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We have shown that in a large number of generic and renormalizable Wess-Zumino models, existence

of a Zn R-symmetry is sufficient to break supersymmetry spontaneously. This implies that the existence of

a Zn R-symmetry is a necessary condition for supersymmetry breaking in generic and renormalizable

Wess-Zumino models.
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I. INTRODUCTION

In discussions of F-term N ¼ 1 supersymmetry (SUSY)
breaking, R-symmetry plays a crucial role. The importance
of a U(1) R-symmetry in spontaneous SUSY breaking was
clearly addressed by Nelson and Seiberg [1]. It was shown
that, ‘‘a continuous R-symmetry is a necessary condition
for spontaneous supersymmetry breaking and a spontane-
ously broken R-symmetry is a sufficient condition, in
models where the gauge dynamics can be integrated out
and in which the effective superpotential is a generic
function consistent with the symmetries of the theory.’’ It
was also shown [1] that if the requirement of genericity is
relaxed, one can find models of SUSY breaking without
any R-symmetry. In this paper, we address the question of
the necessary condition for SUSY breaking in Wess-
Zumino (WZ) models which are both generic and
renormalizable.

We show that there exist a large number of generic and
renormalizable WZ models where existence of a Zn

R-symmetry is sufficient to break SUSY spontaneously.
It is well known that if there is no R-symmetry, continuous
or discrete, in generic WZ models with canonical Kähler
potentials, then the global minima preserve SUSY [1,2].
With the help of the above two results, we can conclude
that existence of a Zn R-symmetry is a necessary condition
for spontaneous SUSY breaking into a global minimum in
generic and renormalizable WZ models.

Models of F-term SUSY breaking with a Zn

R-symmetry can be obtained most simply from the models
of F-term SUSY breaking with U(1) R-symmetry by add-
ing a completely different and decoupled sector to break
U(1) R-symmetry explicitly down to a Zn R-symmetry. In
Sec. II, we illustrate this idea by adding some more terms
to the famous O’Raifeartaigh [3] (O’R) model. However,
these models are trivial. In Sec. III, we explicitly discuss a
nontrivial model where the superpotential cannot be bro-
ken into such two noninteracting parts. We have also
shown that this model has a vacuum where SUSY as well
as discrete R-symmetry is spontaneously broken for large
regions of parameter space. We then give some variations
of this model by adding more fields. In Sec. IV, we identify
the form of these models, and then three series of models

are given where each series contains a large number of
such models.
A note about notations. For U(1) R-symmetry we use

Rð�Þ to denote the U(1) R-charge of any chiral scalar
superfield � in the normalization where the R-charge of
� is 1. We use Rdð�Þ to denote Zn R-charge of the super-
space coordinate �. Discrete R-charge of pseudomoduli
superfield X is 2Rdð�Þmodn and that of any other super-
field is just the subscript of that field.

II. SOME TRIVIAL EXAMPLES

Adding a completely different and decoupled sector to
any one of F-term SUSY breaking models with U(1)
R-symmetry (we will call it as old sector), we can break
U(1) R-symmetry to a Zn R-symmetry explicitly. Value of
n is controlled by the new sector. If we find a new sector
(or in other words, a Zn R-symmetry) for which no new
term to the old sector is allowed even though R-symmetry
becomes weaker, then SUSY breaking conditions coming
from the old sector will not alter. In this way, we get models
of F-term SUSY breaking with a discrete R-symmetry in
generic theories.
To illustrate our idea, we consider the famous O’R

model as an example of the old sector:

W ¼ fX þ a�0�2 þ 1

2
b�2

0X: (1)

The above superpotential is generic with a U(1)
R-symmetry where RðXÞ ¼ Rð�2Þ ¼ 2, Rð�0Þ ¼ 0 and a
Z2 internal symmetry under which X transforms trivially
whereas �’s transform nontrivially. Let us now add five
new fields,�0

0,�
0
1,�

0
2,�

0
3,�

0
4, to the old sector and get the

following superpotential:

W ¼ fXþ a�0�2 þ 1
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This superpotential does not have a U(1) R-symmetry, as
can be easily checked. However, spontaneous SUSY
breaking still occurs because the F-terms, FX and F�2

,

are not changed due to the inclusion of the new terms.
The above superpotential is generic with the following
three symmetries.

(1) A Z5 R-symmetry with Rdð�Þ ¼ 1.
(2) A Z2 internal symmetry under which all the �i’s

transform nontrivially, whereas X and �0
�’s trans-

form trivially.
(3) A Z3 internal symmetry under which all the �0

�’s
transform as �0

� ! !�0
� where ! � 1 is a cube

root of 1 and the remaining fields are invariant.
We can get different variations of the above model

easily, for a Zn R-symmetry with n � 5 and Rdð�Þ ¼ 1
as follows:

W ¼ fX þ a�0�2 þ 1

2
b�2

0X þ 1

6
�0
����

0
��

0
��

0
� (3)

where �0
��� � 0 when �þ �þ � ¼ 2modn. Thus, we

have proved that there exists a large number of generic
(trivial) models where existence of a Zn R-symmetry is
sufficient to break SUSY via F-terms. One can also use this
technique to other SUSY breaking models [4,5] with Uð1Þ
R-symmetry.

One side comment about these models. Old and new
sectors of any one of these models can communicate to
each other through gauge interactions if we gauge some of
the internal symmetries. For example, we can easily pro-
mote the fields � and �0 to transform under adjoint repre-
sentation and promote the field X to remain invariant under
a gauge group, without forbidding any term of the old and
new sectors. However, these models will then no longer be
WZ models.

Now, we can ask whether it is possible to construct
generic F-term SUSY breaking models with the following
characteristics: (a) there is no U(1) R-symmetry in the
superpotential; (b) the superpotential cannot be subdivided
into two disjoint sectors/parts. In the rest of the paper, we
show examples of models with all these characteristics.

III. A NONTRIVIAL EXAMPLE WITH
SOME VARIATIONS

We consider a renormalizable WZ model with Z26

R-symmetry and Rdð�Þ ¼ 25. We also consider that other
than X, there are �3, �6, �8, �9, �11, �12, and �13 fields
in the theory. So we will have the following generic super-
potential:

W1¼fXþM11;13�11�13þ1

2
M12;12�

2
12þ

1

2
N13;13X�

2
13

þ�3;8;13�3�8�13þ�3;9;12�3�9�12þ1

2
�6;6;12�

2
6�12

þ1

2
�6;9;9�6�

2
9þ

1

6
�8;8;8�

3
8 (4)

where, without loss of generality we can take all the
parameters, except �8;8;8, to be real and positive. The above

superpotential does not have a U(1) R-symmetry. With
�3;9;12 ¼ 0, there is a U(1) R-symmetry with the following

R-charge assignments.

X �3 �6 �8 �9 �11 �12 �13

2 4
3

1
2

2
3

3
4 2 1 0

(5)

For �3;9;12 � 0, this U(1) R-symmetry is explicitly

broken down to Z26 R-symmetry. Smaller symmetry
means lesser restriction on the superpotential, and so, the
superpotential contain more terms. For this reason, one
cannot say that necessity of discrete R-symmetry for
SUSY breaking is a trivial consequence of that of U(1)
R-symmetry.
There is spontaneous SUSY breaking. This can be easily

realized by observing the following F-terms:

� F�
X ¼ fþ 1

2
N13;13�

2
13 (6)

� F�
�11

¼ M11;13�13: (7)

Notice that vacuum expectation values (VEVs) of FX and
F�11

terms cannot be simultaneously zero.

We can vanish all other F-terms for any value

of �ð0Þ
13 (VEV of �13) by choosing appropriate VEVs

of other fields. Now minimum of scalar potential

depends on �ð0Þ
13 . Like the O’Raifeartaigh model [3] we

have two cases, (a) for y ¼ fN13;13

M2
11;13

< 1, minimum is at

�ð0Þ
13 ¼ 0, whereas (b) for y > 1, minimum is at �ð0Þ

13 ¼
�i

M11;13

N13;13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðy� 1Þp

. Hence we have a vacuum where super-

symmetry as well as discrete R-symmetry get spontane-
ously broken [6].
Tree level scalar potentials of SUSY breaking often have

flat directions [7,8]. For example, for the case of y < 1,

minimum of tree level potential is at�ð0Þ
6 ¼ �ð0Þ

8 ¼ �ð0Þ
9 ¼

�ð0Þ
11 ¼ �ð0Þ

13 ¼ �ð0Þ
13 ¼ 0 with arbitrary Xð0Þ and �ð0Þ

3 . So, it

is necessary to calculate 1-loop correction to check
whether these flat directions are lifted or not. One loop
correction is given by the Coleman-Weinberg (CW) [9,10]
potential,

VCW¼ 1

64�2

�
tr

�
M4

B log
M2

B

�2
cutoff

�
� tr

�
M4

F log
M2

F

�2
cutoff

��
; (8)

whereMB andMF are mass matrices for scalar and fermion
fields. Nonzero eigenvalues �F and �B of M2

F and M2
B

respectively for y < 1 are as follows:
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�F
1;� ¼ �F

2;� ¼ 1

2
ðM2

12;12 þ 2�3;9;12j�ð0Þ
3 j2 þ �M12;12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

12;12 þ 4�2
3;9;12j�ð0Þ

3 j2
q

Þ

�F
3;� ¼ �F

4;� ¼ 1

2
ð2M2
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3 j2 þ �N13;13jXð0Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

11;13 þ N2
13;13jXð0Þj2 þ 4�2

3;8;13j�ð0Þ
3 j2

q
Þ

�B
1;� ¼ �B

2;� ¼ �F
1;�

�B
3;�1;�2

¼ 1

2
ð�2fN13;13 þ 2M2

11;13 þ N2
13;13jXð0Þj2 þ 2�2

3;8;13j�ð0Þ
3 j2

þ �1N13;13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ jXð0Þj2ð2�2fN13;13 þ 4M2

11;13 þ N2
13;13jXð0Þj2 þ 4�2

3;8;13j�ð0Þ
3 j2Þ

q
Þ;

where �, �1 and �2 denote �1. Putting these eigenvalues
to Eq. (8) and expanding VCW about Xð0Þ ¼ �ð0Þ

3 ¼ 0, we
find

VCW ¼ const:þm2
Xð0Þ jXð0Þj2 þm2

�ð0Þ
3

j�ð0Þ
3 j2 þ � � � (9)

where ellipses denote terms higher order in Xð0Þ and �ð0Þ
3 ,

and constants

m2
Xð0Þ ¼

M2
11;13N

2
13;13

32�2
y�1ðð1þyÞ2 logð1þyÞ

�ð1�yÞ2 logð1�yÞ�2yÞ

m2

�ð0Þ
3

¼�2
3;8;13M

2
11;13

64�2
ðð1þyÞlogð1þyÞ

þð1�yÞlogð1�yÞÞ; (10)

are positive. In Ref. [11], it is shown that the CW potential
for the O’R model is a monotonically increasing function
of Xð0Þ with minimum at Xð0Þ ¼ 0. The eigenvalues �F

3;�,
�F
4;� and �B

3;�1;�2
have similarity with those of the

famous O’R model. For fixed �ð0Þ
3 , we can treat ~M2

11;13 ¼
M2

11;13 þ �2
3;8;13j�ð0Þ

3 j2 as a parameter. And the eigenvalues

�F
3;�, �

F
4;�, and �B

3;�1;�2
are the eigenvalues of the O’R

model with mass term ~M11;13�11�13. Hence, the CW
potential of our model is also a monotonically increasing
function of Xð0Þ with minimum at Xð0Þ ¼ 0 for fixed �ð0Þ

3 .
Now, for Xð0Þ ¼ 0, the CW potential can be written as

VCW ¼ f2N2
13;13

64�2

�
~y�2 logð1� ~y2Þ þ 2~y�1 log

1þ ~y

1� ~y

þ log
1� ~y2

~y2
þ log

f2N2
13;13

�4
cutoff

�
; (11)

where ~y ¼ fN13;13

M2
11;13

þ�2
3;8;13

j�ð0Þ
3
j2 . This is a monotonically in-

creasing function of �ð0Þ
3 . Hence, after the addition of the

1-loop correction, total scalar potential has a global mini-

mum at Xð0Þ ¼ �ð0Þ
i ¼ 0.

So, we have seen that there exists a nontrivial
generic and renormalizable WZ model where existence
of U(1) R-symmetry is not necessary for spontaneous
SUSY breaking. However, the above model cannot be
considered as a counter example of the demand of
Ref. [1] because in that paper no assumption about
renormalizability was considered. If we add higher-
dimensional terms to the superpotential consistent with
the discrete R-symmetry, then SUSY gets restored.

However, we then have a metastable vacuum at Xð0Þ ¼
�ð0Þ

i ¼ 0 due to the CW potential because contribution of
higher-dimensional terms to the scalar potential will
dominate only when fields get sufficiently large VEV.
We can also obtain metastable SUSY breaking by using
the noncanonical Kähler potential [12], and for this case
SUSY breaking vacuum need not necessarily be at the
origin of field space. Now, if our superpotential is a
generic polynomial of degree d, then can we find any
model like the above model? We will address this ques-
tion in the Appendix.
We can get variations of the above model by adding

more � fields in the theory. For example, we can add any
number of fields from the list f�16; �19; �21; �22; �25g. In
this way, we get 31 more models. If we add all the fields
from the list, then the superpotential takes the following
form:

W ¼ W1 þM3;21�3�21 þM8;16�8�16 þ 1

2
M25;25�

2
25 þ �3;22;25�3�22�25 þ �6;19;25�6�19�25 þ 1

2
�6;22;22�6�

2
22

þ 1

2
�8;21;21�8�

2
21 þ �9;16;25�9�16�25 þ �9;19;22�9�19�22 þ �12;13;25�12�13�25 þ �12;16;22�12�16�22

þ 1

2
�12;19;19�12�

2
19 þ �13;16;25�13�16�25: (12)

Note that the addition of these fields does not change FX and F�13
, and hence there is SUSY breaking.
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IV. THREE SERIES OF MODELS

In this section, we are going to show that there exists a
large number of nontrivial models where existence of a
discrete R-symmetry is sufficient to break supersymmetry.
We consider the superpotentials are of the following form
with a Z6kþ2q R-symmetry and Rdð�Þ ¼ 6kþ q:

W ¼ X
�
fþ 1

2
N3kþq;3kþq�

2
3kþq

�

þM3k�q;3kþq�3k�q�3kþq þmð�Þ þ �ð�Þ; (13)

where k, q are natural numbers, �ð�Þ contains cubic terms
which are independent of �3k�q, and mð�Þ denotes qua-
dratic terms for � fields other than �3k�q fields. Note that

the superpotentials of the previous section are of the above
form with k ¼ 4 and q ¼ 1. Because of this form of super-
potentials, SUSY gets spontaneously broken, as can be
checked by observing the F-terms of X and �3k�q.

A. Series I

In this series of models, k is a multiple of four and q ¼
1, i.e. superpotentials have a Z6kþ2 R-symmetry with
Rdð�Þ ¼ 6kþ 1. Field content of this series for any k is
given below:n

X;�k;�2k�1; �2k; �2kþ2; �3k�1; �3k; �3kþ1;

�2k�4i

�
i ¼ 1; 2; . . . ;

k

4
� 1

�o
: (14)

Note that the model with k ¼ 4 has the same R-symmetry
and Rdð�Þ as the models given in the previous section. But
this model is different from those models because it has
different field content.

To show that there is no U(1) R-symmetry in this series
of models, we use method of contradiction. If there were a
U(1) R-symmetry in any model, the existence of terms
X�2

3kþ1, �
2
3k, and �3

2k would imply that Rð�3kþ1Þ ¼ 0,
Rð�3kÞ ¼ 1, and Rð�2kÞ ¼ 2

3 . From the terms �k�2k�3k,

�k�2k�1�3kþ1, and �2
2k�1�2kþ2, we could conclude

Rð�kÞ ¼ 1
3 , Rð�2k�1Þ ¼ 5

3 and Rð�2kþ2Þ ¼ � 4
3 .

Similarly, we could construct a R-charge assignment chain
for other fields as shown in Fig. 1. Now, for k ¼ 4iwe have
2k� 4i ¼ k. But according to the chain, Rð�2k�4iÞ ¼
12iþ2

3 � Rð�kÞ. Hence the superpotential do not have a

U(1) R-symmetry for any k.

We are now going to prove that all the generic and
renormalizable superpotentials of this series of models
are of the form as given in Eq. (13).
There is no term quadratic in X in the superpotentials

because field content for any k does not contain the field
�2. Also, the cubic term in X is not allowed by discrete
R-symmetries. Similarly, one can show that the terms
�2

3k�1�2 and �3
3k�1 are also not allowed.

For a cubic term of the form �i�j�3k�1 to exist, we

need iþ j ¼ 3kþ 1. Without loss of generality, we can
take i � j. From field content given in Eq. (14), we find
i � k and hence j � 2kþ 1. Also, one of them must be
odd since their sum is odd. The only field having odd
discrete R-charge in this range is �2k�1. But field content
of any model does not contain the field �kþ2, and so
�-terms are independent of the field �3k�1. There is only
one cubic term containing X, 12N3kþ1;3kþ1X�

2
3kþ1, because

discrete R-charges of the� fields lie between k and 3kþ 1.
Thus, superpotentials of this series are of form as given in
Eq. (13) and hence there is F-term SUSY breaking.
Let us now give the superpotential for k ¼ 4:

W¼fXþM11;13�11�13þ1

2
M12;12�

2
12þ

1

2
N13;13X�

2
13

þ�4;7;13�4�7�13þ�4;8;12�4�8�12þ1

2
�4;10;10�4�

2
10

þ1

2
�7;7;10�

2
7�10þ1

6
�8;8;8�

3
8: (15)

One can explicitly verify that the above superpotential does
not have a U(1) R-symmetry yet there is F-term SUSY
breaking.

B. Series II

Superpotentials of this series have Z6kþ4 R-symmetry
where k is a multiple of 6 with starting value 12. Discrete
R-charge of superspace coordinate � is 6kþ 2 or q ¼ 2.
Field content for any k is given below:n
X;�k;�2k�6; �2k�2; �2k�1; �2k; �2kþ1; �2kþ3; �2kþ6;

�3k�2; �3k; �3kþ2; �2k�6i

�
i ¼ 2; 3; . . . ;

k

6
� 1

�o
: (16)

To show that there is no U(1) R-symmetry, we have
taken same the strategy as of the earlier case. Let us first
tabulate U(1) R-charges of first 12 fields from the above
list.

X �k �2k�6 �2k�2 �2k�1 �2k �2kþ1 �2kþ3 �2kþ6 �3k�2 �3k �3kþ2

2 1
3

11
3

5
3

7
6

2
3

1
6 � 5

6 � 7
3 2 1 0

(17)

FIG. 1. Diagram representing some cubic terms in superpotentials for series I. Values inside parentheses represent U(1) R-charges.
For any field �2kþ4i, U(1) R-charge is �12iþ2

3 where i is an integer. The chain will be truncated at A;B;C; . . . for k ¼ 4; 8; 12; . . .

PRITIBHAJAN BYAKTI PHYSICAL REVIEW D 84, 035019 (2011)

035019-4



These fields are common to all models of this series. U(1)
R-charges for the fields �3kþ2; �3k; �3k�2; �2k�2; �2k and
�k can be derived easily. We obtained R-charges for
�2kþ1;�2k�1;�2kþ3;�2k�6;�2kþ6 from the terms �2k�2�
�2

2kþ1, �2kþ1�2k�2k�1, �2k�2�2k�1�2kþ3, �
2
2kþ3�2k�6,

and �2k�6�2k�2kþ6, respectively. U(1) R-charge assign-
ment chain for rest of the fields is given in the Fig. 2. From
this given information, one can easily show that there is no
U(1) R-symmetry in any model of this series.
There will be a �i;j;3k�2-term only if iþ j ¼ 3kþ 2.

Without loss of generality, we can take i � j. Minimum
value for i is k. As there is no field with R-charge
2kþ 2, i cannot be equals to k. Next, the higher value
of the discrete R-charge is kþ 6 and hence kþ 6 � i �
j < 2k� 2. In this range, discrete R-charges of the
fields are multiples of 6. As 3kþ 2 is not a multiple of 6,
there cannot be a �-term for �3k�2. So, superpotentials of
this series are also of the form as given in Eq. (13)
and in turn guarantee spontaneous breakdown of SUSY.
Let us give the first model of this series.

W¼fXþM34;38�34�38þ1

2
M36;36�

2
36þ

1

2
XN38;38�

2
38þ�12;22;38�12�22�38þ�12;24;36�12�24�36

þ1

2
�12;30;30�12�

2
30þ�22;23;27�22�23�27þ1

2
�22;25;25�22�

2
25þ�23;24;25�23�24�25þ1

6
�24;24;24�

3
24

þ�18;24;30�18�24�30þ1

2
�18;27;27�18�

2
27þ

1

2
�18;18;36�

2
18�36 (18)

One can explicitly verify that there is no U(1) R-symmetry and SUSY is spontaneously broken.

C. Series III

Superpotentials of this series have Z6kþ6 R-symmetry with Rdð�Þ ¼ 6kþ 3 and k ¼ 8; 10; 12; 14; . . . . Field content for
any k is given below:�

X;�k;�2k�4;�2k;�2kþ2;�2kþ8;�3k�3;�3k;�3kþ3;�4kþ2;�6kþ2;�6kþ3;�6kþ4;�6kþ5;�2k�2i

�
i¼5;6; . . . ;

k

2
�1

��
: (19)

If we demand that the superpotentials have an U(1) R-symmetry, then we will have a table (Eq. (20)) and a chain
(Fig. (3)) of R-charge assignments. From these inputs, one can conclude that there is no U(1) R-symmetry in any model of
this series.

X �k �2k �2kþ2 �3k�3 �3k �3kþ3 �4kþ2 �6kþ2 �6kþ3 �6kþ4 �6kþ5

2 1
3

2
3 0 2 1 0 2

3
4
3 1 2

3
1
3

(20)

There will be a �-term for�3k�3 only if iþ j ¼ 3kþ 3modð6kþ 6Þ where i, j are discrete R-charges of fields coupled
to it. Thus,

iþ j ¼ 3kþ 3 or iþ j ¼ 9kþ 9: (21)

FIG. 2. Diagram representing some cubic terms in superpoten-
tials for series II. Values inside parentheses represent U(1)
R-charges. For any field �2kþ6i, discrete R-charge is

�9iþ2
3 where

i is an integer. The chain will truncate at A;B;C; . . . for
k ¼ 12; 18; 24; . . . .

FIG. 3. Diagram representing some cubic terms in superpotentials for n ¼ 6kþ 6. Values inside parentheses represent U(1)
R-charges. For any field �2kþ2i, U(1) R-charge is �2iþ2

3 where i is an integer. Most of the fields from Eq. (20) are also added to

the chain so that one can easily determine the U(1) R-charge easily.
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For the first case, k � i, j � 2kþ 3. As there is no field with odd discrete R-charge in this range, this possibility is ruled
out. One can check that second possibility is also ruled out. Hence, superpotentials of this series are also of the form given
in Eq. (13) and there are F-term SUSY breaking.

Let us give the first model of this series, i.e. for k ¼ 8, so that one can verify nonexistence of a U(1) R-symmetry and
spontaneous breakdown of SUSY:

W ¼ fX þM21;27�21�27 þ 1

2
M24;24�

2
24 þM50;52�50�52 þ 1

2
M51;51�

2
51 þ

1

2
XN27;27�

2
27 þ �8;16;24�8�16�24

þ 1

2
�12;12;24�

2
12�24 þ 1

2
�12;18;18�12�

2
18 þ

1

6
�16;16;16�

3
16 þ �16;34;52�16�34�52 þ �18;34;50�18�34�50

þ �24;27;51�24�27�51 þ 1

6
�34;34;34�

3
34 þ

1

2
�50;53;53�50�

2
53 þ �51;52;53�51�52�53 þ 1

6
�52;52;52�

3
52: (22)

In the above, we have given only three series of models. However, one can construct many series of such models.

V. CONCLUSIONS

We have shown that there exists a large number of
generic and renormalizable Wess-Zumino models where
existence of a Zn R-symmetry is sufficient to break SUSY
spontaneously. And it is well known that if there is no R-
symmetry in generic WZ models with canonical Kähler
potential, then global minima always preserve SUSY. So,
existence of a Zn R-symmetry in a generic and renormaliz-
able Wess-Zumino model is a necessary condition for
F-term SUSY breaking. However, for even n with
Rdð�Þ ¼ n

2 , one cannot have models of SUSY breaking

because for these cases, superpotentials as a whole trans-
form trivially and terms which are allowed or forbidden by
these R-symmetries can always be reproduced by some
internal symmetries.

Our results do not go against the Nelson-Seibergs nec-
essary condition for SUSY breaking because they have not
assumed renormalizability of the superpotentials. And if
we add all higher-dimensional terms consistent with dis-
crete R-symmetry, SUSY gets restored in our case. But we
then obtain metastable SUSY breaking. We have also given
some models of SUSY breaking where superpotential is a
generic polynomial of some degree d � 4.
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APPENDIX: NONRENORMALIZABLE
SUPERPOTENTIALS

Here we will try to show that if the superpotential is a
generic polynomial of some degree d � 4, then we can find
models where existence of a Zn R-symmetry is sufficient to
break SUSY.
As an example, we consider a superpotential which is a

generic polynomial of degree 4 and have Z39 R-symmetry
withRdð�Þ¼38. Other thanX, this model contains the fields
�8, �11, �13, �19, �24, and �36. So the superpotential is

W ¼ fXþ gX�3
13 þ h1�13�24 þ h2�11�

2
13 þ h3�

4
19

þ h4�19�24�
2
36 þ h5�8�13�19�36 þ h6�

3
8�13

þ h7�
2
8�24�36: (23)

One can easily verify that the above superpotential does
not have a U(1) R-symmetry and observing the F-terms
of X and �11, it can be concluded that there is SUSY
breaking. Though we have not found a general proof, we
believe that one can find suchmodels for any finite d.We are
giving two more models with d ¼ 5, 6 in support to our
belief.

d n Rdð�Þ Field content

5 92 91 X;�13; �18; �21; �23; �26; �31; �59

6 185 184 X;�22; �23; �37; �72; �73; �109; �123
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