easy to rewrite Eqs. (41) as

uð2Þ001 þ a2m2uð2Þ1 ¼ c
ðk2�2 � �02Þ

a2
uð0Þ1 ;

uð2Þ002 þ a2M2uð2Þ2 ¼ �d
ðk2�2 � �02Þ

a2
uð0Þ2 ;

(75)

where we made use of the fact that

F��F
�� ¼ 2ðk2�2 � a2 _�2Þ=a4: (76)

Equation (75) has the same form as the zeroth order
equation but with a small source term generated by the
interaction with the gauge field. This equation can be
solved using the Born approximation (details are given in
the Appendix). The general solution is the sum of the
general solution of the homogeneous solution plus the
solution including the source which has vanishing initial
data. The inhomogeneous term is suppressed by the cou-
pling constants c and d compared to the homogeneous
solution, but, as shown in the Appendix, it scales as a
high power of 	�1. Via the coupling to the background
scalar fields, the above second order terms enter into the
expression for the energy density to second order. The
signs of the corresponding terms in the energy density
are indefinite in the sense that they depend on the phases
of the initial field configurations. Since it is these terms that
dominate the energy density near the bounce, we find that
whether a bounce occurs or not depends sensitively on the
phases in the initial conditions, and that in fact in the case
of many plane wave modes initially excited, a bounce
requires very special phase correlations.

V. EVOLUTION OF THE COMPONENTS
OF THE ENERGY DENSITY

In the previous section we have solved all of the field
equations up to second order in the amplitude of the
fluctuations. We have found the scaling in time of each
field at each order. Now we are ready to look at how all

of the terms in the expression for the energy density �ð0Þ,
�ð1Þ and �ð2Þ at various orders in perturbation theory
(namely, Eqs. (17)–(19)) scale in time. This analysis is
straightforward but very important if we are to determine
whether a bounce is possible, since in four space-time
dimensional classical Einstein Gravity with flat spatial
sections a bounce can only happen when the negative
terms in the energy density catch up to the positive
contributions [10].
In the following we give a table of how each term

contained in � scales with time as the background cos-
mology bounce point (the bounce which is achieved in the
absence of radiation and scalar field inhomogeneities) is
approached. We will identify the terms which dominate in
this limit. This will give us a good indication under which
conditions a bounce can occur. The tables are structured
as follows: the first line ‘‘Terms,’’ indicates which term
we are considering, the next set of lines ‘‘Behavior’’ gives
the scaling in time in the various limits and in the two
relevant ranges of the parameter p which indicates the
equation of state, and the last line gives the sign with
which the term contributes to the energy density. Note
that we focus on the growing mode solution to each field
(which is constant for small 	 in the case p < 1=3). We
give separate tables for terms of zeroth, first, and second
order in �.
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(a) For terms contained in �ð0Þ:

Terms _�ð0Þ2
1 m2�ð0Þ2

1 � _�ð0Þ2
2 �M2�ð0Þ2

2

Behavior

a�3�ð2=pÞðaj	j � m�1Þ a�3ðaj	j � m�1Þ a�3�ð2=pÞðaj	j � m�1Þ a�3ðaj	j � M�1Þ

a�6 aj	j � m�1

p > 1
3

 !
a�6þð2=pÞ aj	j � m�1

p > 1
3

 !
a�6 aj	j � m�1

p > 1
3

 !
a�6þð2=pÞ aj	j � M�1

p > 1
3

 !

0
aj	j � m�1

p < 1
3

 !
a0

aj	j � m�1

p < 1
3

 !
0

aj	j � m�1

p < 1
3

 !
a0

aj	j � M�1

p < 1
3

 !

Sign
Positive

Definite

Positive

Definite

Negative

Definite

Negative

Definite

(b) For terms contained in �ð1Þ:

Terms _�ð0Þ
1

_�ð1Þ
1 �ð0Þ

1 �ð1Þ
1 � _�ð0Þ

2
_�ð1Þ
2

Behavior

a�3�ð2=pÞðj	j � Maxfk�1; ðamÞ�1gÞ a�3ðj	j � Maxfk�1; ðamÞ�1gÞ a�3�ð2=pÞðj	j � Maxfk�1; ðaMÞ�1gÞ

a�ð9=2Þ�ð1=pÞ j	j 2 ½k�1; ðamÞ�1�
p > 1

3

 !
a�ð9=2Þþð1=pÞ j	j 2 ½k�1; ðamÞ�1�

p > 1
3

 !
a�ð9=2Þ�ð1=pÞ j	j 2 ½k�1; ðaMÞ�1�

p > 1
3

 !

a�6 j	j � Minfk�1; ðamÞ�1g
p > 1

3

 !
a�6þð2=pÞ j	j � Minfk�1; ðamÞ�1g

p > 1
3

 !
a�6 j	j � Minfk�1; ðaMÞ�1g

p > 1
3

 !

0
j	j 2 ½k�1; ðamÞ�1�

p < 1
3

 !
a�ð3=2Þ j	j 2 ½k�1; ðamÞ�1�

p < 1
3

 !
0

j	j 2 ½k�1; ðaMÞ�1�
p < 1

3

 !

0
j	j � Minfk�1; ðamÞ�1g

p < 1
3

 !
a0

j	j � Minfk�1; ðamÞ�1g
p < 1

3

 !
0

j	j � Minfk�1; ðaMÞ�1g
p < 1

3

 !

Sign Indefinite Indefinite Indefinite

Terms ��ð0Þ
2 �ð1Þ

2

Behavior

a�3ðj	j � Maxfk�1; ðaMÞ�1gÞ

a�ð9=2Þþð1=pÞ j	j 2 ½k�1; ðaMÞ�1�
p > 1

3

 !

a�6þð2=pÞ j	j � Minfk�1; ðaMÞ�1g
p > 1

3

 !

a�ð3=2Þ j	j 2 ½k�1; ðaMÞ�1�
p < 1

3

 !

a0
j	j � Minfk�1; ðaMÞ�1g

p < 1
3

 !

Sign Indefinite
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These terms, however, all vanish if the energy density is defined by spatial averaging.

(c) For terms contained in �ð2Þ:

Terms _�ð1Þ2
1

_�ð0Þ
1

_�ð2Þ
1

k2

a2
�ð1Þ2

1 m2�ð1Þ2
1 m2�ð0Þ

1 �ð2Þ
1

Behavior

a�3�ð2=pÞðkj	j � 1Þ a�7�ð1=pÞðaj	j � m�1Þ a�5ðkj	j � 1Þ a�3ðkj	j � 1Þ a�7þð1=pÞðaj	j � m�1Þ

a�6 kj	j � 1
p > 1

3

 !
a�ð17=2Þ aj	j � m�1

p > 1
3

 !
a�8þð2=pÞ kj	j � 1

p > 1
3

 !
a�6þð2=pÞ kj	j � 1

p > 1
3

 !
a�ð17=2Þþð2=pÞ aj	j � m�1

p > 1
3

 !

0
kj	j � 1
p < 1

3

 !
0

aj	j � m�1

p < 1
3

 !
a�2 kj	j � 1

p < 1
3

 !
a0

kj	j � 1
p < 1

3

 !
a�ð11=2Þþð1=pÞ aj	j � m�1

p < 1
3

 !

Sign Positive

Definite

Indefinite Positive

Definite

Positive

Definite

Indefinite

Terms � _�ð1Þ2
2 � _�ð0Þ

2
_�ð2Þ
2

k2

a2
�ð1Þ2

2 �M2�ð1Þ2
2 �M2�ð0Þ

2 �ð2Þ
2

Behavior

a�3�ð2=pÞðkj	j � 1Þ a�7�ð1=pÞðaj	j � M�1Þ a�5ðkj	j � 1Þ a�3ðkj	j � 1Þ a�7þð1=pÞðaj	j � M�1Þ

a�6 kj	j � 1
p > 1

3

 !
a�ð17=2Þ aj	j � M�1

p > 1
3

 !
a�8þð2=pÞ kj	j � 1

p > 1
3

 !
a�6þð2=pÞ kj	j � 1

p > 1
3

 !
a�ð17=2Þþð2=pÞ aj	j � M�1

p > 1
3

 !

0
kj	j � 1
p < 1

3

 !
0

aj	j � M�1

p < 1
3

 !
a�2 kj	j � 1

p < 1
3

 !
a0

kj	j � 1
p < 1

3

 !
a�ð11=2Þþð1=pÞ aj	j � M�1

p < 1
3

 !

Sign Negative

Definite

Indefinite Negative

Definite

Negative

Definite

Indefinite

Terms a�4k2�2
0 þ a�2 _�2

0 ð�c�ð0Þ2
1 � d�ð0Þ2

2 Þða�4k2�2
0 þ a�2 _�2

0Þ a�4k2�0�� a�2 _� _��

Behavior a�4 a�7ðaj	j�m�1Þ

a�10þð2=pÞ
�
aj	j � m�1

p > 1
3

�

a�4

�
aj	j � m�1

p < 1
3

�
a�8þð1=pÞðaj	j�m�1Þ

a�11þð3=pÞ
�
aj	j � m�1

p > 1
3

�

a�4

�
aj	j � m�1

p < 1
3

�
a�7ðaj	j�m�1Þ

a�10þð2=pÞ
�
aj	j � m�1

p > 1
3

�

a�4

�
aj	j � m�1

p < 1
3

�

Sign Positive

Definite

Indefinite

(Depending only on c and d)
Indefinite Indefinite

These terms to not vanish upon spatial averaging.
Note that we have expressed the time dependence in

terms of the dependence on the scale factor aðtÞ. At this
stage, we only need to focus on the exponent of the power-
law scaling. The more negative the power is, the more
rapidly the term grows in a contracting phase (since aðtÞ
is decreasing with time).

As mentioned earlier, the conditions for a bounce to
occur in four space-time dimensional classical Einstein
gravity with flat spatial sections is that the total energy
density reaches zero during the contracting phase. Thus,
there needs to be a negative definite term which starts out
small but grows faster than the positive definite terms due
to the regular scalar field and regular radiation. In the
absence of radiation and scalar field inhomogeneities, it

is the contribution to the energy density of the ghost field
�2 which plays this role.
From the table we see that there are three kinds of terms:

positive definite, negative definite and indefinite ones. The
first set contains the kinetic and potential terms of
the normal scalar as well as the free energy density of
the gauge field, the second set is made up of the kinetic and
potential terms of the ghost scalar, while the third set
contains terms which arise due to the coupling terms
between scalars or between scalars and gauge fields.
Looking first at the terms which are independent of

the coupling term between the fields, we see from the first
line of the ‘‘Behavior’’ set of lines in the third table that,
indeed, in the presence of radiation the energy density in
radiation grows faster than that in the two scalar fields, thus
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preventing a bounce. In the presence of coupling between
the fields, however, there are terms which scale with a
larger negative power of aðtÞ. The signs of some of them,
however, depend on the initial phases for the linear fields

�, �ð1Þ
1 and �ð1Þ

2 .

Note that the signs of the scalar coupling terms are
determined by the evolution of each field and thus are
hard to be identified in a general analysis. The same is
true for the gauge-coupling terms (the last two in the third
table). However, the coupling terms between the scalar
fields and the gauge field (the third to last in the third table)
can be made negative/positive definite easily by setting
the signs of the coefficients c and d to be both positive/
negative.

It is reasonable to assume that the contracting phase
begins with the regular scalar field dominating the energy
density, and that the contribution of the Lee-Wick scalar is
much smaller. For single Fourier mode initial conditions
of the radiation field, this can be achieved with the appro-
priate choice of the initial phase (see Example 1 in the
following section containing our numerical results).
However, for multiple initial radiation Fourier modes ex-
cited any initial phase difference between the modes will
produce a contribution with the wrong sign and will thus
prevent a bounce (see Example 3 in the following section).
In the presence of an infinite set of modes, the phase
correlations required to obtain a bounce thus appear to
have negligible measure in initial condition space. Thus,
even in the presence of coupling between scalar fields and
radiation, the Lee-Wick bounce is unstable.

The bounce, if it exists, will happen at a time which can
be chosen to be t ¼ 0. Its duration (the time interval lasting
from the time the Hubble radius stops decreasing in the
contracting phase until when it starts expanding in the post-
bounce phase) will be denoted by �t. Since the various
components of the energy density scale with different
powers of aðtÞ, it is clear that the duration of the bounce
will be shorter or equal to the Hubble radius H�1

max (which
gives the time scale on which the ratios of energy densities
in different components change) at the beginning of the
bounce phase. For the background bounce model, we have
Hmax �m.

There are two kinds of bounces according to the duration
of the bounce phase (i) If the period �t ’ m�1, the bounce
will go from the time

tB� � � ð�tÞ
2

�� 1

2m
(77)

to the time

tBþ � ð�tÞ
2

� 1

2m
(78)

with a low speed. We call this a ‘‘slow bounce.’’ In this
case, the Universe will enter the bounce period at the
critical time tc �m, and only the aj	j � m�1 approxi-

mate solutions of the previous tables will be applicable and
not ones for the interval aj	j � m�1. (ii) If the period
�t � m�1, the bounce will happen in a very short time
with very fast speed. This can be called the ‘‘fast bounce.’’
In this case, the Universe evolves from the far past
(� ti with jtij � 1) to t ¼ 0, passing through the point
tc �m, then entering into the region jtj & m before finally
reaching the bounce point. In this case, both of the two
approximate solutions of the field evolution will be
applied.
Let us now consider the necessary conditions for a

bounce (as we have indicated above and will see from
the numerical analysis, these conditions are not suffi-
cient—in addition to the conditions which follow, appro-
priate correlations in the initial phases are required). We
start in the region of time aj	j � m�1. We study the
conditions required to have the terms that might give a
bounce grow relative to the other terms during this phase. If
the conditions are not satisfied, or the bounce does not
happen even if the conditions are satisfied, then a bounce
may still occure in the aj	j � m�1 region. The conditions
for the terms in the energy which could compensate the
positive radiation contribution to become dominant are
then studied. If these conditions are not satisfied, either,
then a bounce is impossible.
A necessary condition for a bounce to be possible re-

quires the growth rate of one of the indefinite sign terms in
the third table above exceed all that of all of the positive
definite terms. In the aj	j � m�1 region, this requires
8� 1=p > 5, which equivalently constrains the equation
of state parameter w to be in the range w< 1. If this
condition is satisfied in this region, then a slow bounce
may happen depending on the choice of the initial phases.
If the condition is not satisfied in the aj	j � m�1

region, the Universe may evolve into the aj	j � m�1

region, in which the evolution of the fields are different,
and new constraints on p and w will arise if a bounce is to
be possible. Following the above logic, we find that the
conditions under which a bounce might happen are much
looser, namely w>�7=6.
To summarize this section: we have identified necessary

conditions for a bounce to occur. Whether one actually
does occur even if the conditions are satisfied depends on
the initial phases of the fields. This must be studied nu-
merically. In the following section we will give one ex-
ample of specially chosen phases for which a bounce is
possible. However, when we look at a more general choice
of phases, the bounce will not occur.

VI. NUMERICAL RESULTS

In order to support the analysis in the last section, we
performed numerical calculations. Such numerical work is
necessary because our analytical analysis is only approxi-
mate. In particular, we worked in perturbation theory up to
order second order in �. In addition, even in cases where
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our analytical analysis would indicate the possibility of a
bounce, the perturbative analysis will break down near the
bounce point, and there is no assurance that the trends seen
in the perturbative analysis will persist.

We have numerically solved the full nonlinear equations
of motion for the matter fields in the presence of a homo-
geneous expanding background cosmology. The homoge-
neous cosmology is obtained numerically by solving the
first Friedmann equation

H2 ¼ 8
G

3
�; (79)

where G is Newton’s gravitational constant (related to the
Planck mass used earlier), and � is the total energy density,
averaged over space.

Figures 1–6 are two groups of numerical results with
different parameters. In both cases we choose the initial
energy density of the gauge fields to be larger than that of
the Lee-Wick scalar, but less than that of the normal scalar.
These initial conditions correspond to the situation we are
interested in, namely, starting in a matter-dominated con-
tracting phase in the presence of some radiation which is
subdominant. Figures 1–3 show an example with parame-
ters c > 0 and d > 0. We choose initial conditions in which
a single Fourier mode fluctuation is excited, and in which

the phases are chosen as indicated in the figure caption. For
these initial phases, we obtain a bounce. In Fig. 1, we see
that the equation of state w begins with a value slightly
larger than 0, and then evolves to some nearly fixed value.
For the case of our initial condition choice, it appears to be
w ’ �0:6, in the region where the bounce is allowed to
happen.
At the bounce point, the equation of state will drop to

�1, while after the bounce, the equation of state will rise
again to w ’ 0:6. Figure 2 is the plot of the scale factor in
this case which shows explicitly the occurrence of the
bounce.
Figure 3 gives a comparison of the energy densities of

some components during the process. Initially, we set the

FIG. 1. The evolution of the equation of state w with respect to
cosmic time t (horizontal axis), in the first simulation, a simu-
lation with only a single Fourier mode excited and phases chosen
as indicated below. We see that w drops to �1, indicating that
there is a bounce. The background fields are plotted in dimen-
sionless units by normalizing by the mass mrec ¼ 10�6mPl while
the time axis is displayed in units of m�1

rec . The mass parameters
m and M were chosen to be m ¼ 5mrec and M ¼ 10mrec. The
initial conditions were chosen to be �i ’ �1:85	 105mrec, _�i ’
7:35	 106m2

rec, �1i ’ 1:015	 105mrec, _�1i ’ 6:39	 105m2
rec,

�2i ’ 2:54	 102mrec, _�2i ’ �4:96	 103m2
rec. The coefficients

c and d are chosen to be c ¼ 10�10M2
rec and d ¼ 10�10M2

rec. The
wave number is k ’ 0:01h Mpc�1.

FIG. 2. The scale factor of the Universe in the same simulation
that leads to the evolution of the equation of state shown in
Fig. 1. From the plot we see that the bounce happens at t ¼ 0.

FIG. 3 (color online). Energy densities of �1, �2 and � in the
system with parameters chosen as in Fig. 1. The curves from top
to bottom are ��1

(black), ��2
(red), �c (dark cyan), and ��

(blue), respectively. The variables are also normalized with the
mass scale mrec ¼ 10�6mPl.
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energy density of the gauge field � to be between the
normal scalar and Lee-Wick scalar. When the evolution
of the Universe enters into a region with nearly constant w,
the gauge-coupling component of energy density �c will
grow very fast. It is negative and thus enables the negative

part of the energy density to catch up with the positive one,
thus allowing the bounce to happen. For the inhomoge-
neous fluctuation, we choose the wave number to be
k ’ 0:01h Mpc�1 which corresponds to a scale which is
observable by CMB and LSS experiments.
Figures 4–6 give the corresponding results in the case

when we choose c > 0 while d < 0 (with all initial con-
ditions identical). This case seems dangerous because the
contribution of the Lee-Wick scalar to the fluctuation terms
could lead to an instability. However, as we have men-
tioned before, since the effects of the Lee-Wick scalar are
less than that of the normal scalar, it is still possible for the
bounce to happen. Figure 4 shows the equation of state of
the system. We can see that the evolution of w is about the
same as that in Fig. 1, since the change of the sign of d does
not alter the result too much. Figure 5 is the behavior of
scale factor in this case, while Fig. 6 gives the comparison
of the energy densities of all components.
A change in the phase of the initial radiation field

velocity will not change the results (if we keep the other
initial conditions fixed). On the other hand, if we flip the
sign of the initial velocity of one of the two scalar fields,
then the sign of the dominant contribution to the energy
density as we approach the bounce will flip and this will
prevent a bounce. If we use initial conditions containing
two excited Fourier modes, then we obtain a bounce only if
the signs of the initial field velocities are both chosen as in
the first run whose results are shown here. Different phases
for the scalar field velocities of the two modes destroys the
possibility of obtaining a bounce.
Figures. 7–9 show the results for the equation of state

parameter w, the Hubble parameter H and the contribution
of the various components to the total � in the case of a
simulation in which two Fourier modes are excited, with
velocities of both scalar fields having opposite signs from

FIG. 5. The scale factor of the Universe driven by the system
with parameters chosen as in Fig. 4. From the plot we see that the
bounce happens at t ¼ 0.

FIG. 4. The evolution of the equation of state w as a function
of cosmic time t (horizontal axis). The behavior that w drops to
�1 indicating that a bounce takes place. The background
fields are plotted in dimensionless units by normalizing by
the mass mrec ¼ 10�6mPl while the time axis is displayed in
units of m�1

rec . The mass parameters m and M were chosen to be
m ¼ 5mrec and M ¼ 10mrec. The initial conditions were chosen
to be �i ’�1:85	105mrec, _�i ’7:35	106m2

rec, �1i’
1:015	105mrec, _�1i’6:39	105m2

rec, �2i’2:54	102mrec,
_�2i’�4:96	103m2

rec. The coefficients c and d are chosen to
be c ¼ 10�10M2

rec and d ¼ �10�10M2
rec. The wave number k ’

0:01h Mpc�1.

FIG. 6 (color online). Energy densities of �1, �2 and � in the
system with parameters chosen as in Fig. 4. The curves from top
to bottom are ��1

(black), ��2
(red), �c (dark cyan), and ��

(blue), respectively. The variables are also normalized with the
mass scale mrec ¼ 10�6mPl.
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those in the previous example. As is obvious, a big crunch
singularity occurs.

VII. CONCLUSIONS AND DISCUSSION

In this paper we analyzed in detail the possibility of
obtaining a cosmological bounce in a model which corre-
sponds to the scalar field sector of the Lee-Wick theory
coupled to relativistic radiation. It is known that the scalar
field sector of the Lee-Wick theory in the absence of other
fields can yield a cosmological bounce [11]. In fact, the
Universe will scale as nonrelativistic matter with hwi ’ 0
both before and after the bounce. Thus, this model is a
possible realization of the ‘‘matter bounce’’ scenario.
However, this background is unstable to the introduction
of radiation since in the contracting phase the growth of
energy density in radiation will exceed that of matter and
will lead to a big crunch singularity As has been shown in
previous work [16], the introduction of a Lee-Wick partner
to radiation does not prevent this instability. In this paper,
we introduced an interaction between the radiation field
and the scalar fields. The interaction could help drain
energy from the radiation field to the Lee-Wick scalar,
and thus could prevent the radiation from growing too
fast to destroy the bounce.
We analyzed the equations describing the evolution of the

threematter fields (regular scalar field, its Lee-Wick partner
and the radiation field) on a cosmological background both
analytically and numerically. Our analytical analysis was
perturbative and made use of the second order using Born
approximation. The expansion parameter is set by the initial
amplitude of the gauge field. We solved the equations of
motion for each field at each order, and obtained their
approximations in different cases. We compared their

FIG. 7. The evolution of the equation of state w as a function
of cosmic time t (horizontal axis). The background fields are
plotted in dimensionless units by normalizing by the mass
mrec ¼ 10�6mPl while the time axis is displayed in units of
m�1

rec . The mass parameters m and M were chosen to be m ¼
5mrec and M ¼ 10mrec. This plot is the evolution of the system
with two Fourier modes combined together. The one is of which
the wave number k ’ 0:01h Mpc�1 with initial conditions �i ’
�1:85	 105mrec, _�i ’ 7:35	 106m2

rec, �1i ’ 1:015	 105mrec,
_�1i ’ 6:39	 105m2

rec, �2i ’ 2:54	 102mrec, _�2i ’ �4:96	
103m2

rec, which if taken alone will give the bounce as has been
shown in the previous example. The other is of which the wave
number k ’ 0:04h Mpc�1 with initial conditions of the same
initial values of the fields but the opposite signs of the scalar field
velocity. From this plot we can see that the combination of the
two Fourier mode will (generally) cause w blow up, thus
preventing the bounce. This means that the bounce requires
special fine-tuning of the initial phases for each Fourier mode.
The coefficients c and d are chosen to be c ¼ 10�10M2

rec and
d ¼ �10�10M2

rec.

FIG. 8. The Hubble constant of the Universe driven by the
system with parameters chosen as in Fig. 7. From the plot we see
that there is a singularity at t ¼ 0.

FIG. 9 (color online). Energy densities of �1, �2 and � in the
system with parameters chosen as in Fig. 7. The curves from top
to bottom are ��1

(black), ��2
(red), �c (dark cyan), and ��

(blue), respectively. The variables are also normalized with the
mass scale mrec ¼ 10�6mPl.
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contributions to the total energy density, and derived neces-
sary conditions for a bounce to happen. To support our
analysis, we also performed numerical calculations.

Specifically, we investigated initial conditions in which
one or two Fourier modes of the radiation field and the
scalar field fluctuations are excited. We found special
initial conditions which indeed lead to a nonsingular
bounce. Changing the sign of the initial scalar field veloc-
ity will destroy the bounce solution. In the presence of two
Fourier modes, we found that a bounce requires identical
initial phases for the two modes. For general initial con-
ditions, we conjecture that the measure of such initial
conditions which lead to a bounce is very small. We thus
find that the addition of coupling terms between the scalar
fields and radiation cannot save the Lee-Wick bounce
background from the instability problem with respect to
the addition of radiation (nor, for that matter, with respect
to scalar field fluctuations). The instability problem with
respect to anisotropic stress will be even worse.

We have studied a particular form of the coupling be-
tween the two scalar fields and radiation. We believe,
however, that our conclusions—namely that the coupling
cannot drain energy sufficiently fast from the radiation
phase to prevent a singularity—will hold for more general
couplings. The reason is that the coupling terms can both
turn radiation energy into scalar field energy and con-
versely turn scalar field energy into radiation. As in the
example studied in this paper, it will require a fine-tuning
of the phases in the initial conditions to prevent the channel
generating radiation to be effective.
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APPENDIX: GREEN’S FUNCTION
DETERMINATION OF uð2Þi

The solution for the second order scalar field correction

uð2Þi can be determined using the Green function method.
The general solution of (75) is the sum of the solution u0ð	Þ
of the homogeneous equation which solves the same initial
conditions as u and the particular solution �uð	Þ which
vanishes at time 	I. The particular solution is given by

�uð	Þ ¼ uað	Þ
Z 	

	I

d	0�ð	0Þubð	0Þsð	0Þ � ubð	Þ

	
Z 	

	I

d	0�ð	0Þuað	0Þsð	0Þ; (A1)

where u1 and u2 are two independent solutions of the
homogeneous equation, �ð	Þ is the Wronskian:

�ð	Þ ¼ ðu0aub � u0buaÞ�1; (A2)

and sð	Þ is the source inhomogeneity.
Recall from the main text that the second order field

correction terms satisfy the equations

uð2Þ001 þ a2m2uð2Þ1 ¼ c
ðk2�2 � �02Þ

a2
uð0Þ1 ;

uð2Þ002 þ a2M2uð2Þ2 ¼ �d
ðk2�2 � �02Þ

a2
uð0Þ2 ;

(A3)

We will demonstrate the analysis for the case of uð2Þ1 . Let
us consider evolution for a short interval of time starting at
some initial time	I. Then, we can neglect the expansion of
the Universe in the equation of motion and take að	Þ ¼
að	IÞ. We are then interested in how the result scales in 	I.
Using this trick, the solutions of the homogeneous equation
can be taken to be

uað	Þ ¼ cosð!m	Þ ubð	Þ ¼ sinð!m	Þ (A4)

and the Wronskian is

�ð	Þ ¼ � 1

!m

where !m ¼
ffiffiffiffiffiffiffiffiffiffiffi
a2m2

p
: (A5)

Using the result for the background � from the main
text, the source term becomes

s�ð	Þ ¼ c
ðk2�2 � �02Þ

a2
uð0Þ1 � a�2k2j	jp=ð2ðp�1ÞÞ

	 cosð2kj	j þ 2��Þ cosðð1� pÞamj	j þ �ð0Þ1 Þ;
(A6)

since �0 � cosðkj	j þ ��Þ.
Combining these results, we obtain

uð2Þ1 ��cosð!m	Þ
Z 	

	I

d	k2

a3ðtÞmj	jp=ð2ðp�1ÞÞ	sinð!m	Þ

	cosð2kj	jþ2��Þcosðð1�pÞamj	jþ�ð0Þ1 Þ

þsinð!m	Þ
Z 	

	I

d	k2

a3ðtÞmj	jp=ð2ðp�1ÞÞ	cosð!m	Þ

	cosð2kj	jþ2��Þsinðð1�pÞamj	jþ�ð0Þ1 Þ; (A7)

uð2Þ2 ��cosð!M	Þ
Z 	

	I

d	k2

a3ðtÞM j	jp=ð2ðp�1ÞÞ	sinð!M	Þ

	cosð2kj	jþ2��Þcosðð1�pÞaMj	jþ�ð0Þ1 Þ

þsinð!M	Þ
Z 	

	I

d	k2

a3ðtÞM j	jp=ð2ðp�1ÞÞ	cosð!M	Þ

	cosð2kj	jþ2��Þsinðð1�pÞaMj	jþ�ð0Þ1 Þ: (A8)
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Note that if we only care about their scalings with respect
to conformal time 	 or scale factor aðtÞ, the above solu-
tions can be reduced to

uð2Þ1;2 / j	jð9p�2Þ=ð2ðp�1ÞÞ / a�ð9=2Þþð1=pÞ; (A9)

and for the case of a matter-dominated era where p ¼ 2=3,
it is straightforward to show that

uð2Þ1;2 / j	j�6 / a�3: (A10)
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