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A fundamental assumption in cosmology is that of statistical isotropy—that the Universe, on average,

looks the same in every direction in the sky. Statistical isotropy has recently been tested stringently using

cosmic microwave background data, leading to intriguing results on large angular scales. Here we apply

some of the same techniques used in the cosmic microwave background to the distribution of galaxies on

the sky. Using the multipole vector approach, where each multipole in the harmonic decomposition of

galaxy density field is described by unit vectors and an amplitude, we lay out the basic formalism of how

to reconstruct the multipole vectors and their statistics out of galaxy survey catalogs. We apply the

algorithm to synthetic galaxy maps, and study the sensitivity of the multipole vector reconstruction

accuracy to the density, depth, sky coverage, and pixelization of galaxy catalog maps.
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I. INTRODUCTION

In the standard model of cosmology the primordial
density perturbations in the early Universe are generated
by a Gaussian, statistically isotropic random process.
There are two reasons for this: the cosmological principle
tells us that the Universe is homogeneous and isotropic on
large scales and the standard (single-field, slow-roll) infla-
tionary theory predicts near-perfect Gaussianity and statis-
tical isotropy of primordial fluctuations in the Universe.

It is useful to differentiate the sometimes conflated con-
cepts of statistical isotropy (hereafter SI) and Gaussianity.
Statistical isotropy means that the expectation values of
measurable quantities are invariant under rotations. For
example, the expected two-point correlation function of
the cosmic microwave background (CMB) temperature (or
galaxy overdensity)� in two directions in the sky êi and êj

Cðêi; êjÞ ¼ h�ðêiÞ�ðêjÞi (1)

(where h�i represents the ensemble average) would, under
SI, depend only on the angle � between êi and êj, i.e.,

Cðêi; êjÞ ¼ Cðêi � êjÞ. Gaussianity, on the other hand, re-

fers to the statistical distribution from which the quantity�
is drawn. As a consequence of Gaussianity, all of the
statistical properties of the field are encapsulated in the
two-point correlation function Cðêi � êjÞ; all of the odd

higher-point correlation functions are zero, and the even-
point correlation functions can be related to the two-point
function by Wick’s theorem. In general, a given field can
be Gaussian but not SI, or SI but not Gaussian, or neither.
The standard cosmological theory predicts it to be both

(except to the extent that nonlinear evolution spoils the
Gaussianity).
Much of the information used to construct the current

concordance model has been derived from examination of
the statistical properties of the CMB temperature anisotro-
pies on the sky. Following in the footsteps of the Cosmic
Background Explorer [1,2], experiments such as the
Wilkinson Microwave Anisotropy Probe (WMAP) [3–5]
have succeeded in measuring the temperature anisotropies
to high precision, engendering widespread confidence that
we have arrived at a convincing model, based on standard
inflationary cosmology, in which the perturbations are
presumably Gaussian and statistically isotropic.
However, certain anomalies at low ‘ have been pointed

out and suggest possible deviations from this paradigm.
Over a decade ago, the Cosmic Background Explorer
Differential Microwave Radiometer first reported a lack
of large-angle correlations in the two-point angular-
correlation function, Cð�Þ, of the CMB [6]. This was con-
firmed by theWMAP team in their analysis of their first year
of data [3], and by some of us in theWMAP three-, five- and
seven-year data [7–9], and further confirmed by indepen-
dent analyses [10,11]. The angular two-point function is
approximately zero at scales � > 60� in all wavebands, in
contrast to the theoretical prediction from the standard
inflationary cosmology. Such a result is expected in only
�0:03% of the Gaussian random, isotropic skies based on
the standard inflationary model (and using a statistic sug-
gested in [3]). This vanishing ofCð�Þ is unexpected not only
because of its low likelihood (which admittedly has been
defined a posteriori), but for at least four other reasons.
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First, missing correlations are inferred from cut-sky (i.e.,
masked) maps of the CMB, which makes the results insen-
sitive to assumptions about what lies behind the cut.
Second, what little large-angle correlation does appear in
the full-sky maps is associated with points inside the
masked region, further casting into doubt the full-sky
reconstruction-based results [8]. Third, the vanishing power
is not as clearly seen in multipole space where the quadru-
pole is only moderately low, and it is really a range of low
multipoles that conspire to ‘‘interfere’’ in just such a way to
make up the near-vanishing Cð�Þ [8]. Fourth, the missing
power occurs on the largest observable scales, where a
cosmological origin is arguably most likely.

Moreover, some of us and others found that the two
largest cosmologically interesting modes of the CMB, the
quadrupole and octopole (‘ ¼ 2 and 3), are correlated with
the direction of motion and geometry of the solar system
[12]. (Recall that each multipole ‘ corresponds to scales of
about 180=‘ degrees on the sky). In brief, the quadrupole
and octopole are unusually planar (as first pointed out by
[13]); their plane is perpendicular to the ecliptic plane and
pointed to the cosmic dipole; and the ecliptic plane itself
traces out a nodal line between the big hot and cold spots in
the quadrupole-octopole map. The alignments persist to
smaller scales (higher multipoles of the CMB), where it
has been found that ‘ � 6 multipoles have unusually large
fraction of power in a preferred frame [14]. Even at the first
peak, it has been shown [15] that there is an ecliptically-
associated anomaly—the first peak is significantly under-
powered near the north ecliptic pole. It has also been found
that the northern ecliptic hemisphere has significantly less
power than the southern hemisphere on scales larger than
about 3 degrees (multipoles ‘ & 60) [16–20]. These non-
Gaussianities at large and small scales have been con-
firmed by other analyses [21]. These alignments, being
indicative of a real effect whether it is cosmological or
astrophysical, have caused wide interest, and some of us
followed them up by performing a comprehensive study of
the findings and comparing different statistics, considering
the foreground contamination, and studying the Cosmic
Background Explorer data as well [22]. The most recent
WMAP paper on anomalies [23], while disagreeing with
some of the above findings and agreeing with others, does
not appear to offer convincing explanations of the observed
anomalies. For a brief review of the anomalies, see [24];
for a comprehensive review, see [25].

At this time there is no convincing explanation for
alignments or the missing large-angle correlations found
in the CMB. However, the consequences are clear: if in-
deed the observed ‘ ¼ 2 and 3 CMB fluctuations are not
cosmological, one must reconsider all cosmological results
that rely on low ‘ of the CMB. Even more importantly, a
cosmological origin of the violation of statistical isotropy
would invalidate the basic assumptions used in the
standard analyses to extract cosmological parameters,

requiring our full understanding of the physics behind the
anomalies.
In the past 15 years or so, galaxy surveys have revolu-

tionized our understanding of the Universe. Most recently,
the Sloan Digital Sky Survey (SDSS) and the Two Degree-
Field Survey have measured the locations of about a hun-
dred million galaxies over�10 000 sq. deg. of the sky, and
measured about a million redshifts. The main product of
these massive efforts was precision measurement of the
cosmological parameters, and also the precisemeasurement
of the matter power spectrum. Perhaps surprisingly, how-
ever, except for a few searches for modulations in power in
the large scale structure (LSS) [26,27] and theoretical pre-
dictions for clustering of halos in models that break the SI
[28], there have been few explicit tests of statistical isotropy
using the LSS. Instead, most of the studies have been either
theoretical or applied exclusively to the CMB, and con-
cerned with how the CMB anisotropy would look in infla-
tionary (or other) models that break SI [29–39]. Such
models, where the primordial power spectrum PðkÞ de-
pends on the magnitude and direction k̂ of the wave vector,
may be detectable with WMAP or future CMB experi-
ments, and there has recently been a lot of effort searching
for signatures of broken SI in the CMB [20,23,29,40–43].
Given that a set of robust statistical tools have been devel-
oped for such tests of the CMB, the natural next step would
be to adopt some of the same methods to the study of LSS.
The CMB anomalies found usingWMAP data have only

whetted the appetite of cosmologists to investigate the
aforementioned anomalies further. While the Planck
CMB mission will—like WMAP—surely produce spec-
tacular results revolutionizing our understanding of the
Universe, it is generally expected that Planck will confirm
WMAP’s findings on the largest scales as both experiments
are measuring the same physical phenomenon at scales
where Planck’s better resolution makes no difference.
Observations of large scale fluctuations are subject to
sample variance (sometimes referred to as cosmic vari-
ance): our Universe provides only a relatively small num-
ber of independent samples of largest-scale structures,
limiting the extent to which the CMB alone can shed light
on them. Therefore, it is imperative to extract every last bit
of information provided. In particular, galaxy surveys com-
plement the CMB in providing a picture of the largest
scales with different tracers of fluctuations than the
CMB, emitting light at different wavelengths, and whose
analysis includes different systematic errors than that of the
CMB. Here we propose to stringently test the cosmological
principle using archival data from the upcoming large scale
structure surveys.
This is an excellent time to perform analyses of statis-

tical isotropy on the largest observable scales because full-
sky maps of the LSS, with tracers at multiple wavelengths,
are finally becoming available. In this paper we adapt the
statistical tools used in tests of SI of the CMB to LSS
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measured by galaxy surveys. We investigate how the char-
acteristics of LSS surveys impact the accuracy of the
extracted quantities and present one example of the effi-
cacy of detecting alignments in a specific, purely phenome-
nological, toy model.

The structure of this paper is as follows. In Sec. II, the
relevant cosmological quantities are defined and followed,
in Sec. III, by a brief overview of the statistical tools
available to conduct tests of SI. In Sec. IV we construct a
framework in which the LSS observables are mapped to the
selected statistics. The reconstruction technique used to
estimate these quantities and how the accuracy of the
reconstruction varies with the characteristics of the galaxy
survey are discussed in Sec. V. We then proceed to test how
this accuracy translates into detection of possible viola-
tions of SI in Sec. VI. In Sec. VII we discuss our findings
and future work.

II. PRELIMINARIES

Consider a cosmological dataset which can be charac-
terized by the function fð�;�Þ on the celestial sphere. It
can be decomposed into multipole moments as follows:

fð�;�Þ ¼X
‘

f‘ð�;�Þ ¼
X‘¼1
‘¼0

X‘
m¼�‘

a‘mY‘mð�;�Þ; (2)

where 0 � � � � and 0 � � � 2� and the a‘m are the
multipole coefficients and the complex spherical harmonic
functions are given by

Y‘mð�;�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð‘�mÞ!

4�ð‘þmÞ!

s
P‘mðcos�Þeim�; (3)

where P‘m are the associated Legendre polynomials. If the
cosmological data are indeed produced by a statistically
isotropic and Gaussian process, then the a‘m are realiza-
tions of Gaussian random variables of zero mean, charac-
terized fully by their variances. The added property of
statistical isotropy (SI) further implies that their variances
depend only on ‘ and means that we can write

C‘m‘0m0 � ha‘ma�‘0;m0 i ¼ C‘�‘‘0�mm0 (4)

where C‘ is the expected power in the ‘th multipole. Note
that the theoretically predicted coefficients a‘m and the
power spectrum C‘ correspond to averages over an en-
semble of universes. While we unfortunately have only a
single sample of a‘m for each ‘ and m, corresponding to
values measured in our Universe, the power spectrum C‘

can be estimated with a finite sample variance by averaging
the power in a‘m for each m

~C ‘ � 1

2‘þ 1

X‘
m¼�‘

ja‘mj2: (5)

If SI holds, then ~C‘ is an unbiased estimator of C‘. If
Gaussianity additionally holds, then it is the best estimator,

with cosmic variance 2~C2‘=ð2‘þ 1Þ.

Since the power spectrum can be readily calculated from
theory, we can compare predictions of our cosmological
models to the observationally determined C‘, placing pre-
cise constraints on the parameters.

III. STATISTICAL TOOLS

In this section we consider the various quantities related
to the above which can be used to test the isotropic nature
of cosmological data which is characterized by the func-
tion fð�;�Þ on the sky given in Eq. (2).

A. Multipole coefficients

A caveat that comes with using the power spectrum as a
tool for searches of statistical anisotropies is that it is
sensitive to only specific types of departures from SI. It
is possible for the distribution of power in C‘ throughout
the m-modes to violate SI with no bearing on the C‘

spectrum.
It is therefore important to measure quantities that con-

tain information about Gaussianity and SI such as the
multipole coefficients a‘m. They are another representation

of the information in fð�̂Þ, where �̂ ¼ ð�;�Þ, related by

a‘m ¼
Z

fð�̂ÞY�‘mð�̂Þd�: (6)

If fð�̂Þ is a realization of a Gaussian and isotropic
process, then the equality in Eq. (4) holds and the a‘m
are independent, random variables with Gaussian distribu-
tions and variances that depend only on ‘. This implies that
the distribution of the overall power throughout the a‘m
(i.e., their magnitudes) should be a function of ‘ only and
the distribution of the power in a particular scale (i.e., C‘)
through the m-modes should depend only the selected
coordinate system.
In [44], a statistic was introduced which associates an

axis with each ‘ around which the angular dispersion is
maximized

S‘ ¼ max
n

X
m

m2ja‘mj2: (7)

This statistic finds the frame of reference with its z-axis in
the n̂‘ direction which maximizes the angular dispersion,
with the extent of this preference gauged by the magnitude
of ‘. As mentioned previously, when applied to the
WMAP1 data [3], this statistic indicated that n̂2 and n̂3

were unexpectedly aligned in a direction in which the
power C2 is significantly suppressed. Another such statistic
introduced in [14] is

r‘ ¼ max
mn

�
C‘mP

~m
ja‘ ~mj2

�
; (8)

where C‘0 ¼ ja‘0j2 and C‘m ¼ 2ja‘mj2 for m> 0. Here r‘
is the ratio of power of the ‘th multipole that lies in the m
mode in the direction n. This statistic explicitly returns the
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axis and direction in which the power distribution is most
uneven (i.e., n) and the extent to which it is uneven (i.e.,
magnitude of r‘). When applied to the WMAP1 data, this
statistic returned the same preferred axis as in [44]. These
features of the CMB sky may be suggesting inter-m corre-
lations between the a‘m and a break down of SI.

B. Multipole vectors

While the multipole vector formalism was first intro-
duced by [45] into the analysis of the CMB, its full history
is much longer. More than 100 years ago, Maxwell [46]
pointed out that for any real function f‘ðx; y; zÞ, which
is an eigenfunction of the Laplacian on the unit sphere
with eigenvalue �‘ð‘þ 1Þ, there exist ‘ unit vectors
(v1; v2; . . . v‘) such that

fðx; y; zÞ‘ ¼ rv1 . . .rv‘

1

r
; (9)

where ðx; y; zÞ ¼ ðcos� sin�; sin� sin�; cos�Þ, rv‘ �
v‘ � r is the directional derivative operator, and r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. A multipole can then be represented in

terms of ‘ unit vectors fv‘;i j i ¼ :1 . . . ‘g, termed the mul-

tipole vectors (MVs) and an invariant scalar A‘.
Heuristically, the ‘th multipole of the CMB can be written
as a product of ‘ unit vectors and an overall normalization
so that we can write

f‘ � A‘�
‘
i¼1ðv‘;i � êÞ; (10)

where ê ¼ ðsin� cos�; sin� sin�; cos�Þ is the unit radial
vector. Note that the signs of all the vectors can be ab-

sorbed into the sign of Að‘Þ, so one is free to choose the
hemisphere of each vector. These multipole vectors encode
all the information about the phase relationships of the a‘m.
The MVs can be understood in the context of harmonic
polynomials [47] and have many interesting properties
(e.g., [48]). An efficient algorithm to compute the multi-
pole vectors for low-‘ has been presented in [45] and is
publicly available [49]; other algorithms have been
proposed as well [47,50,51].

Note that multipole vectors are defined in exactly the
same way for the galaxy surveys provided one makes the
obvious identification

�T

T
ðn̂Þ !�n

n
ðn̂Þ; (11)

where n is the number of galaxies (or other tracers of the
LSS) per unit area of the sky.

Figure 1 shows the multipole vectors of our sky, with the
corresponding multipoles ‘ ¼ 2–8 computed from
WMAP’s 3-year Internal Linear Combination map [52].
Multipole vectors still contain the full information about
the map, but are often more sensitive to different aspects of
the temperature pattern than the usual spherical harmonic
representation.

Mutual cross products of ‘ vectors in the ‘th multipole
define ‘ð‘� 1Þ=2 planes, and these planes are also useful
for testing the SI. For example, in [25], the three octopole
planes of the CMB were found to be nearly parallel and
aligned with the single plane of the quadrupole, and this
alignment is statistically significant at the 99.9% level.
To illustrate the advantage of decomposing a multipole

in this fashion, we consider MVs of the real part of a pure
harmonic mode; ReY‘mð�;�Þ, so that all the power C‘ lies
in that particular m-mode. In this case, ‘� jmj of the ‘
MVs are aligned with the z-axis (which is the frame of the
Y‘m), while the remaining jmj MVs line in the x-y plane.
Since the configuration of MVs rotates with the function
f‘ð�;�Þ, the pure harmonic modes are readily identified in
any frame of reference. This is true of any function
f‘ð�;�Þ which makes the MVs very useful for investiga-
tion issues such as SI [53].
For our purposes the MVs are the quantities of interest

and represent all information contained in the data regard-
ing the phase relationships between the a‘m.

IV. LARGE SCALE STRUCTURE:
MATHEMATICAL DESCRIPTION

Galaxy surveys measure positions of galaxies either in
three dimensions (as redshift surveys) or as a 2D projection
on the sky (angular surveys). However, most surveys
contain information that is somewhere between 2D and
3D, since galaxies have photometric redshifts that enable
approximate rendering of radial distance to galaxies
(given good knowledge of the underlying cosmological
parameters).
In this work we consider projected (i.e., two-

dimensional) large scale structure surveys. We wish to

reconstruct the underlying density distribution, �ð�̂Þ,
given counts of galaxies on the sky. When multiplied by
the bias parameter b, the density field gives an angular

FIG. 1 (color online). Multipole vectors of our sky, with the
corresponding multipoles ‘ ¼ 2–8 computed from WMAP’s 3-
year Internal Linear Combination map [52]. The lobes represent
the CMB temperature pattern seen at each multipole, where the
observer is at the center and the observed sky anisotropy can be
projected to a sphere of a fixed radius. The sticks are the
multipole vectors, each pointing in a fixed direction (or its
opposite) on this sphere. Figure kindly provided by Craig Copi.
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number density distribution function of the catalog on the

sky �ð�̂Þ.
We can split the number density of objects on the sky,

�ð�̂Þ, into its mean and relative variation across the sky

�ð�̂Þ ¼ ��ð1þ �ð�̂ÞÞ; (12)

where the �� is the average density over the sky, given by

�� ¼ R
d��ð�̂Þ=R d� and �ð�̂Þ are the fluctuations

around the mean at position �̂.
To enable connection with observable counts of gal-

axies, we bin the sky into Npix equal-area pixels and define

ni ¼ S
Z
ith pixel

d��ð�̂Þ; (13)

where ni is the expected number of objects in the ith pixel
centered at�i and S is a selection function which accounts
for the physical attributes of the survey construction, such
as the exposure time and the sensitivity of the instruments.
For simplicity, we assume that the selection function is
independent of direction on the sky; while clearly simplis-
tic, this assumption is straightforwardly relaxed provided
that the full selection function is known. Effects of the
uncertainties in the selection function, however, may be
important and certainly warrant further investigation, but
are outside of scope of the present foundational work.

The mean number of expected objects per pixel is then
given by

�n � 1

Npix

XNpix

i¼1
ni: (14)

We now express the expected fluctuations around the mean
�n by

�i � �ð�iÞ ¼ ni � �n

�n
: (15)

We see that the binned fluctuation�i in the ith pixel relates
to the true underlying fluctuation � via

�i ¼ 1

�pix

Z
ith pixel

�ð�Þd�; (16)

where �pix is the area of a pixel, so that the �i is the

average fluctuation around the mean in the ith pixel. Hence
the disparity between �i at a point �i on the sky and the
true underlying �ð�iÞ depends on the level of pixelization
of the sky, so that �i ! �ð�iÞ in the limit of perfect
resolution (Npix ! 1).

The function�ð�Þ has a constant value�i within the ith
pixel, but otherwise varies across the sky. We expand it into
spherical harmonics

�ð�̂Þ ¼ X1
‘¼1

X‘
m¼�‘

a‘mY‘mð�̂Þ (17)

or

�i ¼
X1
‘¼1

X‘
m¼�‘

a‘mY‘mð�iÞ: (18)

We are now able to apply the same treatment of the CMB
temperature anisotropies to the case of LSS.

V. MULTIPOLE VECTOR RECONSTRUCTION

A. The reconstruction methodology

In the last section, we described the transformation of a
galaxy catalog into a set of measurements �ð�iÞ of object
numbers in a set of pixels, centered at �i where i ¼
1 . . .Npix on the full celestial sphere. The a‘m can be

determined from these observations by inverting Eq. (18)

a‘m ¼
Z

Y�‘mð�̂Þ�ð�̂Þd� ¼ �pix

X
�̂

Y�‘mð�̂Þ�ð�̂Þ; (19)

where �̂ is the direction on the sky.
Depending on which tracer objects we are considering

for our tests, a fraction of the sky in the direction of the
Galactic center may be obscured by stars and dust, as well
as point sources. These contaminated regions must typi-
cally be avoided in all cosmological analyses of the large
scale structure, just like for the case of the CMB. In the
CMB, for example, cosmological signal from the contami-
nated regions can be recovered using multiwavelength
information [54,55], though such cleaning may be risky
and prone to biases [56,57]. For the case of LSS, data is
given by the object positions given in (e.g., galaxy) cata-
logs; thus inevitably we are forced to deal with data that
sample only parts of the sky.
The presence of the sky mask and measurement noise

imply that Eq. (19) may be inaccurate in reconstructing the
a‘m. Instead, one can implement a weighting scheme on
the unmasked part of the sky. Such an approach was
advocated in [58] and applied to the CMB and has been
shown to optimally estimate the low-‘ multipoles for cut
skies (under certain assumptions about the statistical prop-
erties of the sky). We now review this method and apply the
reconstruction technique to galaxy catalogs.
Let xi ¼ �i represent the number of objects measured in

a pixel centered at the points �i � ð�i; �iÞ. The informa-
tion in the catalog can then be represented by the vector
x ¼ ðx1; x2 . . . :xNpix

Þ. We wish to measure a set of multi-

pole coefficients a‘m which are reassigned for convenience
as the vector a ¼ ða1; a2; . . . :aMÞ. We choose to recon-
struct only those coefficients with ‘ � ‘max;rec which

means that M ¼ P‘max;rec

‘¼0 ð2‘þ 1Þ. We can then write

x ¼ yaþ n; (20)

where y is a Npix �M matrix containing the spherical

harmonics—yij � Y‘jmj
ð�i; �iÞ. Our conventions for cast-

ing the coefficients a‘m and spherical harmonics Y‘m in
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terms of purely real numbers, suitable for numerical cal-
culations, are given in Appendix A.

The matrix n has two contributions: the detector noise
with covariance matrix N and the sky signal S from multi-
pole coefficients that have not been included in the vector
a, i.e., contamination from a‘m with ‘ > ‘max;rec.

Assuming isotropic noise with zero mean, hni ¼ 0, the
covariance matrix can be written as

C � hnnTi ¼ SþN: (21)

The noise matrix N is dominated by the shot noise, encod-
ing the fact that the number of sources in a pixel is only a
statistical sample of the underlying density field.

The covariance matrix of the remaining contribution to
the map S, from the uncertainty in the multipoles that will
not be reconstructed, is given by [58]

S ij ¼
X‘max;tot

‘¼‘max;recþ1

2‘þ 1

4�
P‘ð�̂i � �̂jÞC‘; (22)

where C‘ is an estimate of the angular power spectrum of
the galaxy survey (see next subsection and Appendix C on
how it is calculated, and see Fig. 3). Note that the ‘
included in the summation correspond to those a‘m that
are not included in the vector a. Heuristically, the struc-
tures with ‘ > ‘rec;max serve as noise for the reconstructed

signal at ‘ � ‘rec;max. Here we adopt ‘max;tot ¼ 50, which is

FIG. 2 (color online). Illustration of the efficacy of our reconstruction scheme for a mock galaxy survey with Ng ¼ 106. The top
panel shows our starting map. The middle panels show the map made up from the cut-sky coefficients (i.e., using Eq. (19)), while the
bottom row shows the full-sky reconstruction that we adopted. The left columns show the full-sky case, while the right columns show
the case where 	4:5� galactic cut (removing ’ 8% of pixels) have been applied.
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more than sufficient for the reconstruction of multipoles
out to ‘max;rec ¼ 4.

The aim is then to find an approximation â to the true a
that is unbiased and has minimum variance. For problems
such as this where there are far more pixels than parame-
ters for which we need to solve, the optimal solution to the
above system of equations is [59]

â ¼Wx; W � ½yTC�1y
�1yTC�1 (23)

with a covariance matrix

� � hââTi � hâihâiT ¼ ½yTC�1y
�1: (24)

Here � is the covariance matrix of the reconstructed a‘m.
With full-sky coverage, the covariance matrix � is diago-
nal; with the sky cut, it is not. In the latter case the
algorithm corrects for the mixing of the different ð‘;mÞ
at the cost of larger error bars [58].

In Fig. 2 we illustrate the effectiveness of the above
reconstruction method to estimate the a‘m, and contrasted
to the alternative approach of merely using Eq. (19). Using
a subset of known atrue‘m for ‘ ¼ 2–4, we generated a mock

dataset x representing a catalog of 106 objects with noise
N; the details of the computation of N are shown in
Appendix B. The middle panels show the map made up
from the cut-sky coefficients (i.e., using Eq. (19)), which is
clearly biased. The bottom panels of Fig. 2 show the
reconstructed density maps using our algorithm. Left pan-
els show the case when full-sky information is available,
while right panels show the case when 	4:5� galactic cut
has been applied (i.e., when about ’ 8% of the area has
been removed). The improved accuracy with which the
multipoles are reconstructed using our selected method is
clearly seen.

B. Generating mock galaxy catalogs

We now describe the technology to generate synthetic,
pixelated maps of galaxy counts. We wish to create a field
with the number density given by

�ð�;�Þ ¼ X‘max;tot

‘¼0

X
m

a‘mY‘mð�;�Þ; (25)

so that it is consistent with the density field �ð�Þ. Since we
are mainly interested in testing statistical isotropy on large
scales, generating maps out to ‘max;tot ¼ 50 is sufficient.

The starting ingredient for mapmaking is the theoretical
angular power spectrum of dark matter, C‘, which we
calculate according to the prescription given in
Appendix C. Notice that the number density of galaxies,
dN=dz, is necessary for calculation of the theoretical an-
gular power spectrum (see Appendix C). Here we assume a
number density of the form [60]

nðzÞ ¼ z2e�z=z0

2z30
(26)

that peaks at zpeak ¼ 2z0. In Fig. 3 we show the angular

power spectra for zpeak ¼ 0:1, 0.2 and 0.4; the angular

spectra are of course smooth because they correspond to
matter overdensity projected along the line of sight. This
figure also shows that nonlinearities enter at ‘ * 20; in our
analysis, we are interested in reconstructing ‘ of a few, and
thus it is sufficient to use the linear angular power spectra.
Details of how we first generate a smooth projected

matter density map, and from it the distribution of galaxies
on the sky, are spelled out in Appendix D. In brief, starting
with the choice of the form of the galaxy density dN=dz
and its peak value zpeak, we use the calculated theoretical

C‘ at ‘ � 50 to generate a set of random a‘m with zero
mean and variance C‘. We then use the HEALPIX [61]
routine ALM2MAP to generate a smooth density map.
Next, we generate a galaxy catalog with Ng galaxies

consistent with the smooth map; details are described in
Appendix D. Starting with the coefficients C‘, we generate
100 random sets of a‘m coefficients, and from each we
produce three realizations of the corresponding galaxy
catalog. This gives us a total of 300 realizations of galaxies
on which we base the statistics. This number was smaller
than we might have liked, because the galaxy generation
step is time-consuming for large Ng (* 108). We found,

however, that this number of realizations produced suffi-
ciently accurate results.

C. Testing the reconstruction accuracy

We now investigate how the accuracy of the estimated
quantities of interest (i.e., the a‘m and the multipole vec-
tors) depends on the characteristics of the survey—its
depth, and the sky density of tracer objects. We follow
the procedure outlined in [58] and optimally reconstruct
the full-sky a‘m from each mock catalog using the
method described in Sec. V. The corresponding MVs are
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FIG. 3 (color online). The theoretical angular power spectra
calculated using the radial number density function nðzÞ from the
SDSS for different redshifts at which the radial number density
of objects peaks. See Appendix C for details of the calculation.
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subsequently extracted from the a‘m using the publicly
available code [49].

Sufficiently fine pixelization. In our approach, one per-
forms counts-in-cells of galaxies on the sky. To test effects
of finite resolution imposed by pixelization, we consider a
single realization of a galaxy survey with Ng objects and

reconstruct the a‘m using different values of the HEALPIX

parameter Nside, where the number of pixels is Npix ¼
12Nside

2 (the angular size of a pixel is roughly �pix �
60�=Nside).

Figure 4 shows the reconstructed a‘m for three choices
of Nside and for 300 realizations of mock catalogs with
Ng ¼ 105, 106 and 107 objects. The width of each distri-

bution encapsulates the variance on the measurement of the
multipole coefficient and remains relatively unchanged as
the pixelization varies. Clearly, for catalogs with smaller
galaxy density (i.e., larger shot noise), an increase from
Nside ¼ 4 to Nside ¼ 8 improves the accuracy of the recon-
struction only marginally, rendering Nside ¼ 8 sufficient to
guarantee that the contribution to noise is dominated by the
shot noise for a survey with 105 objects (which is reduced
with increased resolution). For larger number density cata-
logs (Ng ¼ 106 in the Figure), a higher pixelization of

Nside ¼ 16 does make a slight improvement in the a‘m
estimation but not enough to warrant the additional com-
putation time. For the rest of the analysis, Nside ¼ 8 will be
used.
Sky density of objects. The projected sky density of

objects will vary dramatically between different classes
of objects. For example, using all galaxies as tracers will
provide higher counts than using only the luminous red
galaxies, and those in turn have a much higher density than
quasars or gamma-ray bursts. More accurate reconstruc-
tion of the underlying density field is expected to be
revealed from catalogs with a larger numbers of objects.
Therefore, the number of tracer objects in the survey is
likely to play an important role in the precision of our tests.
Let us examine the effect of the available number of

sources in the reconstruction accuracy of multipole vectors

vð‘;iÞ. To do that, we compare the MVs vð‘;iÞ obtained from
the reconstructed a‘m to those vð‘;iÞtrue which corresponds to
the a‘m used to generate the density map of the mock

catalog. The results are quantified by the angles �ð‘;iÞ

cosð�ð‘;iÞÞ ¼ vð‘;iÞtrue � vð‘;iÞ (27)

FIG. 4 (color online). Reconstruction of the coefficients a‘m for ‘ ¼ 2–4 for 300 realizations with Ng ¼ 104 (top row), Ng ¼ 105

(middle row) and 106 (bottom row). We show results for three HEALPIX map resolutions: pixelizations of Nside ¼ 4 (blue), 8 (black) and
16 (red). The total number of pixels on the full sky is Npix ¼ 12� Nside

2. The true underlying a‘m are shown by the dotted line. An

increase in resolution (i.e., higher Nside) improves the accuracy of the reconstruction only for mock catalogs of size Ng ¼ 106 and

higher.
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from 300 realizations as a function of the total number of
galaxies Ng. Figure 5 shows the histograms for catalogs

increasing with Ng ¼ 104, 106 and 108. The loss of accu-

racy is gauged by how much cosð�ð‘;iÞÞ deviates from
perfect reconstruction where its value is unity. The widths
of the one-sided distributions decrease dramatically as the
number of objects in the survey Ng increases, indicating

substantial increase in the ability of a galaxy catalog to
represent the underlying density field. The rapid degradation
in the accuracy of estimated MVs for Ng � 106 already

hints that large catalogs may be required to test SI reliably.
Sky cut. It is likely that, for most tracer objects of the

large scale structure, parts of the sky will have to be
masked either to incomplete observations, or to the pres-
ence of point sources.1 The removal of data from part of the

sky will inevitably degrade the accuracy of the reconstruc-
tion of the a‘m, multipole vectors, and any other statistics.
In Ref. [45], it was shown that accurate reconstruction of
the MVs of the CMB temperature anisotropy (to about a
degree or better) requires a galaxy cut no larger than a few
degrees. Here we perform a similar analysis for the MVs of
the large scale structure.
We assume the following isolatitude cuts: 0�,	4:5� and

	9�, corresponding, respectively, to the full sky, 8%, and
16% of the sky area masked. Given that our test skies are
statistically isotropic, the fiducial orientation of the cuts is
irrelevant. And while the fact that isolatitude cuts are
assumed is certainly a simplifying assumption, we do not
expect that the azimuthally uneven cut with roughly the
same area will lead to very different results. We leave the
analysis with cuts with more general geometries for future
work when cuts motivated by specific surveys will be used.
Figure 6 shows histograms of the dot products of the true

input MVs and the reconstructed MVs cosð�ð‘iÞÞ ¼ vð‘;iÞtrue �

FIG. 5 (color online). Effects of the number density of LSS tracers. Histograms of the dot product of the true and reconstructed MVs,

cosð�ð‘;iÞÞ ¼ vð‘;iÞ � vð‘;iÞtrue , from 300 realizations for surveys with Ng ¼ 104 (top row), Ng ¼ 106 (middle row), and Ng ¼ 108 (bottom

row). We assume a fixed pixelization level of Nside ¼ 8, and the radial distribution of objects zpeak ¼ 0:2. An improvement in accuracy

is indicated by a closer proximity to 1, at which the MVs are reconstructed perfectly. The narrowing of the histograms suggests a
considerably better recovery of the MVs as the survey size is increased.

1Gamma-ray bursts may be an exception here, but tests of SI
might prove challenging given that the density of the bursts will
be orders of magnitude lower than that of galaxies.
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vð‘;iÞ for 300 realizations of a galaxy survey withNg ¼ 106

and the three different cuts. When only part of the sky is
observed, mixing of the highermultipoles, ‘ * 1=�cut, with
those describing the reconstructed sky (a) is introduced.
The reconstruction method implemented here accounts for
this mode mixing in the reconstructed multipoles a at the
cost of larger error bars, indicated by the increase in the
widths of the histograms as fsky decreases.

Survey depth. Reconstruction also depends on the depth
of the survey, which we here parametrize with the peak of
the redshift distribution of sources zpeak. While a deeper

survey enables a larger effective representative volume of
the Universe from which to test statistical isotropy, it turns
out that the angular power spectrum has a lower amplitude
for a deeper survey; see Fig. 3. This is why deeper surveys
lead to worsening in the reconstruction of the multipole
vectors. Figure 7 shows a marked increase in the error of
the reconstructions with increasing redshifts of the source
distribution.

This analysis illustrates the role of the additional factors
which must be taken into account when adapting CMB
tests of SI to the case of LSS. The full set of results are
summarized in Fig. 8. One interesting observation is that
the accuracy of the reconstruction is comparable for all ‘
when the entire sky is observed (black lines) but deterio-
rates from high to low ‘ (bottom to top panel) when part of
the sky is surveyed (blue and red lines). This trend becomes
more apparent as fsky decreases from 0.92 (blue) to 0.84

(red). Furthermore, we find that the reconstruction accu-
racy plateaus at around Ng ¼ 106–108 in almost all cases

considered, with little improvement at higher source den-
sities. Overall, and perhaps as expected, we find the pri-
mary limiting factor to be incomplete sky coverage and not
the density of the sources.

VI. RECOVERING EVIDENCE OF ALIGNMENTS

The robustness tests from the previous section imply a
certain accuracy in reconstructing the multipole vectors out

FIG. 6 (color online). Effects of the sky cut. Histogram of the dot products of the true and reconstructed MVs cosð�ð‘;iÞÞ ¼
vð‘;iÞtrue � vð‘;iÞ, from 300 realizations when the following areas of the sky are removed: 0 (top row),	4:5� (middle row), and	9� (bottom
row). The second and third case correspond to fsky ’ 0:92 and 0.84, respectively. The pixelization level is fixed at Nside ¼ 8 and we

assume a survey with Ng ¼ 106 objects which radial distribution of tracers that peaks at zpeak ¼ 0:2.
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of noisy data. We now test how this accuracy translates into
detection of the violations of SI.

For the sake of definitiveness, let us assume a purely
phenomenological model where the sky has a quadrupole
and octopole that are perfectly planar. That is, we assume
that the quadrupole and octopole a‘m coefficients are pure
a22 and a33. [Any mix of aRE22 , a

IM
22 , a

RE
33 and aIM33 will do,

since the real/imaginary mixing only affects the azimuthal
structure in the plane.] We first create Monte Carlo realiza-
tions of skies that have this type of perfect alignment at
‘ ¼ 2; 3, while having other a‘m drawn from the usual
Gaussian distributions. We then apply our reconstruction
of the sky temperature, and thus the multipole vectors, and
study whether the alignment is observable.

If the aligned model has planar structures—as observed
on our sky byWMAP—then it is advantageous to study the
directions and magnitudes of the mutual cross products of
multipole vectors, which are referred to as the ‘‘oriented
area’’ vectors [25]

wð‘;i;jÞ � vð‘;iÞ � vð‘;jÞ: (28)

Let us illustrate how one could search for planar align-
ments represented by the near-collinear oriented area vec-
tors that we use as an example. Let us define a new statistic

Bsignal ¼ d̂min

�
1

Npairs

X‘max

‘¼2

X‘
j¼2

Xj�1
i¼1

�
1� j w

ð‘;i;jÞ � d̂ j
j wð‘;i;jÞ j

�
2
�
1=2

;

(29)

where ‘max ¼ 3 and the minimization is over all possible

directions d̂. For our alignment model, a perfect recon-
struction of multipole vectors would imply that all oriented
area vectors are collinear, so that Bsignal ¼ 0. In the pres-

ence of the uncertainty in the reconstruction, however, the

oriented area vectors wð‘;i;jÞ will generally not be aligned,
and Bsignal will be greater than zero but presumably small.

Finally, for a statistically isotropic sky, we expect that the
oriented areas do not preferentially lie close to any single

direction d̂, so that B
unaligned
signal  B

aligned
signal .

We generate 50 000 Monte Carlo realizations of the
perfectly aligned skies with purely planar quadrupole and

FIG. 7 (color online). Effects of the survey depth. Histogram of the dot products of the true and reconstructed MVs cosð�ð‘;iÞÞ ¼
vð‘;iÞtrue � vð‘;iÞ from 300 realizations of a full sky for a surveys with zpeak ¼ 0:1, 0.2 and 0.4 (top to bottom rows). The adopted pixelization

is Nside ¼ 8 and the total number of sources is Ng ¼ 106.
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octopole as described above and higher multipoles consis-
tent with statistically isotropy. We also generate 50 000
statistically isotropic skies. In each case, we reconstruct the
coefficients a‘m, and the corresponding multipole vectors,
as described in Sec. V. We consider one case where the
survey has 106 galaxies whose distribution peaks at zpeak ¼
0:1, and another case with 109 galaxies with zpeak ¼ 0:4,

representing examples of a shallow and a deep survey,
respectively. For the reconstruction, we use Nside ¼ 8,
and a sky cut of either 0� (i.e., fsky ¼ 1) or 	9� (i.e.,

fsky ’ 0:84).

The histogram of the statistics Bsignal is shown in Fig. 9.

As expected, the values of Bsignal for the aligned skies are

preferentially smaller than for the unaligned (i.e., iso-
tropic) realizations. The shaded region covers values of
Bsignal which correspond to the bottom 5% of the isotropic

(i.e., unaligned) sky cases; therefore, finding Bsignal below

this value would indicate a �2� evidence for this par-
ticular alignment. We find that 98–99% of the aligned sky
realizations without the galactic cut (and for either of the
two zpeak cases) lie below this value of Bsignal, and so it is

with this probability that one would find a �2� evidence
for the alignment. With the 	9� sky cut, evidence for
alignments will be weaker, and the 2� evidence can be
made in 65% (zpeak ¼ 0:4, Ng ¼ 109) or 85% (zpeak ¼
0:1, Ng ¼ 106) percent of the realizations of the aligned

model.
These results are encouraging, given that we did not

optimize over the choice of the statistic to detect the
assumed alignment. In this exploratory paper we do not
study the issue of detectability any further, perform a
complete likelihood analysis, or study more specific
models for the alignment; this is left for future
work.

FIG. 8 (color online). Summary of all effects. Plot of the average angle between the reconstructed and input MVs, �ð‘;iÞ ¼
arccosðvð‘;iÞtrue � vð‘;iÞÞ as a function of Ng, with error bars indicating the 16–84 percentile ranges for different choices of zpeak; zpeak ¼ 0:1

(left column), zpeak ¼ 0:2 (middle column) and zpeak ¼ 0:4 (right column) for ‘ ¼ 2 (top row), ‘ ¼ 3 (middle row) and ‘ ¼ 4 (bottom

row). The different colors indicate different sky masks: 0� (black), 	4:5� (blue) and 	9� (red).
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VII. DISCUSSION AND FUTURE WORK

In this paper we have proposed to apply the statistical
tools developed for studies of the CMB to conduct tests of
the statistical isotropy (SI) of large scale structure. We
considered the projected (i.e., two-dimensional) density
field provided by a galaxy catalog, and expanded it into
multipole moments analogously to how the CMB tempera-
ture field is conventionally analyzed. Eachmultipole can be

decomposed into a set of ‘ multipole vectors fv̂ð‘;iÞi ¼
1 . . . ; ‘g and a scalar Að‘Þ. These vectors represent all phase
information contained in the projected density field, and
enable a variety of tests of directionality in the galaxy
distribution. We developed an algorithm to reconstruct the
full-sky multipole vectors out of the cut-sky galaxy catalog,
while carefully accounting for the signal and noise specific
to the galaxy maps. Note that galaxies are not the only
feasible tracers of the LSS; clusters of galaxies, gamma-
ray bursts, x-ray and radio sources, and other tracers could
also be potentially very useful in testing the SI.

In this work we have concentrated on the large scales, in
particular, only considering the multipoles ‘ ¼ 2–4; ex-
tension to smaller scales is in principle straightforward.
Because LSS surveys typically do not typically cover the

full sky, we have implemented the reconstruction of the full
sky (recently applied to CMB temperature maps in [58]).
Exactly to what extent this reconstruction effectively as-
sumes SI has recently been debated [25,62–64]. The issue
of how to test SI with reconstructed full-sky information
that explicitly does not assume SI on relevant scales is an
important problem in its own right, and we leave it for
future work.
Unlike the CMB temperature anisotropy field, which

comes from a single, well-defined redshift, galaxy surveys
mapping the local universe are diverse in their source
density and redshift range and, like the CMB maps, can
also cover different areas of the sky. We explored the
impact of each of these survey properties and found the
primary limiting factor to be incomplete sky coverage.
Even a modest Galactic plane cut increases the noise in
the reconstruction due to mode mixing. We find that if a
significant fraction (� 16%) of the sky is not surveyed, the
accuracy quickly becomes limited by the uncertainty in the
reconstructed full-sky properties due to the cut, with little
improvement in the errors achieved by increasing the
number of objects beyond 106.
We also find that the accuracy of the reconstruction is

comparable for all ‘ when the entire sky is observed, but
deteriorates from high to low ‘ when part of the sky is
surveyed; see Fig. 8. The reconstruction accuracy typically
plateaus at around Ng ¼ 106–108, suggesting that there is

an intrinsic limit on how well the multipole vectors can be
recovered. Furthermore, the recovery of the multipole
vectors is more accurate in a catalogs with sources at lower
redshifts due to a higher power in those cases (see Fig. 3).
Using a statistic constructed to detect planar alignments,

we tested for violations of SI in Monte Carlo simulations of
isotropic skies, and of skies in which the quadrupole and
octopole are perfectly aligned. We found a 98% chance of
making a 2� detection of this particular alignment using a
galaxy catalog with 106 sources of mean redshift z ¼ 0:1,
detected over the entire sky. This likelihood drops to 85%
when 16% of the sky is masked out. Similarly, for the
zpeak ¼ 0:4, Ng ¼ 109 survey, we find the probabilities of

99% (fsky ¼ 1) and 65% (fsky ¼ 0:84) of finding a 2�

detection of this particular alignment. Note, however, that
we have not optimized over the choice of the detection
statistic, nor considered any physical models for the align-
ment, so actual success in detecting such anomalies may
well be different from these numbers.
The next decade or two will see a dramatic improvement

in the galaxy data on largest observable scales. For ex-
ample, the Wide-field Infrared Survey Explorer, currently
observing, will provide an all-sky survey from 3.5 to
23 �m about a thousand times more sensitive than
IRAS, and should produce a very large number of objects
out to redshift of z� 3. Clearly, data provided by surveys
such as the Wide-field Infrared Survey Explorer in the
infrared, and perhaps other radio, x-ray and optical
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FIG. 9 (color online). Detectability of perfectly aligned quad-
rupole and octopole in a mock survey using the Bsignal statistic

(see Eq. (29)). Each histogram is based on 50 000 Monte Carlo
realizations. Solid lines shows survey with Ng ¼ 106 objects and

the radial distribution that peaks at zpeak ¼ 0:1, while the dashed

lines show a survey with Ng ¼ 109 and zpeak ¼ 0:4 (the ‘‘un-

aligned’’ case, shown with the red solid line, is independent of
the presence of the cut and the values of zpeak and Ng). The grey

region covers values of Bsignal which correspond to the bottom

5% of the isotropic (i.e., unaligned) sky cases. We find that 98–
99% of the aligned skies without the galactic cut (and for either
of the two zpeak cases) lie below this value—in other words, it is

roughly at the 20:1 odds that the value of Bsignal found below this

value favors the aligned model.
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surveys, would be perfect targets to test the SI with the
multipole vectors. Such wide and deep surveys could even
start to probe the scales probed by the large-angle CMB;
for example, it is possible (though somewhat unlikely) that
LSS can confirm or refute the missing large-angle primor-
dial power favored by the CMB in this scenario [65].

Quite possibly the biggest challenge in studying realistic
surveys may be understanding the details of any given
survey, and culling out a representative subsample of ob-
jects that can be used for tests of isotropy. Fortunately,
since we are primarily interested in large scale information,
we do not need to worry as much about other commonly
found systematic effects in galaxy surveys due to nonlinear
clustering. However, it is clear that details of the selection
function for each survey will need to be known fairly
accurately, as spatial or temporal variations in depth
of observations can masquerade as evidence for violations
of SI.

In conclusion, we hope that multipole vectors will do the
same for the LSS maps that they did for the CMB: provide
a novel and useful way to quantify anisotropies on the sky.
In the case of the CMB, this has led to a variety of new tests
of the SI with interesting results. We hope that the appli-
cations to real LSS surveys will be equally fruitful.
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APPENDIX A: CONVENTIONS

The temperature on the sky can be decomposed in terms
of spherical harmonics

�T

T
ð�;�Þ ¼X

‘;m

a‘mY‘mð�;�Þ: (A1)

Spherical harmonics Y‘m can be defined in terms of the
associated Legendre polynomials P‘m

Y‘mð�;�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð‘�mÞ!

4�ð‘þmÞ!

s
P‘mðcos�Þeim�: (A2)

For computing convenience, we wish to work with real
numbers only. Breaking up the spherical harmonics Y‘m

and the coefficients a‘m into real and imaginary parts

a‘m ¼ aRe‘m þ iaIm‘m (A3)

Y‘m ¼ YRe
‘m þ iYIm

‘m: (A4)

For negative m

a‘�m ¼ ð�1Þma�‘m ¼ ð�1ÞmðaRe‘m � iaIm‘mÞ (A5)

Y‘�m ¼ ð�1ÞmY�‘m ¼ ð�1ÞmðYRe
‘m � iYIm

‘mÞ: (A6)

The contribution to the sum
P

ma‘mY‘m from a single
value of jmj is

a‘mY‘m þ a‘�mY‘�m ¼ (A7)

(
2ðaRe‘mYRe

‘m � aIm‘mY
Im
‘mÞ ðm � 0Þ;

a‘0Y‘0 ðm ¼ 0Þ: (A8)

We define the following: Y‘m � jY‘mj cosðm�Þ þ
ijY‘mj sinðm�Þ. Following [58], we define
(1)

Y1
‘m �

ffiffiffi
2
p jY‘mj cosðm�Þ ðfor m> 0Þ:

(2)

Y2
‘m �

ffiffiffi
2
p jY‘mj sinðm�Þ ðfor m< 0Þ:

(3)

Y3
‘m � jY‘mj ðfor m ¼ 0Þ:

We then define the following parameters:
(1)

b1‘m �
ffiffiffi
2
p

aRE‘m ðfor m> 0Þ:

(2)

b2‘m � �
ffiffiffi
2
p

aIM‘m ðfor m< 0Þ:

(3)

b3‘m � a‘m ðfor m ¼ 0Þ:

Hence, we can obtain the right-hand side of Eq. (A8) using
the following summation over real quantities, b1‘mY

1
‘m þ

b2‘mY
2
‘m (for m � 0) or b3‘mY

3
‘m (for m ¼ 0).

APPENDIX B: THE COVARIANCE MATRIX

The reconstruction method described in Sec. VA re-
quires the calculation of the covariance matrix C. We
discuss this in detail given the various subtleties which
require attention.
Firstly, we consider the sources of detector noise encap-

sulated inN. The reconstruction of the underlying function
�ð�Þ from a galaxy survey introduces two types of noise.
The nature of the sampling process means that in an actual
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catalog, the number of objects in the ith pixel will not be ni
defined in Eq. (13), but rather an integer ~ni. This difference
is due to shot noise, encompassed in the parameter �i,
given by

�i ¼ ~ni � ni
�n

: (B1)

In the same way, the average number of objects per pixel
will not be �n but rather ~n, given by

~n � 1

Npix

XNp

i¼1
~ni: (B2)

The above ~n is the survey mean and is taken to be our best
estimate of the ensemble mean �n. We estimate the density
contrast�i using the mean number density of the survey on
its largest scales [66]

~� i ¼ ~ni � ~n

~n
: (B3)

This procedure forces our estimates of the fluctuations on
the largest scale of the survey to zero, an effect sometimes
called the ‘‘integral constraint.’’ Following [67], a parame-
ter � is introduced to account for the fractional difference
between the survey mean and the ensemble mean

� � ~n� �n

�n
: (B4)

Using the fact that �i � ðni � �nÞ= �n—see Eq. (15)—we

can relate our estimate ~�i to the true value �i in terms of �
and �i as

~� i ¼ �i þ �i � �

1þ �
: (B5)

This equation relates the measured density contrast ~�i to
the theoretically predicted density contrast �i.

We now wish to calculate the statistical properties of

catalog density contrast ~�i, in particular, its mean and
covariance. We need to express these in terms of statistical
properties of the ensemble density contrast �i.

It will be useful to rewrite

~� i ’ ð�i þ �i � �Þð1� �þ �2 þOð�3ÞÞ; (B6)

where the following hold:

h�i�ji ¼ �ij

ð1þ�iÞ
�n

þOð �N�2g Þ; h�i ¼ 0;

h�2i ¼ 1
�Ng

; h�ii ¼ 0; h�i�i ¼ 1
�Ng

; h�i�
2i ¼ 0;

h�i�j�
2i ¼ �ijð1þ�iÞ

�Ng �n
þOð �N�2g Þ: (B7)

Note that the expectation value is h�ii ¼ �i and not zero,
as in the case of the ensemble. Putting this together we find

h~�ii ¼ �i

�
1þ 1

�Ng

�
: (B8)

Furthermore, we find that

h~�i
~�ji ¼ �i�jhð1þ 3�2Þi � 2ð�ih�j�i þ �jh�i�iÞ

þ h�i�jð1þ 3�2Þi þ 2ð�i þ �jÞh�2i
� hð�i þ �jÞ�i þ h�2i þOð �N�2g Þ

¼ �i�j

�
1þ 3

�Ng

�
þ �ijð1þ �iÞ

�n

�
1þ 3

�Ng

�

� 1
�Ng

þOð �N�2g Þ: (B9)

The covariance matrix of ~�i is therefore:

Cij � h~�i
~�ji � h~�iih~�ji

¼ 1
�Ng

ð�i�j � 1Þ þ �ijð1þ�iÞ
�n

þOð �N�2g Þ: (B10)

We need to write both h~�ii and Cij in terms of the a‘m.

Using Eq. (18), we can write

h~�ii ¼
X‘max;rec

‘¼2

X
m

a‘mY‘mð�iÞ
�
1þ 1

�Ng

�
: (B11)

Notice that we have truncated the sum over a‘m at ‘max;rec

which is the last multipole that we reconstruct. The a‘m at
higher ‘ are replaced by their expectation values in the
ensemble of universes, in which ha‘mi ¼ 0. We treat the
covariance matrix Cij in a similar fashion and replace

a‘ma‘0m0 by its expectation value in the ensemble of uni-
verses

ha‘ma‘0m0 i ¼ �‘‘0�mm0C‘: (B12)

We follow [58] in their reconstruction of the a‘m, and
reconstruct a limited range of multipoles, 2 � ‘ � ‘max;rec.

This procedure treats the higher multipoles ‘max;rec þ 1 �
‘ � ‘max;tot as ‘‘noise’’ to the reconstructed multipoles’‘‘-

signal’’. Following this logic, we split the pixel density
fluctuations into the suitably chosen signal and noise parts

~�i ¼ �i þ ð�i � �Þ
1þ �

’ �ið1� �þ �2Þ þ �i � �

1þ �

¼ X‘max;rec

‘¼2
b‘mY‘mð�iÞ þ

� X‘max

‘¼‘max;recþ1

X
m

b‘mY‘mð�iÞ

þ ð�2 � �Þ�i þ �i � �

1þ �

�

� X‘max;rec

‘¼2

X
m

b‘mY‘mð�iÞ þN i; (B13)

where
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N i ¼
X‘max;tot

‘¼‘max;recþ1

X
m

b‘mY‘mð�iÞ þ ð�2 � �Þ�i þ �i � �

1þ �
;

and where we take ‘max;tot ¼ 50. Note that the a‘m have

been recast in new variables denoted b‘m defined in
Appendix A in order to simplify the calculation. In the
above, N i is the noise in the ith pixel. The first term in
Eq. (B14) is the contribution from leakage from multipoles
which are not reconstructed, while the next two terms are
due to shot noise arising from the sampling process. Taking
expectation value of Eq. (B14) we get

hN ii ¼
X‘max;tot

‘¼‘max;recþ1

X
m

b‘mY‘mð�iÞ þ h�2i�i

þ
�

�i

1þ �

�
�

�
�

1þ �

�
(B14)

¼ �i

�Ng

þ X‘max;tot

‘¼‘max;recþ1

X
m

b‘mY‘mð�iÞ: (B15)

As usual, a‘m terms with ‘ > ‘max;rec are neglected as they

are unknown and will not be reconstructed. Our treatment
of the unknown true underlying perturbation �i is limited

and we merely replace it with our current best estimate in
an iterative process

hN iiðpÞ ’ 1
�Ng

X‘max;rec

‘¼2
b‘mY‘mð�iÞ þ

X‘max;rec

‘¼2

X
m

bðpÞ‘mY‘mð�iÞ

(B16)

where (p) numbers the iterative step. At the 0th iteration

we use bð0Þ‘m ¼ 0, which is then replaced by estimates of b‘m
in successive iterations until convergence is achieved.
The covariance of the noise is given by

hN iN jiðpÞ ¼
�� X‘max

‘¼‘max;recþ1

X
m

b‘mY‘mð�iÞþð�2��Þ�i

þ �i

1þ�
� �

1þ�

�� X‘max

‘0¼‘max;recþ1

X
m0
b‘0m0Y‘0m0 ð�jÞ

þð�2��Þ�jþ
�j

1þ�
� �

1þ�

��
: (B17)

Replacing hb‘mb‘0m0 i by its expectation value in the en-
semble of universes (for ‘ � ‘max;rec, C‘�‘‘0�mm0), and

hb‘mi by its expectation value (i.e., zero) we find

hN iN jiðpÞ ¼
X‘max

‘¼‘max;recþ1

2‘þ 1

4�
C‘P‘ðcos�ijÞ þ ½h�2ið1þ �ðpÞi þ �ðpÞj þ�ðpÞi �ðpÞj Þ

� h��jið�ðpÞi þ 1Þ � h��iið�ðpÞj þ 1Þ þ h�i�ji þ 3h�2�i�ji


¼ X‘max

‘¼‘max;recþ1

2‘þ 1

4�
C‘P‘ðcos�ijÞ þ

�
�ijð1þ�ðpÞi Þ

�n

�
1þ 3

�Ng

�
þ 1

�Ng

ð�ðpÞi �ðpÞj � 1Þ
�
þO

�
1
�N2
g

�
:

Since hN iihN jiðpÞ ¼ Oð1= �N2
gÞ, CðpÞij ¼ hN iN jiðpÞ.

For clarity, we separate the covariance matrix out into its
two contributions

CðpÞij ¼ SðpÞij þ NðpÞij ;

where

SðpÞij ¼
X‘max

‘¼‘max;recþ1

2‘þ 1

4�
C‘P‘ðcos�ijÞ

NðpÞij ¼
�
�ijð1þ �ðpÞi Þ

�n

�
1þ 3

�Ng

�
þ 1

�Ng

ð�ðpÞi �ðpÞj � 1Þ
�
:

(B18)

In the first evaluation we use �ðpÞi ¼ ~�i. Once the first set
of reconstructed b‘m are extracted, they will be used to

update �ðpÞi ¼
P‘max;rec

‘¼2 b‘mY‘mð�iÞ for the subsequent iter-
ations. Note that the value of the C‘ used in the computa-

tion of the signal matrix S is not crucial: error in the
estimation of the angular power spectrum will merely
mean that more iterations will be required for convergence.
As discussed above, the true average number of galaxies

per pixel is unknown and can only be estimated by
the mean calculated from the survey. This assumption
~Ng ¼ �Ng however artificially suppresses the estimates of

the power on large scales and is accounted for by the factor
of 1= �Ng in the last term of Eq. (B18). Comparing the

expression in Eq. (B18) with the covariance matrix calcu-
lated for the CMB in [58], we find that they are in agree-
ment if we bear in mind that the case of the CMB
effectively corresponds to the case where Ng ! 1

APPENDIX C: THE THEORETICAL
ANGULAR POWER SPECTRUM C‘

Equation (22) shows that an estimate of the angular
power spectrum C‘ is required for our reconstruction. We
now show how to calculate the angular power spectrum of
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a large scale structure survey (for pioneering works on this,
see [67–69]). We only consider a single, vanilla best-
fit �CDM cosmological model, as the cosmological
model dependence of the C‘ is not expected to affect the
results.

The angular power spectrum in harmonic space can be
related to its counterpart in Fourier space via

C‘ ¼
Z 1
0

K‘ðkÞPðkÞk2dk; (C1)

where, as shown in [67], K‘ is an integral kernel given by
2
� f

2
‘ðkÞ where f‘ is the Bessel transform2 of the radial

selection function fðrÞ ¼ gðrÞhðrÞ. Here gðrÞ is the radial
probability distribution of galaxies

gðrÞ / dN

dr
¼ dN=dz

dr=dz
¼ HðzÞdN

dz
; (C2)

where dN=dz is the radial redshift distribution of objects in
the survey. The objects which constitute potential catalogs
are biased tracers of dark matter; while this bias primarily
depends on the object’s mass, for definitiveness we assume
b ¼ 1. The function hðrÞ which accounts for this galaxy
bias as well as clustering, is therefore assumed to be unity.
This means that the power spectrum above is measured at a
radial distance of r� ‘=k. Hence,

f‘ðkÞ �
Z 1
0

j‘ðkrÞfðrÞdr ¼
Z 1
0

j‘ðkrðzÞÞ dNdz dz; (C3)

where j‘ðkrÞ is the spherical Bessel function of order ‘. As
mentioned in the text, we assume the distribution of objects
of the form dN=dz � nðzÞ / z2 expð�z=z0Þ that peaks at
zpeak ¼ 2z0. The power spectrum PðkÞ is approximated to

be scale-invariant with PðkÞ / kns where we adopt ns ¼
0:96 and normalization consistent with WMAP data.

So far we have assumed the linear clustering regime,
which will dominate on the large scales that we are inter-
ested in. Nevertheless, it is important to check what the role
of nonlinearities will be. To that effect, we adopt the
following simple correction formula proposed in [70] re-
lating the linear and nonlinear power spectra

PnlðkÞ ¼ b2
1þQnlk

2

1þ Anlk
PðkÞ (C4)

where Anl ¼ 1:4. The factor Qnl is determined from the
galaxy catalog itself, and we adopt the value obtained by
the Sloan Digital Sky Survey Luminous Red Galaxies of
Qnl ¼ 31 [71]. The linear and nonlinear angular power

spectra of surveys with zpeak ¼ 0:1, 0.2 and 0.4 are shown

in Fig. 3.

APPENDIX D: MOCK CATALOG GENERATION

A density map is constructed in the following way:
(1) The theoretical power spectrum (based on the SDSS

power spectrum) is calculated for a�CDM universe
for a given set of cosmological parameters. The
amplitude of the spectrum is determined by the
redshift distribution of sources, dN=dz, which is
assumed to be a Gaussian peaking at zpeak. The

theoretical power spectra for the three cases
considered (zpeak ¼ 0:1, 0.2 and 0.4) are shown in

Fig. 3.
(2) A set of a‘m are drawn randomly from a distribution

centered at zero with variance Cth
‘ , so that a‘m 2

Nð0; C‘Þ. The corresponding power spectrum is de-
noted Crealiz

‘ � P
mja‘mj2.

(3) The HEALPIX routine ALM2MAP is used to generate a
density map of 12Nside

2 pixels from the input a‘m.
Initially we use a high pixelization of Nside ¼ 64 to
produce a smoother density field.

(4) The density map generated in the above manner is
used as the basis for constructing each realization of
a galaxy survey as follows: The density map is
populated with Ng ‘‘galaxies’’ (i.e., points) so that

the fraction of sources allocated to each pixel rep-
resents the underlying average fluctuation in density
around the mean. Given that we would like to in-
vestigate the impact of the number of galaxies in the
survey and sky coverage of the survey separately,
regardless of the sky cut we first create full maps
with the number of galaxies of Ng=fsky, so that the

total number of galaxies on the cut sky will be a
fixed Ng.

(5) In order to speed up the computation (which re-
quires inversion of matrices of size Npix � Npix

where Npix ¼ 12N2
side), we downgrade the maps to

a lower resolution using the HEALPIX routine
UDGRADE. The cost of the reduced accuracy in the

reconstruction due to the downgrading process is
considered in Sec. VC.

(6) In cases where we are simulating a masked sky, we
remove (i.e., set to zero counts) galaxies in the
isolatitude cut of 	4:5� or 	9�.

(7) Elements of the noise matrix N are initially esti-
mated using the measured map. In the subsequent
iterations, the elements are computed using the re-
constructed a‘m. We perform three such iterations of
the reconstruction and update the a‘m at each step.
Convergence is tested.

The above process is repeated 300 times to produce a set
of realizations from which the necessary statistics can be
calculated.

2A Bessel transform is equivalent to a two-dimensional
Fourier transform but with a radially symmetric integral kernel.
They arise from solving Laplace’s equation in spherical coor-
dinates and are related to ordinary Bessel function of the same
kind J by jnðxÞ ¼

ffiffiffiffi
�
2x

p
Jnþ1=2ðxÞ.
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