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We reconsider quantum gravitational threshold corrections to the unification of fermion masses in grand

unified theories. We show that the running of the Planck mass can have a sizable effect on these thresholds

that are thus much more important than naively expected. These corrections make any extrapolation from

low energy measurements challenging.
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There are several hints that the strong and electroweak
forces unify at some very large energy typically assumed to
be at around 1016 GeV. The quantum fields of the standard
model fit nicely into simple representations of a grand
unified theory [1] such as e.g. SUð5Þ or SOð10Þ. The idea
of unification is extremely attractive for several reasons.
For example, a grand unification drastically reduces the
number of independent coupling constants. Furthermore,
when extrapolated using renormalization group equations,
the value of the strong and electroweak interactions mea-
sured at low energy seem to converge amazingly to some
common value at around 1016 GeV [2–4] if the standard
model is replaced by the minimal supersymmetric standard
model at around a TeV. An important feature of grand
unified theories is that they predict the existence of
many, potentially heavy, new particles. This is due to the
very nature of grand unified theories that need to be based
on groups large enough to incorporate the standard model
SUð3Þ � SUð2Þ �Uð1Þ groups. Besides having to be large
as such, unified theories often incorporate multiplets with a
large number of fields to obtain viable phenomenology.
When the unified theory is supersymmetric, the number of
fundamental fields is even larger. It has been argued that
the LHC data could be used to reconstruct, using renor-
malization group techniques, the fundamental grand uni-
fied theory, see e.g. [5], or differentiate between different
supersymmetry breaking patterns [5]. In [6,7] it was shown
that there are potentially sizable quantum gravitational
corrections to the unification conditions for the gauge
couplings of the standard model. The thresholds have
been known for a while [8–11], but it had not been realized
that they could potentially be larger than the two-loop
corrections [6]. The aim of this work is to show that this
quantum gravity blur has a similar effect on the unification
conditions for the masses of the fermions in a grand unified
framework.

An important consequence of the large number of fun-
damental fields mentioned above, which can easily reach
1000, is that the scale at which quantum gravitational
effects are expected to become large is not necessarily as

expected some 1019 GeV but is given by the renormalized
Planck mass:

Mð�Þ2 ¼ Mð0Þ2 � �2

12�
ðN0 þ N1=2 � 4N1Þ; (1)

with Mð0Þ being the Planck mass at low energy, i.e.
Newton’s constant is given by G ¼ Mð0Þ�2, and N0,
N1=2, and N1 are, respectively, the numbers of real scalar

fields, Weyl spinors, and spin-one vector bosons.
If the strength of gravitational interactions is scale de-

pendent, the scale �� at which quantum gravity effects are
large is the one at which

Mð��Þ ���: (2)

It was shown in [12] that the presence of a large number of
fields can dramatically impact the value��. In many grand
unified models, the large number of fields can cause the
true scale �� of quantum gravity to be significantly lower
than the naive value MPl � 1019 GeV. In fact, from the
above equations, one finds

�� ¼ MPl=�; (3)

where, for a theory with N � N0 þ N1=2 � 4N1,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N

12�

s
: (4)

In [6], quantum gravity effects have been shown to affect
the unification of gauge couplings (see [8–11,13–18], for a
nonexhaustive list of papers). The lowest order effective
operators induced by a quantum theory of gravity are of
dimension five, such as [8,9]

c

�̂�
TrðG��G

��HÞ; (5)

where G�� is the grand unified theory field strength and H

is a scalar multiplet. This operator is expected to be in-
duced by strong nonperturbative effects at the scale of
quantum gravity, so has coefficient c�Oð1Þ and is sup-

pressed by the reduced true Planck scale �̂� ¼ ��=
ffiffiffiffiffiffiffi
8�

p ¼
M̂Pl=� with M̂Pl ¼ 2:43� 1018 GeV.
The importance of gravitational effects were illustrated

in [6] using the example of SUSY-SUð5Þ. Operators
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similar to (5) are present in all grand unified theory models
and an equivalent analysis applies.

In SUð5Þ the multiplet H in the adjoint representation
acquires, upon symmetry breaking at the unification

scale MX, a vacuum expectation value hHi ¼
MXð2; 2; 2;�3;�3Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

50��G

p
, where �G is the value of

the SUð5Þ gauge coupling atMX. Inserted into the operator
(5), this modifies the gauge kinetic terms of SUð3Þ �
SUð2Þ �Uð1Þ below the scale MX to

� 1
4ð1þ �1ÞF��F

��
Uð1Þ � 1

2ð1þ �2ÞTrðF��F
��
SUð2ÞÞ

� 1
2ð1þ �3ÞTrðF��F

��
SUð3ÞÞ (6)

with

�1 ¼ �2
3
¼ � �3

2
¼

ffiffiffi
2

p
5

ffiffiffiffi
�

p c�ffiffiffiffiffiffiffi
�G

p MX

M̂Pl

: (7)

After a finite field redefinition Ai
� ! ð1þ �iÞ1=2Ai

� the

kinetic terms have familiar form, and it is then the corre-

sponding redefined coupling constants gi!ð1þ�iÞ�1=2gi
that are observed at low energies and that obey the usual
renormalization-group equations below MX, whereas it is
the original coupling constants that need to meet at MX in
order for unification to happen. In terms of the observable
rescaled couplings, the unification condition therefore
reads

�G ¼ ð1þ �1Þ�1ðMXÞ ¼ ð1þ �2Þ�2ðMXÞ
¼ ð1þ �3Þ�3ðMXÞ: (8)

In was shown in [6] that the effects can be larger than the
two loop effects considered in e.g. [4] and that it could
either invalidate claims of a perfect unification SUSY-
standard model or on the contrary help to unify models
which apparently would not unify their gauge couplings.

In this work we point out that the same physical effect
can have important implications for fermion masses. Again
we will be using a simple SUð5Þ model to make our point
more explicit, but our results can be trivially generalized to
any grand unified theory. One of the most interesting
predictions of a grand unified theory, besides the unifica-
tion of the gauge couplings at the unification scale, is the
unification of some of the fermion masses at the unification
scale. Fermion masses are generated by the Yukawa inter-
actions. For example, in the simple SUð5Þ grand unification
model with a Higgs boson in the 5 representation, one has

L ¼ fGd
��c
jR�

j
kLH

kð5Þ þGu"jklmn
��cjk
L �lm

L Hnð5Þg þ H:c:

(9)

¼ � 2Mwffiffiffi
2

p
g2

½Gdð �ddþ �eeÞ þGu8ð �uuÞ�; (10)

and one obtains

mdðMXÞ ¼ meðMXÞ ¼ � 2Mwffiffiffi
2

p
g2

Gd; (11)

where Mw is the W-boson mass, g2 the SUð2Þ gauge
coupling, and Gi are Yukawa couplings. This is one of
the most exciting results of grand unified theories, namely,
at the unification scale MX the masses of the down-type
quarks are equal to the masses of the charged leptons,
while the mass of the u-type quarks are not related to other
parameters of the model. The up-type quark masses are

given by muðXÞ ¼ � 16Mwffiffi
2

p
g2
Gu at the unification scale.

In analogy to (5), there are also dimension five operators
which can affect the fermions masses. They were consid-
ered a while ago by Ellis and Gaillard [19] (see also [20])

c

�̂?

����H þ H:c:; (12)

where � are fermion fields, � and H some scalar bosons
multiplets chosen in appropriate representations. In a sim-
ple SUð5Þ toy model with scalar fields in the 24 and 5
representations, one gets

O 5 ¼ a1
�̂?

f�mn
�fmkHl

k�
n
l g þ

a2
�̂?

f�mnH
mk �flk�

n
l g

þ a3
�̂?

"mnpqlf�mn�pqHk�
k
l g; (13)

where� and f are fermion fields in 10 and 5, respectively.
These operators have been studied extensively; see e.g.
[21] and references therein for more recent works in that
direction. However, the renormalization group improve-
ment considered here has not been previously studied.
In SUð5Þ, the values of the expectations value of �ð24Þ
and Hð5Þ are fixed by the requirement that the
grand unified theory be broken at some 1016 GeV, i.e.
h�ð24Þi � 1016 GeV and that the spontaneous symmetry
breaking of the electroweak interactions takes place at the
weak scale, i.e. hHð5Þi ¼ 246 GeV.
These operators lead to a modification of the unification

condition for the down-type quarks and their respective
charged leptons. One finds

mdðMXÞ½1þ 3
2�1 � �2� ¼ meðMXÞ½1þ 3

2�1 þ 3
2�2�; (14)

with

�i ¼ �2
ffiffiffi
2

p
5Gdgu

MX

�MPl

ai�; (15)

where gu is the unified coupling constant. We note that
u-type quark masses do receive a correction due to one of
these operators:

muðMXÞð1� 3
2�3Þ: (16)

Clearly since the scale �̂?, i.e., the effective reduced
Planck mass, is very poorly known and depends of the
number of fields in the unified theory, it is very difficult to
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argue that these quantum gravitational effects can be ne-
glected. While in this simple SUð5Þ model � is only equal
to 0.74 as shown in [7] � can easily be as large as 8 in
SOð10Þ models. The running of the Planck mass has thus
potentially a large impact on the splitting at the unification
scale of the down-type quarks and down-type leptons. It
is easy to evaluate the magnitude of the effect. One finds
�i � 10�2ai=Ge�, where we used �u � 1=40 and
MX= �MPl � 10�2. Even if the ai are as tiny as the corre-
sponding Yukawa couplings, one can get a 10% effect for
grand unified theories with a large matter content and thus
large �. Once again we see that renormalization effects of
the Planck mass can have sizable effects on the unification
conditions of grand unified theories.

It is easy to generalize our results to other grand
unified theories. For example, in supersymmetric SUð5Þ
with Higgs fields in the 24, 5, and �5 representations, the
Yukawa couplings including dimension five operators sup-
pressed by the effective reduced Planck mass are given by

W ¼ 1

4
�abcde

�
Yij
1 10

ab
i 10cdj He þ 1

�̂?

fij1 10
ab
i 10cdj �e

fH
f

þ 1

�̂?

fij2 10
ab
i 10cfj Hd�e

f

�
þ ffiffiffi

2
p �

Yij
2
�Ha10

ab
i 5�jb

þ 1

�̂?

hij1
�Ha�a

b10
bc
i 5�jcþ

1

�̂?

hij2
�Ha10abi �b

c5
�
jc

�
; (17)

where 10 ¼ ðQ; uc; ecÞ and 5? ¼ ðdc; LÞ are the chiral
matter multiplets. Using the results of [22], we find

Yd � Ye ¼ 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50��G

p MX

�̂?

h2 (18)

for the new unification condition. Note that in SUSY
SUð5Þ, the value of � is typically between 2.3 and 4.4
depending on the choice of representations for the Higgs
bosons [7].

SOð10Þ grand unified theories offer even more options.
If one considers, for example, a SUSY SOð10Þ model with

Higgs bosons in the 10, 126, and 210 representations as in
[23], one has to consider terms of the type c cH� where
c stands for the fermions in the 16 representation of

SOð10Þ, H for the Higgs bosons in the 120 of SOð10Þ,
and � for the Higgs bosons in the 210 of SOð10Þ. These
terms lead to corrections to the unification condition of the
masses of the type [23]

1

�̂?

c c hHih�i ¼ MX

�̂?

vtð �uRuL þ ��R�LÞ

þ vb

MX

�̂?

ð �dRdL þ �eReLÞ; (19)

with vt ¼ v1 þ iv2 and vb ¼ �v1 � iv2 with v1 ¼ hH9i
and v2 ¼ hH0i. For comparison, the renormalizable
Yukawa mass term yields

c c hHi ¼ vtð �uRuL þ ��R�LÞ � vbð �dRdL þ �eReLÞ: (20)

Clearly, the nonrenormalizable operators can have a siz-
able impact on the unification condition. In SOð10Þ, the
value of � varies between 3.5 and 8.1, again, depending on
the representations introduced in the model [7].
There are several implications of these results. Without a

precise knowledge of the quantum gravitational correc-
tions, i.e. of the full theory of quantum gravity, it is very
difficult to extrapolate from low energy measurements to
check whether fermion masses unify or not. This casts
some doubts concerning the feasibility of reconstructing
the parameters of a grand unified theory by using low
energy measurements performed at the large hadron col-
lider. On the other hand, these threshold effects can help to
explain the low energy pattern of fermion masses and can
revive models that naively would predict the incorrect
pattern in the low energy regime.
As a summary, we have reconsidered quantum gravita-

tional threshold effects studied a long time ago by Ellis and
Gaillard. We have shown that the running of the Planck
mass can have a sizable effect and that these threshold
corrections are much more important than naively ex-
pected. This result is in line with our previous observations
concerning the quantum gravitational threshold corrections
to the unification of the coupling constants of the standard
model.
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