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It is shown that realistic models can be constructed in which the standard model Higgs field is in a

nontrivial multiplet of a non-Abelian family group of the quarks and leptons. It is shown that the observed

quark and lepton masses and mixing angles can be fit, while the coefficients of flavor-changing four-

fermion operators mediated by the extra Higgs doublets are determined in terms of only a few unknown

parameters.
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I. INTRODUCTION

A peculiar feature of the standard model is that there are
many multiplets of fermions, but only one multiplet of
spin-0 bosons, the Higgs doublet. Supersymmetrizing the
standard model would produce a balance between spin-0
and spin-1=2, but still would not explain why there are so
many matter multiplets (i.e. quarks and leptons) and so few
Higgs multiplets.

In this paper we pursue a different idea than supersym-
metry. We suppose that there is a non-Abelian family group
[1] under which both the Higgs fields and the matter fields
transform as nontrivial multiplets. The particular model we
shall describe as an example has an SOð4ÞF family group
(or equivalently SUð2Þ � SUð2Þ), under which four-quark
and lepton families transform as a 4-plet, a mirror family
transforms as a singlet, and nine Higgs doublets transform
as a 9-plet, i.e. as a rank-2, symmetric, traceless tensor.
[Under the SUð2Þ � SUð2Þ to which SOð4ÞF is isomorphic,
the four families transform as (2, 2) and the 9 Higgs
doublets as (3, 3).] We shall call all nine of the scalar
doublets ‘‘Higgs’’ doublets, even though only the lightest
of them—the standard model Higgs doublet—actually gets
a nonzero vacuum expectation value (VEV).

Such a rich Higgs sector would yield new physics be-
yond the standard model. Most obviously, it would imply
the existence of flavor-changing couplings of the ‘‘extra’’
Higgs doublets. The non-Abelian family group, besides
explaining to some extent why there are families of quarks
and leptons, and giving a rich Higgs sector, would also
greatly constrain the form of the quark and lepton mass
matrices and the couplings of the extra Higgs doublets.
There is therefore the potential of great predictivity. For
example, in the illustrative SOð4ÞF model discussed in this
paper we shall show that there are sufficiently many model
parameters to give a good fit to the quark and lepton masses
and mixings, but still few enough parameters that the
coefficients of all the flavor-changing four-fermion opera-
tors are almost completely determined.

One might worry that these flavor-changing effects
would be too large. However, in the kind of model we
are describing there is a mass hierarchy within the family

multiplet of Higgs fields that mirrors the mass hierarchy
among the families of quarks and leptons. Therefore, most
of the extra Higgs doublets (particularly those that couple
most strongly to the first family of quarks and leptons)
are much heavier than the standard model Higgs doublet,
and excessive flavor-changing effects can be avoided.
Nevertheless, as will be seen, there typically is a ‘‘lightest
extra Higgs doublet’’ (LED) that can give flavor-changing
near the current limits.
This raises another question: given that there is no low-

energy supersymmetry to protect them, should not all the
extra Higgs doublets ‘‘naturally’’ be superheavy? In other
words, would not a multiplicity of Higgs doublets make the
‘‘gauge hierarchy problem’’ much worse, since there are
now many such fields whose masses have to be tuned? The
answer is that family symmetry protects the masses of the
extra Higgs doublets and there is no extra tuning. We
assume that the mass-squared of the standard model
Higgs field (the lightest Higgs field in the SOð4ÞF 9-plet)
is set ‘‘anthropically’’. Under reasonable assumptions this
means that it must be negative and have magnitude of order
ð100 GeVÞ2 [2,3]. Since all the Higgs doublets are in one
irreducible multiplet (the 9-plet) of the SOð4ÞF family
group, the masses of the extra Higgs fields are tied to
that of the standard model Higgs field by that symmetry.
(One can also use the language of SUð2Þ � SUð2Þ, to
which SOð4Þ is isomorphic: under SUð2Þ � SUð2Þ, the
9-plet of Higgs transforms as (3, 3), which is clearly
irreducible.) Since all the Higgs doublets are in one irre-
ducible multiplet of SOð4Þ (or SUð2Þ � SUð2Þ), they
would have equal masses in the limit of exact flavor
symmetry. But given that the flavor symmetry is broken,
the mass splittings among the Higgs doublets are con-
trolled by this breaking. In particular, since tuning makes
the mass-squared of the lightest Higgs doublet (the stan-
dard model Higgs doublet) quite small compared to the
SOð4ÞF-breaking splittings within the 9-plet, the masses of
the extra eight Higgs doublets are of the order of magni-
tude of some SOð4ÞF-breaking vacuum expectation value.
This breaking is assumed to be dynamical, and therefore
can occur without fine-tuning at a low enough scale to
produce observable effects.
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In a previous paper [4], one of us proposed a much more
ambitious version of this model, in which unification of the
standard model gauge couplings was achieved through the
group SUð3Þ � SUð3Þ � SUð3Þ � Z3. This led to a much
more involved model. Here, by staying with the standard
model gauge group GSM ¼ SUð3Þc � SUð2ÞL �Uð1ÞY we
have a model that is considerably simpler and easier to
analyze.

II. THE MODEL

The model has the gauge group GSM � SOð4ÞF �
SUðNÞDSB, where SUðNÞDSB is a confining group that plays
the role of dynamically breaking the family group SOð4ÞF.
The field content is shown in Table I:

In Table I and throughout the paper, the SOð4ÞF indices
are denoted by Latin letters i, j, k and range from 1 to 4.
The fact that the Higgs fields are in a rank-2 symmetric
tensor multiplet of SOð4Þ allows them to couple directly by
a renormalizable Yukawa term to the quarks and leptons,

schematically as Yðc ic jÞ�ðijÞ. Note that SOð4ÞF symme-
try and the pattern of its breaking controls the form of

h�ðijÞi and thus the form of the ‘‘textures’’ of the quark and
lepton mass matrices. So we now consider how SOð4ÞF is
broken and how this breaking is communicated to the
standard model fields.

The dynamical symmetry breaking is done by a h ��a�
ii

condensate, where as shown in Table I the �i are N’s of
SUðNÞDSB in a 4 of SOð4ÞF and the ��a are four �N’s of
SUðNÞDSB that are singlets of SOð4ÞF with the subscript a
being just a label that distinguishes them. Since renorma-
lizable couplings of the �, �� fields to the standard model
fields are forbidden by the gauge symmetries of the model,
as is easily seen, the standard model fields can only learn
of the breaking of the family group SOð4ÞF through
‘‘messenger fields’’, which are the �i

I shown in Table I.
These are real scalars that are vectors under SOð4ÞF and
singlets under the other groups. There are several such
messenger multiplets, which are distinguished by a capital
Latin subscript.

The SOð4ÞF-breaking condensate h ��a�
ii generates vac-

uum expectation values for the messenger fields through
the terms

faIh ��a�
ii�i

I þ 1
2M

2
IJ�

i
I�

i
J; (1)

where here and throughout we always sum over repeated
indices of any type. These terms give h�i

Ii ¼�M�2
IK faKh ��a�

ii. If the scale of the h ���i condensate is
called �3, and the mass of the messenger fields � is
assumed to be superheavy (near the Planck scale), then
the messenger VEVs are typically of order �3=M2

P‘. Since

the scale � is set by dynamical symmetry breaking, it can
naturally be of any magnitude, depending on the SUðNÞDSB
gauge coupling. Thus the VEVs of the messenger fields
can be quite near the weak scale in a ‘‘technically natural’’
way. If we suppose that the VEVs of the messenger fields
are in the 10 to 1000 TeV range, as will be assumed later,
then � is of order 1014 GeV. This is the scale at which the
local SOð4ÞF symmetry is broken, and thus the mass scale
of the SOð4ÞF gauge bosons, which are consequently far
too heavy to affect low-energy physics. And since the
messenger fields are superheavy, their exchange is also
irrelevant to low-energy physics. The VEVs of the mes-
senger fields, by contrast, can be small enough to produce
significant effects at low energy, and, in particular, to split
the 9-plet of Higgs fields and determine the pattern of
quark and lepton masses. Note that since the matrices
M2

IJ and faI in Eq. (1) are arbitrary parameters, they can
have a nontrivial and perhaps hierarchical form, and there-
fore so can the VEVs of the messenger fields.
There are two types of renormalizable couplings of the

messenger fields to the standard model fields. They couple
directly to the fermions through terms that are schemati-
cally of the form yIðc i �c Þ�i

I. Such terms, which will be
discussed in more detail later, have the effect of ‘‘mating’’
the mirror family with one of the four families to give them
a large mass, leaving three light families.
The messenger fields also couple directly to the Higgs

doublets through a renormalizable term of the form

L �M2
�
¼ 1

2�KI�
ðijÞy�ðjkÞ�k

K�
i
I: (2)

Defining what we shall call the ‘‘master matrix’’ m2 by

ðm2Þij � �IJh�i
Iih�j

Ji; (3)

TABLE I. The field content of the model. F stands for the GSM family representation
ð3; 2; 16Þ þ ð�3; 1;� 2

3Þ þ ð�3; 1; 13Þ þ ð1; 2;� 1
2Þ þ ð1; 1; 1Þ; and H for the GSM Higgs representation

ð1; 2;� 1
2Þ. The subscript DSB stands for ‘‘dynamical symmetry breaking.’’

Field GSM � SOð4ÞF � SUðNÞDSB Symbol

4 families ðF; 4; 1Þ c i ¼ Qi, ðucÞi, ðdcÞi, Li, ð‘cÞi
Mirror family ð �F; 1; 1Þ �c ¼ �Q, �uc, �dc, �L, �‘c

Higgs doublets ðH; 9; 1Þ �ðijÞ
Messenger scalar fields ð1; 4; 1Þ �i

I

DSB fermions ð1; 4; NÞ �i

DSB fermions 4� ð1; 1; �NÞ ��a, a ¼ 1; . . . ; 4
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we can write the mass terms of the nine Higgs doublets as

LM2
�
¼ �1

2M
2�ðijÞy�ðjiÞ � ðm2Þki�ðijÞy�ðjkÞ

¼ �1
2M

2 Tr½�y�� � Tr½m2�y��: (4)

The parameter M2 in Eq. (4) is the overall
SOð4ÞF-invariant mass of the Higgs 9-plet. The matrix
m2 in Eq. (4) gives the splittings within the 9-plet. As a
result of these splittings, one linear combination of the

�ðijÞ is lighter than the rest. It is assumed that anthropic
tuning of the parameterM2 causes the mass-squared of this
lightest doublet to be negative and of order ð100 GeVÞ2,
meaning that it is the standard model Higgs field. (In other
words, M2 varies among domains or subuniverses of the
Universe, so that there exist domains in which the mass-
squared of the lightest doublet has the value required for
life to be possible.) Let the standard model Higgs doublet

be the following linear combination: �SM ¼ 1
2 �ijaij�

ðijÞ,
with �ijjaijj2 ¼ 2, where aij (like �ðijÞ) is a symmetric

traceless matrix. It then follows that h�ðijÞi ¼ aijh�SMi ¼
aijv=

ffiffiffi
2

p
. This directly gives a nontrivial ‘‘texture’’ for the

mass matrices of the four families of quarks and leptons,

through the Yukawa terms of the form Yðc ic jÞ�ðijÞ. One
sees immediately, however, that it gives a texture of exactly
the same form ( / aij) for the mass matrices of the up

quarks, down quarks, and charged leptons of the four

families. However, there are also the mass terms of the
form yIðc i �c Þ�i

I that couple the four families to the mirror
family. Since, as we shall now see, these terms can be
different for the up quarks, down quarks and charged
leptons, a realistic spectrum for the three light families of
quarks and leptons can result.
The quark and lepton Yukawa terms given schematically

above have the actual forms

LYuk ¼ L4�4 þL4�1

L4�4 ¼ Yu�
ðijÞ�ðuiucjÞ þ Yd�

ðijÞðdidcjÞ þ Y‘�
ðijÞð‘i‘cjÞ

L4�1 ¼ yIQ�
i
Iðui �uþ di �dÞ þ yIu�

i
Iðuci �ucÞ þ yId�

i
Iðdci �dcÞ

þ yIL�
i
Ið‘i �‘Þ þ yI‘�

i
Ið‘ci �‘cÞ: (5)

L4�4 contains the Yukawa couplings of the four families to
each other, andL4�1 contains the Yukawa couplings of the
four families to the mirror family. In order to express the
mass terms coming from L4�1 more compactly, it is
convenient to define the following vectors in the SOð4ÞF
family space:

Xi
f �

X
I

yIfh�i
Ii=m; f ¼ Q; u; d; L; ‘: (6)

wherem � Yuv=
ffiffiffi
2

p
. Then the fermion mass matrices have

the forms

LM;up ¼ Yu

vffiffiffi
2

p ðu1; u2; u3; u4; �ucÞ

X1
Q

aij X2
Q

X3
Q

X4
Q

X1
u X2

u X3
u X4

u 0

0
BBBBBBBBB@

1
CCCCCCCCCA

uc1

uc2

uc3

uc4

�u

0
BBBBBBBB@

1
CCCCCCCCA
;

LM;down ¼ Yu

vffiffiffi
2

p ðd1; d2; d3; d4; �dcÞ

X1
Q

raij X2
Q

X3
Q

X4
Q

X1
d X2

d X3
d X4

d 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

dc1

dc2

dc3

dc4

�d

0
BBBBBBBB@

1
CCCCCCCCA
;

LM;lepton ¼ Yu

vffiffiffi
2

p ð‘1; ‘2; ‘3; ‘4; �‘cÞ

X1
L

saij X2
L

X3
L

X4
L

X1
‘ X2

‘ X3
‘ X4

‘ 0

0
BBBBBBBBB@

1
CCCCCCCCCA

‘c1

‘c2

‘c3

‘c4

�‘

0
BBBBBBBB@

1
CCCCCCCCA
;

(7)

where r � Yd=Yu, s � Y‘=Yu. Note that the elements in the 1� 4 and 4� 1 blocks of these matrices are very large
(Oðh�i

IiÞ) compared to the elements in the 4� 4 blocks, which are Oð�ðijÞÞ, i.e. the weak scale or smaller. All these
matrices can be brought by change of bases to the general form

HIGGS MULTIPLETS OF THE QUARK-LEPTON FAMILY GROUP PHYSICAL REVIEW D 84, 035021 (2011)

035021-3



0
Aij 0

0
B

0 0 0 C 0

0
BBBBB@

1
CCCCCA: (8)

When this is done, one sees that the fermions of the fourth
family (in this basis) obtain very large Dirac masses with
the fermions of the mirror family, while the first three
families remain light. The effective 3� 3 mass matrix of
the light families is then just given by the first three rows
and columns of what we call Aij in Eq. (8) (with correc-
tions that are Oðv=h�iÞ) or smaller and thus utterly negli-
gible). One sees from this that the magnitudes of the
‘‘vectors’’ Xi

f, in the 1� 4 and 4� 1 blocks of the mass
matrices in Eq. (7) do not affect the spectrum of the light
three families, only their directions do.

The three mass matrices in Eq. (7) depend on several
groups of parameters. (a) r, s, which are just ratios of
Yukawa couplings (r � Yd=Yu, s � Y‘=Yu). (b) aij, which

is just the direction of the VEV of �ðijÞ in SOð4ÞF space,

and is determined by the mass matrix of the�ðijÞ, which in
turn is controlled by the ‘‘master matrix’’ m2 defined in
Eq. (3). And (c) the vectors defined in Eq. (6). Most of the
parameters are in this last category. These five vectors
could be independent of each other, in which case the
number of parameters would be too large to have a pre-
dictive model.

There are a number of ways in which the five vectors
could be related to each other, thus reducing the number of
free parameters. One is through unification of the standard
model gauge group in a larger group. This was the ap-
proach discussed in [4], where GSM was embedded in the
‘‘trinification group’’ SUð3Þ � SUð3Þ � SUð3Þ. Such uni-
fication symmetries relate quarks to leptons and thus relate
some of these vectors to each other. As can be seen from
[4], however, there are significant costs to such unification.
It makes models considerably more involved.

Another possibility is that a small number of messenger
fields give the dominant contributions to the vectors of
Eq. (6). To take an extreme example, if only one messenger
field, say �i

1, contributed, then the sums �Iy
I
fh�i

Ii in

Eq. (6) would collapse to single terms proportional to
h�i

1i, and all the vectors would be parallel. This is too
extreme, however, because it would mean that the effective
3� 3 mass matrices of the up quarks, down, quarks, and
charged leptons of the three light families would all be of
the same form, which is unrealistic.

An interesting possibility, which we will discuss briefly
later, is that all the vectors in Eq. (6) get their dominant
contribution from two of the messenger fields. Then the
five vectors defined in Eq. (6) would all lie in a two
dimensional subspace. The number of parameters would
thereby be reduced so much that the model would be very
predictive—as predictive as the version of the model we
discuss below.

In this paper we follow a somewhat different path. We
assume that certain of the vectors (but not all of them) are
dominated by a single messenger field VEV and therefore
parallel. We will consider two cases for illustration, which
we will call ‘‘Case A’’ and ‘‘Case B’’. In Case A, the
vectors Xu and XQ are assumed parallel. In Case B, the

vectors Xd and XQ are assumed parallel. We will only

explicitly work out the quark sector couplings (the charged
lepton sector is quite similar, as will be seen), so we make
no assumption about the vectors XL and X‘ here.

III. FITTING THE QUARK SPECTRUM
IN CASE A

We make the further assumption (to be justified later
when we discuss the spectrum of Higgs doublet masses)
that the matrix aij is real. The forms of the mass matrices

given in Eq. (7) can then be simplified by a choice of
SOð4ÞF basis. One can do an SOð4ÞF transformation that
makes the vectors Xi

Q and Xi
u, which are parallel in Case A,

point in the 4 direction, i.e. have the forms ð0; 0; 0; XQÞ and
ð0; 0; 0; XuÞ. (This can be done with a real orthogonal trans-
formation, because these vectors are assumed proportional
to a single messenger field VEV, and each messenger field
is a real SOð4ÞF vector field. Moreover, because aij is real,

an SOð4ÞF transformation preserves its character as a
traceless symmetric matrix.) One can follow this by an
SOð3Þ transformation involving only the indices i ¼ 1, 2, 3
(which thus preserves the special forms of Xi

Q and Xu) that

diagonalizes the upper-left 3� 3 block of the mass matri-
ces. In the resulting basis the mass matrices have the forms

Mup ¼

c 0 0 d 0

0 b 0 e 0

0 0 a f 0

d e f �� XQ

0 0 0 Xu 0

0
BBBBBBBB@

1
CCCCCCCCA
m;

Mdown ¼ r

c 0 0 d 0

0 b 0 e 0

0 0 a f 0

d e f �� 1
r XQ

1
r X

1
d

1
r X

2
d

1
r X

3
d

1
r X

4
d 0

0
BBBBBBBB@

1
CCCCCCCCA
m;

Mlep ¼ s

c 0 0 d 1
s X

1
L

0 b 0 e 1
s X

2
L

0 0 a f 1
s X

3
L

d e f �� 1
s X

4
L

1
s X

1
‘

1
s X

2
‘

1
s X

3
‘

1
s X

4
‘ 0

0
BBBBBBBBB@

1
CCCCCCCCCA
m;

(9)

where � � aþ bþ c. Note that because we have ob-
tained this form by a real orthogonal transformation, and
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because we are assuming that aij is real, the parameters a,

b, c, d, e, f in these matrices are real.
Since XQ and Xu (which are of order h�i

Ii) are several

orders of magnitude larger than the elements a, b, c, d, e,
f, it is easily seen that the three light families of up quarks
(namely u, c, t) correspond almost exactly to the first three
rows and columns of Mup in Eq. (9). Thus, the effective

mass matrix for the three observed families of up quarks is
given in this basis simply by

~M up ¼
c 0 0
0 b 0
0 0 a

0
@

1
Am: (10)

Therefore, c=b ¼ mu=mc � 1 and b=a ¼ mc=mt � 1.
Since it will turn out that b, c, d, e, f are all
small compared to 1, and aij is normalized so that

�ijjaijj2 ¼ 2, one has a2 ffi 1. Without loss of generality

we can take a ffi þ1, and m � Yuv=
ffiffiffi
2

p ffi mt.
To find the effective mass matrix for the three light

families of down quarks, we must do a further change of
basis of the dci to bring the complex vector ðX1

d; X
2
d; X

3
d; X

4
dÞ

to the form ð0; 0; 0; XdÞ. This is done by multiplyingMdown

from the right by a unitary transformation of the form

U ¼

c� s�� 0 0

�s� c� 0 0

0 0 1 0

0 0 0 1

0
BBBBB@

1
CCCCCA

1 0 0 0

0 c� s�� 0

0 �s� c� 0

0 0 0 1

0
BBBBB@

1
CCCCCA

�

1 0 0 0

0 1 0 0

0 0 c� s�

0 0 �s� c��

0
BBBBB@

1
CCCCCA

¼

c� c�s
�
� c�s

�
�s

�
� s�s

�
�s

�
�

�s� c�c� c�s
�
�c� s�s

�
�c�

0 �s� c�c� s�c�

0 0 �s� c��

0
BBBBB@

1
CCCCCA (11)

Where the angles s�, s� and s� are in general complex. It

turns out that to get a realistic fit to the quark masses, one
needs to assume that c, d � b, e � f < a ffi 1, and that
js�j, js�j, and jc�j are small compared to 1. This allows us

to write Mdown in the new basis as

Mdownffi r

0 0 �d c�� 0

�s�b b �e s��þc��e 0

0 �s� c��f 1þc��f 0

d�s�e e�s�f c�fþ1 f�c�� 1
rXQ

0 0 0 1
rXd 0

0
BBBBBBBBB@

1
CCCCCCCCCA
m

(12)

From this one can read off that the effective 3� 3 mass
matrix of the three light families of down quarks is simply

~M down ffi r

0 0 �d
�s�b b �e
0 �s� c� � f

0
B@

1
CAm (13)

The parameter s� can be made real by redefining the phase
of dc1 in this basis. The parameter s� can be made real by

redefining the phase of u3 in this basis. (These phase
redefinitions do not affect the fitting of known quantities,
but do affect the phases of the Yukawa couplings of the
extra scalar doublets, which are therefore undetermined by
just fitting the known quark masses and mixing angles.)
Calling c� � f � Fei� and remembering that we have

normalized a to be 1, the quark mass matrices can be
written

~Mup ¼
c 0 0

0 b 0

0 0 1

0
BB@

1
CCAm;

~Mdown ffi r

0 0 �d

�s�b b �e

0 �s� Fei�

0
BB@

1
CCAm:

(14)

These depend on nine real parameters (r, m, b, c, d, e, F,
s�, s�) and one phase (e

i�). This is just the right number of

parameters to fit the six quark masses, three Cabibbo-
Kobayashi-Maskawa (CKM) angles and the CKM phase.
The results of the fit are given in Table II.
Note that the parameter f is not determined, and the

parameter c� is given by c� ¼ Fei� þ f. These numbers

determine (except for the parameter f) the 4� 4 mass
matrix of the four families in the basis of Eq. (9):

Yuh�ðijÞi ¼ Yu

�
vffiffiffi
2

p
�
aij ¼ Yu

vffiffiffi
2

p

c 0 0 d

0 b 0 e

0 0 a f

d e f ��

0
BBBBB@

1
CCCCCA: (15)

TABLE II. Parameter values in Case A of the model that
reproduce the known quark masses and CKM mixing matrix.

Parameter Value

a 1.0

b 3:6� 10�3

c 7:4� 10�6

d 4:7� 10�4

e 2:2� 10�3

F 5:7� 10�2

� 0.98

sin� 0.105

sin� 0.076

r 0.177
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In the next section, we will use this information to deter-

mine the spectrum of the scalars �ðijÞ. This is possible
because the matrix aij is enough to determine the master

matrix ðm2Þij (if that is assumed real).

IV. THE SCALAR SPECTRUM IN CASE A

The masses of the Higgs doublets�ðijÞ are controlled by
the ‘‘master matrix’’ m2 defined in Eq. (3). (There are also
contributions to the mass-squared of the extra scalar dou-

blets that come from the quartic self-couplings of �ðijÞ
once �SM gets a VEV, but these are negligible if, as will
turn out to be the case, the masses of the extra doublets are
much larger than the mass of the standard model Higgs.)
From Eq. (3), one easily sees that m2 is Hermitian. (In that
equation the coupling matrix �IJ is in general complex and
Hermitian, whereas the VEVs h�i

Ii are real.) To obtain a
realistic hierarchy among the quark and lepton masses, it
turns out thatm2 must be very hierarchical, as will be seen.
In simple cases where m2 is hierarchical, it also tends to be
approximately real. (To take an extreme case, suppose, that
one of the �i

I, say �i
1, gave the largest contribution to m2.

Then ðm2Þij ffi �11h�i
1ih�j

1i, which is rank 1, and thus

hierarchical, and also manifestly real.) We therefore
make the approximation that m2 is real, since this greatly
simplifies the analysis of the model. (It is also possible to
imagine that the master matrix arises primarily from the

VEVs of other messenger fields �ðijÞ that are real 9-plets of
SOð4ÞF. Those contributions would be exactly real.)
If m2 is taken to be real, then it is also symmetric, and it

can be diagonalized by an SOð4ÞF rotation, i.e. by a choice
of SOð4ÞF basis, which we will call the ‘‘scalar-mass
basis’’. Since the terms in Eq. (4) can be written
Tr½ð12M2I þm2Þ�y��, it is clear that without loss of gen-
erality one can make one of the diagonal elements of m2

vanish by shifting the parameterM2. Thus m2 can be taken
(in the ‘‘scalar-mass basis’’) to be of the form

m2 ¼
1 0 0 0
0 � 0 0
0 0 	 0
0 0 0 0

0
BBB@

1
CCCAm2

0: (16)

We assume that 	 � � � 1, which will lead directly to a
hierarchy in the quark and lepton mass matrices, as will be
seen. Writing the 9-plet of Higgs fields as

�ðijÞ ¼

3 ��11ffiffi
6

p �12 �13 �14

�12
2
ffiffi
2

p
��22� ��11ffiffi

6
p �23 �24

�13 �23

ffiffi
6

p
��33�

ffiffi
2

p
��22� ��11ffiffi

6
p �34

�14 �24 �34
� ffiffi

6
p

��33�
ffiffi
2

p
��22� ��11ffiffi

6
p

0
BBBBBBB@

1
CCCCCCCA

(17)

and substituting Eqs. (16) and (17) into Eq. (4), one finds
the spectrum given in Table III:

Note that the Higgs fields in the first row/column (�ð1iÞ)
get contributions of orderm2

0 from the master matrix; those

in the second (but not first) row/column (�ð2iÞ, i � 1) get
contributions of order �m2

0, and the remaining ones get

contributions of order 	m2
0, as an inspection of Eqs. (4) and

(15) would suggest. The fields denoted ��ðiiÞ0 are linear

combinations of the fields denoted ��ðiiÞ in Eq. (17). The
lightest of the Higgs doublets, which is the standard model
Higgs doublet, turns out to be the linear combination

�SM ¼ ��ð33Þ0 ffi ��ð33Þ þ
ffiffiffi
3

p
4

	

�
��ð22Þ þ 5

6
ffiffiffi
6

p 	 ��ð11Þ: (18)

One sees, then, that the standard model Higgs doublet has
diagonal Yukawa couplings in the ‘‘scalar-mass basis’’.
The mass-squared of the standard model Higgs doublet is
fine-tuned (presumably anthropically) to be �
2, where


� 100 GeV. This gives M2 ffi �ð	� 	2

4�Þm2
0 �
2.

Substituting this into the mass-squared of the other Higgs
fields in the 9-plet gives the results in the last column of
Table III.

The next lightest Higgs doublet is�ð34Þ. We will call this
�LED, where LED stands for ‘‘lightest extra doublet’’.
From Table III, one sees that the mass of �LED is 	

2� times

that of the next lightest Higgs doublets �ð23Þ and �ð24Þ.
Shortly, we will see that this is 3:6� 10�3. Thus, it turns
out that flavor-violating effects are dominated by the ex-

change of �LED. In the scalar-mass basis, �LED ¼ �ð34Þ
couples very simply to the quarks and leptons: it only

TABLE III. The mass spectrum of the 9-plet of Higgs dou-
blets.

Field ðmassÞ2 After tuning SM Higgs

��ð11Þ0 ffi M2 þ 3
2m

2
0 ffi 3

2m
2
0

�ð12Þ M2 þ ð1þ �Þm2
0 ffi ð1þ �Þm2

0

�ð13Þ M2 þ ð1þ 	Þm2
0 ffi m2

0

�ð14Þ M2 þm2
0 ffi ð1� 	Þm2

0
��ð22Þ0 ffi M2 þ 1

3 �m
2
0 ffi 1

3 �m
2
0

�ð23Þ M2 þ ð�þ 	Þm2
0 ffi �m2

0

�ð24Þ M2 þ �m2
0 ffi ð�� 	Þm2

0

�ð34Þ M2 þ 	m2
0 ffi 	2

4�m
2
0

��ð33Þ0ð� �SMÞ ffi M2 þ ð	� 	2

4�Þm2
0 � �
2
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couples the third to the fourth family, with strength 1 for
the up quarks, r for the down quarks, and s for the charged
leptons.

From Eqs. (18) one sees that h ��ð11Þi ¼ ð 5	
6
ffiffi
6

p Þv= ffiffiffi
2

p
,

h ��ð22Þi ¼ ð
ffiffi
3

p
	

4� Þv=
ffiffiffi
2

p
, and h ��ð33Þi ¼ v=

ffiffiffi
2

p
. Substituting

this into Eq. (17), one finds that the matrix aij that appears

in the mass matrices given in Eq. (7) is just given in the
scalar-mass basis by

h�ðijÞi¼aijv=
ffiffiffi
2

p ffi

5
12	 0 0 0

0 1
2ð	=�Þ 0 0

0 0 1 0

0 0 0 �1

0
BBBBB@

1
CCCCCAv=

ffiffiffi
2

p
: (19)

This is related to the form of aij in Eqs. (9) and (15) by a

change of basis of the fermions. Indeed, since the parame-
ters that appear in Eq. (15) are given in Table II (except for
f), one simply diagonalizes the form in Eq. (15) to deter-
mine the parameters � and 	 in Eq. (19). In this way,
one finds that � ffi 2:5� 10�3, 	 ffi 1:8� 10�5, and
	=� ffi 7:2� 10�3

Since the transformation between these two bases is
known (in terms of one unknown, namely f), one can
determine the Yukawa couplings of �LED, and indeed all
the other extra Higgs doublets, in the basis of Eqs. (9) and
(15). The basis of Eqs. (9) and (15) is in fact the physical
basis of the up quarks u, c and t, as explained before
Eq. (10). Thus we know how all nine of the Higgs doublets
couple to u, c, and t. To get to the physical basis of the
down quarks d, s, and b, one must do two further changes
of basis of the down quarks: first, that shown in Eq. (11),
the parameters of which are given in Table II (except for
the phases of s� and s�); and second, the change of basis

needed to diagonalize the matrix in Eq. (13), which are
completely determined from Table II.

In other words, one is in a position to compute the

couplings of the all nine of the �ðijÞ to all of the known
quarks in terms of the unknown parameter f and the
unknown phases of s� and s�.

The results are given in Table IV, for f ¼ 0:05 and the
phases of s� and s� equal to zero. One gets similar results

for other values of these parameters.
The analysis of the charged leptons is very similar to that

of the down quarks. There are a number of assumptions

that could be made about the vectors Xi
L and Xi

‘ in Eq. (9).

Suppose, for example, one assumed that Xi
‘ is parallel to

Xi
Q and Xi

u. Then the diagonalization of Mlep proceeds in

the same way as the diagonalization of Mdown above,
except that Mlep in Eq. (9) is multiplied on the left by a

unitary matrix U0y, where U0 has the same form as U in
Eq. (11) but with different angles�0,�0, and �0. The phases
of these parameters turn out not to affect the fitting of the
charged lepton masses significantly. So there are four addi-
tional parameters in the lepton sector (s, �0, �0, and �0)
available to fit the three masses me, m
, and m�.

Consequently, the Yukawa coupling matrices of all 9
Higgs doublets to the charged leptons are determined in
terms of only a small number of additional unknown
parameters. Here we will only discuss the quark sector
for purposes of illustration.
The Yukawa couplings in Table IV allow us to write

down the coefficients flavor-changing four-fermion opera-
tors. The most interesting involving the down-type quarks
are given in Table V.
In Table V, the limits on MLED are obtained from the

limits on the coefficients of flavor-changing operators
given in [5]. One sees from Table V that the contribution
to �K from the CP-violating part of the ð�sRdLÞð�sLdRÞ

TABLE IV. Values for the Yukawa couplings of the lightest
extra Higgs doublet (LED) to the quarks, in Case A of the model,
with f ¼ 0:05, and s� ¼ s� ¼ 0.

Yukawa of LED Value

Yu
12 ¼ Yu

21 2:1� 10�7

Yu
13 ¼ Yu

31 �4:7� 10�4

Yu
23 ¼ Yu

32 2:2� 10�3

Yu
11 �1:1� 10�8

Yu
22 �9:7� 10�7

Yu
33 0.12

Yd
12 ð�0:37� i1:2Þ � 10�3

Yd
21 ð6:2þ i8:5Þ � 10�4

Yd
13 ð2:8þ i9:4Þ � 10�4

Yd
31 ð1:5� i2:3Þ � 10�2

Yd
23 ð2:4þ i0:34Þ � 10�3

Yd
32 ð�0:77þ i1:2Þ � 10�1

Yd
11 ð0:7þ i2:3Þ � 10�4

Yd
22 ð3:2þ i4:4Þ � 10�3

Yd
33 ð6:0� i8:9Þ � 10�2

TABLE V. The predicted coefficients of the most important flavor-changing four-quark operators and the resulting lower limits on
the mass of the LED [5].

Operator Coefficient Limit on MLED

csdð�sRdLÞð�sLdRÞ jcsdj ¼ 1:33� 10�6=M2
LED 	 14 TeV

ImðcsdÞ ¼ 1:33� 10�6 argðcsdÞ
M2

LED

	 230 TeV½argðcsdÞ�1=2
cbsð �bRsLÞð �bLsRÞ jcbsj ¼ 3:45� 10�4=M2

LED 	 5:1 TeV

cbdð �bRdLÞð �bLdRÞ jcbdj ¼ 2:7� 10�5=M2
LED 	 6:9 TeV

HIGGS MULTIPLETS OF THE QUARK-LEPTON FAMILY GROUP PHYSICAL REVIEW D 84, 035021 (2011)

035021-7



operator gives an extremely severe constraint on the mass
of the lightest extra doublet in this model if the phase of csd
is order one. If that phase happens to be very small, then
	mK still constrains the LED mass to be greater than
14 TeV. (It should be pointed out that these numbers turn
out to be fairly insensitive to the value of the unknown
parameter f.)

These bounds are considerably tighter than one might
have expected for a flavor-changing Higgs if its Yukawa
couplings were similar to those of the standard model
Higgs. These bounds are very sensitive to the details of
the model. We will now look at another version of the
model (Case B), since the comparison is instructive.

V. RESULTS FOR CASE B

The analysis of Case B is quite similar to that of Case A.
In Case B the mass matrices in the same basis as Eq. (9)
take the form

Mup ¼

c 0 0 d 0

0 b 0 e 0

0 0 a f 0

d e f �� XQ

X1
u X2

u X3
u X4

u 0

0
BBBBBBBB@

1
CCCCCCCCA
m;

Mdown ¼ r

c 0 0 d 0

0 b 0 e 0

0 0 a f 0

d e f �� 1
r XQ

0 0 0 1
r Xd 0

0
BBBBBBBB@

1
CCCCCCCCA
m:

(20)

In this case, it is apparent that (neglecting terms of order
v=h�i) the mass matrix of the observed down quarks, d, s,
b is just given by the upper-left 3� 3 block of Mdown, i.e.

~M down ¼ r
c 0 0
0 b 0
0 0 a

0
@

1
Am; (21)

so that this is already in the physical basis of these quarks.
Thus, in Case B, b=a ¼ ms=mb and c=a ¼ md=mb.

For the up-type quarks, however, one must make a
further change of basis for the uci in order to bring the
complex vector ðX1

u; X
2
u; X

3
u; X

4
uÞ to the form ð0; 0; 0; XuÞ.

This involves rotating the matrix Mup in Eq. (20) from the

right by a matrix of the same form shown in Eq. (11) This
gives forMup the same form asMdown has in Case A, shown

in Eq. (12) (with r ¼ 1). However, it turns out that the fit to
the quark masses and mixing angles implies that here
a < 1 and f ffi 1, and, unlike Case A, the parameter c is
not negligible. Moreover, the angle � is large enough here
that it is not a good approximation to set cos� ¼ 1, but it is
a good approximation here, as in Case A, to set cos� ¼ 1

and sin� ¼ 1. With these approximations, one has for the
effective 3� 3 mass matrix of the u, c, and t quarks

~M up ffi
c c�s�c �d

�s��b c�b �e
0 �s��a �f

0
B@

1
CAm (22)

Fitting the quark masses and mixing angles leads to the
parameter values given in Table VI.
It turns out that cos� is almost unconstrained, since the

quark masses and mixing angles are only very weakly
dependent on it. With the parameters given in Table VI,
the Yukawa couplings of all the Higgs doublets to all the
quarks can be straightforwardly computed in terms of
cos�.
What distinguishes Cases A and B is that in Case A the

strongest flavor-changing effects are in the down-quark
sector, whereas for Case B the strongest flavor-changing
effects are in the up-quark sector. What matters most in
Case B, therefore, are the couplings of u to c, which give
the operator ð �cLuRÞð �cRuLÞ. The coefficient of this operator
cuc is somewhat insensitive to the value of cos�. With
cos� ¼ 0:1, one finds cuc ¼ 7:5� 10�5=M2

LED. The cur-
rent limit from D� �D mixing givesMLED 	 36 TeV. The
limits from the Bs and Bd system turn out to be much
weaker: they only constrain MLED to be larger than about
1.4 TeV. The limit from the �K parameter is that
MLED > 7 TeV, for CP phases of order 1.
One sees, then, that in the two special cases of the model

that we have analyzed the lightest extra Higgs doublet has
to be too heavy to be seen at accelerators or to give
significant flavor-changing effects in rare processes. In
Case A this because of the K � �K mixing limits and
in Case B it is because of the D� �D mixing limits.
However, Cases A and B do not exhaust the possibilities
of this model. For example, as noted near the end of Sec. II,
the assumption that all the vectors in Eq. (6) arise from just
two messenger fields reduces the number of parameters
almost as much as in the two cases we have studied here. It
may be that this assumption or other assumptions or limits
of the model can allow the lightest extra Higgs doublet to
be lighter than in Cases A and B. Moreover, what has been

TABLE VI. The parameter values in Case B of the model that
reproduce the masses of the quarks and the CKM mixing matrix.

Parameter Value

a 0.137

b 2:54� 10�3

c 1:27� 10�4

d 7:5� 10�3

e �0:04
f 1.0

sin� 0:24ei0:42

sin� 0:08ei1:05

r 0.132
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studied here is only one particular model that realizes the
basic idea of putting multiple Higgs doublets into a repre-
sentation of a non-Abelian flavor group.

VI. CONCLUSIONS

The repetition of quark and lepton families has long
suggested the possibility of a non-Abelian family symme-
try [1]. It is quite natural, therefore, to consider the possi-
bility that the Higgs field of the standard model belongs to
a multiplet of the same family group. In the model we have
presented as an example of this idea, the family symmetry
tightly constrains the forms of the quark and lepton mass
matrices. Nevertheless, it has been shown that the observed
fermion masses and mixing angles can be reproduced. The
family symmetry also severely constrains the Yukawa
couplings of all the extra Higgs doublets; and it has been
seen that after fitting the known quark and lepton masses,
the coefficients of all the flavor-changing four-fermion
operators that come from the exchange of extra Higgs
doublets are predicted in terms of only a few parameters.
It turns out that in the specific model we have studied, the
constraints from limits on flavor-changing in the K � �K
andD� �D systems require the lightest extra Higgs doublet
to have a mass of tens of TeV, which is too heavy to lead to
testable phenomenology in the near future. This may,
however, be a feature of the specific model we have studied

rather than an inevitable consequence of the general ap-
proach we are proposing.
One of the interesting features of the approach being

described in this paper is that the spectrum of the Higgs
fields is closely connected to the spectrum of the quarks
and leptons. The pattern of couplings of the standard model
Higgs to the quark families—i.e. the so-called textures of
the Yukawa matrices—is determined by which component
within the ‘‘family’’ of Higgs fields is the lightest, i.e. is the
standard model Higgs field. This is determined, in turn,
by the pattern of family-symmetry-breaking within the
Higgs family multiplet. Thus, both the spectrum of
fermion masses and the spectrum of Higgs boson masses
is largely determined by what we have called a ‘‘master
matrix’’.
A key feature of the present approach is that the break-

ing of the family symmetry takes place dynamically in a
sector of fields that are standard model singlets and is
communicated to the standard model degrees of freedom
by ‘‘messenger’’ fields. If the messenger sector is simple,
then the pattern of masses of the standard model fields,
including the extra Higgs doublets, is highly constrained.
It would be interesting to see if other non-Abelian family

groups and particular choices of family representations for
the quarks, leptons, and Higgs fields could lead to realistic
models that predict flavor-changing effects at observable
levels.
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