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(Received 24 June 2011; published 5 August 2011)

We covariantize the decoupling limit of massive gravity proposed in [de Rham, G. Gabadadze, and A. J.

Tolley, Phys. Rev. Lett. 106, 231101 (2011).] and study the cosmology of this theory as a proxy, which

embodies key features of the fully nonlinear covariant theory. We first confirm that it exhibits a self-

accelerating solution, similar to what has been found in [C. de Rham, G. Gabadadze, L. Heisenberg, and

D. Pirtskhalava, Phys. Rev. D 83, 103516 (2011).], where the Hubble parameter corresponds to the

graviton mass. For a certain range of parameters fluctuations relative to the self-accelerating background

are stable and form an attractor solution. We also show that a degravitating solution can not be constructed

in this covariantized proxy theory in a meaningful way. As for cosmic structure formation, we find that the

helicity-0 mode of the graviton causes an enhancement relative to �CDM. For consistency we also

compare proxy theories obtained starting from different frames in the decoupling limit and discuss the

possibility of obtaining a nonrepresentative proxy theory by choosing the wrong starting frame.
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I. INTRODUCTION

Observations of the CMB, supernovae, lensing and
baryon acoustic oscillations have led to the cosmological
standard model which requires an accelerated expansion of
the late Universe, driven by dark energy but despite many
years of research its origin has not yet been identified.
There are two major explanations for the origin and prop-
erties of dark energy.

The first solution consists of introducing a cosmological
constant � with a constant energy density causing an
effective repulsive force between cosmological objects at
large distances. From the particle physics perspective the
cosmological constant could correspond to the vacuum
energy density. The theoretical expectations for the vacuum
energy density caused by fluctuating quantum fields, how-
ever, exceeds the observational bounds on � by up to 120
orders of magnitude. This discrepancy remains for almost a
century one of the most challenging puzzles in physics [1].

Alternatively, the acceleration of the Universe can be
explained by introducing new dynamical degrees of free-
dom, either by invoking new fluids T�� with negative pres-

sure or by changing the geometrical part of Einstein’s
equations. In particular, weakening gravity on cosmological
scales could not only tackle the cosmological constant prob-
lem, but would also come hand in hand with new degrees of
freedomwhichmight be responsible for a late-time speed-up
of the Hubble expansion. Such scenarios could arise in
massive gravity or in higher-dimensional frameworks.

In the higher-dimensional picture, the Dvali-Gabadadze-
Porrati (DGP) model is one of the important large-scale
modified theories of gravity [2]. In this braneworld model

our Universe is confined to a three-brane embedded in a
five-dimensional bulk. On small scales, four-dimensional
gravity is recovered due to an intrinsic Einstein Hilbert
term sourced by the brane curvature, whereas on larger,
cosmological scales gravity is systematically weaker as the
graviton acquires a soft mass m which limits its effective
range. Being a fundamentally higher-dimensional theory,
the effective four-dimensional graviton on the brane carries
5 degrees of freedom, namely, the usual helicity-2 modes,
two helicity-1 modes and one helicity-0 mode. Whilst the
helicity-1 mods typically decouple, the helicity-0 one can
mediate an extra fifth force. In the limit m! 0, one
recovers general relativity (GR) through the Vainshtein
mechanism: The basic idea is to decouple the additional
modes from the gravitational dynamics via nonlinear in-
teractions of the helicity-0 mode of the graviton [3]. As a
result, in the vicinity of matter, the nonlinear interaction for
the helicity-0 mode become large and hence suppresses its
coupling to matter. This decoupling of the nonlinear
helicity-0 mode is manifest in the limit where M4,

M5 ! 1 and m! 0 while the strong coupling scale � ¼
ðMPlm

2Þ1=3 is kept fixed. This limit enables a linear treat-
ment of the usual helicity-2 mode of gravity while the
helicity-0 mode � is described nonlinearly, which is the
so-called decoupling limit.
One of the successes of the DGP model is the existence

of a self-accelerating solution, where the acceleration
of the Universe is sourced by the graviton’s own degrees
of freedom (more precisely its helicity-0 mode).
Unfortunately that branch of solution seems to be plagued
by ghostlike instabilities [4–6], in the DGP model, but this
issue could be avoided in more sophisticated setups, for
instance including Gauss-Bonnet terms in the bulk [7].
More recently, it has been shown that the decoupling

limit of DGP could be extended to more general Galilean
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invariant interactions [8]. This Galileon model relies
strongly on the symmetry of the helicity-0 mode �:
Invariance under internal Galilean and shift transforma-
tions, which in induced gravity braneworld models can be
regarded as residuals of the 5-dimensional Poincaré invari-
ance. These symmetries and the postulate of ghost-absence
restrict the construction of the effective � Lagrangian.
There exist only five derivative interactions which fulfill
these conditions. From the 5-dimensional point of view
these Galilean invariant interactions are consequences of
Lovelock invariants in the bulk of generalized braneworld
models [9]. Since their inception there has been a flurry of
investigations related to self-accelerating de Sitter solu-
tions without ghosts [8,10], Galileon cosmology and its
observations [11,12], inflation [13–16], lensing [17], super-
luminalities arising in spherically symmetric solutions
around compact sources [18], K-mouflage [19], kinetic
gravity braiding [20], etc. Furthermore, there has been
some effort in generalizing the Galileon to a nonflat back-
ground. The first attempt was then to covariantize directly
the decoupling limit and to study its resulting cosmology
[11]. In particular it was shown in [21] that the naive
covariantization would yield ghostlike terms at the level
of equation of motion but a given unique nonminimal
coupling between � and the curvature can remove these
terms resulting in second order of equations of motion [21],
which are also consistent with a higher-dimensional con-
struction [9]. In this paper, wewill pursue the same strategy
when constructing our proxy theory. The outcome of this
kind of covariantization method was explored further in
[22]. While this covariantization is ghost-free, the Galileon
symmetry is broken explicitly in curved backgrounds.
Only recently there has been a successful generalization
to the (Anti-) de Sitter background and ultimately to maxi-
mally symmetric backgrounds where it has been discov-
ered that the de Sitter Galileon interactions acquire
additional, potential-like terms being functions of � and
mixtures of � and gradients of �, all fulfilling a general-
ized Galileon symmetry [23].

There exists a parallel to theories centered on a massive
graviton: Galileon-type interaction terms naturally arise in
gravitational theories using a massive spin-2 particle as an
exchange particle, which has, in addition, been constructed
to be ghost-free be it in three dimensions [24] or for an
generalized Fierz-Pauli action in four dimensions [25,26].1

Not only is the existence of a graviton mass a fundamental
question from a theoretical perspective, it could also have
important consequences both in cosmology and in solar
system physics [31,32]. Although solar system observa-
tions have confirmed GR to high accuracy and placed
bounds on the graviton mass to be smaller than a few

�10�32 eV, even such a small mass would become rele-
vant at the Hubble scale which corresponds to the graviton
Compton wavelength. In particular, it has been success-
fully shown that this massive gravity theory exhibits a
stable self-accelerated solution in the decoupling limit
since the scalar mode can generate a constant negative
pressure density. In the decoupling limit, the expansion
history of the Universe in this self-accelerating branch was
found to be indistinguishable from �CDM [33].
While the self-accelerating solutions in the above mod-

els yield viable expansion histories including late-time
acceleration, they do not address the cosmological constant
problem, i.e., the giant mismatch between the theoretically
computed high energy-density of the vacuum and the low
observed value. A possible answer comes from the idea of
degravitation, which asserts that the energy density could
be as large as the theoretically expected value, but would
not bear a large effect on the geometry. Technically, gravity
is less strong on large scales (IR-limit) and could act as a
high-pass filter suppressing the gravitational effect of a
potentially large vacuum energy. Since such modifications
of gravity in the IR naturally arise in models of massive
gravity, they logically provide a possible mechanism to
degravitate the vacuum energy density [34–36], which was
observed in bi-Galileon models [37] as well as in the
decoupling limit of massive gravity [33]. Analogously,
the DGP braneworld model can be extended to higher
dimensions to tackle the cosmological constant problem
as well [36,38,39].
In this paper, we focus on the covariantization of a

ghostless extension of Fierz-Pauli massive gravity recently
proposed in [26] and show that this proxy model allows for
a stable self-accelerating solution. Hereby, we have per-
formed the covariantization in the Jordan as well as in the
Einstein frame. We discuss the differences between the two
approaches and the consequences of choosing the wrong
starting frame. In the well-defined proxy theory we are able
to tackle the puzzle about the self-acceleration of the
Universe but not the one about the cosmological constant
problem. Furthermore, we study the perturbations around
the self-accelerating background and provide the expres-
sion for the modified evolution equation for these density
perturbations. As expected, the � field enhances the gravi-
tational clustering resulting in a rapid growth of structures.
This result is quite different from the one we had obtained
in [33], where the self-accelerating solution was indistin-
guishable from a�CDM, but we emphasize that the theory
used in this paper, is a proxy model distinct from massive
gravity. At early times, the enhancement of clustering is
restrained since the Galileon self-interactions are the domi-
nant ones suppressing their energy density relative to that
of matter or radiation. Once the matter density has dropped
sufficiently, the Galileon become an important contribution
to the dark sector of the Universe driving cosmic
expansion.

1Such a theory was also constructed using auxiliary extra
dimensions [27,28]. While in its most fundamental form, a ghost
appears at quartic order in the decoupling limit [29], it can also
be cured order by order [30].
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The paper is organized as follows:We start in Sec. II with
a summary of the nonlinear theory of massive gravity [26]
which we use for constructing our proxy theory, where we
discuss the successful implementation of ghost-free mas-
sive gravity in the decoupling limit. We then move to our
proxy theory in Sec. III where we first give some motiva-
tions on why we use a proxy theory rather than the exact
nonlinear theory.We thenwork out the consequences of this
covariantization for cosmology and specifically for late-
time acceleration in Sec. IV where we study also the stabil-
ity conditions and the reason why a degravitating solution
can not be constructed in our covariantized theory. We then
move ontomore general cosmology in Sec. Vand follow the
helicity-0 mode contribution to the Universe throughout its
evolution, before quickly presenting the consequences for
structure formation in Sec. VI.

II. MASSIVE GRAVITYAND ITS
DECOUPLING LIMIT

We use the same notation as [8], with ð@�Þ2 ¼
g��@��@��, ��� ¼ D�D�� and �2

�� ¼ g��������

where the covariant derivative is taken w.r.t. g�� and

square brackets ½. . .� represent the trace of a tensor ½�2� ¼
����

�� and ½��2 ¼ �
�
���

�.

Massive Gravity

The first theory of massive gravity was proposed by Fierz
and Pauli in 1939 [40], but was shown to be unstable by
Boulware-Deser [41], due to the nonpropagation of the
Hamiltonian constraint at the nonlinear level. This insta-
bility can also be seen in the Stückelberg language [42]
where in the decoupling limit, the helicity-0 mode typically
has equations of motion with more than two derivatives,
and hence does not possess a well defined Cauchy surface.
However it was shown in [25,26] that the graviton potential
could be built in such way as to remove any higher deriva-
tive term in the equations of motion, and obtain a Galileon-
type of action for the additional helicity-0 mode. To review
this, let us start with a graviton of mass m described by

L ¼ M2
Pl

2

ffiffiffiffiffiffiffi�gp �
R�m2

4
Uðg;HÞ

�
(1)

with the potential U, where the tensor H�� is constructed

in terms of the metric g�� and the four Stückelberg fields

�a byH�� ¼ g�� � �ab@��
a@��

b. We can then split the

Stückelberg fields into helicity-1 and -0 contributions, but
the helicity-1 mode decouples in the decoupling limit and
can be consistently set to zero. We therefore focus on the
helicity-0 mode � and write �a ¼ ðxa � �a�@��Þ such
that H�� ¼ h�� þ 2��� � ���������. Defining the

quantity K�
� ðg;HÞ ¼ ��

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��
� �H�

�

p
the most generic

potential that bears no ghosts in the decoupling limit is

U ðg;HÞ ¼ �4ðU2 þ �3U3 þ �4U4Þ (2)

where �3;4 are two free parameters and

U 2 ¼ ½K�2 � ½K2� (3)

U 3 ¼ ½K�3 � 3½K�½K2� þ 2½K3� (4)

U4¼½K�4�6½K2�½K�2þ8½K3�½K�þ3½K2�2�6½K4�:
(5)

Notice that U4 can be expressed in terms of U2;3 and the

tadpole U1 ¼ ½K� [43].
It has then been shown that ghostlike pathologies in this

theory of massive gravity theory disappear to all orders in
the decoupling limit and at least up to quartic order beyond
the decoupling limit, as well as completely nonlinearly in
some specific cases. While this theory is completely cova-
riant, studying the cosmology as well as other nontrivial
curved geometries can be extremely complicated. Instead,
wewill here focus on its version in the decoupling limit and
covariantize the theory directly from this limit. We empha-
size that the resulting proxy theory will be distinct from the
theory of massive gravity presented above, but presents
nevertheless some interesting features for cosmology.
In the decoupling limit, taking the scales MPl ! 1 and

m! 0, while keeping the strong coupling scale �3 ¼
MPlm

2 fixed, the above Lagrangian (1) reduces to the
more compact expression

L ¼ � 1

2
h��E��

��h�� þ h��Xð1Þ�� þ a2
�3

h��Xð2Þ��

þ a3
�6

h��Xð3Þ�� þ 1

2MPl

h��T�� (6)

where h�� stands for the helicity-2 mode canonically

normalized, E��
�� is the Lichnerowicz operator, the coeffi-

cients a2;3 are related to the free parameters�3;4 and X
ð1;2;3Þ
��

denote the interactions with the helicity-0 mode [26]

Xð1Þ�� ¼ h�g�� ���� (7)

Xð2Þ�� ¼ �2
�� �h���� � 1

2
ð½�2� � ½��2Þg�� (8)

Xð3Þ�� ¼ 6�3
�� � 6½���2

�� þ 3ð½��2 � ½�2�Þ���

� g��ð½��3 � 3½�2�½�� þ 2½�3�Þ: (9)

It is worth mentioning that these interaction terms are all
transverse and at most second order in time derivatives to
ensure the absence of ghost. Being ghost-free, these inter-
actions are closely related to the Galileon interactions and
fulfill the same internal symmetry. In the next sectionwewill

covariantize these interaction terms h��Xð1;2;3Þ�� and discuss
their physical properties. In the case of external sources there
is a coupling between the metric h�� and the stress-energy

tensor viah��T
�� but there is not such a direct couplingwith
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the field �. Nevertheless, if one diagonalizes the first inter-

action term h��Xð1Þ�� by a change of variables of the form
h�� ¼ �h�� þ ����, then the coupling between � and ex-

ternal sources will become transparent, �T.

III. MASSIVE GRAVITY: A PROXY THEORY

Instead of studying the cosmology in the exact nonlinear
covariantized theory (1) which can be extremely hard, we
use the alternative approach of covariantizing the
Lagrangian in the decoupling limit, and use the resulting
theory as a proxy.

Covariantization

We claim that the covariantized version of the above
Lagrangian (6) is simply given by

S¼
Z ffiffiffiffiffiffiffi�gp ðM2

PlRþL�ð�;g��ÞþLmatterðc ;g��ÞÞ; (10)

where Lmatter is the Lagrangian for the matter fields c
living on the geometry, the Lagrangian for � is [32]

L � ¼ MPl

�
��R� a2

�3
@��@��G

��

� a3
�6

@��@�����L
����

�
: (11)

and the tensor L���� stands for the dual Riemann tensor

L���� ¼ 2R���� þ 2ðR��g�� þ R��g�� � R��g��

� R��g��Þ þ Rðg��g�� � g��g��Þ: (12)

This form of tensor structure has been first discussed by
Horndeski [44] in the context of the most general scalar-
tensor theory, and more recently in [45–47]. However we
point out here that these interactions come as a direct
outcome of massive gravity. We can show explicitly the
following correspondences,

h��Xð1Þ�� !� �R (13)

h��Xð2Þ�� !� @��@��G
�� (14)

h��Xð3Þ�� !� @��@�����L
����: (15)

The Einstein equation is given by

G�� ¼ MPlT
�
�� þ Tmatter

�� (16)

with

T�
�� ¼ T�ð1Þ

�� � a2
�3

T�ð2Þ
�� � a3

�6
T�ð3Þ
�� (17)

and the structure of the Einstein and Riemann dual tensor
ensure that � enters at most with two derivatives in the
stress-energy tensor,

T�ð1Þ
�� ¼ Xð1Þ�� þ �G��

T�ð2Þ
�� ¼ Xð2Þ�� þ 1

2
L����@

��@��þ 1

2
G��ð@�Þ2

T�ð3Þ
�� ¼ Xð3Þ�� þ 3

2
L�����

��ð@�Þ2
(18)

where XðiÞ are defined in (7)–(9). Furthermore, the fact that
G00, G0i, L0i0j and L0ikj have at most one time-derivative
guarantees the propagation of constraints.
Since we are not in the Einstein frame, these stress-

energy tensor are only transverse on shell, and satisfy the
relation, D�T

�
� ¼ @��E� where E� is the equation of

motion with respect to �. Since both the Einstein tensor
and the Riemann dual tensor are transverse, this equation
of motion is also at most second order in derivative,

E� ¼ �L�

��

¼ �R� 2a2
�3

G�����

� 2a3
�6

L����ð2������ þ R�
���@��@��Þ

¼ 0; (19)

where we have used the fact that

D�D�D��L
����¼1

2
R�
���@��L

����¼�1

8
@��LGB

(20)

withLGB ¼ R2 þ R2
���� � 4R2

��. In the rest of this paper,

we study the resulting cosmology in this proxy theory,
starting with the existence of self-accelerating solutions.

IV. DE SITTER SOLUTIONS

In what follows, we focus on the cosmology of the
covariantized theory (10) and (11), and focus for that on
a FRW background with scale factor aðtÞ and Hubble
parameter H. The resulting effective energy density and
pressure for the field � are then

	� ¼ MPl

�
�6H _�� 6H2�þ 9a2

�3
H2 _�2 þ 30a3

�6
H3 _�3

�

(21)

P� ¼ 6MPl

�
6a3
�6

H _�2

�
_�ð _H þH2Þ þ 3

2
H €�

�

þ a2
2�3

_�ð _�ð3H2 þ 2 _HÞ þ 4H €�Þ

� ð�ð3H2 þ 2 _HÞ þ 2H _�þ €�Þ
�
;

(22)

and the equation of motion for � (19) in the FRW space-
time is equivalent to
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6a2
�3
ð3H3 _�þ 2H _H _�þH2 €�Þ

þ 18a3
�6
ð3H2 _H _�2 þ 3H4 _�2 þ 2H3 _� €�Þ ¼ R: (23)

Similarly as in [11], this expression can be rewritten more
compactly

€
þ 3H _
� R ¼ 0 (24)

if we define _
 as

_
 ¼ H2

�
6a2
�3

_�þ 18a3
�6

_�2H

�
: (25)

A. Self-accelerating solution

Now,wewould like to study the self-acceleration solution
with H ¼ const and _H ¼ 0. For the � field we make the

ansatz _� ¼ q �3

H . Furthermore, we assume that we are in a

regime where H�� _� so that we can neglect terms pro-
portional to� and consider only the terms including _� or €�.
Thus, the Friedmann and field equations can be recast in

H2 ¼ m2

3
ð�6qþ 9a2q

2 þ 30a3q
3Þ (26)

H2ð18a2qþ 54a3q
2 � 12Þ ¼ 0: (27)

Assuming H � 0, the field equation then imposes

q ¼ �a2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ 8a3

q
6a3

(28)

while the FriedmannEq. (26) sets the Hubble constant of the
self-accelerated solution. Similar to what has been found in
[33] our proxy theory admits a self-accelerated solution,
with the Hubble parameter set by the graviton mass. For
the stability condition of this self-accelerating solution the
first constraint we have is to demand H > 0. The other
constrain comes from the stability condition for perturba-
tions on the background which we discuss in the following
subsection.

B. Stability conditions

In the last subsection we have shown explicitly that our
proxy theory exhibits a self-accelerating solution with
H2 � m2. Now, we would like to study whether the per-
turbations on this background are stable and what the
constraints are. For this purpose, consider perturbations
on the background solution of the following form

� ¼ �0ðtÞ þ ��ðt; x; y; zÞ: (29)

The second order action for the perturbations is

L ¼ � a2
�3

@���@���G
�� � a3

�6
@���@����

ð0Þ
��L

����

� 2a3
�6

@��0@���D�D���L
����; (30)

which can be written in the form

L ¼ Ktt

�
� _�2 � c2s

a2
ðr��Þ2

�
(31)

where

Ktt ¼ � 3MPla
3H2

�3

�
a2 þ 6a3H

�3
_�

�
(32)

and

c2s ¼ 1

3

�
2þ a2�

3

a2�
3 þ 6a3H _�

�
: (33)

The condition for the stability is then given by Ktt > 0,
c2s > 0 and H2 > 0, which are fulfilled if

a2 < 0 and a3 >� 1

8
a22: (34)

To compare this result with the condition obtained in the
decoupling limit [33], we first mention that ahere2 ¼ 2athere2

and ahere3 ¼ �athere3 . In terms of the parameters used there,

we need to compare our conditions ahere2 < 0, ahere3 >

� 1
8 ðahere2 Þ2 to the conditions 2athere2 < 0 and 2ðathere2 Þ2 >

athere3 > 8
3 ðathere2 Þ2. We see that our theory is less constrain-

ing but is still within the parameter space derived in [33]. It
is not surprising that the stability condition in the decou-
pling limit and in our covariantized theory do not coincide
totally as we have explicitly broken the symmetry when
getting the proxy and in particular, our solution does now
spontaneously break Lorentz invariance, which was not the
case in the decoupling limit [33].
It is also worth pointing out that the self-accelerating

solution by itself does not propagate any superluminal
mode, since 2=3< c2s < 1.
We emphasize as well that the constant _� solution is a

dynamical attractor. For this we just consider time-
dependent perturbations �ðtÞ ¼ �0ðtÞ þ ��ðtÞ which is a
special case of (29) fulfilling the same stability conditions.
The equation of motion for perturbations simplifies to

@tða3� _�Þ ¼ 0 (35)

The solution for � _� is given by

� _�ðtÞ � a�3: (36)

Thus, these perturbations ��ðtÞ redshift away exponen-
tially compared to the _� ¼ const self-accelerating solution.
Therefore, the self-accelerating solution is an attractor.

C. Degravitation

More interestingly, one can wonder whether degravita-
tion can be exhibited in this class of solutions. If one takes
� ¼ �ðtÞ and H ¼ 0, it is straightforward to see that we
obtain 	� ¼ 0, so the field has absolutely no effect and
cannot help the background to degravitate. The situation is
however different when setting � ¼ �0x�x

�, which was
possible in the decoupling limit. In this proxy theory, such
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a behavior will involve explicit space dependences in
the equations of motion which should be dealt with
specifically.

Interestingly, the interactions considered here are pre-
cisely of the same form as that studied recently in [46].
There as well, in the absence of spatial curvature � ¼ 0,
the contribution from the scalar field vanishes if H ¼ 0.
Comparing with [46], we can hence wonder whether the
addition of spatial curvature � � 0 in our proxy theory
could help achieving degravitation, but relying strongly on
spatial curvature brings concerns over instabilities which
are beyond the scope of this study.

V. COSMOLOGY

In the following we would like to discuss in more detail
the interplay of all the constituents of the universe. We
assume that matter, radiation and the scalar field � con-
tribute to the total energy density of the universe.

H2 ¼ 8�G

3
ð	� þ 	rad þ 	matÞ (37)

Consider the scalar field � as a perfect fluid with the
effective energy density and pressure given by (21) and
(22). Thus, the equation of state parameter of this new field
would be

!� ¼ �12a3H
3 _�3 þ 2�3 _Hð2�3�� a2 _�2Þ þ 2�6 €�þ 4H _�ð�6 � 3a3 _H _�2 � a2�

3 €�Þ
Hð2�6 _�� 10a3H

2 _�3 þHð2�6�� 3a2�
3 _�2ÞÞ

þ 3H2ð2�6�� _�2ða2�3 þ 6a3 €�ÞÞ
Hð2�6 _�� 10a3H

2 _�3 þHð2�6�� 3a2�
3 _�2ÞÞ : (38)

At this point one should mention that the energy density for
the �-field is not conserved but rather given by D�T

�
� ¼

@��E� (where E� is the equation of motion for �), which
is not surprising since � is nonminimally coupled to grav-
ity in the Jordan frame. Therefore, we can have !� � 1.

In the following we will first assume that at early times
in the evolution history of the Universe we can neglect the
extra density coming from the helicity-0 	�. We will then
check this assumption by plugging the solution for H back
in the equation of motion for �. If we assume that at early
times the radiation density dominates, we simply have

H2 ¼ 8�G

3
	rad
0 a�4 a� t1=2 ! ¼ 1=3 (39)

During the radiation era, the dominant terms in the equa-

tion of motion for � are then 54a3
�6 H2 _H _�2 þ 54a3

�6 H4 _�2 þ
36a3
�6 H3 _� €� ¼ 0which can be solved assuming the previous

expression for H (39)

�rad � t1:75 yielding 	�
rad �MPlt

�1=4: (40)

At later times when the matter-dominated epoch starts we
have

H2 ¼ 8�G

3
	mat
0 a�3 a� t2=3 ! ¼ 0: (41)

Now the dominant terms in the equation of motion for �

are 18a2
�3 H3 _�þ 12a2

�3 H _H _�þ 6a2
�3 H

2 €�� 12H2 � 6 _H ¼ 0.

We get for � this time

�mat � c2 � tþ t2�3

4a2

yielding 	�
mat ¼ c2MPlt

�1 þ 3MPlð�14a22 þ 5a3Þ�3

32a32
:

(42)

Summarizing, during radiation domination the effective

energy density for the �-field goes like 	�
rad � t�1=4 while

during matter domination as 	�
mat � t�1 and approaches a

constant at late time.As shown inFig. 1,	� can be neglected
at early times where 	�

mat� 	mat and 	�
rad� 	rad.

VI. STRUCTURE FORMATION

We end the cosmological analysis by looking at the
evolution of matter density perturbations. The density
perturbations follow the evolution
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FIG. 1 (color online). Fluid densities 	rad � a�4, 	mat � a�3
and 	� during the epochs of radiation, matter and �-domination
normalised to today 	�. During the radiation domination the
energy density for � goes as 	�

rad � a�1=2 and during matter

dominations as 	�
mat � a�3=2 and is constant for later times

	�
� ¼ const.
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€�m þ 2H _�m ¼ r
2c

a2
(43)

where c is the Newtonian potential. The effects of � are
all encoded in its contribution to the Poisson equation.
Consider perturbations of � around its cosmological back-
ground solution �ðx; tÞ ¼ �0ðtÞ þ
ðx; tÞ. 
 gives a con-
tribution to the Newtonian potential of the form
c ¼ 
=MPl. In the Newtonian approximation we have

j _
j � jr
j. The equation of motion for the scalar field
in first order in 
 is

�2a2
�3

G��D�D�
�2a3
�3

L����ð4���
0 D�D�


þ2R����@��0@
�
Þ¼�R; (44)

which is equivalent to (neglecting _
)

�
� 2a2

�3
ð3H2 þ 2 _HÞ þ 16a3

�6
ð2H3 _�0 þ 2 _HH _�0

þH €�0Þ
�r2


a2
¼ �R (45)

and last but not least we need the trace of Einstein Eqs. (16)
–(18). Perturbing the trace to first order, we get

�MPl�R¼
�
3�2

a2
�3
ð2H _�0þ €�0Þ�3a3

�6
ð2 _H _�2

0þ5H2 _�2
0

þ4H €�0 _�0Þ
�r2


a2
þ �T

MPl

: (46)

To reach that point, we have neglected the perturbations of
the curvature of the form �R�0 as they are negligible
compared to MPl�R since we work in the regime where
�0 � MPl. We have also ignored terms of the form
�Rð@�0Þ2=�3, which could a priori be relevant, but their
inclusion would require solving the full Einstein equation,
which is beyond the scope of this study. As a first approxi-
mation, such terms are hence ignored.

The perturbations for the source is just given by �T ¼
�	m�m for nonrelativistic sources, thus we have

r2


a2
¼ 	m�m

3MPlQ
(47)

where Q stands for

Q � 1� 2a2
�3
ð2H _�0 þ €�0 þMPlð2 _H þ 3H2ÞÞ

� a3
�6

�
5H2 _�2

0 þ 2 _H _p i20 þ 4H €�0 _�0

� 16MPl

3
ð2H3 _�0 þ 2H _H _�0 þH2 €�0Þ

�
: (48)

Finally, the modified evolution equation for density per-
turbations is

€�m þ 2H _�m ¼ 	m�m

M2
Pl

ð1þ 1

3Q
Þ: (49)

Knowing the background configuration it is then relatively
straightforward to derive the effect on structure formation.
We recover the usual result that when the field is screened,
H _� * �3, the extra force coming from the helicity-0 is
negligible and the formation of structure is similar as in
�CDM.

VII. COVARIANTIZATION FROM THE
EINSTEIN FRAME

After having studied the cosmology and the structure
formation of our proxy theory in the Jordan frame, the
natural question is whether we would expect similar results
in a different frame. Instead of covariantizing our
Lagrangian in the Jordan frame, it is on an equal footing
to go to the Einstein frame where the Ricci scalar is not
multiplied by the scalar field � and covariantize the theory
at that stage. Since it is unclear at first sight which frame is
the physical frame we will consider both frames and dis-
cuss their differences. Our starting Lagrangian was

L ¼ � 1

2
h��E��

��h�� þ h��Xð1Þ�� þ a2
�3

h��Xð2Þ��

þ a3
�6

h��Xð3Þ�� þ 1

2MPl

h��T��: (50)

Now, when we do the following change of variables

h�� ¼ �h�� þ ���� (51)

we can diagonalize the first mixed term h��Xð1Þ�� such that
the Lagrangian takes the following form

L ¼ � 1

2
�h��E��

��
�h�� þ 3

2
�h�þ a2

�3
�h��Xð2Þ��

� 3

2

a2
�3

h�ð@�Þ2 þ a3
�6

�h��Xð3Þ�� � 2
a3
�6
ð@�Þ2

	 ð½�2� �h�2Þ þ 1

2MPl

ð �h�� þ ����ÞT��: (52)

Covariantizing this action is straightforward. We use again
the correspondences in and it has been shown explicitly
that the covariant equivalence toh�ð@�Þ2 and�2ð@�Þ2	
ð½�2� �h�2Þ are given by h�ð@�Þ2 and 2ð@�Þ2ðh�2 �
½�2� � 1

4 ð@�Þ2RÞ respectively, which do not yield any

ghostlike instabilities ([9,21]). Thus, the covariantized ac-
tion in the Einstein frame is simply given by
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L ¼ M2
PlRþ

3

2
�h�� a2MPl

�3
@��@��G

��

� 3

2

a2
�3

h�ð@�Þ2 � a3MPl

�6
@��@�����L

����

þ 2
a3
�6
ð@�Þ2ðh�2 � ½�2� � 1

4
ð@�Þ2RÞ

þLmðc ; ð1þ �Þg��Þ: (53)

Similarly as before, the properties of G�� and L����

ensure that their equations of motion lead at most to second
order derivative terms. To find a self-accelerating solution
we set again a pure de Sitter metric, with _� ¼ q�3=H. The
Friedmann and the field equations then take the form

M2
PlH

2¼3MPla2�
3q2þ10MPla3�

3q3�1

2

�6

H2
q2þ3a2

�6

H2
q3

þ15a3
�6

H2
q4�3ð�1þ3qða2þ4a3qÞÞ

þ2MPlða2þ3a3qÞH2

¼0: (54)

When comparing the above Friedmann and the field equa-
tions with the one we had in the Jordan frame (26), we see
significant differences coming from the extra terms which
were not there in the Jordan frame. These terms yield
Friedmann and field equations proportional to q4 and H4

which are more difficult to solve. For fairness, we should
compare both actions in the same frame. We do so by
performing a conformal transformation on the action (11)

~g�� ¼ �2g�� with �2 ¼
�
1� �

MPl

�
: (55)

For simplicity we consider the case for which a3 ¼ 0, so
under this conformal transformation the covariantized ac-
tion (11) becomes

LJ ¼ M2
Pl
~R� 3

2
��4ð~@�Þ2 � a2MPl

�3

�
~@��~@�� ~G��

þ 3

2

��2

MPl

ð~@�Þ2 ~h�þ 5

4

��4

M2
Pl

ð~@�Þ4
�
: (56)

In the limit where �� MPl we have then finally the
following expression

LJ ¼ M2
PlRþ

3

2
�h�� a2MPl

�3
@��@��G

��

� 3

2

a2
�3

h�ð@�Þ2; (57)

which coincides with the theory obtained from the Einstein
frame, (53) with a3 ¼ 0. So within the regime of validity of
our results, our conclusions are independent of the choice
of frame. However beyond this regime the theory originally
constructed from the Jordan frame could violate the null
energy condition from the term proportional to ð@�Þ4.

VIII. DISCUSSION

Common to generic massive gravity models is the pres-
ence of at least one additional helicity-0 degree of freedom
which originates from a spin-2 graviton field. In contrast to
an arbitrary scalar field, its dynamics is not driven by a
potential but rather by specific derivative terms fixed by
symmetries. Such a degree of freedom is experimentally
testable. On solar system and galactic scales gravity is very
well compatible with GR and correctional terms from a
modified gravity model are excluded. On these scales,
however, the effects of massive gravity might be cloaked
by the Vainshtein mechanism, where the helicity-0 mode
interactions become appreciable to freeze out the field
fluctuations. A number of screening mechanisms have
been devised such as the chameleon and symmetron
mechanisms. Contrary to those the success of the
Vainshtein mechanism does not rely on some specific
potential but instead on derivative interactions, which
cause the helicity-0 mode to become decoupled from mat-
ter and light on short distances, which nevertheless could
have observational signatures on larger scales in cosmic
structure formation.
A further benefit of the Vainshtein mechanism would be

a natural solution to the problem that the matter density and
the cosmological constant are of similar magnitudes today.
The cosmological application of the Vainshtein mechanism
works such that at early times, the galileon interactions are
dominated by self-interaction, which suppresses their en-
ergy density relative to that of matter or radiation. If the
matter density has decreased sufficiently by cosmic expan-
sion, the galileon constitutes an important contribution to
the energy density of the universe and drives cosmic
expansion.
Although the precise cosmology of the theory of mas-

sive gravity proposed in [25] has not been derived, most
models of massive gravity give rise to alterations of the
Hubble function similar to DGP-gravity. Experimental
tests of the expansion dynamics of the Universe include
the distance-redshift relation of supernovae, and measure-
ments of the angular diameter distance as a function of
redshift, as in the case of the cosmic microwave back-
ground and the baryon acoustic oscillations. Apart from
these geometrical tests, the time dependence of evolving
cosmic structures can be investigated, and the influence of
the gravitational theory on the geodesics of relativistic
(photons) and nonrelativistic (dark matter) test particles.
The first category includes gravitational lensing and the
Sachs-Wolfe effects, which have been shown to differ from
their GR expectation in some modified gravity theories,
and a similar result can be expected in massive gravity. The
second category includes the homogeneous growth of the
cosmic structure, and the formation of galaxies and clusters
of galaxies by gravitational collapse. Again, massive grav-
ity would influence the time sequence of gravitational
clustering and the evolution of peculiar velocities, as well
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as the number density of collapsed objects. In particular,
massive gravity would enhance gravitational clustering
since they tend to lower the collapse threshold for density
fluctuations in the large-scale structure, leading to a higher
comoving number density of galaxies and clusters of gal-
axies. Naturally, these changes are degenerate with a dif-
ferent choice of cosmological parameters and with
introducing non-Gaussian initial conditions, which would
be very interesting to quantify. Recent discrepancies of
�CDM with observational data on large scales include
the number of very massive clusters, the strong lensing
cross section, anomalous multipole moments of the CMB,
the axis of evil, and large peculiar velocities. It is beyond
the scope of this paper to address these issues using mas-
sive gravity, but we propose how to proceed from con-
structing a massive gravity theory to providing
observationally testable quantities. From our point of
view it is advisable to focus on probes of large scales,
due to difficulties related to nonlinear structure formation
and the influence of baryons on small scales. Natural
questions concern the homogeneous dynamics of the
Universe, the formation of structures and the shape of
geodesics of relativistic and nonrelativistic particles.

Basically, using our proxy theory one should be able to
make predictions concerning these four issues and the
combination of the four should give insight into the nature
of the gravitational sector. In our proxy theory, from the
modified field equation the Hubble function can be derived
easily, which allows the definition of distance measures,
needed in the interpretation of supernova data. Cosmic
structure growth tests the Newtonian limit for slowly-
moving particles and describes the clustering of galaxies
and the growth of structures which are investigated by e.g.
gravitational light deflection. Lensing, in turn, makes use
of the geodesic equation for relativistic particles, and mea-
sures the correlation function of the matter density,
weighted with the lensing efficiency function, which in
turn is derived from distance measures. It would be quite
interesting to study these observational consequences and
constraints of our proxy theory in a future work.
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