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In this paper we study the one-loop evolution equation of the Higgs quartic coupling � in the minimal

universal extra dimension model, and find that there are certain bounds on the extra dimension due to the

singularity and vacuum stability conditions of the Higgs sector. In the range 250 GeV� R�1 � 80 TeV of

the compactification radius, we notice that for a given initial value �ðMZÞ, there is an upper limit on R�1

for a Higgs mass of 183 GeV�mHðMZÞ � 187 GeV; where any other compactification scales beyond

that have been ruled out for theories where the evolution of � does not develop a Landau pole and become

divergent in the whole range (that is, from the electroweak scale to the unification scale). Likewise, in the

range of the Higgs mass 152 GeV�mHðMZÞ � 157 GeV, for an initial value �ðMZÞ, we are led to a

lower limit on R�1; any other compactification scales below that will be ruled out for theories where the

evolution of � does not become negative and destabilize the vacuum between the electroweak scale and

the unification scale. For a Higgs mass in the range 157 GeV<mHðMZÞ< 183 GeV, the evolution of � is

finite and the theory is valid in the whole range (from the electroweak scale to the unification scale) for

250 GeV� R�1 � 80 TeV.
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I. INTRODUCTION

The standard model (SM) is the gauge theory with gauge
symmetry group SUCð3Þ � SULð2Þ �UYð1Þ, and that
provides a very precise description of microscopic inter-
actions. Understanding the mechanism that breaks electro-
weak symmetry and generates the masses of all known
elementary particles is one of the most fundamental prob-
lems in particle physics. The Higgs mechanism gives us a
self-interacting scalar field which is arranged such that the
neutral component of the scalar doublet acquires a vacuum
expectation value which sets the scale of electroweak
symmetry breaking. As a result, it provides the weak gauge
bosons with masses through the absorption of the charged
and neutral Goldstone bosons as their longitudinal
components.

The speculations of the Higgs particle’s interactions, and
its discovery, are one of the most exciting topics in con-
temporary particle physics [1]. One of the unanswered
questions about the Higgs particle is to understand the
behavior of the quartic coupling �, through which the
mass of the Higgs particle, mH, is obtained. In fact, in

the SM, the Higgs boson mass is given by mH ¼ ffiffiffiffi
�

p
v,

where � is the Higgs self-coupling parameter and v is the

vacuum expectation value of the Higgs field: v ¼
ð ffiffiffi

2
p

GFÞ�1=2 ¼ 246 GeV is fixed by the Fermi coupling
GF. Since � is presently unknown, the value of the SM
Higgs boson mass mH cannot be derived directly.

The Higgs sector of the SM has two important parame-
ters, the Higgs mass and the new physics scale �. Below
that scale the SM is an extremely successful effective field

theory that has emerged from the electroweak precision
tests of the last decades. Above that scale the SM is no
longer valid and must be embedded into some more gen-
eral theory, the possibilities of this theory spawning
a wealth of new physics phenomena. The value of mH

itself can provide an important constraint to the scale to
which the SM remains successful as an effective theory.
Arguments can place approximate upper and lower bounds
onmH itself, for example, there is an upper bound based on
the perturbativity of the theory up to the scale at which the
SM breaks down, and a lower bound derived from the
stability of the Higgs potential. If mH is too large, then
the Higgs self-coupling diverges at some scale �, this is
called the Landau pole. On the other hand, from the
requirement that the scalar potential energy of the vacuum
be bounded from below, the quartic coupling � should be
positive at any energy scale. If mH is too small, � becomes
negative at certain energy scales, at which point the Higgs
potential is destabilized. The presence of the singularity
and zero values for the evolution of � simply leads to an
upper bound and a lower bound for its initial value, and
new energy scales can thus be introduced and which lead to
the emergence of new physics.
With the Large Hadron Collider (LHC) now up and

running, physicists have begun to explore the realm of
new physics that may operate at the TeV scale. Among
these, models with extra spatial dimensions may be re-
vealed in higher energy collider experiments. In particular,
the universal extra dimension (UED) model makes an
interesting TeV scale physics scenario which features a
tower of Kaluza-Klein (KK) states for each of the SM
fields, all of which have full access to the extended space-
time manifold [2–4]. It is well known that models with
extra dimensions may bring down the unification scale to a
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much lower energy scale [5]. Therefore, instead of assum-
ing the renormalization group equations (RGE) go from
the MZ scale up to the grand unification theory scale
(1014 GeV) by using the SUCð3Þ � SULð2Þ �UYð1Þ sym-
metry, the evolution of physics under the context of a UED
model would be significantly different due to the modified
beta functions. In the current context we will focus on the
evolution of the Higgs self-coupling and explore its behav-
iors and correlation with the compactified extra dimension.

As such, in this paper, we consider a UED model with a
single compactified extra dimension with an S1=Z2 sym-
metry. Recall that in order to explore physics at a high
energy scale we use RGE as a probe to study the momen-
tum dependence of physical quantities. Thus, in Sec. II, we
first start from the one-loop diagrams of the contributions
from the relevant KK modes to the beta function of the
Higgs’ quartic coupling. The evolution of the quartic cou-
pling is then derived using the anomalous dimensions of
the wave function and proper vertex renormalization of the
scalar field. In Sec. III the evolution equation of � is found
to be of the Riccati type, which we then show how to solve
explicitly. The position of the Landau pole and zero of the
quartic coupling � are given in terms of different compac-
tification radii. We find that the function �ðtÞ has a Landau
singularity at a relatively low energy scale as compared
with the case of the SM. A very precise analysis of the
position where � vanishes is also performed, and the new
physics scale can be identified as the value of the scale at
which � crosses zero. In Sec. IV we quantitatively analyze
the evolution of the scalar coupling from the electroweak
scale up to the unification scale and exploit its evolutionary
behavior for different compactification radii R, where it is
most interesting to investigate how � depends on its initial
values, as well as the compactification radius. Assuming
the theory is valid and consistent in the whole range (from
the electroweak scale up to the unification scale), �must be
positive and cannot be singular. As a result we obtain
numerical and graphical results for the behavior of �which
leads to bounds on the compactification radius. The last
section is devoted to a summary and our conclusions.

II. THE EVOLUTION EQUATIONS

The RGE are an important tool for the search of the
properties of physics at different energy scales. In the SM
the Higgs quartic coupling, �, which gives the mass of the
Higgs scalar is given as

�

2
ð�y�Þ2: (1)

It is known that the renormalized coupling constant de-
pends on the choice of the scale parameter �, where the
bare constant is independent of the renormalization scale.
As a result, the evolution of the Higgs quartic coupling is
given by the beta function:

�
@

@�
ln�R ¼ �

@

@�
lnZ2

� ��
@

@�
lnZcoupling; (2)

where �R is the renormalized quartic coupling constant
(we shall drop the index R for the remainder of the paper),
with Z� the wave function renormalization constants re-
lated to the scalar boson, and Zcoupling as the proper vertex

renormalization constant. The evolution equation of � for
the SM has been studied in various references, see [6–8].
Here we shall explicitly illustrate the contributions of the
UED’s KK modes to this beta function and plot their
effects to the evolution of the scalar coupling. For sim-
plicity we choose to work with the minimal UED model,
i.e. the extra dimension is compactified on a circle of radius
R with a Z2 orbifolding, which identifies the fifth coordi-
nate y ! �y. From a four-dimensional viewpoint, every
field will then have an infinite tower of KKmodes, with the
zero modes being identified as the SM state. The five-
dimensional KK expansion of the scalar field then becomes

�ðx; yÞ ¼ 1ffiffiffiffiffiffiffi
�R

p
�
�ðxÞ þ ffiffiffi

2
p X/

n¼1

�nðxÞ cos
�
ny

R

��
: (3)

In the bulk we have the scalar boson and gauge fields
interactions as

‘Higgs ¼
Z �R

0
dyðDM�ðx; yÞÞyDM�ðx; yÞ; (4)

in which the kinetic term DM�ðx; yÞ ¼
ð@M þ ig52T

aWa
M þ i

2g
5
1BMÞ�ðx; yÞ, and the five-

dimensional gauge fields have the form AM ¼ ðA�; A5Þ;
the fifth component of the gauge bosons, A5ðx; yÞ, being a
real scalar which does not have any zero mode, transform-
ing in the adjoint representation of the gauge group. Also
note that the five-dimensional coupling constants are re-
lated to the four-dimensional SM coupling constants up to

a normalization factor, i.e. gi ¼ g5iffiffiffiffiffi
�R

p , and � ¼ �5ffiffiffiffiffi
�R

p .

After integrating out the compactified dimension, the
four-dimensional effective Lagrangian has interactions in-
volving the zero (SM) modes and the KK modes. When
calculating the one-loop diagrams of the scalar quartic
coupling we choose to work in the Landau gauge in what
follows, as many one-loop diagrams are finite in the
Landau gauge and have no contribution to the renormal-
ization of the scalar quartic coupling. At each KK excited
level the one-loop Feynman diagrams that contribute to the
scalar coupling renormalization exactly mirror those of the
SM field ground states [7] plus new contributions from
the An

5 interactions due to the fifth component of the vector

fields, as shown in Fig. 1, where the anomalous dimensions
�coupling (�coupling ¼ � @

@� lnZcouping) can be extracted from

the divergent parts by using dimensional regularization. In
Table I we list the results of the proper vertex anomalous
dimensions of Fig. 1 for the An

5 field as well as those of the

gauge fields A� in the SM.

A. S. CORNELL AND LU-XIN LIU PHYSICAL REVIEW D 84, 036002 (2011)

036002-2



For simplicity, we have omitted a common multiplica-
tive factor of 1

16�2�
in Table I. The coupling constant g1 is

also chosen to follow the conventional SUð5Þ normaliza-
tion. Between the scale R�1, where the first KK states are
excited, and the cutoff scale, there are finite quantum
corrections of the KK states to the scalar coupling.
Following the discussions in [3], the one-loop evolution
equation for the scalar quartic coupling from these cumu-
lative effects of the KK modes has the following form:

16�2 d�

dt
¼ �SM

� þ �UED
� ; (5)

where the beta functions are given by

�SM
� ¼ 12�2 � ð95g21 þ 9g22Þ�þ 9

4ð 325g41 þ 2
5g

2
1g

2
2 þ g42Þ

þ 4�Tr½3Yy
UYU þ 3Yy

DYD þ Yy
EYE�

� 4Tr½3ðYy
UYUÞ2 þ 3ðYy

DYDÞ2 þ ðYy
EYEÞ2�; (6)

and

�UED
� ¼ ðSðtÞ � 1Þf12�2 � 3ð35g21 þ 3g22Þ�

þ ð 925g41 þ 6
5g

2
1g

2
2 þ 3g42Þg

þ 2ðSðtÞ � 1Þf4�Tr½3Yy
UYU þ 3Yy

DYD þ Yy
EYE�

� 4Tr½3ðYy
UYUÞ2 þ 3ðYy

DYDÞ2 þ ðYy
EYEÞ2�g: (7)

Note that here t ¼ lnð�=MZÞ is the energy scale parameter,
where we have chosen the Z boson mass as the

renormalization point, and SðtÞ ¼ etMZR. In deriving
�UED

� , for the factor of g41 as an explicit example, we
have � 1

4 � 9
25 g

4
1 from the An

5 contributions, together with a

factor � 9
4 � 3

25 g
4
1 which is read off from �coupling (SM) in

Table I, as a result the related one-loop graphs of the An
�

mode mirrors those of the SM (zero) mode. As given in
Eq. (2), this then leads to a total factor of 9

25 g
4
1. The second

line in �UED
� is attributed to the fermion-Higgs Yukawa

couplings, where at each KK level, the KK fermions have
graphs exactly mirroring the zero mode four-dimensional
SM ground state. Furthermore, the KK fermions at a given
level are vectorlike, this then accounts for a relative factor
of 2 between the first and second line in �UED

� for the

proportionality factor SðtÞ � 1 (in the Landau gauge, the
other one-loop diagrams [6] related to the gauge field
contributions to the vertex renormalization vanish as the
A5

n contributions associated with these diagrams are not

divergent, that is, they have no contribution to the vertex
renormalization constant).
In addition, the other physical parameters, such as

Yukawa couplings and gauge couplings do not evolve in
the old SM fashion. Their beta functions are as follows
[2,3]:

16�2 dfi
2

dt
¼ fi

2

�
2ð2S� 1ÞT � 2GU þ 3Sfi

2

� 3S
X
j

hj
2jVijj2

�
;

16�2
dhj

2

dt
¼ hj

2

�
2ð2S� 1ÞT � 2GD þ 3Shj

2

� 3S
X
i

fi
2jVijj2

�
;

16�2 dya
2

dt
¼ ya

2½2ð2S� 1ÞT � 2GE þ 3Sya
2�; (8)

where f2i and h2j are eigenvalues of Yy
UYU and Yy

DYD

respectively, and YE ¼ diagðye; y�; y�Þ, T ¼ Tr½3Yy
UYU þ

3Yy
DYD þ Yy

EYE�, GU ¼ 8g23 þ 9
4 g

2
2 þ 17

20 g
2
1 þ ðS� 1Þ�

ð283 g23 þ 15
8 g

2
2 þ 101

120g
2
1Þ, GD ¼ 8g23 þ 9

4g
2
2 þ 1

4g
2
1þ

ðS� 1Þð283 g23 þ 15
8 g

2
2 þ 17

120 g
2
1Þ, and GE¼ð94g22þ 9

4g
2
1Þþ

ðS�1Þð158 g22þ 99
40g

2
1Þ. The evolution of the quark flavor

mixing matrix in the charged current is governed by

TABLE I. The proper vertex anomalous dimensions for An
5 in Fig. 1, as well as the gauge fields

A� in the SM, each column referring to the type of contributions related to g41, g
2
1g

2
2, and g42

respectively.

�coupling (UED) �coupling (SM)

g41 g21g
2
2 g42 g41 g21g

2
2 g42

� 1
4 � 9

25g
4
1 � 1

4 � 65g21g22 � 3
4g

4
2 � 9

4 � 3
25 g

4
1 � 9

4 � 25 g21g22 � 9
4g

4
2

FIG. 1. The one-loop corrections from the fifth component of
the vector fields to the scalar coupling in Eq. (2), introduced at
each KK excited level. The dashed line is for the Higgs field, and
the dotted line is for the An

5 scalar. In Table I the contributions to

the anomalous dimension of the proper vertex are presented.
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16�2
djVijj2
dt

¼ SðtÞ
�
3jVijj2

�
fi

2 þ hj
2 �X

k

fk
2jVkjj2 �

X
k

hk
2jVikj2

�

� 3fi
2
X
k�i

1

fi
2 � fk

2

�
2hj

2jVkjj2jVijj2 þ
X
l�j

hl
2Viklj

�

� 3hj
2
X
l�j

1

hj
2 � hl

2

�
2fi

2jVilj2jVijj2 þ
X
k�i

fl
2Viklj

��
;

(9)

where Viklj ¼ 1� jVilj2 � jVklj2 � jVkjj2 � jVijj2 þ
jVilj2jVkjj2 þ jVklj2jVijj2, and the structure of the

one-loop evolution equation for the gauge couplings are

given by

16�2 dgi
dt

¼ ½biSM þ ðSðtÞ � 1ÞbUEDi �gi3: (10)

The bi
SM ¼ ð4110 ;� 19

6 ;�7Þ and bUEDi ¼ ð8110 ; 76 ;� 5
2Þ. Thus,

Eqs. (5) and (8)–(10), form a complete set of coupled

differential equations for the three families.

III. PRECISE SOLUTIONS OF THE HIGGS
SELF-COUPLING EQUATION

The evolution equations relate various observables at
different energy scales, and which also allow one to study
the asymptotic or perturbative behaviors of these equations
at a higher energy scale. The one-loop evolution equation,
Eq. (5), for the Higgs quartic coupling � is nonlinear,
which can be rewritten as

d�

dt
¼ 1

16�2

�
12 �SðtÞ�2 �SðtÞ �

�
9

5
g21 þ 9g22

�
�þð2SðtÞ� 1Þ � 4Tr½3Yy

UYU þ 3Yy
DYD þYy

EYE��þ 9

4

�
3

25
g41 þ

2

5
g21g

2
2 þg42

�

þðSðtÞ� 1Þ �
�
9

25
g41 þ

6

5
g21g

2
2 þ 3g42

�
�ð2SðtÞ� 1Þ � 4Tr½3ðYy

UYUÞ2 þ 3ðYy
DYDÞ2 þðYy

EYEÞ2�
�

¼ f0ðtÞþ f1ðtÞ�þ f2ðtÞ�2; (11)

where

f0ðtÞ ¼ 1

16�2

�
9

4

�
3

25
g41 þ

2

5
g21g

2
2 þ g42

�

þ ðSðtÞ � 1Þ �
�
9

25
g41 þ

6

5
g21g

2
2 þ 3g42

�

� ð2SðtÞ � 1Þ � 4Tr½3ðYy
UYUÞ2 þ 3ðYy

DYDÞ2

þ ðYy
EYEÞ2�

�
;

f1ðtÞ ¼ 1

16�2

�
�SðtÞ �

�
9

5
g21 þ 9g22

�

þ ð2SðtÞ � 1Þ � 4Tr½3Yy
UYU þ 3Yy

DYD þ Yy
EYE�

�
;

f2ðtÞ ¼ 1

16�2
12 � SðtÞ: (12)

Explicitly Eq. (11) has the form of the Riccati differential
equation [8], which enables us to solve the equation ex-
plicitly. In fact, the solutions of Riccati’s equation can
become singular even if the coefficients f0ðtÞ, f1ðtÞ, and
f2ðtÞ of the equation are smooth and regular functions of
energy. The position of the singularities and zeros of �ðtÞ
can be determined precisely, and their dependence on the
initial value of the Higgs quartic coupling �ðMZÞ can also
be derived. Consider two independent solutions W1ðtÞ and
W2ðtÞ which satisfy the following differential equation:

W 00 �
�
f02ðtÞ
f2ðtÞ þ f1ðtÞ

�
W 0 þ f0ðtÞf2ðtÞW ¼ 0; (13)

along with the initial conditions W1ðt0Þ ¼ 1, W 0
1ðt0Þ ¼ 0,

W2ðt0Þ ¼ 0, and W 0
2ðt0Þ ¼ 1. In terms of the functions

W1ðtÞ and W2ðtÞ the solution for �ðtÞ ¼ � 1
f2ðtÞ

W0ðtÞ
WðtÞ thus

gives us

�ðtÞ ¼ � 16�2

12SðtÞ
W 0

1ðtÞ � 12
16�2 Sðt ¼ t0Þ�ðt ¼ t0ÞW 0

2ðtÞ
W1ðtÞ � 12

16�2 Sðt ¼ t0Þ�ðt ¼ t0ÞW2ðtÞ
;

(14)

where t0 ¼ lnð 1
MZR

Þ is the place at which the first KK level
is excited. Note that Sðt ¼ t0Þ ¼ 1, and the initial value
�ðt ¼ t0Þ is to be determined. Obviously, the singularity
and the zero of the solution �ðtÞ depend on the compacti-
fication radius R and can be read off directly from the zeros
of the denominator and numerator, respectively. In which
case the singularity condition leads to

�Sðt ¼ t0Þ ¼ W1ðtÞ
12

16�2 W2ðtÞ
: (15)

That is, for a given initial value �Sðt ¼ t0Þ the evolution of
W1ðtÞ
12

16�2
W2ðtÞ gives us a Landau pole of �ðtÞ when it equals to

�Sðt ¼ t0Þ at an energy cutoff t ¼ �. Similarly, as ob-
served from the numerator, if we start off from a different

value �Zðt ¼ t0Þ, the evolution of
W0

1
ðtÞ

12

16�2
W 0

2
ðtÞ would give us a

zero value of �ðtÞ at a certain energy scale. In which case
we have the following equality:
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�Zðt ¼ t0Þ ¼ W 0
1ðtÞ

12
16�2 W

0
2ðtÞ

: (16)

In Figs. 2 and 3 we plot W1ðtÞ
12

16�2
W2ðtÞ and

W 0
1
ðtÞ

12

16�2
W0

2
ðtÞ as functions

of the scale parameter t. In which, for definiteness, we
choose R�1 ¼ 5 TeV as an illustrative example, and which
is within the reach of the LHC. Note that when the energy
is greater than 5 TeV we can see from Eq. (11) that the beta
function is governed by the whole SM sector, as well as its

KK counterpart. As illustrated, the function W1ðtÞ
12

16�2
W2ðtÞ de-

creases monotonically with energy, and it approaches the
value 0.537 at the unification scale, where the gauge cou-
plings tend to converge. Therefore, for the initial value
�Sðt ¼ t0Þ ¼ 0:537, the �ðtÞ eventually develops a Landau
pole and ‘‘blows-up’’. If we require the ‘‘blow-up’’ should
not happen at an energy scale smaller than the unification
scale, �Sðt ¼ t0Þmust be no more than 0.537. Furthermore,
for an energy below the threshold of the first KK level, we
can track back to the initial value of �ðtÞ at the electroweak
scale by using the SM beta function in Eq. (5), thus we can
determine �ðMZÞ. As a result, in terms of the Higgs mass,
for R�1 ¼ 5 TeV, it constraints mHðMZÞ< 184:1 GeV if
the theory is valid in the range from the electroweak scale
up to the unification scale.

On the other hand, the self-interactions of the scalar field
should remain in the perturbative domain, and no instabil-
ities should develop in the whole energy range between the
electroweak scale and the unification scale. In another
words, the running of the self-coupling � is required to
remain positive between the electroweak scale and the

ultraviolet cutoff. In Fig. 3 we find the function
W0

1
ðtÞ

12

16�2
W0

2
ðtÞ

keeps increasing from the scale where the first KK mode is
excited up to the unification scale. However, as observed
from the figure, the increase is not monotonical. Before the
function gets to the final value, it reaches a maximum value
of 0.287, just a marginally lower than the unification scale.
Like any higher dimensional theory, the UED model

should be treated only as an effective theory which is valid
only up to some scale �, at which a new physics theory
emerges. Therefore, presumably the new physics will be

associated with the scale where the function
W 0

1
ðtÞ

12

16�2
W0

2
ðtÞ be-

comes maximum. For if the initial value of �ðt0Þ were less
than 0.287, the evolution of �ðtÞ would pass through zero
and become negative on its way to the unification scale, in
which case the Higgs sector will break down and the theory
would become invalid. Thus the energy scale where �ðtÞ
becomes negative defines a new scale, and in the current
context it is found to be different from the unification scale,
which is in contrast with the results of the pure SM [8].
After we trace back to the � value at the electroweak scale,
by using the beta function of the SM for energies below
R�1, we obtain a lower bound on the Higgs mass, i.e.
mHðMZÞ> 154:4 GeV, if one requires that the vacuum is
not destabilized up to the unification scale.

IV. NUMERICAL ANALYSIS

We shall now investigate how the evolution of � depends
on the initial values of �ðMZÞ and thus the constraints
imposed on the compactification radii for which the valid-
ity of the theory is satisfied. Also, as is well known, the
self-coupling of the Higgs fields �ðMZÞ is proportional to
the Higgs mass squared, i.e., � ¼ m2

H=v
2; the admissible

values of �ðMZÞ can be transformed into the allowed values
of the Higgs boson mass at MZ. For different compactifi-
cation radii R we can apply Eqs. (14)–(16), to fix the value
of �ðtÞ at t0 ¼ lnð 1

MZR
Þ using the singularity and vacuum

stability conditions of the scalar coupling. The initial value
of � at t ¼ 0 is then determined by the beta function of the
SM in Eq. (5). In the range of compactification radius
250 GeV� R�1 � 80 TeV we have plotted the one-to-
one correspondence of the compactification radius and
the initial Higgs mass mHðMZÞ for both the singularity
and zero conditions of �ðtÞ. In Fig. 4 a given point on the
curve corresponds to the compactification radius R�1 and
the associated maximum initial value of the Higgs mass

4.0 4.5 5.0 5.5 6.0 6.5 7.0
0.00

0.05
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0.15
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0.25

t

16
2

12
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1
'

t
W

2
'

t

FIG. 3. The evolution of
W0

1
ðtÞ

12

16�2
W0

2
ðtÞ from t0 to the unification scale

for R�1 ¼ 5 TeV.
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FIG. 2. The evolution of W1ðtÞ
12

16�2
W2ðtÞ from t0 to the unification scale

for R�1 ¼ 5 TeV.
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(where we have reformulated the initial values of �ðMZÞ to
the Higgs mass mH), and any Higgs mass larger than that
will lead to the divergence of �ðtÞ before the unification
scale. Similarly, for Fig. 5 a point on the curve represents
the lower limit of the Higgs mass for the specific R�1, and
any Higgs mass lower than that will lead to the evolution of
�ðtÞ becoming negative before reaching the unification
scale.

Furthermore, for a given initial value of �ðtÞ we can
follow the differential equation Eq. (5) to pursue its evo-
lution for different compactification radii. For definiteness,
in Figs. 6 and 7 we plot the energy dependence of �ðtÞ for
different compactification radii, and thus illustrate its
bounds on R�1.1 As depicted in Fig. 6, when the energy
of the system is less than the excitations of the first KK
modes the theory follows the evolution of the usual four-
dimensional SM, and the existence of the KKmodes is thus
ignored. However, once the first KK threshold is reached
when �> R�1, the contributions from the KK states be-
come more and more significant, and the running deviates

from its normal SM orbits and begins to evolve with a
faster rate. For the initial value of �ðMZÞ ¼ 0:560, we find
that the evolution of the coupling �ðtÞ develops a Landau
pole at the unification scale for compactification radius
R�1 ¼ 5 TeV (i.e., the inverse of �ðtÞ becomes zero in
Fig. 6, and this result can also be concluded from Sec. III.
For other radii R�1 that are less than 5 TeV, for example,
R�1 ¼ 500 GeV, and 1 TeVas shown in Fig. 6, there is no
Landau pole up to the unification scale and the evolution of
the coupling �ðtÞ is finite (the unification scale is chosen to
be the median point of the area where the gauge couplings
converge); however, any theories whose radius R�1 >
5 TeV are ruled out in this context as the evolution of
�ðtÞ becomes divergent and singular before reaching the
unification scale.
In Fig. 7 we show an alternative evolution scenario for

�ðtÞwhen we start with a different initial value of �ðMZÞ in
the range of a Higgs mass of 152 GeV�mHðMZÞ �
157 GeV. In fact, for a small mHðMZÞ and a large ðYyYÞ2
term, the last term in Eq. (11) dominates and has a negative
contribution to the beta function. This causes the scalar
self-coupling to decrease with scale. Since the Yukawa
coupling itself falls with scale, especially in the UED
model, the Yukawa couplings are driven dramatically to-
wards extremely weak values at a much a faster rate [3].
Thus, eventually, the �2 term in Eq. (11) will overwhelm
and overcome the negative contribution from the Yukawa
couplings and bring the beta function back to positive
values. Qualitatively, the function �ðtÞ will initially fall
with scale until a minimum is reached, and then rise. If this
minimum is above zero, the vacuum of the theory is stable.
However, if the minimum becomes negative, this will
destabilize the vacuum. In Fig. 7 we start from �ðMZÞ ¼
0:394 and follow Eq. (5) to track its evolution for different
compactification radii. As concluded from Sec. III, for
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FIG. 4. The one-to-one correspondence between the Higgs
mass and the compactification scale R�1, derived from the
singularity condition of the scalar coupling �ðtÞ.
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FIG. 5. The one-to-one correspondence between the Higgs
mass and the compactification scale R�1, derived from the
vacuum stability condition of the scalar coupling �ðtÞ.
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FIG. 6 (color online). Graph for the evolution of ��1ðtÞ related
to the singularity condition. Here, �ðMZÞ ¼ 0:560, and dotted
line is the R�1 ¼ 5 TeV UED case, which reaches zero at the
unification scale. The dotted-dashed line is the R�1 ¼ 1 TeV
UED case, the dashed line is the R�1 ¼ 500 GeV UED case, and
the solid line is the SM.
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R�1 ¼ 5 TeV, the scalar coupling reaches zero at a certain
energy scale. In order to rescue the stability of the vacuum,
it suggests it is necessary to introduce new physics at such a
scale which would have a non-negligible impact on the
radiative corrections to the scalar potential and raise it.
Therefore, at or below this scale a consistent description of
nature requires the introduction of new physics. For other
compactification radii R�1 ¼ 10 TeV, and 20 TeV, for
example, as observed in Fig. 7, the evolution of �ðtÞ
reaches its minimum but rises and remains positive in the
whole range from the electroweak scale to the unification
scale. As a result, for initial value �ðMZÞ ¼ 0:394, it rules
out any compactification radii R�1 that are less than 5 TeV
for theories that are valid and whose vacuum is stable
against radiative corrections up to the unification scale.

In Fig. 8, we plot the evolution of the �ðtÞ for the initial
value �ðMZÞ ¼ 0:50 located in the range of the Higgs mass
157 GeV<mHðMZÞ< 183 GeV. It is shown that, for
compactification radii 250 GeV� R�1 � 80 TeV, the sca-
lar coupling is positive and nonsingular from the electro-
weak scale up to the unification scale. This can also be
expected from the results of Figs. 4 and 5, since this initial
value of the scalar coupling is outside the singularity and
vacuum stability constraints for compactification radii
250 GeV� R�1 � 80 TeV.

V. SUMMARY

The Higgs sector provides us with a number of interest-
ing problems in particle physics, where in this paper we
have investigated the evolution of the scalar coupling for
the UED model, and analyzed its effects and patterns for
different initial values of �ðMZÞ and different compactifi-
cation radii R. Moreover, an analytical and numerical
solution of the one-loop evolution of the Higgs quartic
coupling � is obtained, where the analysis of the one-
loop equation gives explicit formulae for the singularity
and zero positions of the scalar coupling. For compactifi-
cation radius between 250 GeV� R�1 � 80 TeV, by
means of singularity and vacuum stability conditions, an
intimate correspondence and connection between the
Higgs mass and the compactification radii R�1 is explicitly
plotted.
If we consider a consistent theory, one where the running

of the scalar coupling remains positive and nonsingular in
the whole range of energies between the electroweak scale
and the unification energy, we have constrained the range
for the Higgs mass in the UED model and are able to limit
the range of compactification radius for different initial
values of �ðMZÞ. For a compactification radius in the range
between 250 GeV� R�1 � 80 TeV, and for a large Higgs
mass, it gives us an upper bound on the compactification
scale R�1, where any other compactification scales beyond
that will develop a Landau pole before the unification scale
is reached. Therefore, the theory will have a strong cou-
pling at some high scale and will no longer be a complete
or consistent theory to describe the model. If we start with
a light Higgs mass instead, requiring � remain positive up
to the unification scale, the evolution of the scalar coupling
will lead to a lower bound on the compactification scale
R�1. Below this compactification scale the theory will not
be valid in the whole range from the electroweak scale to
the unification scale, since the evolution of � becomes
negative and destabilizes the vacuum. It is thus expected
that new physics should come to the fore in order to raise
the potential. If the Higgs mass is between 152 GeV�
mHðMZÞ � 157 GeV, then there is no vacuum stability and
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FIG. 7 (color online). Graph for the evolution of �ðtÞ related
to the vacuum stability condition. Here, �ðMZÞ ¼ 0:394, where
the dotted line is the R�1 ¼ 5 TeV UED case, the dotted-dashed
line is the R�1 ¼ 20 TeV UED case, the dashed line is the
R�1 ¼ 40 TeV UED case, and the solid line is the SM.
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FIG. 8 (color online). Graph for the evolution of �ðtÞ related to
the intermediate value of �ðMZÞ. Here, �ðMZÞ ¼ 0:50, where the
dotted line is the R�1 ¼ 250 GeV UED case, the dotted-dashed
line is the R�1 ¼ 1 TeV UED case, the long dashed line is the
R�1 ¼ 5 TeV UED case, the short dashed line is the R�1 ¼
80 TeV UED case, and the solid line is the SM.

1Here we plotted the �ðtÞ evolution for the UED model using
Eq. (5) and checked it with Eq. (14) and found they agreed
extremely well.
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singularity concerns all the way up to the unification scale,
yielding no bounds on the compactification radius R. Any
other Higgs mass that is outside the range illustrated here is
usually described by a finite cutoff scale, where the model
breaks down and new physics appears. If the compactifi-
cation radius R is sufficiently large, due to the power law
running of the gauge couplings, this enables us to bring the

unification scale down to an exportable range at the LHC
scale. Therefore, these bounds are very relevant for us,
especially for a compactification scale that lies in a region
which could be accessible for the LHC or future accelera-
tors. Hence it is expected that our conclusions shall set a
limit on the UED model to satisfy both theoretical and
experimental consistency.
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