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The features of the hot and dense gas of quarks, which are considered as the quasiparticles of the model

Hamiltonian with a four-fermion interaction, are studied. Being adapted to the Nambu–Jona-Lasinio

model, this approach allows us to accommodate a phase transition similar to the nuclear liquid-gas one at

the proper scale and to argue the existence of the mixed (inhomogeneous) phase of vacuum and normal

baryonic matter as a plausible scenario of chiral symmetry (partial) restoration. Analyzing the transition

layer between two phases, we estimate the surface tension coefficient and speculate on the possible

existence of a quark droplet.
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I. INTRODUCTION

Notwithstanding the well-known incompletion of quan-
tum chromodynamics and its strongly limited capacity to
perform the nonperturbative calculations both in the vac-
uum and at finite temperature and baryonic density, one of
themajor predictions of this theory, the possible existence of
quark-gluon plasma, was so exciting and convincing that it
pushed forward a very active research programme in experi-
ments with relativistic heavy ions. In such a situation when
the applications which should usually be based on the stan-
dard interrelations between the hadronic properties and the
QCD Lagrangian parameters are merely impossible, but
the practical need in the quantitative estimates is dictated
by the running experiments, we are forced to be very peri-
stent and pragmatic in searching the effective Lagrangians.

The Nambu–Jona-Lasinio (NJL) model and its numer-
ous extensions are the most popular in this context because
they share some global symmetries of QCD and allow us to
make some serious difficulties and uncertainties faced in
the QCD calculations surmountable. It appears especially
appreciable and effective in studying the nature of nuclear
matter with its (super)dense state being treated as a model
of QCD at large quark chemical potential. Nowadays,
experiments in heavy-ion collisions, to a considerable
extent, are driven by the results of phenomenological in-
vestigations of the properties of nucleon-nucleon force and
the phase diagram of strongly interacting matter which
relies on the corresponding estimates of experimentally
measurable quantities.

Thus, exploring the QCD phase diagram with the effec-
tive models is targeted from the theoretical view point by
the necessity to find out some kind of interpolation between
the physics as conceived by the lattice QCD simulations

(still unrealistic for several reasons) and the physics outputs
of phenomenological studies. The vast activity (and prog-
ress) along this line [1], together with the recent experi-
mental results from the LHC and the Relativistic Heavy Ion
Collider [2], leads to the unexpected vision of still pending
questions and, perhaps, their new interpretation.
These and some related topics are discussed in this

paper, inspired by the well-known and fruitful idea about
the specific role of surface degrees of freedom in the finite
Fermi-liquid systems [3] and, to a considerable extent, by
our previous works [4,5] in which the quarks were treated
as the quasiparticles of the model Hamiltonian, and the
problem of filling up the Fermi sphere was studied in
detail. In particular, within the NJL model [6] new solution
branches of the equation for dynamical quark mass as a
function of chemical potential (the details are shown below
in Fig. 1) have been found. Besides, the existence and
origin of the state filled up with quarks, which is almost
degenerate with the vacuum state both in the quasiparticle
chemical potential and in the ensemble pressure, has been
demonstrated. In general, the approach developed may be
considered as another microscopical substantiation of the
bag model in which the states filled up with quarks might
be instrumental as a ‘‘construction material’’ for baryons.
Our analysis here is performed within two approaches

which are complementary, in a sense, but, fortunately, lead
to identical results. One of these approaches, based on the
Bogolyubov transformation, is especially informative for
studying the process of filling up the Fermi sphere because
the density of the quark ensemble develops a continuous
dependence on the Fermi momentum in this case. It allows
us to reveal an additional structure in the solution of the
gap equation for dynamical quark mass just in the proper
interval of parameters characteristic for the phase transi-
tion, and to trace its evolution. It results in the possibility
for the quark (fermionic) ensemble to be found in two
aggregate states, a gas and a liquid, and in the partial
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restoration of chiral the condensate in a liquid phase
(Sec. II). In order to make these conclusions easily percep-
tible, we deal with the simplest version of the NJL model
(with one flavor and one of the standard parameter sets).
We also try to construct a description of the transition layer
between the two phases and, in particular, to estimate the
surface tension coefficient (Sec. III) that is of obvious
importance in the context of discussing the possible quark
droplet formation (Sec. IV). Some technical moments of
calculating the mean energy functional are given in the
Appendix.

II. EXPLORING THE QUARK ENSEMBLE

Now, as an input for starting, we note the key elements
of the approach which has been developed in [4,5]. The
corresponding model Hamiltonian includes the interaction
term taken in the form of a product of two color currents
located in the spatial points x and y which are connected by
a form factor, and its density reads

H ¼ � �qði�rþ imÞq� �qta��q
Z

dy �q0tb��q
0hAa

�A
0b
� i;
(1)

where q ¼ qðxÞ, �q ¼ �qðxÞ, q0 ¼ qðyÞ, �q0 ¼ �qðyÞ are the
quark and antiquark operators,

q�iðxÞ ¼
Z dp

ð2�Þ3
1

ð2jp4jÞ1=2
½aðp; s; cÞu�iðp; s; cÞeipx

þ bþðp; s; cÞv�iðp; s; cÞe�ipx�; (2)

where p2
4 ¼ �p2 �m2; i is the color index; � is the spinor

index in the coordinate space; aþ, a and bþ, b are the
creation and annihilation operators of quarks and anti-
quarks; aj0i ¼ 0; bj0i ¼ 0; j0i is the vacuum state of the
free Hamiltonian; and m is the current quark mass. The
summation over indices s and c is meant everywhere,
the index s describes two spin polarizations of the quark,
and the index c plays a similar role for the color. As usual,
ta ¼ �a=2 are the generators of the SUðNcÞ color gauge
group. The Hamiltonian density is considered in Euclidean
space, and �� denote the Hermitian Dirac matrices, �,

� ¼ 1, 2, 3, 4. hAa
�A

0b
� i stands for the form factor of the

following form:

hAa
�A

0b
� i ¼ �ab 2 ~G

N2
c � 1

½Iðx� yÞ��� � J��ðx� yÞ�; (3)

where the second term is spanned by the relative distance
vector and the gluon field primed denotes that in the spatial
point y. The effective Hamiltonian density (1) results from
averaging the ensemble of quarks influenced by the inten-
sive stochastic gluon field Aa

�; see Ref. [4]. For the sake of

simplicity, we neglect the contribution of the second term
in (3) in what follows. The ground state of the system is
searched as the Bogolyubov trial function composed of the
quark-antiquark pairs with opposite momenta and with
vacuum quantum numbers, i.e.

j�i ¼ T j0i;
T ¼ �p;s expf’½aþðp; sÞbþð�p; sÞ þ aðp; sÞbð�p; sÞ�g:

(4)

In this formula and below, in order to simplify the nota-
tions, we refer to one compound index only, which means
both the spin and color polarizations. The parameter ’ðpÞ
which describes the pairing strength is determined by the
minimum of mean energy,

E ¼ h�jHj�i: (5)

By introducing the ‘‘dressing transformation’’ we de-
fine the creation and annihilation operators of quasipar-
ticles as A ¼ T aT �1, Bþ ¼ T bþT �1 and for fermions

T �1¼T y. Then the quark field operators are presented as

qðxÞ ¼
Z dp

ð2�Þ3
1

ð2jp4jÞ1=2
½Aðp; sÞUðp; sÞeipx

þ Bþðp; sÞVðp; sÞe�ipx�;

�qðxÞ ¼
Z dp

ð2�Þ3
1

ð2jp4jÞ1=2
½Aþðp; sÞ �Uðp; sÞe�ipx

þ Bðp; sÞ �Vðp; sÞeipx�;
and the transformed spinors U and V are given by the
following forms:

FIG. 1. The residual � for Eq. (15) is presented as a function
of dynamical quark mass Mq (MeV) at zero temperature and the

following values of chemical potential � (MeV)—335 (the
lowest curve), 340, 350, 360 (the top curve).
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Uðp; sÞ ¼ cosð’Þuðp; sÞ � sinð’Þvð�p; sÞ;
Vðp; sÞ ¼ sinð’Þuð�p; sÞ þ cosð’Þvðp; sÞ; (6)

where �Uðp; sÞ ¼ Uþðp; sÞ�4, �Vðp; sÞ ¼ Vþðp; sÞ�4 are the
Dirac conjugated spinors.

In Ref. [5] the process of filling in the Fermi sphere with
the quasiparticles of quarks was studied by constructing the
state of the Sletter determinant type

jNi ¼ Y
jPj<PF;S

AþðP; SÞj�i; (7)

which possesses the minimal mean energy over the state
jNi. The polarization indices run through all permissible
values here, and the quark momenta are bounded by the
limiting Fermi momentum PF. The momenta and polar-
izations of states forming the quasiparticle gas are marked
by capital letters, similar to the above formula, and the
small letters are used in all other cases.

As it is known, the ensemble state at finite temperature T
is described by the equilibrium statistical operator 	. Here
we use the Bogolyubov-Hartree-Fock approximation in
which the corresponding statistical operator is presented
by the following form:

	 ¼ e�
Ĥapp

Z0

; Z0 ¼ Trfe�
Ĥappg; (8)

where an approximating effective Hamiltonian Happ is

quadratic in the creation and annihilation operators of
quark and antiquark quasiparticles Aþ, A, Bþ, B, and is
defined in the corresponding Fock space with the vacuum
state j�i and 
 ¼ T�1. There is no need to know the
exact form of this operator, henceforth, because all the
quantities of our interest in the Bogolyubov-Hartree-Fock
approximation are expressed by the correspon-
ding averages nðPÞ ¼ Trf	AþðP; SÞAðP;SÞg, �nðQÞ ¼
Trf	BþðQ;TÞBðQ;TÞg which are obtained by solving
the following variational problem. The statistical operator
	 is defined by such a form in order to have the minimal
value of mean energy of the quark ensemble,

E ¼ Trf	Hg;
at the fixed mean charge

�Q 4 ¼ Trf	Q4g ¼ V2Nc

Z dp

ð2�Þ3 ½nðpÞ � �nðpÞ�; (9)

where

Q4 ¼ �
Z

dx �qi�4q

¼
Z dp

ð2�Þ3
�ip4

jp4j ½A
þðpÞAðpÞ þ BðpÞBþðpÞ�;

for the diagonal component (which is a point of interest
here) and at the fixed mean entropy (S ¼ � ln	),

�S¼�Trf	ln	g
¼�V2Nc

Z dp

ð2�Þ3 ½nðpÞ lnnðpÞþð1�nðpÞÞlnð1�nðpÞÞ
þþ �nðpÞln �nðpÞþð1� �nðpÞÞ lnð1� �nðpÞÞ�: (10)

The mean charge (9) is calculated here up to the unes-
sential (infinite) constant coming from permuting the
operators BBþ in the charge operator Q4. It is appropriate
here to note that the mean charge should be treated in
some statistical sense because it characterizes the quark
ensemble density and has no color indices. The mean
energy density per one quark degree of freedom
w ¼ E=ð2NcÞ, E ¼ E=V, where E is the total energy of
the ensemble calculated (the details of derivation can be
found in the Appendix) to get the following form:

w ¼
Z dp

ð2�Þ3 jp4j þ
Z dp

ð2�Þ3 jp4j cos�½nþ �n� 1� �G

�
Z dp

ð2�Þ3 sinð�� �mÞ½nþ �n� 1�

�
Z dq

ð2�Þ3 sinð�0 � �0mÞ½n0 þ �n0 � 1�I; (11)

where � ¼ 2’, �0 ¼ �ðqÞ, n0 ¼ nðqÞ, I ¼ Iðpþ qÞ, and
the angle �mðpÞ is determined by sin�m ¼ m=jp4j. We are
interested in minimizing the following functional:

� ¼ E�� �Q4 � T �S; (12)

where � and T are the Lagrange factors for the chemical
potential and temperature, respectively. The approximat-

ing Hamiltonian Ĥapp is constructed simply by using the

information on E�� �Q4 of the presented functional (see
also below). For the specific contribution per one quark
degree of freedom f ¼ F=ð2NcÞ, F ¼ �=V, we obtain

f ¼
Z dp

ð2�Þ3 ½jp4j cos�ðnþ �n� 1Þ ��ðn� �nÞ�

þ
Z dp

ð2�Þ3 jp4j �G
Z dp

ð2�Þ3 sinð�� �mÞðnþ �n� 1Þ

�
Z dq

ð2�Þ3 sinð�0 � �0mÞðn0 þ �n0 � 1ÞI þ T

�
Z dp

ð2�Þ3 ½n lnnþ ð1� nÞ lnð1� nÞ
þ �n ln �nþ ð1� �nÞ lnð1� �nÞ�: (13)

The optimal values of the parameters are determined by
solving the following system of equations (df=d� ¼ 0,
df=dn ¼ 0, df=d �n ¼ 0):

jp4j sin��M cosð�� �mÞ ¼ 0;

jp4j cos���þM sinð�� �mÞ � T lnðn�1 � 1Þ ¼ 0;

jp4j cos�þ�þM sinð�� �mÞ � T lnð �n�1 � 1Þ ¼ 0;

(14)
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where we denoted the induced quark mass as

MðpÞ ¼ 2G
Z dq

ð2�Þ3 ð1� n0 � �n0Þ sinð�0 � �0mÞIðpþ qÞ:
(15)

Turning to the presentation of the obtained results in the
form customary for the mean field approximation, we
introduce a dynamical quark mass Mq parametrized as

sinð�� �mÞ ¼
Mq

jP4j ; jP4j ¼ ðp2 þM2
qðpÞÞ1=2; (16)

and ascertain the interrelation between induced and
dynamical quark masses. From the first equation of
system (14), we fix the pairing angle

sin� ¼ pM

jp4jjP4j
and, making use of the identity

ðjp4j2 �MmÞ2 þM2p2 ¼ ½p2 þ ðM�mÞ2�jp4j2; (17)

we find out that

cos� ¼ �jp4j2 �mM

jp4jjP4j :

For the sake of clarity, we choose the upper sign to be
‘‘plus.’’ Then, as an analysis of the NJL model teaches, the
branch of the equation solution for negative dynamical
quark mass is the most stable one. Let us remember here
that we are dealing with the Euclidean metrics (though it is
not a principal point), and a quark mass appears in the
corresponding expressions as an imaginary quantity. Now,
substituting the calculated expressions for the pairing angle
into the trigonometrical factor

sinð�� �mÞ ¼ sin�
p

jp4j � cos�
m

jp4j
and performing some algebraic transformations, we get the
relation

MqðpÞ ¼ MðpÞ �m: (18)

In particular, the equation for dynamical quark mass (15)
gets the form characteristic of the mean field approx-
imation,

M ¼ 2G
Z dq

ð2�Þ3 ð1� n0 � �n0Þ M
0
q

jP0
4j
Iðpþ qÞ: (19)

The second and third equations of system (14) allow us
to find the following expressions,

n ¼ ðe
ðjP4j��Þ þ 1Þ�1; �n ¼ ðe
ðjP4jþ�Þ þ 1Þ�1; (20)

and, hence, the thermodynamic properties of our system, in
particular, the pressure of the quark ensemble,

P ¼ � dE

dV
:

By definition, we should calculate this derivative at
constant mean entropy, d �S=dV ¼ 0. This condition makes
it possible, for example, to calculate the derivative d�=dV,
but the mean charge �Q4 should not change. In order to
maintain its validity, we introduce two independent chemi-
cal potentials—for quarks � and for antiquarks �� [follow-
ing Eq. (20) with the opposite signs]. This also leads to the
change � ! �� in the definition of �n in Eq. (20). This kind
of description apparently allows us to treat even some
nonequilibrium states of the quark ensemble (but losing a
covariance similar to the situation which takes place in
electrodynamics while one deals with electron-positron
gas). Here we are interested in the unaffected balanced
situation of �� ¼ �. Then the corresponding derivative of
specific energy dw=dV might be presented as

dw

dV
¼

Z dp

ð2�Þ3
�
dn

d�

d�

dV
þ d �n

d ��

d ��

dV

�

�
�
jp4j cos�� 2G sinð�� �mÞ

�
Z dq

ð2�Þ3 sinð�0 � �0mÞðn0 þ �n0 � 1ÞI
�
:

Now, representing the trigonometric factors via dynamical
quark mass and drawing Eq. (15), we obtain, for the
ensemble pressure,

P ¼ �E

V
� V2Nc

Z dp

ð2�Þ3
�
dn

d�

d�

dV
þ d �n

d ��

d ��

dV

�
jP4j: (21)

The requirement of mean charge conservation,

d �Q4

dV
¼

�Q4

V
þ V2Nc

Z dp

ð2�Þ3
�
dn

d�

d�

dV
� d �n

d ��

d ��

dV

�
¼ 0;

(22)

provides us with an equation which interrelates the deriva-
tives d�=dV and d ��=dV. Apparently, the regularized
expressions for the mean charge of quarks and antiquarks
(9) are meant here. Dealing, in a similar way, with the
requirement of mean entropy conservation, d �S=dV ¼ 0,
we obtain another equation,

Z dp

ð2�Þ3
dn

d�
ln

n

1�n

d�

dV
�
Z dp

ð2�Þ3
d �n

d ��
ln

�n

1� �n

d ��

dV
¼

�S

2NcV
2
:

(23)

Substituting here T lnðn�1 � 1Þ ¼ ��þ jP4j and
T lnð �n�1 � 1Þ ¼ ��þ jP4j, we have, after simple calcula-
tions taking into account (22), that

Z dp

ð2�Þ3
�
dn

d�

d�

dV
þ d �n

d ��

d ��

dV

�
jP4j ¼ �

�ST

2NcV
2
�

�Q4�

2NcV
2
:

Eventually, this leads to the following expression for the
pressure,
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P ¼ �E

V
þ

�ST

V
þ

�Q4�

V
(24)

(of course, the thermodynamic potential is� ¼ �PV). At
small temperatures the antiquark contribution is negligible,
and the thermodynamic description can be grounded in
utilizing one chemical potential � only. If the antiquark
contribution is getting intrinsic, then the thermodynamic
picture becomes more complicated due to the necessity to
obey the condition �� ¼ � which comes into play. In
particular, at zero temperature we might consider the anti-
quark contribution to be absent and obtain

P ¼ �E þ��q;

where � ¼ ðP2
F þM2

qðPFÞÞ1=2, PF is the Fermi momen-

tum, and �q ¼ N=V is the quark ensemble density.

For lucidity of our viewpoint we considermainly the NJL
model [6] in this paper; i.e. the correlation function [the
form factor in Eq. (3)] behaves as the � function in coor-
dinate space. It is a well-known fact that, in order to have an
intelligent result in this model, one needs to use a regulari-
zation cutting of the momentum integration in Eq. (13). We
adjust the standard set of parameters [7] here with jpj<�,
� ¼ 631 MeV, m ¼ 5:5 MeV, and G�2=ð2�2Þ ¼ 1:3.
This set at n ¼ 0, �n ¼ 0, T ¼ 0 gives, for the dynamical
quarkmass,Mq ¼ 335 MeV. In particular, it may be shown

that the following representation of the ensemble energy is
valid at the extremals of the functional (13),

E ¼ Evac þ 2NcV
Z � dp

ð2�Þ3 jP4jðnþ �nÞ;

Evac ¼ 2NcV
Z � dp

ð2�Þ3 ðjp4j � jP4jÞ þ 2NcV
M2

4G
: (25)

It is easy to understand that this expression, with the vac-
uum contribution subtracted, looks like the energy of a gas
of relativistic particles and antiparticles with the mass Mq

and coincides identically with that calculated in the mean
field approximation.

Let us summarize the results of this exercise. So, we
determine the density of quark n and antiquark �n quasi-
particles at given parameters � and T from the second and
third equations of system (14). From the first equation we
receive the angle of quark and antiquark pairing � as a
function of dynamical quark mass Mq which is handled as

a parameter. Then at small temperatures, below 50 MeV,
and values of chemical potentials of dynamical quark mass
order, ��Mq, there are several branches of solutions for

the gap equation. Figure 1 displays the difference of the
right and left sides of Eq. (15), which is denoted by � at
zero temperature, and several values of chemical potential
�ðMeVÞ ¼ 335 (the lowest curve), 340, 350, 360 (the top
curve) as a function of the parameter Mq. The zeros of

function �ðMqÞ correspond to the equilibrium values of

dynamical quark mass.

The evolution of the chemical potential as a function of
charge density Q4 ¼ Q4=ð3VÞ (in units of charge= fm3)
with the temperature increasing is depicted in Fig. 2 (the
factor 3 relates the quark and baryon matter densities). The
top curve corresponds to zero temperature. The other
curves, from top to bottom, have been calculated for
the temperatures T ¼ 10 MeV; . . . ; 50 MeV with spacing
T ¼ 10 MeV. As it was found in Ref. [5] the chemical
potential at zero temperature is first increasing with the
charge density increasing, reaches its maximal value, then
decreases, and at the densities of order of normal nuclear
matter density [8], �q � 0:16=fm3, it becomes almost

equal to its vacuum value. Such a behavior of chemical
potential results from the fast decrease of dynamical quark
mass with the Fermi momentum increasing. It is clear
from Fig. 2 that the charge density is still a multivalued
function of chemical potential at a temperature slightly
below 50 MeV. Figure 3 shows the ensemble pressure
P (MeV=fm3) as a function of charge densityQ4 at several
values of temperature. The lowest curve corresponds to
zero temperature. The other curves, from bottom to top,
correspond to the temperatures T ¼ 10 MeV; . . . ; 50 MeV
with spacing T ¼ 10 MeV. It is curious to remember now
that in Ref. [5] the vacuum pressure estimate for the NJL
model was received as 40—50 MeV=fm3, which is en-
tirely compatible with the results of conventional bag
model. Besides, some hints at the presence of an instability
(rooted in the anomalous behavior of pressure dP=dn < 0;

FIG. 2. The chemical potential � (MeV) is plotted as a func-
tion of charge density Q4 ¼ Q4=ð3VÞ (in units of ch=fm3). The
factor 3 relates the densities of quark and baryon matter. The top
curve corresponds to the situation of zero temperature. The other
curves, from top to bottom, correspond to the temperature values
T ¼ 10 MeV; . . . ; 50 MeV with spacing T ¼ 10 MeV.
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see also [9,10]) in some interval of the Fermi momentum
have been found.

Figure 4 shows the fragments of isotherms of Figs. 2 and
3 but in different coordinates (chemical potential—
ensemble pressure). The top curve is calculated at zero
temperature; the other isotherms, from top to bottom,
correspond to the temperatures increasing with spacing
10 MeV. The lowest curve is calculated at the temperature
50 MeV. This plot obviously demonstrates that there are
states on the isotherm which are thermodynamically equili-
brated and have equal pressure and chemical potential
(see the characteristic Van der Waals triangle with the
crossing curves). The equilibrium points calculated are
shown in Fig. 3 by the dashed curve. The points of the
dashed curve crossing an isotherm pinpoint the boundary
of a gas—liquid phase transition. The corresponding
straight line P ¼ const which obeys the Maxwell rule
separates the nonequilibrium and unstable fragments of
the isotherm and describes a mixed phase. Then the critical
temperature for the parameter which we are using in this
paper becomes Tc � 45:7 MeV with the critical charge
density �Q4 � 0:12 ch=fm3. Usually the thermodynamic
description is grounded in the mean energy functional,
which is the homogeneous function of the particle number,
like E ¼ NfðS=N; V=NÞ (without a vacuum contribution).
It is clear that such a description requires the corresponding
subtractions to be introduced; however, this operation does
not change the final results considerably. Now, the intuitive

arguments of Ref. [5] that the states filled up with
quarks and separated from the instability region look like
a ‘‘natural construction material’’ to form the baryons are
getting much more clarity and give a hope to understand
the existing fact of equilibrium between the vacuum and
octet of stable (in strong interaction) baryons [11].
The dynamical quark mass jMqj (MeV) as a function of

chemical potential � (MeV) is presented for the tempera-
tures T¼0MeV; . . . ;100MeV with spacing T ¼ 10 MeV
in Fig. 5. The rightmost curve corresponds to zero
temperature. At small temperatures, below 50 MeV, the
dynamical quark mass is the multivalued function of
chemical potential. Figure 6 shows the dynamical quark
mass as a function of temperature at small values of charge
densityQ4 � 0. Such a behavior allows us to conclude that
the quasiparticle gets larger with increasing temperature.
This becomes clear if we remember that the momentum
corresponding to the maximal attraction between the quark
and antiquark p� (according to Ref. [4]) is defined by
d sin�=dp ¼ 0. In particular, this parameter in the NJL
model equals

p� ¼ ðjMqjmÞ1=2 (26)

but its inverse magnitude defines the characteristic (effec-
tive) size of the quasiparticle r� ¼ p�1

� .

If one is going to define the quark chemical potential as
an energy necessary to add (to remove) one quasiparticle

FIG. 3. The ensemble pressure P (MeV=fm3) is shown as
a function of charge density Q4 at temperatures T ¼
0 MeV; . . . ; 50 MeV with spacing T ¼ 10 MeV. The lowest
curve corresponds to zero temperature. The dashed curve shows
the boundary of a liquid–gas phase transition; see the text.

FIG. 4. The fragments of the isotherms in Figs. 2 and 3; see the
text. Chemical potential � (MeV) is plotted as a function of
pressure P MeV=fm3. The top curve corresponds to the zero
isotherm, and the other curves following down correspond to the
isotherms with spacing of 10 MeV, till the isotherm 50 MeV (the
lowest curve).
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(as it was shown in [5] at zero temperature), � ¼ dE=dN,
then in vacuum (i.e. at quark density �q going to zero) the

quark chemical potential magnitude coincides with the
quark dynamical mass. It results in the phase diagram
displayed at this value of chemical potential, although, in
principle, this value could be smaller than the dynamical
quark mass, as has been considered in the pioneering paper
[12]. If one takes, for example, a chemical potential value

of zero, this leads to the conventional picture, but,
obviously, such a configuration does not correspond to
the real process of filling up the Fermi sphere with quarks.
Apparently, our study of the quark ensemble thermody-

namics produces quite reasonable arguments to propound
the hypothesis that the phase transition of chiral symmetry
(partial) restoration has already been realized as the mixed
phase of the physical vacuum and baryonic matter [13].
However, it is clear that our quantitative estimates should
not be taken as appropriate for comparing with, for ex-
ample, the critical temperature of the nuclear matter phase
transition which has been experimentally measured and
is equal to 15–20 MeV. Besides, the gas component (at
T ¼ 0) has nonzero density (0.01 of the normal nuclear
density) but in reality this branch should correspond to the
physical vacuum, i.e. zero baryonic density [15]. In prin-
ciple, the idea of global equilibrium of gas and liquid
phases prompted us to put down adequate boundary con-
ditions to describe the transitional layer existing between
the vacuum and the filled-up state and to calculate the
surface tension effects. It seems plausible that the changes
taking place in this layer could ascertain all ensemble
processes similar to the theory of Fermi liquids.

III. TRANSITION LAYER BETWEEN
GAS AND LIQUID

The concept advanced would obtain the substantial con-
firmation if we are able to demonstrate an existence of a
transition layer at which the ensemble transformation from
one aggregate state to another takes place. As it was argued
above, the indicative characteristic to explore a homoge-
neous phase (at finite temperature) is the mean charge
(density) of ensemble. It was demonstrated that the other
characteristics, for example, a chiral condensate, a dynami-
cal quark mass, etc., could be reconstructed as well.
So, here we are analyzing the transition layer at zero
temperature.
If one assumes the parameters of the gas phase are

approximately the same as those at zero charge �g ¼ 0,

i.e. as in vacuum (this means ignoring the negligible
distinctions in the pressure, chemical potential, and quark
condensate), the dynamical quark mass develops the maxi-
mal value, and for the parameter choice of the NJL model,
it is M ¼ 335 MeV. Then from the Van der Waals dia-
gram one may conclude that the liquid phase being in
equilibrium with the gas phase develops the density �l ¼
3� 0:185 ch=fm3 (for some reason which becomes clear
below, we correct it in favor of the value �l ¼
3� 0:157 ch=fm3). The detached factor 3 here links, again,
themagnitudes of the quark and baryon densities. The quark

mass is approximatelyM
� � 70 MeV in this phase (and we

are dealing with the simple one-dimensional picture
hereafter).
The precursor experience teaches us that an adequate

description of heterogeneous states can be reached with

FIG. 5. The dynamical quark mass jMqj (MeV) is shown as a
function of chemical potential � (MeV) at the temperatures
T ¼ 0 MeV; . . . ; 100 MeV with spacing T ¼ 10 MeV. The
rightmost curve corresponds to zero temperature.

FIG. 6. The dynamical quark mass jMqj (MeV) as a function
of temperature at a small value of charge density Q4.
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the mean field approximation [16]. In our particular case
this means making use of the corresponding effective
quark-meson Lagrangian [17] (the functional of
Ginzburg-Landau type)

L ¼ � �qð@̂þMÞq� 1

2
ð@��Þ2 �Uð�Þ � 1

4
F��F��

�m2
v

2
V�V� � g� �qq�þ igv �q��qV�; (27)

where

F�� ¼ @�V� � @�V�; Uð�Þ ¼ m2
�

2
�2 þ b

3
�3 þ c

4
�4;

� is the scalar field, V� is the field of vector mesons, m�,

mv are the masses of scalar and vector mesons, and g�, gv
are the coupling constants of the quark-meson interaction.
The Uð�Þ potential includes the nonlinear terms of sigma-
field interactions up to the fourth order. For the sake of
simplicity we do not include the contribution coming from
the pseudoscalar and axial-vector mesons.

The meson component of such a Lagrangian should be
self-consistently treated by considering the corresponding
quark loops. [In terms of a relativistic extension of the
Landau theory of a Fermi liquid, the density fluctuations
(meson field collective modes) are nothing more than zero
sound, as was shown in Ref. [10]]. Here we do not see any
reason to go beyond the well-elaborated and reliable one
loop approximation (27) [17], although recently consider-
able progress has been reached (as we mentioned at the
beginning of this paper) in scrutinizing the nonhomoge-
neous quark condensates by the application of powerful
methods of exact integration [18]. Here we believe it is
more practical to phenomenologically adjust the effective
Lagrangian parameters based on the transparent physical
picture. It is easy to see that, handling (27) in the one loop
approximation, we come, in actual fact, to the Walecka
model [19] but adopted for the quarks. In what follows we
work with the designations of that model and hope this
does not lead to misunderstandings.

In the context of our paper we propose to interpret
Eq. (27) in the following way. Each phase might be con-
sidered, in a sense, with regard to another phase as an
excited state which requires an additional (apart from a
charge density) set of parameters (for example, the meson
fields) for its complete description, and those characterize
the measure of deviation from the equilibrium state. Then
the crucial question becomes whether it is possible to
adjust the parameters of effective Lagrangian (27) to obtain
the solutions in which the quark field interpolates between
the quasiparticles in the gas (vacuum) phase and the qua-
siparticles of the filled-up states. The density of the filled-
up state ensemble should asymptotically approach the
equilibrium value of �l and should turn to the zero value
in the gas phase (vacuum).

The scale inherent in this problem may be assigned to
one of the masses referred to in the Lagrangian (27).
In particular, we bear in mind the dynamical quark mass
in the vacuumM. Besides, there are four other independent
parameters in the problem, and in order to compare them
with the results of studying nuclear matter, we employ the
form characteristic for the (nuclear) Walecka model,

Cs ¼ g�
M

m�

; Cv ¼ gv
M

mv

; �b¼ b

g3�M
; �c¼ c

g4�
:

Taking the parametrization of the potential Uð�Þ as
b� ¼ 1:5m2

�ðg�=MÞ, c� ¼ 0:5m2
�ðg�=MÞ2, we come to

the sigma model, but the choice b ¼ 0, c ¼ 0 results in
the Walecka model. As to the standard nuclear matter
application the parameters b and c demonstrate a vital
model-dependent character and are quite different from the
parameter values of the sigma model. Truly, in that case
their values are also regulated by the additional require-
ment of an accurate description of the saturation property.
On the other hand, for the quark Lagrangian (27) we could
intuitively anticipate some resemblance with the sigma
model and, hence, could introduce two dimensionless pa-
rameters  and � in the forms b ¼ b�, c ¼ �2c� which
characterize some fluctuations of the effective potential.
Then the scalar field potential is presented as follows:

Uð�Þ ¼ m2
�

8

g2�
M2

�
4
M2

g2�
þ 4

M

g�
�þ �2�2

�
�2:

The meson and quark fields are defined by the following
system of the stationary equations:

���m2
�� ¼ b�2 þ c�3 þ g��s;

�V �m2
vV ¼ �gv�;

ðr̂ þM
� Þq ¼ ðE� gvVÞq;

(28)

where M
� ¼ Mþ g�� is the running value of the dynami-

cal quark mass, E stands for the quark energy, and
V ¼ �iV4. The density matrix describing the quark en-
semble at T ¼ 0 has the form

	ðxÞ ¼
Z PF dp

ð2�Þ3 qpðxÞ �qpðxÞ;

in which p is the quasiparticle momentum and the Fermi
momentum PF is defined by the corresponding chemical
potential. The densities �s and � on the right-hand sides of
Eq. (28) are, by definition,

�sðxÞ ¼ Trf	ðxÞ; 1g; �ðxÞ ¼ Trf	ðxÞ; �4g:
Here we confine ourselves to the Thomas-Fermi ap-

proximation while describing the quark ensemble. Then
the densities which we are interested in are given, with
some local Fermi momentum PFðxÞ, as
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� ¼ �
Z PF dp

ð2�Þ3 ¼
�

6�2
P3
F;

�s ¼ �
Z PF dp

ð2�Þ3
M
�

E

¼ �

4�2
M
�
P2
F

�
ð1þ �2Þ1=2 � �2

2
ln

�ð1þ �2Þ1=2 þ 1

ð1þ �2Þ1=2 � 1

��
;

(29)

where� is the quark factorwhich, for one flavor, is� ¼ 2Nc

(Nc is the number of colors), E ¼ ðp2 þM
� 2Þ1=2, and

� ¼ M
�
=PF. By definition, the ensemble chemical potential

does not change, and it leads to the situation in which the
local value of the Fermi momentum is defined by the
running value of the dynamical quark mass and vector
field as

� ¼ M ¼ gvV þ ðP2
F þM

� 2Þ1=2: (30)

Now we should tune the Lagrangian parameters (27).
For asymptotically large distances (in the homogeneous
phase) we may neglect the gradients of scalar and vec-
tor fields, and the equation for the scalar field in the
system (28) leads to the first equation which bounds the
parameters Cs, Cv, �b, �c:

M2ðM� �MÞ
C2
s

þ �bMðM� �MÞ2þ �cðM� �MÞ3 ¼��s: (31)

The asymptotic vector field is given by the ensemble
density V ¼ C2

v�=ðgvM2Þ. The second equation results
from the relation (30) for the chemical potential and gives

M ¼ C2
v�

M2
þ ðP2

F þM
� 2Þ1=2: (32)

Extracting the liquid density from (29), we obtain the
Fermi momentum (PF ¼ 346 MeV). Applying the identi-
ties (31) and (32), we have for the particular case b ¼ 0,
c ¼ 0 that C2

s ¼ 25:3, C2
v ¼ �0:471; i.e. the vector com-

ponentC2
v is small (compared toC2

s) and has negative value
which is unacceptable. Apparently, it seems necessary to
neglect the contribution coming from the vector field or to

diminish the dynamical quark mass M
�

up to the value
which retains the identity (32) valid with positive C2

v or
equal to zero. In the gas phase the dynamical quark mass
can also be corrected to a value larger than the vacuum
value. It is clear that in the situation of the liquid with the
density �l ¼ 3� 0:185 ch=fm3, the dynamical quark
mass should coincide with (or exceed) M ¼ 346 MeV in
the gas phase. However, here we correct the liquid density
(as it was argued above) to decrease its value up to �l ¼
3� 0:157 ch=fm3, which is quite acceptable in the ca-
pacity of normal nuclear matter density. In fact, this pos-
sibility can be simply justified by another choice of the

NJL model parameters. Thus, we obtain at M
� ¼ 70 MeV

and b ¼ 0, c ¼ 0 thatC2
s ¼ 28:4,C2

v ¼ 0:015; i.e. we have
a small but positive value for the vector field coefficient.
At the same time, aiming here to estimate the surface
tension effects only, we do not strive for the precise fit of
parameters. In the Walecka model these coefficients are
C2
s ¼ 266:9, C2

v ¼ 145:7 (b ¼ 0, c ¼ 0). Moreover, there
is another parameter set with C2

s ¼ 64, C2
v � 0 [20], but it

is rooted in an essential nonlinearity of the sigma field due
to the nontrivial values of the coefficients b and c. The
option (formally unstable) with negative c (b) has also
been discussed.
The coupling constant of the scalar field is fixed by the

standard (for the NJL model) relation between the quark
mass and the�-meson decay constant g� ¼ M=f� (we put
f� ¼ 100 eV), although there is no objection to treating
this coupling constant as an independent parameter. As a
result of all the agreements done, we have, for the�-meson
mass, m� ¼ g�M=Cs. In principle, we could even fix the
�-meson mass and coupling constant g�, but all the rela-
tions mentioned above eventually lead to quite suitable
values of the �-meson mass, as will be demonstrated
below.
The vector field plays, as we will see, a secondary role

because of the small magnitude of constant Cv. Then,
taking the vector meson mass as mv � 740 MeV (slightly
smaller than the mass of the ! meson for simple technical
reasons only) we calculate the coupling constant of the
vector field from a relation similar to the scalar field
mv ¼ gvM=Cv. Amazingly, its value is steadily small
compared to the value characteristic for the NJL model,

gv ¼ ffiffiffi
6

p
g�. However, at the values of constant Cv which

we are interested in, it is very difficult to maintain reason-
able balance, and for the sake of clarity, we prefer to
choose the massive vector field. Actually, this is unessen-
tial because we need this parameter (as we remember) only
to estimate the vector field strength.
The key point of our interest here is the surface tension

coefficient [20] which can be defined as

us ¼ 4�r2o
Z 1

�1
dx

�
EðxÞ � El

�l

�ðxÞ
�
: (33)

The parameter ro will be discussed in the next section by
considering the features of a quark liquid droplet, and
for now we would like to note only that, for the para-
meters considered, its magnitude for Nf ¼ 1 is around

ro ¼ 0:79 fm. Recalling the factor 31=3 which connects
the baryon and quark numbers, one can find that the

magnitude (~ro ¼ 31=30:79 � 1:14 fm) is in full agreement
with the magnitude standard for the nuclear matter calcu-
lations (in the Walecka model) ~ro ¼ 1:1—1:3 fm.
In order to proceed we calculate EðxÞ in the Thomas-

Fermi approximation as
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E ðxÞ ¼ �
Z PFðxÞ dp

ð2�Þ3 ½p
2 þM

� ðxÞ�1=2 þ 1

2
gv�ðxÞVðxÞ

� 1

2
g��sðxÞ�ðxÞ:

And to give some idea for the ‘‘setup’’ prepared, we
present here the characteristic parameter values for
some fixed b and c with �l ¼ 3� 0:157 ch=fm3. In the

liquid phase they are M
� ¼ 70 MeV (PF ¼ 327 MeV) and

el ¼ 310:5 MeV [the index l stands for a liquid phase and
eðxÞ ¼ EðxÞ=�ðxÞ defines the density of specific energy].
Both Eqs. (31) and (32) are obeyed by this state. There
exists the solution with a larger value of the quark mass,

M
� ¼ 306 MeV (PF ¼ 135 MeV) (we have faced a similar
situation in the first section, dealing with the gas of quark
quasiparticles), and e ¼ 338 MeV� eg (eg is the specific

energy in the gas phase), which satisfies both equations as
well. The specific energy of this solution appears to be
larger than the specific energy of the previous solution. It is
worthwhile to mention the existence of an intermediate
state corresponding to the saturation point with the

mass M
� ¼ 95 MeV (PF ¼ 291 MeV) and e ¼ 306 MeV.

Obviously, it is the most favorable state with the smallest
value of specific energy (and with zero pressure of the
quark ensemble), and the system can reach this state only
in the presence of a significant vector field. This state
(already discussed in the first section) corresponds to the
minimal value of the chemical potential (T ¼ 0) and can
be reached at the densities typical for normal nuclear
matter. However, Eq. (32) is not valid for this state.

Two other parameters , � are fixed by looking through
all the configurations in which the solution of equation
system (28) with a stable kink in the scalar field does exist
and describes the transition of the gas phase quarks to
the liquid phase. First, it is reasonable to scan the , c
(� ¼ c) plane, in order to identify the domain in which
the increase of specific energy E � El�=�l � 0 is revealed
by running through all possible states which provide the
necessary transition (without taking into account the field
gradients). In practice, one needs to follow a simple heu-
ristic rule. The state with PF � 1 MeV (i.e. e and the
corresponding �) and the state of characteristic liquid
energy El (together with �l) should be compared at scan-
ning the Lagrangian parameters  and c. Just this domain
where they are commensurable could provide us with the
solutions in which we are interested, and Fig. 7 shows its
boundary. The curve could be continued beyond the value
 ¼ 2:5, but the values of the corresponding parameter 
are unrealistic and not shown in the plot.

We calculate the solution of equation system (28) nu-
merically by the Runge-Kutta method with the initial con-
ditions �ðLÞ � 0, �0ðLÞ � 0 imposed at large distances
L 	 t, where t is a characteristic thickness of the transition
layer (about 2 fm). Such a simple algorithm appears to be

quite suitable if the vector field contribution is considered
as a small correction (which just takes place in the situation
under consideration) and is presented as

VðxÞ ¼ 1

2mv

Z L

�L
dze�mvjx�zjgv�ðzÞ;

where the charge (density) � is directly defined by the
scalar field. We considered the solutions including the
contribution of the vector field, and the corresponding
results confirm the estimates obtained.
A rather simple analysis shows that the interesting solu-

tions are located along the boundary of the discussed do-
main. Some of those are depicted in Fig. 7 as dots. Figure 8
shows the stable kinks of the � field with the parameter
c ¼ 1:1 for two existing solutions with  � 0:977 (m� �
468 MeV) (solid line) and  � 1:813 (m� � 690 MeV)
(dashed line). For the sake of clarity, we consider that the
gas (vacuum) phase is on the right. Then the asymptotic
value of the � field on the left-hand side (� � 80 MeV)

corresponds to M
� ¼ 70 MeV. The thickness of the transi-

tion layer for the solution with  � 0:977 is t � 2 fm,
while for the second solution t � 1 fm.
Characterizing the whole spectrum of solutions ob-

tained, we should mention that there exist other more rigid
(chiral) kinks which correspond to the transition into the
state with the dynamical quark mass changing its sign, i.e.
M ! �M. In particular, the kink with the canonical pa-
rameter values ¼ 1, c ¼ 1 is clearly seen (marked by the
star in Fig. 7), and its surface tension coefficient is about

FIG. 7. The domain of the , c (� ¼ c) plane in which an
increase of specific energy occurs; see the text. The dots repre-
sent a stable kink. The star shows the position of the canonical
(chiral) kink; see the text.
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2m� (m� is the �-meson mass). The most populated class
of solutions consists of those having metastable character.
The system comes back to the starting point (after an
evolution) pretty rapidly, and usually the � field does not
evolve to such an extent that it reaches the asymptotic
value (which corresponds to the dynamical quark mass in

the liquid phase M
� ¼ 70 MeV). Switching on the vector

field changes the solutions insignificantly (for our situation
with small Cv, it does not exceed 2 MeV).

The surface tension coefficient us in MeV for the curve
of stable kinks with the parameter  � 1:2 as a function of
the parameter c (� ¼ c) is depicted in Fig. 9. The
�-meson mass at c � 0 is m� � 420 MeV and changes
smoothly up to the value m� � 500 MeV at c � 1:16
(the maximal value of the coefficient c beyond which the
stable kink solutions are not observed). In particular,
m��450MeV at c¼1. Two kink solutions with c ¼ 1:1
for � 0:977 and for � 1:813 (both are shown in Fig. 8,
and only the first one is shown in Fig. 9) have the tension
coefficient values us � 35 MeV and us � 65 MeV,
correspondingly. The maximal value of the tension coeffi-
cient for normal nuclear matter does not exceed us ¼
50 MeV. The nuclear Walecka model claims the value
us � 19 MeV [20] as acceptable and calculable. The rea-
son for this higher value of surface tension coefficient
for quarks is rooted in the different magnitudes of the
mass deficit. Indeed, for nuclear matter it does not exceed

M
� � 0:5M, albeit more realistic values are considered

around M
� � 0:7M, and for the quark ensemble the mass

deficit amounts toM
� � 0:3M. We are also able to estimate

the compression coefficient of quark matter K which ap-
pears significantly larger than the nuclear one. Actually, we
see quite a smooth analogy between the results of Sec. III
and the results of the bag soliton model [21]. The thermo-
dynamic treatment developed in the present paper allows
us to formulate adequate boundary conditions for the bag
in a physical vacuum and to diminish considerably the
uncertainties in searching the true soliton Lagrangian.
We believe it was also shown here that to single out one
soliton solution among others (including even those ob-
tained by the exact integration method [18]), which de-
scribes the transitional layer between two media, is not an
easy problem if the boundary conditions formulated above
are not properly imposed.

IV. DROPLET OF QUARK LIQUID

The results of the two previous sections have led us to
pose the challenging question about the creation and prop-
erties of finite quark systems or the droplets of quark liquid
which are in equilibrium with the vacuum state. Thus, as a
droplet we imply the spherically symmetric solution of the
equation system (28) for �ðrÞ and VðrÞ with the obvious
boundary conditions �0ð0Þ ¼ 0 and V 0ð0Þ ¼ 0 in the origin
(the primed variables denote the first derivatives in r),
rapidly decreasing at the large distances � ! 0, V ! 0,
when r ! 1.
A quantitative analysis of similar nuclear physics mod-

els which includes the detailed tuning of parameters is
usually based on the comprehensive fitting of available

FIG. 8. The stable kink solutions with c ¼ 1:1. The solid line
corresponds to  � 0:977 (m� � 468 MeV), and the dashed
line corresponds to  � 1:813 (m� � 690 MeV). x is given in
units of fm and � is given in MeV.

FIG. 9. The surface tension coefficient us in MeVas a function
of the parameter c (� ¼ c) for the curve of stable kinks (with
 � 1:2).
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experimental data. This is obviously irrelevant in studying
the quark liquid droplets. This global difficulty dictates
specific tactics for analyzing. We propose to start, first of
all, by selecting the parameters which could be worth-
while to play the role of physical observables. Naturally,
the total baryon number which is phenomenologically (via
a factor 3) related to the number of valence quarks in an
ensemble is a reasonable candidate for this role. Besides,
the density of the quark ensemble �ðrÞ, the mean size of
droplet R0, and the thickness of surface layer t seem
suitable for such an analysis.

It is argued above that the vector field contribution is
negligible because of the smallness of the coefficient Cv

compared to the Cs magnitude, and we follow this con-
clusion (or assumption), albeit it is scarcely justified in the
context of a finite quark system. Thus, we will put gv ¼ 0,
V ¼ 0 in what follows, and it will simplify all the calcu-
lations enormously.

Figure 10 shows the set of solutions (� field in MeV) of
the system (28) at Nf ¼ 1, and Fig. 11 presents the corre-

sponding distributions of the ensemble density � (ch=fm3).
The parameters Cs, Cv, b, and c are derived by the same
algorithm as in the previous section; i.e. the chemical
potential of the quark ensemble M ¼ 335 (and � ! 0) is
fixed at spatial infinity. The filled-up states (liquid) are

characterized by the parametersM
� ¼ 70 MeV, �0 ¼ �l ¼

3� 0:157 ch=fm3. The �-meson mass and the coupling
constant g� are derived at fixed coefficients  and � , and
they just define the behavior of solutions �ðrÞ, �ðrÞ, etc.
The magnitudes of the functions �ðrÞ and �ðrÞ at the origin

are not strongly correlated with the values characteristic of
the filled-up states and are practically determined by solv-
ing the boundary value problem for system (28). In par-
ticular, the solutions presented in Fig. 10 have been
obtained with the running coefficient  at � ¼ . The
most relevant parameter (instead of ) from the physical
viewpoint is the total number of quarks in the droplet Nq

(as discussed above), and it is depicted to the left of each

curve. (The variation ofM
�
, �0, and f� could be considered

as well instead of the two mentioned parameters  and � .)
Analyzing the full spectrum of solutions obtained by

scanning one can reveal a recurrent picture (at a certain
scale) of kink droplets which are easily parametrized by the
total number of quarks Nq in a droplet and by the density

�0. These characteristics are evidently fixed when com-
pleting the calculations. The sign which allows us to single
out these solutions is related to the value of the droplet’s
specific energy (see below).
Table I exhibits the results of fitting the density �ðrÞwith

the Fermi distribution,

�FðrÞ ¼ ~�0

1þ eðR0�rÞ=b ; (34)

where ~�0 is the density at the origin, R0 is the mean size of
the droplet, and the parameter b defines the thickness of the
surface layer t ¼ 4 lnð3Þb. Besides, the coefficient r0
which is absorbed in the surface tension coefficient (33),

the �-meson mass, R0 ¼ r0N
1=3
q , and the coefficient  at

which all other values have been obtained are also pre-
sented in Table I.
The curves plotted in Fig. 10 and the results of Table I

allow us to conclude that the density distributions at

FIG. 10. The � field (MeV) as a function of the distance r (fm)
for several solutions of the equation system (28) which are
characterized by the net quark number Nq written to the left of

each curve.

FIG. 11. Distribution of the quark density � (ch=fm3) for the
corresponding solutions presented in Fig. 11.
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Nq 
 50 are in full agreement with the corresponding data

typical for nuclear matter. The thicknesses of the transition
layers in both cases are also similar, and the coefficient r0
with the factor 31=3 included is in full correspondence with
~r0. The values of the �-meson mass in Table I look quite
reasonable as well. However, the corresponding quantities
are very different at small quark numbers in the droplet.
We know from the experiments that in nuclear matter some
increase of the nuclear density is observed. It becomes
quite considerable for helium and is much larger than the
standard nuclear density for hydrogen.

Obviously, we understand that the Thomas-Fermi ap-
proximation which is used for estimating becomes hardly
justified at a small number of quarks, and we should deal
with the solutions of the complete equation system (28).
However, one very encouraging hint comes from the chiral
soliton model of the nucleon [22], where it has been dem-
onstrated that by solving this system (28) a good description
of the nucleon and � can be obtained. Then our original
remark could be that the soliton solutions obtained in [22]
permit an interpretation as a confluence of two kinks. Each
of those kinks ‘‘works’’ on the restoration of chiral sym-
metry since the scalar field approaches its zero value at a
distance of �0:5 fm from the kink center. Indeed, one
branch of our solution corresponds to a positive value of
the dynamical quark mass, and another branch presents the
solution with negative dynamical quark mass (in the three-
dimensional picture the pseudoscalar fields appear just as a
phase of chiral rotation from a positive to a negativevalue of
the quark mass). Such solutions develop the surface tension
coefficient which is larger by a factor 2 than the correspond-
ing coefficient of a single kink, and we believe they signal
some instability of a single kink solution.

Similar results are obtained for two flavors Nf ¼ 2

(� ¼ 2NfNc ¼ 12), assuming that all dynamical quark

masses of the SU(2) flavor multiplet are equal. The solu-
tions for the � field and density distributions are similar
to the corresponding results presented in Figs. 10 and 11.
The other data of fitting solutions are shown in Table II.
As it is seen, the characteristic ensemble density is approx-
imately a factor 2 larger than the density of normal nuclear
matter (remember again the factor 3). The characteristic
values of the �-meson mass are slightly larger than for
Nf ¼ 1 and, consequently, the thickness of the transition

layer is smaller almost by a factor 1.4. The coefficient
interrelating the mean size of the droplet and the baryon
(quark) number ~r0 � 0:8 is getting smaller. In principle,
one can correct (increase) the surface layer thickness and
the parameter ~r0 by decreasing the �-meson mass, but the
ensemble density remains higher than the normal nuclear
one.
Figure 12 displays the specific binding energy of the

ensemble. It is defined by an expression similar to Eq. (33)
in which the integration over the quark droplet volume is
performed. The specific energy is normalized (compared)
to the ensemble energy at spatial infinity, i.e. in vacuum.
Actually, Fig. 12 shows several curves in the upper part of
the plot which correspond to the calculations with Nf ¼ 1.

The solid line is obtained by scanning over the parameter
and corresponds to the data presented in Table I. The
dashed curve is calculated at fixed ¼ 0:4 but by scanning

over the parameter M
�
. It is clearly seen that, if the specific

energy data are presented as a function of quark number
Nq, then the solutions in which we are interested rally in

TABLE I. Results of fitting by the Fermi distribution with
Nf ¼ 1, ~�0 (ch=fm3), R0, t, r0, b (fm), m� (MeV).

Nq ~�0 R0 b t r0 m� 

15 0.34 1.84 0.51 2.24 0.74 351 0.65

43 0.43 2.19 0.52 2.28 0.75 384 0.73

159 0.46 4.19 0.52 2.29 0.77 409 0.78

303 0.47 5.23 0.52 2.29 0.78 417 0.795

529 0.47 6.37 0.52 2.27 0.79 423 0.805

742 0.47 7.15 0.52 2.27 0.79 426 0.81

TABLE II. Results of fitting by the Fermi distribution with
Nf ¼ 2, ~�0 (ch=fm3), R0, t, r0, b (fm), m� (MeV).

Nq ~�0 R0 b t r0 m� 

18 0.81 1.56 0.67 1.63 0.57 524 0.7

46 0.9 2.14 0.37 1.63 0.6 557 0.75

169 0.93 3.43 0.36 1.6 0.62 586 0.79

278 0.94 4.08 0.36 1.6 0.62 594 0.8

525 0.94 5.04 0.36 1.6 0.62 603 0.81

776 0.94 5.76 0.36 1.6 0.63 607 0.815

FIG. 12. The specific binding energy at Nf ¼ 1 and Nf ¼ 2 in
MeV as a function of quark number Nq.
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the local vicinity of the curve where the maximal binding
energy jEbj is reached.

A similar solution scanning can be performed over the
central density parameter �0 at the origin. The correspond-

ing data are dotted for a certain fixed M
�

and �0. It is
interesting to notice that, by scanning over any variable
discussed, a saturation property is observed, and it looks
like the minimum in eb at Nq � 200–250. The results for

the specific binding energy as a function of particle number
are in qualitative agreement with the corresponding experi-
mental data. And one may even say this about the quanti-
tative agreement if the factor 3 (the energy necessary to
remove one baryon) is taken into account. Another inter-
esting fact to mention is that there exist solutions of
system (28) with positive specific energy. For example,
for Nf ¼ 2 such metastable solutions appear at sufficiently

large  and with the density parameter at the origin equal
to �0 � �l ¼ 0:157 ch=fm3. In fact, the equation system
(28) represents an equation of balance for the current
quarks circulating between liquid and gas phases.

As a conclusion, we would like to emphasize that, in the
present paper, we have demonstrated how a phase transi-
tion of the liquid–gas kind (with reasonable values of

parameters) emerges in the NJL-type models. The con-
structed quark ensemble displays some interesting features
for the nuclear ground state (for example, an existence of
the state degenerate with the vacuum one), and the results
of our study are suggestive to speculate that the quark
droplets could coexist in equilibrium with the vacuum
under normal conditions. These droplets manifest them-
selves as bearing a strong resemblance to the nuclear
matter. Elaborating this idea in detail is a great challenge
which will take a lot of special effort, and we do hope to
undertake this challenge in the near future.
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APPENDIX A: MEAN ENERGY FUNCTIONAL

The free part of the Hamiltonian,

H0 ¼ �
Z

dx �qðxÞði�rþ imÞqðxÞ

¼
Z dp

ð2�Þ3 jp4j½cos�ðAþðp; sÞAðp; sÞ � Bðp; sÞBþðp; sÞÞ þ sin�ðAþð�p; sÞBþðp; sÞ þ Bð�p; sÞAðp; sÞÞ�;

contributes to the mean energy as

Tr f	H 0g ¼
Z dp

ð2�Þ3 jp4jð1� cos�Þ

þ
Z dp

ð2�Þ3 jp4j cos�½nðpÞ þ �nðpÞ�; (A1)

where H 0 ¼ H0=ðV2NcÞ is the specific energy. Natural
regularization by subtracting the free Hamiltonian H0 con-
tribution (without pairing quarks and antiquarks) has been
done in the first term of Eq. (A1) because in our particular
situation this normalization, in order to have the ensemble
energy equal to zero at the zero pairing angle, turns out to
be quite practical. It just explains the presence of a unit in
the term containing cos�.

The Hamiltonian part responsible for the interaction,
�qta��q �q

0ta��q
0, provides four nontrivial contributions.

The term Trf�BBþB0B0þg generates the following items:
�V�iðp; sÞtaij��

�
V
jðQ; TÞ �V�kðQ; TÞtbkl��
��V�lðp; sÞ (a simi-

lar term but with the changes Q, T ! Q0, T0 which gener-
ates another primed quark current should be added) and
�2 �VðQ; TÞta��VðQ0; T0Þ �VðQ0; T0Þtb��VðQ; TÞ. Here (as
in all other following expressions) we omitted all color
and spinor indices which are completely identical to those
of the previous matrix element. The term Trf�BAA0þB0þg

generates the following nontrivial contributions:
�Vðp; sÞta��Uðq; tÞ �Uðq; tÞtb��Vðp; sÞ � �Vðp; sÞta���
UðP; SÞ �UðP; SÞtb��Vðp; sÞ � �VðQ; TÞta��Uðq; tÞ �Uðq; tÞ�
tb��VðQ; TÞ þ �VðQ; TÞta��UðP; SÞ �UðP; SÞtb��VðQ; TÞ.
Averaging Trf�AAþA0A0þg gives the contributions
�UðP; SÞta��Uðp; sÞ �Uðp; sÞtb��UðP; SÞ (adding a similar
term but with the changes P, S ! P0, S0) and
�2 �UðP; SÞta��UðP0; S0Þ �UðP0; S0Þtb��VðP; SÞ. Another
nontrivial contribution comes from averaging
Trf�AþBþB0A0g, and it has the form �VðQ; TÞta���
UðP; SÞ �UðP; SÞtb��VðQ; TÞ. The other diagonal matrix
elements generated by the terms Trf�AAþB0B0þg,
Trf�BB0þA0þA0g do not contribute at all (their contributions
are equal to zero). Similar to the calculation of the matrix
elements at zero temperature performed in Ref. [5], we
should carry out the integration over the Fermi sphere
with the corresponding distribution functions in the quark

and antiquark momenta
R
PF dp

ð2�Þ3 !
R dp

ð2�Þ3 ½nðpÞ þ �nðpÞ� if
we deal with a finite temperature. All necessary formulas
for the polarization matrices which contain the traces of the
corresponding spinors can be found in Refs. [4,5]. Bearing
this fact in mind, here we present immediately the result
for the mean energy density per one quark degree of free-
dom as
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w ¼
Z dp

ð2�Þ3 jp4j cos�½nðpÞ þ �nðpÞ� þ 2G
Z dp

ð2�Þ3 sinð�� �mÞ½nðpÞ þ �nðpÞ�
Z dq

ð2�Þ3 sinð�0 � �0mÞI �G

�
Z dp

ð2�Þ3 sinð�� �mÞ½nðpÞ þ �nðpÞ�
Z dq

ð2�Þ3 sinð�0 � �0mÞ½nðqÞ þ �nðqÞ�I þþ

�
Z dp

ð2�Þ3 jp4jð1� cos�Þ �G
Z dp

ð2�Þ3 sinð�� �mÞ
Z dq

ð2�Þ3 sinð�0 � �0mÞI (A2)

(up to the constant that is unessential for our consideration here) [23]. It is quite practical to single out the color factor in the
four-fermion coupling constant as G ¼ 2 ~G=Nc. Now performing the following transformations while integrating in the
interaction terms,

2
Z

dpf
Z

dq�
Z

dpf
Z

dqf0 �
Z

dp
Z

dq ¼
Z

dpf
Z

dqð1� f0Þ �
Z

dpð1� fÞ
Z

dq;

and changing the variables p $ q in the last term, we obtain

Z
dpf

Z
dqð1� f0Þ �

Z
dp

Z
dqð1� f0Þ ¼ �

Z
dpð1� fÞ

Z
dqð1� f0Þ:

Here the primed variables correspond to the momentum q. Then, putting all the terms together we come to Eq. (11).
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