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A nonperturbative construction of the 3-point fermion-boson vertex which obeys its Ward-Takahashi or

Slavnov-Taylor identity, ensures the massless fermion and boson propagators transform according to their

local gauge covariance relations, reproduces perturbation theory in the weak coupling regime and

provides a gauge independent description for dynamical chiral symmetry breaking and confinement

has been a long-standing goal in physically relevant gauge theories such as quantum electrodynamics

(QED) and quantum chromodynamics. In this paper, we demonstrate that the same simple and practical

form of the vertex can achieve these objectives not only in 4-dimensional quenched QED but also in its

3-dimensional counterpart. Employing this convenient form of the vertex ansatz into the Schwinger-

Dyson equation for the fermion propagator, we observe that it renders the critical coupling in

4-dimensional quenched QED markedly gauge independent in contrast with the bare vertex and improves

on the well-known Curtis-Pennington construction. Furthermore, our proposal yields gauge independent

order parameters for confinement and dynamical chiral symmetry breaking in 3-dimensional quenched

QED.
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I. INTRODUCTION

Schwinger-Dyson equations (SDEs) are the funda-
mental field equations of any quantum field theory. As
their derivation requires no recourse to the value of the
interaction strength, they are ideally suited for perturbative
as well as nonperturbative realms of basic interactions.
In particular, they provide an excellent framework for a
unified description of those field theories for which the
evolution of the beta function encodes diametrically op-
posed dynamics simultaneously: asymptotic freedom in
the ultraviolet and dynamical chiral symmetry breaking
(DCSB) and confinement in the infrared. Consequently,
continuum studies of the long-range behavior of quantum
chromodynamics (QCD), where effective degrees of free-
dom are mesons and baryons, have been vastly carried out
through SDEs. It also allows to extract predictions for the
transition region where perturabtive and nonperturbative
facets of QCD coexist as well as for the short distance
physics where the fundamental degrees of freedom are
quarks and gluons.

Some original works on DCSB in QCD through SDEs
can be dated back to [1,2]. The most natural and practical
truncation of the infinite set of these equations is carried
out at the level of the fermion-boson vertex, see for ex-
ample [3–6] for detailed discussions on the subject. The
rainbow-ladder truncation is sufficient to reproduce a large
body of existing experimental data on pseudoscalar and
vector mesons such as their masses, charge radii, decay
constants and scattering lengths as well as their form
factors and the valence quark distribution functions [7–17].

However, a fully dressed 3-point fermion-boson vertex
is required to extend the domain of success provided by the

SDEs within their unified description of hadronic physics.
For example, although the �- and �-mesons are described
rightfully by the rainbow-ladder truncation, their parity
partners, namely, the �- and the a1-mesons are not. The
underlying reason has been recently discovered to be
linked with the fact that DCSB generates a large dressed-
quark anomalous chromomagnetic moment. As a result,
spin-orbit splitting between ground-state mesons is dra-
matically enhanced. This is the mechanism responsible for
a magnified splitting between parity partners. The essen-
tially nonperturbative corrections to the rainbow-ladder
truncation largely cancel in the pseudoscalar and vector
channels but add constructively in the scalar and axial-
vector channels, providing a clear signal to go beyond the
rainbow-ladder for these mesons, [18,19].
On the theoretical side, research efforts spanning a

couple of decades on various gauge field theories such as
scalar QED [20–22], spinor QED [23–29], field theories in
different space-time dimensions [30–34] and QCD [35–37]
have revealed that gauge invariance [25,26,30,38,39],
gauge covariance (which is a statement of multiplicative
renormalizability of the 2-point function in 4 dimensions)
[24,40] and perturbation theory [20,23,27,33,41,42] im-
pose severe constraints on the fermion-boson interaction.
The gauge technique of Delbourgo and Salam [43–46],
introduced decades earlier, was in fact developed to ad-
dress some of these constraints, namely, the ones which
stem from gauge invariance. This technique culminated in
formal results for the fermion-boson vertex expressed in
terms of spectral functions [47,48]. However, this approach
is cumbersome in practical calculations of the fermion
propagator [49,50].
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All the studies to-date imply that the 3-point vertex proj-
ected onto the propagator equations is largely determined
by the behavior of the fermion propagator itself and not by
the knowledge of the higher-point functions. There exist
numerous ansätze for the transverse part of the vertex
(which remains unfixed by the constraints of gauge invari-
ance) involving different forms of the functional depen-
dence on the 2-point functions, depending upon the case at
hand. In this article, we provide first steps towards a unified
approach for this truncation, applicable to different prob-
lems. We employ a simple and practical form for the full
fermion-boson vertex which respects its Ward-Takahashi
identity, yields a fermion propagator which respects its
gauge covariance properties, has the correct charge con-
jugation properties and also reproduces its asymptotic
perturbative limit both in QED3 and QED4. Moreover, it
not only renders the critical coupling in qQED4 markedly
gauge independent [38] in contrast with the bare vertex and
improves on the Curtis-Pennington vertex [24] but also
yields gauge independent order parameters for confine-
ment and DCSB in qQED3.

This paper is organized as follows: In Sec. II we decom-
pose the full fermion-boson vertex into its longitudinal and
transverse parts, invoking Ward-Takahashi identity (WTI)
for QED. Employing a simple ansatz for the transverse
vertex based upon the key features of qQED4 reduces the
gauge dependence of the critical coupling [38] in compari-
son with even one of the most sophisticated vertices con-
structed to date, namely, the Curtis-Pennington vertex [24].
In Sec. III, we use the same functional form of the ansatz to
study DCSB and confinement in qQED3. The correspond-
ing order parameters are again found to be gauge indepen-
dent. We provide a convincing comparison with the results
obtained by employing the Curtis-Pennington vertex [24]
as well as the Burden-Roberts vertex [51]. Conclusions and
plans for further work are presented in Sec. IV.

II. TRANSVERSE VERTEX: DCSB IN QED4

The SDE for the fermion propagator in QED is ex-
pressed as

S�1
F ðpÞ ¼ Sð0Þ�1

F ðpÞ

� 4�i�
Z ddk

ð2�Þd �
�SFðkÞ��ðk; pÞ���ðqÞ; (1)

in arbitrary space-time dimensions d. Here � is the elec-
tromagnetic coupling (dimensional for d � 4), SFðpÞ is the
fermion propagator, Sð0ÞF ðpÞ is its bare counterpart, ���ðqÞ
(with q ¼ k� p) is the gauge boson propagator and
��ðk; pÞ is the fermion-boson vertex. We can write the
fermion propagator in the following equivalent forms:

SFðpÞ ¼ �Vðp2Þ6pþ �Sðp2Þ ¼ FðpÞ
6p�MðpÞ

¼ FðpÞð6pþMðpÞÞ
p2 �M2ðpÞ ; (2)

FðpÞ being the fermion wavefunction renormalization and
MðpÞ, the mass function. Correspondingly, we can write

Sð0ÞF ðpÞ ¼ 1=ð6p�mÞ, where m denotes the bare fermion
mass. In this article, we work in the chiral limit by setting
m ¼ 0. In quenched QED, the full gauge boson propagator
receives no radiative corrections, i.e.,

���ðqÞ ¼ �ð0Þ
��ðqÞ ¼ � 1

q2

�
g�� þ ð�� 1Þ q�q�

q2

�
;

where � is the usual covariant gauge parameter such that
� ¼ 0 corresponding to the Landau gauge. To be able to
solve the gap Eq. (1), we must know the explicit form of
the fermion-boson interaction ��ðk; pÞ. It is related to the
fermion propagator through the WTI:

q��
�ðk; pÞ ¼ S�1

F ðkÞ � S�1
F ðpÞ: (3)

This identity motivates a natural decomposition of the
vertex into its longitudinal and transverse parts,

��ðk; pÞ ¼ �
�
L ðk; pÞ þ �

�
T ðk; pÞ; (4)

where the transverse vertex is defined to be such that
q��

�
T ðk; pÞ ¼ 0 and ��ðp; pÞ ¼ 0. Following Ball and

Chiu, we choose the longitudinal part of the vertex to be
[23],

��
L ðk; pÞ ¼

��

2

�
1

FðkÞ þ
1

FðpÞ
�
þ 1

2

ð6kþ 6pÞðkþ pÞ�
ðk2 � p2Þ

�
1

FðkÞ �
1

FðpÞ
�
� ðkþ pÞ�

ðk2 � p2Þ
�
MðkÞ
FðkÞ �

MðpÞ
FðpÞ

�
;

� aðk2; p2Þ�� þ bðk2; p2Þð6kþ 6pÞðkþ pÞ� þ cðk2; p2Þðkþ pÞ�: (5)

The transverse part is conveniently expressed as [23]

BASHIR, RAYA, AND SÁNCHEZ-MADRIGAL PHYSICAL REVIEW D 84, 036013 (2011)

036013-2



��
T ðk; pÞ ¼

X8
i¼1

	iðk2; p2; q2ÞT�
i ðk; pÞ; (6)

where the basis vectors are defined to be

T�
1 ¼ p�ðk � qÞ � k�ðp � qÞ

T�
2 ¼ ½p�ðk � qÞ � k�ðp � qÞ�ð6kþ 6pÞ

T�
3 ¼ q2�� � q� 6q

T�
4 ¼ ½p�ðk � qÞ � k�ðp � qÞ�k
p��
�

T�
5 ¼ q��

��

T�
6 ¼ ��ðp2 � k2Þ þ ðpþ kÞ� 6q

T�
7 ¼ 1

2
ðp2 � k2Þ½��ð6pþ 6kÞ � p� � k��

þ ðkþ pÞ�k
p��
�

T�
8 ¼ ���k�p
��
 þ k� 6p� p� 6k

(7)

with ��� ¼ ½��; ���=2. This special choice of the trans-
verse vertex was put forward by Ball and Chiu [23].
They carried out a one-loop calculation of the fermion-
boson vertex in the Feynman gauge. They found the
transverse vertex to be independent of any kinematic
singularities when k2 ! p2. The above choice of the trans-
verse basis guarantees that the coefficient of every individ-
ual basis vector in the Feynman gauge is also free of these
singularities. It was later pointed out in [27] that this
attractive feature of the basis no longer prevails beyond

the Feynman gauge even at the one-loop level. How-
ever, one can rearrange the basis vectors to restore this
quality.
In articles [25,26], Bashir and Pennington proposed a

family of transverse vertices, which, by construction,
render the critical value of electromagnetic coupling,
above which chiral symmetry is restored, completely
gauge independent. However, the form of the resulting
vertex involves intricate dependence on the elements
which define the fermion propagator. Hence its imple-
mentation away from the critical coupling is not computa-
tionally economical. The same is true for the more recent
and complete construction provided in [28] which in-
volves the photon momentum q in its construction.
However, it is clear from the perturbative calculation in
[42] that an explicit q2 dependence occurs in every term of
each of the 	i. Therefore, we should keep in mind that
whenever we neglect the q2 dependence, we are only
referring to an effective vertex. However, there exists an
exact relation between the real 	iðk2; p2; q2Þ and the effec-
tive 	effi ðk2; p2Þ as spelled out in [32], and utilized in [28].
Before we outline this relation, we also demand that a
chirally-symmetric solution should be possible when the
bare mass is zero, just as in perturbation theory. This is
most easily accomplished if only those transverse vectors
with odd numbers of gamma matrices contribute to the
transverse vertex. Then the sum in Eq. (6) involves just
i ¼ 2, 3, 6 and 8. In the chirally symmetric limit, Eq. (1)
yields

1

Fðp2Þ ¼ 1� e2

p2

Z ddk

ð2�Þd
Fðk2Þ
k2q2

�
aðk2; p2Þ 1

q2
½ð1� dÞq2ðk � pÞ � 2�2� þ bðk2; p2Þ 1

q2
½�2�2ðk2 þ p2Þ�

� �

Fðp2Þ
p2

q2
ðk2 � k � pÞ þ 	2ðk2; p2; q2Þ½��2ðk2 þ p2Þ� þ 	3ðk2; p2; q2Þ½ðd� 1Þq2ðk � pÞ þ 2�2�

� 	6ðk2; p2; q2Þ½ðd� 1Þðk2 � p2Þk � p� � 	8ðk2; p2; q2Þ½�2ðd� 2Þ�
�
; (8)

where �2 ¼ ðk � pÞ2 � k2p2. At this stage, it appears
impossible to proceed any further without demanding
that the 	i be independent of the angle between the
fermion momentum vectors k and p, i.e., independent of
q2. This assumption allows us to carry out the angular
integration. In order to distinguish the transverse compo-
nents which are assumed to be independent of q2 from the
real ones which explicitly depend on q2, we can denote
the former by 	effi . The equation which then emerges after
the angular integration can be compared to Eq. (8),
giving rise to the following exact relation in arbitrary
dimensions:

	eff2 ¼
Z

dc
sind�2c

q2
	2½��2�

	eff3 ¼
Z

dc
sind�2c

q2
	3½2�2 þ ðd� 1Þðk � pÞq2�

	eff6 ¼
Z

dc
sind�2c

q2
	6½k � p�

	eff8 ¼
Z

dc
sind�2c

q2
	8½�2�:

(9)
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For the desired convenience, we have used the compact
notation 	effi ðk2; p2Þ ¼ 	effi and 	iðk2; p2; q2Þ ¼ 	i. This
relationship, of course, depends upon the space-time
dimension d. It allows us to propose an ansatz for an
effective but simple q2� independent vertex which fulfills
the general requirements that any transverse vertex must
satisfy:

��
T ðk; pÞ ¼

X
i¼2;3;6;8

	effi ðk2; p2ÞT�
i ðk; pÞ; (10)

where

	eff2 ðk2; p2Þ ¼ ad2
ðk4 � p4Þ

�
1

FðkÞ �
1

FðpÞ
�
; (11)

	eff3 ðk2; p2Þ ¼ ad3
ðk2 � p2Þ

�
1

FðkÞ �
1

FðpÞ
�
; (12)

	eff6 ðk2; p2Þ ¼ ad6ðk2 þ p2Þ
ðk2 � p2Þ2

�
1

FðkÞ �
1

FðpÞ
�
; (13)

	eff8 ðk2; p2Þ ¼ ad8
ðk2 � p2Þ

�
1

FðkÞ �
1

FðpÞ
�
: (14)

This construction draws on a direct comparison with the
structural dependence of the longitudinal vertex on the
elements which make up the fermion propagator. Special
care has been taken such that the perturbative limit of the
transverse vertex conforms with its one-loop expansion in
the asymptotic limit of k2 � p2. Moreover, it is required to
transform correctly under the charge conjugation and par-
ity operations.

Because of the dimension-dependence of the exact con-
nection of these effective 	iðk2; p2Þ with the real
	iðk2; p2; q2Þ, the least we expect is that the coefficients
adi would depend on the space-time dimensions, justifying
the use of the symbol. In 4 space-time dimensions, pa-
rameters ai are constrained by the requirement of multi-
plicative renormalizability of the massless fermion
propagator in the following manner:

1þ a42 þ 2a43 þ 2a48 � 2a46 ¼ 0: (15)

Additionally, one-loop perturbative calculation of the
transverse fermion-boson vertex in an arbitrary covariant
gauge reveals that

��
T ðk; pÞ ¼k2�p2

���

8�
ln
k2

p2

�
�� � k� 6k

k2

�
: (16)

This perturbative condition imposes the following con-
straint on the ai:

a 4
3 þ a46 ¼

1

2
: (17)

It is worth noting that the choice a46 ¼ 1=2, a43 ¼ 0
corresponds to the Curtis-Pennington vertex [24]. En-
joying a broader choice of available parameters, which
also includes a42 and a48 (taken to be zero in [24]), we

expect to construct an improved truncation of the SDEs.
It is easy to verify that with the choice of the transverse
vertex defined by

a 4
6 ¼ � 1

2
and a42 ¼

11

4
(18)

and then inserted into the gap Eq. (1), that the critical value
of the coupling for masses to be dynamically generated,
i.e., �c, turns out to be considerably more gauge indepen-
dent for a broad range of values of the covariant gauge
parameter � not only as compared to the bare vertex but
also to the Curtis-Pennington vertex by a fair amount of
margin [24,38]. This has been depicted in Fig. 1. We now
turn our attention to QED3.

III. GAUGE INDEPENDENCE IN QED3

Quantum electrodynamics in (2þ 1)-dimensions, i.e.
QED3, is an interesting theory. It exhibits confinement
and DCSB. Therefore, for the last three decades, it has
served as a toy model for QCD to deepen our understand-
ing of these fascinating yet complicated phenomena
through the efficient tools of SDEs as well as lattice
[52–64]. It is also of interest in condensed matter physics
as an effective field theory for high-temperature super-
conductors [65–69] and graphene [70–72].
In all gauge theories including QED3, among the cova-

riant gauges, Landau gauge occupies a special place for a
number of theoretical reasons: wavefunction renormaliza-
tion receives no contribution at the one-loop level in any

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

α c

ξ

Bare
Eq. (18)
CP

FIG. 1 (color online). Critical coupling in QED4 as a function
of the gauge parameter. The choice of the vertex suggested in
Eq. (18) renders the critical coupling in qQED4 markedly gauge
independent in contrast with the bare vertex and also improves
on the Curtis-Pennington (CP) vertex.
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space-time dimensions [34],1 it is a fixed-point of the re-
normalization group and it is the gauge inwhich the infrared
behavior of the fermion propagator is neither enhanced
nor suppressed by a nondynamical gauge-dependent expo-
nential factor arising from a gauge transformation, as dic-
tated by the Landau-Khalatnikov-Fradkin transformations
(LKFT) [73–76]. Therefore, one stands the best chance to
provide a reliable ansatz of the fermion-boson vertex in this
gauge than in any other. Results can then be simply trans-
lated to other gauges bymeans of the LKFT. Such a strategy
is a bit involved to implement for d ¼ 4. However, it has
successfully been applied in QED3 in Refs. [77–82].

However, the fact remains that an LKFT for the fermion
propagator as well as the 3-point vertex itself must con-
spire in such a manner as to yield a full 3-point vertex
which would render physical observables independent of
the gauge parameter, no matter what gauge we choose to
work with. Precisely with this idea in mind, we presented
the construction of the vertex in QED4 in the previous
section. We now ask ourselves whether the same form of
the vertex would be sufficient to implement gauge invari-
ance in three space-time dimensions. This implies finding
ai in d ¼ 3 dimensions. For d ¼ 3, one-loop perturbative
calculation of the transverse fermion-boson vertex in an
arbitrary covariant gauge comes out to be

�
�
T ðk; pÞ ¼k2�p2

����

8p

�
�� � k� 6k

k2

�
: (19)

Interestingly, just as for d ¼ 4, we again have:

a 3
3 þ a36 ¼

1

2
(20)

in 3-dimensions. Similarly, the condition for the multi-
plicative renormalizability translates as the one of LKFT
for the fermion propagator. Therefore, we now proceed to
solve the gap equation in QED3 by employing the same
form of the vertex as for QED4. Our starting point is to
explore the configuration space of a2 and a6 in the Landau
gauge. Then, we change the gauge parameter infinitesi-
mally and repeat the same exercise. We look for the
domain in the a2=a6-plane for which the difference of
the condensate,

�� ¼ h �c c i� � h �c c i�¼0; (21)

is minimal. This is illustrated in Fig. 2. Within our numeri-
cal accuracy, different surfaces for fixed � intersect along a
line parametrized by

a 3
2 ¼ 3:81� 7:6a36: (22)

Thus, there is a family of vertex ansätze which yield a
gauge invariant value of the condensate! Below we carry
out a study of DCSB and confinement by selecting one

member of this family of vertices. A priori, there is no
guarantee that gauge independent DCSB should imply
gauge independent confinement or vice versa.

A. DCSB

In order to make contact with our studies in QED4, we
select the value of a32 ¼ 2:75 and define our vertex by
fixing a6 according to Eq. (22). With the choice of this
vertex, we solve the gap equation in different gauges.
Results are shown in Fig. 3.
The mass functions change only slightly, whereas the

variation in FðpÞ is more noticeable. These changes con-
spire with each other to render the chiral fermion conden-
sate gauge independent. We carry out a comparison with
the same quantity obtained from the Curtis-Pennington
[24] vertex as well as the Burden-Roberts vertex [51].
The results have been plotted in Fig. 4, which clearly
demonstrate the superiority of our proposal over the pre-
vious similar efforts for the deconstruction of this Green
function.

B. Confinement

Confinement can be realized through the violation of the
axiom of reflection positivity. For the fermion propagator,
breach of the said axiom entails that the elementary exci-
tation described by SFðpÞ cannot appear in the Hilbert
space of observables. Confinement in QED3 can be ex-
plored through the positivity of the spatially averaged
Schwinger function2

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.5
1
1.5

2
2.5

3
3.5

4
4.5

5

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

δξ

ξ=0.5

ξ=1

ξ=1.5

a6

a2

δξ

FIG. 2 (color online). Gauge difference of the condensate as
compared to the Landau gauge, Eq. (21), over the a2=a6-plane.
Solid surface corresponds to � ¼ 0:05, dot-dashed surface to
� ¼ 1 and the dotted surface to � ¼ 1:5. Contour of gauge
independence of the condensate is along the straight line given
by Eq. (22). The scale of the height of the surfaces is set by the
value e2 ¼ 1.

1This is one reason why �� is a good choice for the vertex in
this particular gauge.

2An alternative test was performed in Refs. [83,84] for the
vector part of the propagator.
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�ðtÞ ¼
Z

d2x
Z d3p

ð2�Þ3 e
ip�x�sðp2Þ; (23)

which we construct from the solutions shown in Fig. 3. In
Fig. 5 we display the logarithm of the absolute value of
�ðtÞ in different gauges. An oscillatory behavior of this
function is revealed by the pronounced periodic peaks.
This implies that �ðtÞ is not positive definite and thus
confinement is realized. The corresponding propagator
possesses a pair of complex conjugated mass poles [85].
Denoting tc the position of the first oscillation, � ¼ 1=tc
serves as an order parameter for confinement [81,82,86].

-20

-15

-10
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0

20 40 60 80 100

ln
|∆

(t
)|

t

ξ=0

ξ=0.25

ξ=0.5

FIG. 5 (color online). Spatially averaged Schwinger function
in different gauges. Solid pentagons correspond to � ¼ 0, solid
diamonds to � ¼ 0:25 and solid squares to � ¼ 0:5. Oscillations
are inferred from the periodic peaks, which signal confinement.
Position of the first dip is an order parameter for confinement. It
is gauge invariant for our construction of the interaction.
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FIG. 4 (color online). Gauge dependence of the chiral quark
condensate for QED3. We compare our proposal against the ones
by Burden-Roberts as well as Curtis-Pennington.
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FIG. 3 (color online). Fermion propagator in different cova-
riant gauges. Solid line corresponds to � ¼ 0, dot-dashed line to
� ¼ 0:5 and dotted line to � ¼ 1. Upper panel: Wavefunction
renormalization FðpÞ. Lower panel: Mass function MðpÞ. The
scale of the curves is set by the value e2 ¼ 1.
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FIG. 6 (color online). The first derivative of �vðxÞ in various
gauges. The maximum developed by all these functions is the
order parameter, which is the same in all gauges within our
numerical accuracy.
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Noticeably, � is the same in all gauges, within our numeri-
cal accuracy. Thus confinement too has come out to be
gauge independent with our choice of the fermion-boson
vertex.

An alternative view of confinement stems from the fact
that any function with an inflection point must violate the
axiom of reflection positivity [82–84]. Let x ¼ p2. The
above statement then implies that if there exists a point
xc > 0 such that

d2

dx2
�vðxÞ

��������x¼xc

¼ 0; (24)

then the propagator describes a confined excitation, and xc
plays the role of an order parameter for confinement. In
Fig. 6, we plot the logarithm of the first derivative of �vðxÞ
in different gauges.We observe that all these curves develop
a maximum at the same point xc, which again means that
there is confinement, and the corresponding order parame-
ter is independent of choice of the covariant gauge �.

IV. CONCLUDING REMARKS

In this article, building upon the proposal put forward in
[38], we employ a simple form (e.g., it is independent of
the photon momentum q) for the fermion-boson vertex in
arbitrary dimensions. In 4-dimensions, it ensures WTI is
satisfied, massless fermion propagator is multiplicatively
renormalizable, one-loop perturbation theory is recovered
in the asymptotic limit k2 � p2, charge conjugation and
parity properties of the vertex are respected and gauge
independent value of critical electromagnetic coupling is
achieved below which chiral symmetry is restored. This
construction involves two free parameters which are mo-
mentum and gauge independent. However, the price we

pay for ignoring the photon momentum dependence in this
vertex ansatz is that these parameters naturally depend
upon the dimension of space-time we choose to work
with. We demonstrate that the same simple form of the
vertex is able to render the order parameters for DCSB and
confinement gauge invariant also in qQED3. We provide
explicit comparisons with earlier proposals such as the
Curtis-Pennington vertex (designed for d ¼ 4) as well as
the Burden-Roberts vertex (constructed for d ¼ 3) to bring
out the fact that our construction offers a marked
improvement.
This is a first step in our intent to provide a unified

truncation scheme for different gauge theories and a large
body of associated physical observables. A natural next
step is to extend our ideas to the SDE study of QCD. As
mentioned before, an improved understanding of hadronic
masses invokes additional structures in the fermion-boson
vertex involving anomalous electromagnetic and chromo-
magnetic moments for dynamically massive quarks in the
infrared. However, as a word of caution, one should re-
member that QCD is markedly more involved than QED3
as well as QED4. In covariant gauge QCD, ghosts play a
vital role for its infrared dynamics, at least in the Landau
gauge. Naturally, the ghost-gluon interaction also enters
into the picture and one has to take into account the
resulting complications with appropriate care. This work
is in progress.
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Phys. Conf. Ser. 287, 012028 (2011).

[85] G. Krein, C. D. Roberts, and A.G. Williams, Int. J. Mod.
Phys. A 7, 5607 (1992).

[86] F. T. Hawes, C. D. Roberts, and A.G. Williams, Phys. Rev.
D 49, 4683 (1994).
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