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We present a numerical study of spectroscopic observables in the SU(2) gauge theory with two adjoint

fermions using improved source and sink operators. We compare in detail our improved results with

previous determinations of masses that used point sources and sinks and we investigate possible

systematic effects in both cases. Such comparison enables us to clearly assess the impact of a short

temporal extent on the physical picture, and to investigate some effects due to the finite spatial box. While

confirming the IR-conformal behavior of the theory, our investigation shows that in order to make firm

quantitative predictions, a better handle on finite size effects is needed.

DOI: 10.1103/PhysRevD.84.034506 PACS numbers: 11.15.Ha, 12.60.Nz

I. INTRODUCTION

A new strongly interacting theory [1,2] with an approxi-
mate [3–5] or exact [6] infrared (IR) fixed point is an
appealing possibility for explaining electroweak symmetry
breaking. This framework, known as Technicolor, has been
reviewed recently in, e.g., [7–9]. Technicolor theories
are inherently nonperturbative and therefore require ade-
quate tools to study their strong dynamics. Theories with
conformal or near-conformal dynamics can be exposed in

the context of the gauge-string duality [10,11]. However,
in addition to the wanted fermion and gauge boson degrees
of freedom, field theory duals of string theories in general
contain extra scalar fields. A possible ab initio approach
relies on numerical simulations of candidate Technicolor
theories discretized on a spacetime lattice (see, e.g.,
[12,13] for recent reviews).

One could generate an infrared fixed point in a gauge

theory by adding a low number of fermion flavors in higher

gauge representations to a gauge theory with a low number

of colors. The minimal vectorlike gauge theory with this

property, termed minimal walking technicolor (MWT), has

gauge group SU(2) and two flavors of Dirac fermions in the

adjoint representation [14]. Some recent lattice studies of

MWT [15–17] have attempted to identify a near-conformal

behavior directly from the behavior of the coupling and

anomalous dimensions of the theory under renormali-

zation group flow. Others, including this work, perform
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measurements of physical observables in the theory and

attempt to identify signals of near-conformal dynamics

from their behavior [18–25]. All the evidence accumulated

so far for this theory favors a conformal or near-conformal

scenario and seems to exclude standard confinement and

chiral symmetry breaking behavior. However, more sys-

tematic studies need to be performed before the IR prop-

erties of the theory can be determined with confidence.
MWT with a nonzero fermion mass and defined in a

finite volume, as simulated for practical reasons on the
lattice, cannot be conformal. If the chiral continuum theory
possesses an infrared fixed point, the lattice results will be
described by a mass-deformed conformal gauge theory
[22,24–29]. In approaching a conformal limit, the theory
respects the hyperscaling property, whereby all spectral
massesM in the theory scale identically. They must vanish
in the limit of vanishing fermion mass m. If the IR fixed
point is approximate, the theory displays conformal behav-
ior for an intermediate range of masses m and crosses over
to the confining and chiral symmetry breaking behavior in
the chiral limit.

The standard way to extract masses from lattice simu-
lations is to look at the exponential decay of correlators of
operators with the quantum numbers of interest. For infi-
nite separation between the source and sink operator, the
exponential decay is governed by the ground state mass
in the channel being explored. At finite time extent, this
leading behavior receives corrections that are exponen-
tially suppressed in the mass difference between the
ground state and the excitations. Underestimating the im-
portance of these corrections leads to systematic errors in
the determination of the ground state mass. In addition to
the effects of the finite maximal separation between the
source and the sink (often referred to as finite temperature
effects), the finite spatial extension of the lattice can also
give sizeable corrections to the spectral masses.

The simplest source and sink observables to study for
mesons are fermion bilinears in which the two fermion
fields are at the same lattice point (point sources). These
sources have been widely used in previous investigations
of the spectrum of MWT. However, the experience accu-
mulated over 30 years of numerical studies in lattice QCD
favors the use of extended sources, which are gauge-
invariant combinations of two fermion fields at different
points, engineered for reducing the contamination from the
excited states. In lattice QCD, masses extracted from cor-
relators of extended sources prove to be affected by smaller
systematic errors. In this paper, we investigate whether
this proves to be the case also for MWT. Specifically, we
perform a study of mesonic observables extracted from
extended sources using the configurations presented in
[19,22,25]. We explore a large set of schemes for building
extended operators and we systematically analyze their
efficiency for the computation of meson masses and decay
constants, comparing the results with results obtained

using point sources. With this study, we expect to deter-
mine the size of systematic uncertainties in current studies,
which have as yet been largely unexplored, and to assess
their impact on the physical picture emerging from the
previous spectroscopical studies. Some of the results pre-
sented here have already appeared in Ref. [30].
The rest of the paper is organized as follows. In Sec. II

we describe the background to this study and briefly
illustrate the effects of the use of different smearings on
effective observables. Technical details on the smearing
procedures and the resulting observables can be found in
Appendices A and B, respectively. In Sec. III we quantify
the consequences of the smearing both for autocorrelation
times and quality of plateaux. A full set of results obtained
using wall smearing are presented in Sec. IV, while in
Sec. V we comment on the significant finite-volume effects
highlighted by the smeared results. Appendices C and D
list the numerical values of the quantities studied in this
work. Finally, our conclusions are reported in Sec. VI.
Tables I–X in Appendix C and Tables XI–XVIII in
Appendix D list the numerical values of the quantities
studied in this work.

II. SYSTEMATIC SPECTROSCOPY

This study builds on the work described in [19,25] where
spectroscopic observables of MWT were measured
through lattice simulations. The computation was per-
formed using the HIREP code, designed to simulate theories
of a generic number of colors, and with fermions in a
generic representation of the gauge group. The simulations
used the Wilson gauge action and the Wilson fermion
formulation along with the RHMC algorithm. A number
of lattice volumes have been analyzed, from 16� 83 to
64� 243 with a range of bare quark masses. The majority
of the ensembles have been generated at � ¼ 2:25,
although we do here present the results of some additional
runs on the largest lattice at � ¼ 2:1.
For this study we have performed some alternative

analyses to those in [25]. The CHROMA suite of lattice
software [31] has been extended to operate with several
fermionic representations other than the fundamental, in-
cluding the adjoint. This will allow us to utilize the in-built
smearing routines of CHROMA for our spectroscopic study.
In order to test the modified CHROMA, we measured the

local correlators as defined in (A3), with � ¼ �0 both with

HIREP [fðhÞ� ðtÞ] and CHROMA [fðcÞ� ðtÞ].We used an ensemble

of configurations on a 8� 43 lattice with � ¼ 2:25 and
fermion bare mass am0 ¼ �1. Figure 1 illustrates the
discrepancy between the two determinations, defined as

D1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t

ðfðcÞ� ðtÞ�fðhÞ� ðtÞÞ2
s

D2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
t

�
fðcÞ� ðtÞ�fðhÞ� ðtÞ

fðhÞ� ðtÞ
�
2

vuuut :

(2.1)
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We proceeded to utilize the in-built smearing routines
found in CHROMA to perform measurements on the gauge
configurations generated with HIREP using a number of
different quark smearings. We have investigated the use
of both wall smearing and a gauge-invariant Gaussian
smearing, as defined in Appendix A 2. Definitions of all
observables discusses can be found in Appendix B.

Gaussian smearing involves two parameters, which can
be chosen to optimize the technique. They are the width of
the smearing function and the number of applications
of the smearing operator, which must be large enough to
reasonably approximate the Gaussian form. These two

parameters have been adjusted in order to maximize the
overlap of the smeared operator with the ground state. On
the other hand, the wall smearing is a parameter-free
procedure.
We systematically compared local, Gaussian (with opti-

mized parameters) andwall-smeared sources on our ensem-
bles. At our lightest masses, the wall-smeared sources have
the largest overlap with the ground state, which is reflected
in the flattest effective masses. In Figs. 2–4 we show,
respectively, the partially conserved axial current (PCAC)
and pseudoscalar (PS) effective masses and the PS effective
decay constant computed with the three methods.
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FIG. 2 (color online). Comparison of the PCAC mass from different smearings at am0 ¼ �1:175 on a 16� 83 [Fig. 2(a)] and a
24� 123 lattice [Fig. 2(b)].
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FIG. 1 (color online). Discrepancies between local correlators from HIREP and CHROMA, computed to test the extension of CHROMA

(for working with adjoint fermions) against HIREP.The quantities D1 and D2 defined in (2.1) are shown in Figs. 1(a) and 1(b),
respectively.
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Since we are mainly interested in the light masses,
we will focus on the wall-smeared results in the rest of
this work.

III. EFFECTIVENESS OF THE
WALL-SMEARED SOURCES

Using smeared sources allows us to choose an operator
with a larger projection onto the ground state of a given
channel. The wave function of the ground state is spread
over many lattice sites, and we can improve the overlap of
the operator with the ground state by giving a spatial size
to the source. The smeared correlator will be less contami-
nated by the excited states, and therefore it will be char-
acterized by a single cosh signal for a larger temporal
separation than the one constructed with point operators.

This is reflected in a longer plateau in the effective mass.
On the contrary one drawback of using smeared sources is
that it makes the analysis more sensitive to the algorithm’s
autocorrelation time. In this section we propose a quanti-
tative study of these two aspects: the behavior of the size of
the plateaux for different kinds of sources, and the auto-
correlation time connected with the use of these sources.

A. Autocorrelations

Correlators generated using sources with an extended
spatial profile are expected to be associated with longer
autocorrelation times, due to the fact that the low energy
modes of the fields need more Monte-Carlo time to propa-
gate. This effect is observed throughout our study, indeed
the autocorrelation time associated with the results from
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FIG. 4 (color online). Comparison of the pseudoscalar decay constant from different smearings at am0 ¼ �1:175 on a 16� 83

(Fig. 4(a)) and a 24� 123 lattice (Fig. 4(b)).
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FIG. 3 (color online). Comparison of the pseudoscalar mass from different smearings at am0 ¼ �1:175 on a 16� 83 (Fig. 3(a)) and a
24� 123 lattice (Fig. 3(b)).
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smeared correlators is generically at least of the order of
twice that of those involved with the local correlators.
This is supported both by the direct measurement of
the integrated autocorrelation time [32] associated with
the observables, and by the analysis of the behavior
of the standard deviation of the observables.

Both the aforementioned studies have been performed
by grouping theN data intoN=b blocks of a given length b.
A reduced data set of length N=b is created by averaging
the required statistic over each block. A bootstrap analysis
is then performed on the reduced data set. By increasing
the block size b, we are creating effective estimates less
and less autocorrelated, hence when the block size is bigger
than the autocorrelation we expect to see a plateau appear-
ing in the standard deviation, signaling that the reduced
data set is decorrelated. We observe that the plateau starts
at a block size corresponding to an integrated autocorrela-
tion time of order 1.

Our analysis of the autocorrelation is illustrated in
Fig. 5, for the PS effective mass obtained with both local
(L), and wall-smeared (W) sources, evaluated at two tem-
poral points.

From the left panel of Fig. 5 we see that the measured
autocorrelation time for the smeared results are generically
larger than those for the local results. From the right panel
of Fig. 5 we see that the standard deviation of our observ-
able increases for both sets of correlators as we increase the
block size from zero, up to a point where it appears to reach
a plateau for a significant range of b for both cases. The
value of b where this plateau sets in is interpreted as the
length in simulation time over which the data are uncorre-
lated. From the right panel of Fig. 5 we would conclude
that the autocorrelation time of our local result was �30
while that of the smeared result was�80. Indeed returning

to the left panel of Fig. 5 we see that at this value of b, the
corresponding value of the integrated autocorrelation time
is close to 1, which supports our conclusion.
This picture is replicated across our ensembles, and we

have accounted for this in our results by conducting our
bootstrap analysis over appropriately reduced data sets.

B. Plateaux of the effective masses

If the smearing procedure is effectively suppressing the
contribution of the excited states to the correlators, one has
to observe the effective masses flattening around the mid-
point t ¼ Lt=2, and the plateaux becoming longer when
visible. We can quantitatively estimate the flatness of the
effective mass using the absolute value of the incremental
ratio of the effective mass between t ¼ Lt=2 and t ¼
Lt=2� �t:

�mPS

�t
�

��������
mPSðLt=2� �tÞ �mPSðLt=2Þ

�t

��������: (3.1)

A value for �mPS=�t compatible with zero implies that
the plateau in the effective mass is at least �t points long.
For very small values of �t the incremental ratio is
dominated by the statistical error. On the other hand the
effective masses obtained with smeared sources are some-
times nonmonotonic. In this case the incremental ratio
defined with a too large value for �t is not a good
estimate for the flatness of the plateau. An intermediate
range of values for �t exists, in which our analysis makes
sense. We explicitly checked that our conclusions do
not change choosing �t in such a range, and we chose
�t ¼ 4 for definiteness.
In general the smaller �mPS=�t is, the flatter the pla-

teau. Notice that it is important to take the absolute value
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FIG. 5 (color online). Autocorrelation analysis conducted on a 24� 123 lattice at am0 ¼ �1:175, for the PS effective mass in two
temporal points.Figure 5(a) shows the integrated autocorrelation time as a function of the block size b. Figure 5(b) shows the relative
error as a function of the block size b. The plateaux of the relative error are highlighted with shadowed rectangles. The plateaux in the
relative error set in when the integrated autocorrelation time becomes of order 1.
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in the definition above: while the effective mass defined
from local correlators is always decreasing, it is not so for
smeared correlators.

In Fig. 6, the quantity �mPS=�t is plotted for all our
pseudoscalar effective masses on the 16� 83, 24� 123,
and 32� 163 lattices, both for local and wall-smeared
correlators.

One expects that at small masses the wave function of
the pseudoscalar meson is more spread, hence the wall-
smeared source should have a larger overlap with the
ground state. On the contrary at large masses the wave
function is more localized, therefore, the local sources
should work better. Our analysis presented in Fig. 6 sub-
stantiates this expectation. On the 16� 83 lattice the wall-
smeared sources give better or comparable plateaux than
the local sources for masses am0 � �0:9. On the 24� 123

and 32� 163 lattices the wall-smeared sources are to be
(sometimes marginally) preferred to the local ones for all
the simulated masses.
In the presentation of the results obtained from wall-

smeared sources we will always cut the masses in the
16� 83 lattice for which the local sources are actually
preferable to thewall-smeared ones, unless otherwise stated.
Finally, we point out that the same analyses using the

effective V meson mass and the effective PS decay con-
stant produce very similar results.

IV. RESULTS

In the present section, we will present our results for the
mesonic observables from the wall-smeared sources.
Complete results of all observables analyzed are also pre-
sented in Sec. III. Although only the results at � ¼ 2:25
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FIG. 6 (color online). Incremental ratio �mPS=�t as a function of the bare mass. The smaller this quantity, the better the quality of
the plateau of the PS effective mass. On the (a) 16� 83 lattice, the local correlators give flatter plateaux for bare masses larger than
�0:8, while the smearing is effective below �0:9. On the (b) 24� 123 lattice, the local and smeared sources give plateaux of similar
quality for the two heaviest masses, while the smearing is effective for all the other masses. Finally, the smearing is always effective on
the (c) 32� 163 lattice.
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will be discussed in detail, measurements at � ¼ 2:1 can
also be found in the tables. For the full local results, the
reader is referred to [25].

We will consider only those fermionic masses for which
the wall-smeared sources give an improvement on the
plateaux of the effective masses with respect to the local
sources, as discussed in Sec. III B. For all these masses, the
wall-smeared results have to be trusted more than the local
ones. The disagreement between the two determinations
gives an estimate of the systematic error due to a bad
determination of the plateaux, mainly affecting our pre-
vious results obtained from the local sources.

In order to quantify this disagreement we use two differ-
ent estimators: the pull and the relative discrepancy. We
will denote OL ��OL and OS � �OS the determination
of the generic observable O using, respectively, local
and smeared sources. The pull estimates the relative size
of the systematic and statistical errors and is defined as

PðOÞ ¼ jOL �OSjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�O2

L þ �O2
S

q : (4.1)

A small value for the pull is desirable, indicating that the
systematic errors are smaller than the statistical ones.
However a small value for the pull can be obtained either
with a small systematic error or with a large statistical one.
Therefore, it is not an absolute estimator of the goodness
of a measurement. The relative discrepancy estimates the
systematic error, relative to the average of the two deter-
minations:

DðOÞ ¼ 2jOL �OSj
OL þOS

: (4.2)

A small value for the relative discrepancy indicates that
the systematic effects contribute to a small fraction of the
determination of the observable O.

In what follows, we will consider separately the PCAC
quark mass, the PS and V masses and their ratios, the
PS and V decay constant. Again, we refer the reader to
Appendix B for the definition of these observables. Wewill
present the results for the wall-smearing sources, and we
will discuss the differences with the local-source results
using the pull and the relative discrepancy.

A. PCAC mass

In Fig. 7 results for the PCAC mass from the wall-
smeared correlators on all � ¼ 2:25 ensembles are pre-
sented. The inset illustrates a close up of the approach to
the chiral limit, with a linear extrapolation to zero quark
mass. Using this we find the critical bare quark mass to be
amc ¼ �1:2022ð14Þ, from a fit using the three lightest
points on the 24� 123 lattice, which compares very well
to the result obtained from the local data [25].

In Fig. 8 we show the stability of this fit against varying
the number of points used. We compare this to the result

obtained from local correlators, noting the agreement. It is
also clear that finite-volume effects for this quantity are at
most comparable with the statistical uncertainty.
In Fig. 9 we show the pull and the relative discrepancy

as defined in Eqs. (4.1) and (4.2) between the local and
wall-smeared determinations of the PCAC quark mass. We
include all the masses at which the wall-smeared sources
give an improvement of the plateaux in the effective
masses over the local sources. As shown in the left panel
of Fig. 9, the pull is always smaller than 1 (or marginally
larger than 1 for the smallest volume), indicating that the
systematic error due to a short temporal direction is of the
order of the statistical uncertainty. The right panel of Fig. 9
shows that the systematic error is of order of a few percents
for the PCAC mass.
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FIG. 7 (color online). PCAC quark mass for ensembles at
� ¼ 2:25, computed with wall-smeared sources, as a function
of the quark bare mass. The result of the linear fit for extracting
the critical bare mass is also shown. In the inset, the lightest
masses are zoomed in.
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B. Meson masses

Figure 10 shows the results obtained for the pseudo-
scalar mass MPS as a function of the PCAC quark mass
m, from the � ¼ 2:25 data. Figure 11 shows the ratio
MV=MPS. We recall that the existence of a plateau at small
masses of this ratio was one of the main ingredients for
arguing in favor of an IR fixed point in [22,25]. We notice
that the smeared results stabilize the plateaux at very small
masses (especially by smoothing the behavior of the largest
volumes), while making more visible some finite-volume
effects at intermediate masses. We will discuss the finite-
volume effects in Sec. V.

We also report the pull and relative discrepancy as
defined in Eqs. (4.1) and (4.2) between the local and
wall-smeared determinations of the PS mass in Fig. 12.
Again, we include all the masses at which the wall-smeared
sources give an improvement of the plateaux in the

effective masses over the local sources. The local and
smeared sources give quite different results at small masses.
The relative discrepancy has a very regular behavior: it is
larger for lighter masses or smaller volumes. For bare
masses below �1:15 one has to use lattices larger than
the 24� 123 in order to keep the relative discrepancy
below the 10% level. Although the relative discrepancy
can get fairly large at these masses, the pull is always below
3 which means that the two determinations are compatible
within the 3� range. This effect is generated by an increase
of the relative statistical error at light masses.
Figure 13 shows the pull and relative discrepancy be-

tween the local and wall-smeared determinations of the
MV=MPS ratio. The situation is better here. The central
values of the two determinations never differ by more
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FIG. 9 (color online). Pull and relative discrepancy as defined in Eqs. (4.1) and (4.2) for the PCAC quark mass (� ¼ 2:25).
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FIG. 11 (color online). Ratio of MV to MPS for ensembles at
� ¼ 2:25, computed with wall-smeared sources, as a function of
the PCAC mass. The plateau in this ratio at small masses has
been interpreted in our previous works [22,25] as a signal for IR
conformality. The smeared sources have amplified the finite-
volume effects at masses around am ’ 0:3. This effect will be
discussed in Sec. V.
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than 5% (relative discrepancy), and they are generally
compatible (except the smallest volume) within the 2�
range (pull).

C. Decay constants

Among the observables considered in this study, the PS
decay constant is the quantity most affected by systematic
errors due to a short temporal dimension. The relative
discrepancy between the local and smeared determinations
(Fig. 14) is almost always very large. On the 24� 123,
32� 163, and 64� 243 lattices, this large relative discrep-
ancy is partly compensated by a large statistical error. In
most of the cases the two determinations are compatible
(sometimes marginally) within 3� of the statistical uncer-
tainty (pull). On the 16� 83 lattice, the difference is more
dramatic. However for intermediate masses, the wall-
smeared source gives a better defined plateau in the effec-
tive PS decay constant as discussed in Sec. III B, and

therefore the smeared results have to be trusted more
than the local ones.
Figure 15 shows the results for the PS decay constant

from wall-smeared sources. The difference between the
results on the 16� 83 and 24� 123 lattices are striking
(and was absent in the local determination). This finite-
volume effect will be discussed in Sec. V. We also show for
completeness the ratio FV=FPS in Fig. 16.

V. COMMENTS ON FINITE-VOLUME EFFECTS

The wall-smeared results helped us to better understand
how finite spatial volume affects the mesonic observables.
In Fig. 17 we plot the PS and V masses, their ratio and PS
decay constant on the 16� 83 and 24� 123 lattices for
am0 ¼ �1:05 and � ¼ 2:25, both from local and wall-
smeared sources. For each observable, the gap between the
two lattices becomes wider when wall-smeared sources are
considered. Having only the data from local sources, one
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FIG. 12 (color online). Pull and relative discrepancy as defined in Eqs. (4.1) and (4.2) for the PS mass (� ¼ 2:25).
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FIG. 13 (color online). Pull and relative discrepancy as defined in Eqs. (4.1) and (4.2) for the ratio of the V mass over the PS mass
(� ¼ 2:25).
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can be tempted to underestimate the finite-volume errors.
This would be a mistake: the mild dependence on the
volume of the local data is actually given by a cancellation
of two larger effects: the finite volume and the bad deter-
mination of the plateaux in the effective masses.

In order to clarify this point, it is useful to look directly
at the effective PS mass (Fig. 18) and the effective PS
decay constant (Fig. 19). We will comment on the effective
PS mass, but all the observations will be equally valid for
the effective PS decay constant.

The first observation is that the effective masses from
local sources are always decreasing with the Euclidean
time. Therefore, if the temporal size is not large enough
to contain the plateau of the effective mass, the estimated
mass will be larger than the real one. On the other hand
the effective masses from wall-smeared sources for on this
ensemble are increasing (although this is not true across
all ensembles). Therefore, if the plateau is not reached, the
estimated mass will be smaller than the real one.

Consider now the 24� 123 effective masses in Fig. 18.
The local and wall-smeared sources give effective masses
whose quality in terms of flatness is similar [compare with
Fig. 6(b)], and the plateau is not clearly visible in any of the
effective masses. However, since the gap between the local
and wall-smeared effective masses closes down in the
midpoint t ¼ 12, one can argue that the plateau is effec-
tively reached there.
The situation is completely different for the 16� 83.

The gap between the local and wall-smeared effective
masses is always quite big. The wall-smeared source gives
a much flatter effective mass than the local source [com-
pare with Fig. 6(a)]. In order to obtain a more precise
estimate for the pseudoscalar mass on the spatial volume
83, we simulated on a 64� 83 lattice. In this case the
temporal extent is large enough to obtain very good pla-
teaux for both the local and wall-smeared effective masses.
By comparing the effective masses on the 24� 123 and

64� 83 lattices it is clear that the finite volume has the
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FIG. 14 (color online). Pull and relative discrepancy as defined in Eqs. (4.1) and (4.2) for the PS decay constant (� ¼ 2:25).
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sembles at � ¼ 2:25, computed with wall-smeared sources, as a
function of the PCAC mass.
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effect of making the pseudoscalar meson lighter. What is
happening then with the 16� 83 lattice? The mass esti-
mated with the local sources is affected by two relatively
large effects: the finite volume, which decreases the mass
and the bad determination of the plateaux, which increases
the mass. Having opposite sign and accidentally the same
magnitude, these two effects cancel each other. Therefore
the finite-volume effects are actually larger than what we
estimated on the basis of the local sources, and they are
better estimated using the wall-smeared source at light
enough masses.
The conclusions above are valid also for the vector

meson mass and for the ratio MV=MPS. In particular from
Fig. 11 it is clear that, on increasing the spatial volume,
the ratio MV=MPS slightly increases, and this effect was
completely hidden in the local-source determination.

VI. CONCLUSIONS

In this article we have studied systematic effects on the
PCAC mass, the mesonic masses, and decay constants due
to a short temporal size on the SU(2) gauge theory with two
Dirac fermions in the adjoint representation. In order to
isolate the ground state in correlators one should take the
source and sink infinitely distant. In practice one defines
effective quantities (masses and decay constants) which
depend on the time separation between source and sink,
and which show a plateau at large distances. The value of
the plateau gives an estimate for the corresponding mass or
decay constant. At fixed temporal extent one can increase
the relative amplitude of the ground state in correlators,
using smeared sources and/or sinks. This translates into
flatter and longer plateaux in the effective quantities.
We have extended the CHROMA suite of software in order

to operate with fermions in the adjoint representation of
the gauge group, and we have used the CHROMA built-in
routines for measuring mesonic correlators with both
Gaussian and wall-smeared sources. We observe that at
our lightest masses the wall-smearing gives always the best
overlap with the ground state. At heavy masses the mes-
onic wave functions are more localized and the local
sources give a better overlap with the ground state. There
is an intermediate regime of masses in which the local and
wall-smearing sources yield plateaux of similar quality. In
this case a Gaussian smearing with properly chosen width
might be desirable. If one wants a procedure that enhances
the overlap with the ground state at any mass, one should
use a variational method with a large set of smeared
sources. However, since the interesting physical region is
close to the chiral limit, we chose simplicity against
generality and we focused our detailed analysis on the
wall-smearing only.
The enhancement of the plateaux with smeared sources

does not come for free. Observables obtained with smeared
sources have longer autocorrelation times. For a fixed set
of configurations, a better control on the systematic error
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FIG. 18 (color online). Effective PS mass on different volumes
for am0 ¼ �1:05 and � ¼ 2:25. At t larger than 21, this
quantity (on the 64� 83 lattice) becomes much noisier and we
cut it for sake of clarity.
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with respect to local sources is generally obtained at the
cost of a larger statistical uncertainty.

Among the observables that we have considered, the
PCAC mass is the least affected by the systematics, while
the decay constants are the most affected. In the region
aMPS < 0:5, the 16� 83 lattice yields relative systematic
errors for the PS mass larger than 10%. At least the
24� 123 lattice is needed in order to stay below 10%.

We also investigated how the finite temporal extent can
conspire to partially mask effects due to finite spatial vol-
ume, and discovered that finite-volume effects were under-
estimated in our analysis with local sources. The relative
difference between the determinations of the PSmass on the
16� 83 and 24� 123 lattices is of order 5% at aMPS ’ 1
and it goes up to 14% at about aMPS ’ 0:3. Again, in the
interesting region of masses, the 16� 83 lattice appears to
be way too far from the infinite volume limit. A detailed
study of finite-volume effects is extremely important in
order to address issues like IR conformality, and represents
one of our major research lines. This paper represents a clear
step forward in a comprehensive study of finite size effects.
However, a systematic investigation of the spatial volume
dependency of the system is beyond the scope of the present
paper and will be presented in a forthcoming work.

Finally, we notice that our conclusions regarding the
near-conformal dynamics of this theory are robust,
since the main qualitative features already presented in
Refs. [22,25] are confirmed by the present analysis.
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APPENDIX A: CORRELATORS AND SMEARINGS

1. Local correlators

In order to measure mesonic observables we measure
zero-momentum correlators of the form

f��0 ðtÞ ¼ X
~x

hOSINKy
� ð ~x; tÞOSRCE

�0 ð~0; 0Þi; (A1)

where OSRCE;SINK
� are interpolating quark bilinear opera-

tors with the correct symmetries under spin and parity. We
require the isospin nonsinglet correlators and so, for ex-
ample, we could construct a local correlator with the most
immediate choice

O SRCE
� ð ~x; tÞ ¼ OSINK

� ð ~x; tÞ ¼ �c 1ð ~x; tÞ�c 2ð ~x; tÞ; (A2)

where the labels i on the quark fields c i denotes the
fermion flavor. Here � is a matrix in the Dirac algebra,
which determines the symmetries of the operator. This
choice reproduces the correlators considered in [25]:

fL��0 ðtÞ¼
X
~x

hð �c 1ð ~x;tÞ�c 2ð ~x;tÞÞy �c 1ð~0;0Þ�0c 2ð~0;0Þi; (A3)

where here the superscript on f��0 indicates the local
choice. This correlator is measured by computing the quark
propagator Sð ~x; t; ~x0; t0Þ, in terms of which

fL��0 ðtÞ¼�a3

Vs

X
~x

Tr½�0�
y�0Sð ~x;t; ~0;0Þ�0�5Sð ~x;t; ~0;0Þy�5�:

(A4)

The propagator is computed by solving the equation

a4
X
y

Dðx; yÞSðy; zÞ ¼ I�x;z; (A5)

where the boldface variables denote the full spacetime
coordinate, I denotes the identity matrix in spin and color
space, and Dðx; yÞ is the Dirac matrix.

2. Extended quark fields

In order to obtain an optimum signal for the masses we
aim to extract from these correlators, we should construct
interpolating operators with a maximized overlap with
the desired ground state. The local operators (A2) are not
expected to satisfy this requirement well, as the mesons
typically have an extension of many times the lattice
spacing in a typical simulation. We can improve the situ-
ation by considering an operator which is extended
spatially over the lattice:

O �ð ~x; tÞ ¼
X
~y1; ~y2

�ð ~x; ~y1; ~y2Þ �c 1ð ~y1; tÞ�c 2ð ~y2; tÞ: (A6)

Usually shell-model wave functions are used [33], mean-
ing the positions of the quark and antiquark are decoupled:

�ð ~x; ~y1; ~y2Þ ¼ �ð ~x; ~y1Þ�ð ~x; ~y2Þ: (A7)

The choice �ð ~x; ~yÞ ¼ �~x; ~y reproduces the point-point

case (A2).
In general, such wave functions are not gauge invariant,

and as such any expectation value over an ensemble of
gauge configurations, in which they are used, must vanish,
according to Elitzur’s theorem [34]. To avoid this we can
fix the gauge on each configuration, being careful to check
for errors introduced by the issue of Gribov copies.
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Using �SRCE=SINK to define OSRCE=SINK we see that our
correlation function can be computed as

f��0 ðtÞ ¼ �X
~x

Tr½�0�
y�0Ŝð ~x; t; ~0; 0Þ�0�5Ŝð ~x; t; ~0; 0Þy�5�;

(A8)

where Ŝð ~x; t; ~x0; t0Þ is defined as

Ŝð ~x; t; ~x0; t0Þ ¼ X
~y; ~y0
Sð ~y; t; ~y0; t0Þ�SINKð ~x; ~yÞ�SRCEð ~x0; ~y0Þ:

(A9)

It can be easily seen that if we solve for S0, the system

a4
X
y

Dðx; yÞS0ðy; zÞ ¼ �SRCEð ~z; ~xÞ�x0;z0 ; (A10)

we can compute Ŝ as

Ŝð ~x; t; ~x0; t0Þ ¼ X
~y

S0ð ~y; t; ~x0; t0Þ�SINKð ~x; ~yÞ: (A11)

In fact it is the choice of a shell-model type wave-function
(A7) that allows us to calculate the correlation function
using only one inversion of the Dirac matrix (per color and
spin index).

3. Smearing examples

A simple guess for an effective form of �ð ~xÞ is in the
form of a Gaussian

�ð ~x; ~yÞ ¼ e�ðj ~x� ~yj=RÞ2 ; (A12)

where R> 0 is some effective radius chosen to represent
the wave function of the meson of interest. The choice
1
R ! 0 results in �ð ~x; ~yÞ having equal weight over the

whole lattice, and is termed a wall smearing.
On a lattice we can approximate the Gaussian as the

limit of the iterative form

�ð ~x; ~yÞ ¼
�
1� w2

4N
h

�
N
�~x; ~y; (A13)

where h is the lattice version of the Laplacian

hð ~x; ~yÞ ¼ X3
i¼1

ð�~x; ~y�î þ �~x; ~yþîÞ: (A14)

(A13) then approximates (A12) in the limit N ! 1, with
the radius R being determined by w. Replacing h with its
covariant form

hð ~x; ~y; tÞ ¼ X3
i¼1

ðUið ~x; tÞ�~x; ~y�î þUy
i ð ~x� î; tÞ�~x; ~yþîÞ;

(A15)

results in a gauge-invariant operator, negating the require-
ment for gauge fixing. This choice of � is called gauge-
invariant Gaussian smearing.

We have utilized both a wall smearing (denoted W)
and a gauge-invariant Gaussian smearing (denoted G) in
our study.

4. Gauge fixing

When constructing a correlator involving the gauge-
dependent wall-smeared quark bilinear, we must fix the
gauge on each configuration with which we wish to work.
We fix to Coulomb gauge by generating a gauge-fixed
gauge configuration from the original by maximizing the
quantity

P
x

P3
i¼1 ReðTr½UiðxÞ�Þ.

APPENDIX B: MESON CORRELATOR
PHENOMENOLOGY

1. Meson masses

We extract the meson masses from our theory by ana-
lyzing correlators of the form (A1) in the case where
we consider source and sink operators with equal symme-
tries, i.e., � ¼ �0, and so we shall write f�� ¼ f�. We
can write f� explicitly as an expectation value on the
vacuum state j0i:

f�ðtÞ ¼
X
~x

h0jOSINKy
� ð ~x; tÞOSRCE

� ð~0; 0Þj0i: (B1)

Labeling the energy eigenstates of the theory as jn; ~pi, we
can write a complete set of states as

X
n

Z d3p

ð2�Þ32Enð ~pÞ
jn; ~pihn; ~pj: (B2)

We can insert this in f� producing

f�ðtÞ ¼
X
n

X
~x

Z d3p

ð2�Þ32Enð ~pÞ
h0jOSINKy

� ð ~x; tÞjn; ~pi

� hn; ~pjOSRCE
� ð~0; 0Þj0i: (B3)

Translating OSINKðxÞ to the origin produces

eiP �xOSINKð0Þe�iP �x where the four-momentum operator

P ¼ fH ; ~P g giving

h0jOSINKy
� ð ~x; tÞjn; ~pi ¼ h0jOSINKy

� ð0Þjn; ~pie�ip�x; (B4)

where p ¼ fEnð ~pÞ; ~pg. As a result, the sum over the spatial
position ~x collapses the sum onto zero-momentum

f�ðtÞ ¼
X
n

1

2En

h0jOSINKy
� ð~0; 0ÞjnihnjOSRCE

� ð~0; 0Þj0ie�iEnt;

(B5)

where we denote jn; ~0i as jni and Enð~0Þ as En. The overlaps
h0jOð0Þjni will vanish for all states except those with the
same symmetries as O� and we can see that at large
Euclidean time � ¼ it the correlator is dominated by the
lowest in energy of such states that we denote j�i with
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energy E� which, as we are at zero momentum, equals the
mass of the state E� ¼ m�:

f�ð�Þ ���!�!1 1

2m�

h0jOSINKy
� ð~0; 0Þj�ih�jOSRCE

� ð~0; 0Þj0ie�m��

� A�e
�m��: (B6)

On a lattice with finite temporal extent 0< �< Lt, this
asymptotic behavior is modified by the appearance of an
extra term corresponding to a quark propagating backward
from source to sink through the antiperiodic boundary:

f�ð�Þ ! A�ðe�m�� þ e�m�ðLt��ÞÞ � A�hcð�;m�; LtÞ:
(B7)

In this way we can extract the meson masses from the
exponential behavior of the f� at large Euclidean time.

As in [25], we use the Prony method [35] to solve this
system, to produce an ‘‘effective mass’’ m�ð�Þ which, as a
function of the lattice temporal coordinate, is expected to
approach the desired mass in the limit of large times
m�ðtÞ���!�!1m�. The meson mass is extracted by choosing
a region around the center of the temporal axis and fitting
the effective mass to a constant in this region.

In our study we have considered the case � ¼ �5, defin-
ing the pseudoscalar channel, with mass mPS and the
degerate cases � ¼ �i i 2 f1; 2; 3g, defining the vector
channel with mass mV. In practice the correlators f�i

are

averaged to produce a single correlator for the vector
channel. We call the resulting vector correlator fVV and
the pseudoscalar correlator fPP.

The masses can be extracted identically from these
correlators regardless of the smearing used. In practice it
is found that correlators with a smeared source are pre-
ferred to local correlators for this purpose, in that they
produce an improved signal to noise ratio for the masses.
Correlators with smearing at both the source and sink are
found to be disfavored because of enhanced fluctuations.

2. Amplitudes

If local quark fields are used, OSRCE=SINK
� ðxÞ ¼

�c 1ðxÞ�c 2ðxÞ ¼ OL
�ðxÞ. In the case of both the pseudosca-

lar and vector channels, we are interested in the quantity
jh0jOL

�ð0Þj�ij although they have different meanings:

jh0jOL
�5
ð0Þj�5ij � GPS; jh0jOL

�i
ð0Þj�iij � �iFVmV;

(B8)

where �i is a polarization tensor. We call GPS the psuedo-
scalar vacuum to meson amplitude (or, more commonly,
simply the psuedoscalar amplitude), and FV is the
vector decay constant. We can easily construct effective
observables for these quantities from the local correlators
fLPP and fLVV:

GL
PSð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mPSð�ÞfLPPð�Þ
hcð�;mPSð�Þ; LtÞ

s
;

FL
Vð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fLVVð�Þ

mVhcð�;mVð�Þ; LtÞ

s
: (B9)

If we wish to use smeared operators to extract these
quantities, the amplitudes in (B6) are, in general, no
longer related to the quantities of interest (B8). However,
if our correlator involves only a smearing at the source,
with a local sink, we see that the sink amplitude in (B6) is
still of the correct form (B8). We need cancel the other
undesired amplitude introduced by the smearing. We can
do this by combining our local-smeared correlator (fLS� )

with a smeared-smeared correlator (fSS� ). Effective observ-

ables equivalent to (B8) can be defined from smeared
correlators as

GS
PSð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mPSð�Þ

hcð�;mPSð�Þ; LtÞ
fLS

2

PP ð�Þ
fSSPPð�Þ

vuut ;

FS
Vð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

mVhcð�;mVð�Þ; LtÞ
fLS

2

VV ð�Þ
fSSVVð�Þ

vuut : (B10)

3. Quark mass

As our simulation is based on the Wilson quark formu-
lation, the physical quark mass in our simulation m is
related to the bare quark mass which is an input to
the simulation m0 by an additive renormalization, which,
being a nonperturbative quantity, ca not be calculated
a priori. As such we must have a method of determining
the physical quark mass in the simulation in order to
determine our proximity to the chiral point m ¼ 0 and to
observe the scaling of mesonic observables with m.
The most straightforward such method is via the par-

tially conserved axial current mass or PCAC mass. We
define the continuum nonsinglet axial and pseudoscalar
currents as

A	ðxÞ ¼ �c 1ðxÞ�	�5c 2ðxÞ; PðxÞ ¼ �c 1ðxÞ�5c 2ðxÞ:
(B11)

We see that these are continuum versions of ourOL
�	�5

and

OL
�5
. From the Ward identity for the axial transformation

c ! ei
�5c we obtain for the divergence of the axial
current

@	A	ðxÞ ¼ �2mPðxÞ; (B12)

wherem is the physical quark mass, as above. From this we
obtain

@

@t

Z
d3xhA0ð ~x; tÞO�5

i ¼ �2mhPð ~x; tÞO�5
i; (B13)
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where O�5
is any bilinear quark operator with the symme-

tries of a pseudoscalar current. Taking a lattice version
of this, and choosing for O�5

any of the local or smeared

lattice pseudoscalar currents we have previously con-
structed, we see we can define an effective PCAC quark
mass via

mð�Þ ¼ mPS

sinhðamPSÞ
fLSAPð�� aÞ � fLSAPð�þ aÞ

4fLSPP ð�Þ
; (B14)

where we define fAP to be f�0�5;�5
. The prefactor of

mPS

sinhðamPSÞ arises by a choice of the lattice finite difference

operator which more accurately represents the continuum
derivative on fAP. The correlators f

LS are constructed with
a local sink, and a source which can be local, or involve any
smearing.

4. Pseudoscalar decay constant

Similarly to (B6) the correlator fAP has an asymptotic
behavior:

fAPð�Þ ���!�!1 1

2mPS

h0jOSINKy
�0�5

ð~0;0Þj�5ih�5jOSRCE
�5

ð~0;0Þj0ie�mPS�

�AAPe
�mPS�: (B15)

In contrast to (B7) however, the contribution to fAP from
propagation around the lattice comes with the opposite
sign, so on a lattice with finite temporal extent,

fAPð�Þ ! AAPðe�mPS� � e�mPSðLt��ÞÞ � AAPhsð�;mPS; LtÞ:
(B16)

Now we define the pseudoscalar decay constant FPS as

mPSFPS ¼ h0jOL
�0�5

ð~0; 0Þj�5i: (B17)

Combining this with the Ward identity for fAP we can
define an effective observable for FPS as

FS
PSð�Þ ¼

2mð�ÞGS
PSð�Þ

m2
PSð�Þ

: (B18)

The superscript S here indicates that this is valid for
observables obtained from any smeared correlator, pro-
vided the corresponding definition of GPS is used, from
(B9) or (B10).

C. RESULTS TABLES

TABLE I. Results for mesonic observables from wall-smeared correlators on a 16� 83 lattice at � ¼ 2:25.

Lattice �am0 Nconf am amPS amV aFPS aFV

S0 �0:5 901 1.163 53(73) 2.7983(15) 2.8042(16) 0.2950(73) 0.3338(92)

S1 �0:25 901 1.072 05(97) 2.6535(21) 2.6613(22) 0.3150(63) 0.3629(80)

S2 0 901 0.9706(11) 2.4938(25) 2.5045(27) 0.3335(63) 0.3935(84)

S3 0.25 901 0.8552(11) 2.3092(28) 2.3241(31) 0.3579(74) 0.435(10)

S4 0.5 901 0.7224(13) 2.0934(32) 2.1155(37) 0.3729(87) 0.475(13)

S5 0.75 901 0.5607(18) 1.8136(47) 1.8473(55) 0.375(12) 0.511(21)

S6 0.9 901 0.4330(18) 1.5582(68) 1.5987(81) 0.315(13) 0.441(23)

A0 0.95 1501 0.3849(16) 1.4488(68) 1.4902(84) 0.291(12) 0.411(22)

A1 0.975 1499 0.3582(17) 1.3830(74) 1.4251(91) 0.274(11) 0.388(21)

A2 1 7300 0.3314(19) 1.3137(78) 1.3553(97) 0.258(13) 0.368(23)

A3 1.025 1481 0.3001(19) 1.2222(90) 1.260(11) 0.230(10) 0.324(18)

A4 1.05 1481 0.2688(15) 1.1290(83) 1.1645(99) 0.1970(64) 0.2692(89)

A5 1.075 1277 0.2352(18) 1.011(13) 1.042(16) 0.185(11) 0.258(20)

A6 1.1 1279 0.1992(32) 0.886(14) 0.914(19) 0.1642(99) 0.227(17)

A7 1.125 1344 0.1595(25) 0.725(14) 0.747(18) 0.1478(76) 0.200(15)

A8 1.15 1278 0.1150(31) 0.519(18) 0.534(23) 0.1439(70) 0.194(10)

A9 1.175 1280 0.0628(30) 0.285(23) 0.295(30) 0.1569(43) 0.2120(81)
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TABLE II. Results for mesonic observables from wall-smeared correlators on a 24� 123 lattice at � ¼ 2:25.

Lattice �am0 Nconf am amPS amV aFPS aFV

B0 0.95 1973 0.390 17(68) 1.4720(23) 1.5186(28) 0.3220(61) 0.468(11)

B1 1 1689 0.336 23(82) 1.3441(28) 1.3932(37) 0.2942(73) 0.434(13)

B2 1.05 1564 0.274 70(91) 1.1782(39) 1.2252(51) 0.269(11) 0.395(19)

B3 1.075 1438 0.2393(10) 1.0660(55) 1.1058(68) 0.231(13) 0.333(24)

B4 1.1 5112 0.2014(10) 0.9310(65) 0.9638(79) 0.1523(85) 0.208(14)

B5 1.125 1240 0.160 13(92) 0.7697(60) 0.7963(68) 0.1485(63) 0.2062(97)

B6 1.15 640 0.1149(15) 0.572(12) 0.588(15) 0.0955(53) 0.1296(89)

B7 1.175 5137 0.0653(14) 0.3277(95) 0.336(11) 0.0985(33) 0.1298(54)

B8 1.18 818 0.0547(17) 0.282(11) 0.294(13) 0.0984(53) 0.1311(78)

B9 1.185 840 0.0418(16) 0.206(11) 0.213(11) 0.1056(43) 0.1366(63)

B10 1.19 700 0.0300(11) 0.1476(82) 0.1539(96) 0.1129(32) 0.1496(36)

TABLE III. Results for mesonic observables from wall-smeared correlators on a 32� 163 lattice at � ¼ 2:25.

Lattice �am0 Nconf am amPS amV aFPS aFV

C0 1.15 1090 0.117 31(77) 0.6121(64) 0.6305(83) 0.0983(44) 0.1314(87)

C1 1.175 523 0.065 79(77) 0.3652(87) 0.381(10) 0.0746(35) 0.1037(64)

C2 1.18 917 0.054 37(79) 0.3042(69) 0.3174(80) 0.0736(37) 0.0992(59)

C3 1.185 864 0.042 17(84) 0.2241(62) 0.2297(72) 0.0763(32) 0.0992(44)

C4 1.19 1083 0.030 65(72) 0.1682(62) 0.1764(64) 0.0776(27) 0.1038(36)

TABLE IV. Results for mesonic observables from wall-smeared correlators on a 64� 243 lattice at � ¼ 2:25.

Lattice �am0 Nconf am amPS amV aFPS aFV

D0 1.18 185 0.055 28(25) 0.3239(49) 0.3295(62) 0.0398(27) 0.0455(41)

D1 1.185 164 0.042 87(29) 0.2462(58) 0.2566(75) 0.0696(65) 0.091(11)

D2 1.19 160 0.029 67(50) 0.1741(52) 0.1759(59) 0.0501(30) 0.0601(52)

TABLE V. Results for mesonic observables from wall-smeared correlators on a 64� 243 lattice at � ¼ 2:1.

Lattice �am0 Nconf am amPS amV aFPS aFV

E0 1.25 131 0.117 51(28) 0.7173(11) 0.7735(39) 0.1592(26) 0.263(12)

E1 1.26 130 0.085 27(34) 0.5612(15) 0.5881(45) 0.1122(26) 0.169(11)
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TABLE VI. Ratios of mesonic observables from wall-smeared correlators on a 16� 83 lattice at � ¼ 2:25.

Lattice �am0 am2
PS=m mV=FPS mV=mPS a3ðmPSFPSÞ2=m FV=FPS

S0 �0:5 6.7300(39) 9.50(23) 1.002 100(47) 0.586(29) 1.1311(35)

S1 �0:25 6.5681(57) 8.45(16) 1.002 94(10) 0.652(26) 1.1520(29)

S2 0 6.4070(67) 7.51(13) 1.004 28(14) 0.713(27) 1.1797(37)

S3 0.25 6.2347(86) 6.49(13) 1.006 47(22) 0.798(33) 1.2172(50)

S4 0.5 6.065(10) 5.67(12) 1.010 58(36) 0.844(40) 1.2754(72)

S5 0.75 5.866(17) 4.91(16) 1.018 58(75) 0.830(57) 1.359(14)

S6 0.9 5.606(31) 5.07(19) 1.0259(11) 0.558(49) 1.398(18)

A0 0.95 5.453(33) 5.11(19) 1.0286(13) 0.465(41) 1.408(19)

A1 0.975 5.338(37) 5.20(20) 1.0303(15) 0.402(37) 1.414(18)

A2 1 5.206(40) 5.24(24) 1.0316(17) 0.350(36) 1.421(24)

A3 1.025 4.977(47) 5.47(22) 1.0308(19) 0.265(26) 1.405(21)

A4 1.05 4.741(48) 5.91(16) 1.0314(18) 0.184(13) 1.366(18)

A5 1.075 4.352(94) 5.63(29) 1.0300(50) 0.150(21) 1.390(32)

A6 1.1 3.94(10) 5.58(27) 1.0310(70) 0.107(14) 1.385(37)

A7 1.125 3.299(93) 5.06(20) 1.0307(70) 0.0724(87) 1.358(54)

A8 1.15 2.35(13) 3.71(17) 1.028(16) 0.0489(60) 1.350(31)

A9 1.175 1.30(19) 1.88(20) 1.034(44) 0.0320(48) 1.351(39)

TABLE VII. Ratios of mesonic observables from wall-smeared correlators on a 24� 123 lattice at � ¼ 2:25.

Lattice �am0 am2
PS=m mV=FPS mV=mPS a3ðmPSFPSÞ2=m FV=FPS

B0 0.95 5.553(10) 4.717(84) 1.03166(59) 0.576(22) 1.454(12)

B1 1 5.373(13) 4.73(11) 1.03652(96) 0.465(23) 1.476(20)

B2 1.05 5.053(21) 4.55(17) 1.0398(13) 0.367(31) 1.465(19)

B3 1.075 4.748(35) 4.79(26) 1.0373(21) 0.255(30) 1.438(31)

B4 1.1 4.303(42) 6.34(32) 1.0352(18) 0.100(11) 1.365(27)

B5 1.125 3.700(42) 5.36(20) 1.0345(18) 0.0818(77) 1.388(14)

B6 1.15 2.84(10) 6.17(26) 1.0287(85) 0.0261(35) 1.355(38)

B7 1.175 1.644(71) 3.41(12) 1.026(12) 0.0160(14) 1.317(25)

B8 1.18 1.457(93) 2.99(19) 1.042(21) 0.0141(18) 1.332(30)

B9 1.185 1.022(90) 2.02(12) 1.034(23) 0.0114(12) 1.293(44)

B10 1.19 0.727(68) 1.36(10) 1.043(32) 0.00926(75) 1.325(37)

TABLE VIII. Ratios of mesonic observables from wall-smeared correlators on a 32� 163 lattice at � ¼ 2:25.

Lattice �am0 am2
PS=m mV=FPS mV=mPS a3ðmPSFPSÞ2=m FV=FPS

C0 1.15 3.194(53) 6.41(25) 1.0299(47) 0.0310(30) 1.334(40)

C1 1.175 2.028(87) 5.12(21) 1.045(10) 0.0113(14) 1.389(37)

C2 1.18 1.702(62) 4.32(20) 1.043(10) 0.0092(10) 1.348(28)

C3 1.185 1.191(55) 3.01(13) 1.024(16) 0.006 96(68) 1.298(23)

C4 1.19 0.924(57) 2.27(11) 1.048(20) 0.005 57(46) 1.336(26)

TABLE IX. Ratios of mesonic observables from wall-smeared correlators on a 64� 243 lattice at � ¼ 2:25.

Lattice �am0 am2
PS=m mV=FPS mV=mPS a3ðmPSFPSÞ2=m FV=FPS

D0 1.18 1.899(55) 8.29(45) 1.0169(88) 0.003 04(51) 1.140(47)

D1 1.185 1.414(64) 3.70(28) 1.042(14) 0.0069(15) 1.308(59)

D2 1.19 1.023(53) 3.51(17) 1.009(19) 0.002 59(42) 1.199(54)
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D. PULL TABLES

TABLE X. Ratios of mesonic observables from wall-smeared correlators on a 64� 243 lattice at � ¼ 2:1.

Lattice �am0 am2
PS=m mV=FPS mV=mPS a3ðmPSFPSÞ2=m FV=FPS

E0 1.25 4.378(10) 4.857(81) 1.0783(49) 0.1110(37) 1.653(76)

E1 1.26 3.693(21) 5.24(12) 1.0479(79) 0.0465(22) 1.50(10)

TABLE XI. Pull of wall-smeared results from local results on a 16� 83 lattice.

Lattice V �am0 am amPS a2GPS aFPS amV aFV

S0 16� 83 �0:5 0.357 743 0.630 827 0.235 108 0.256 243 0.620 554 0.183 502

S1 16� 83 �0:25 0.089 053 5 0.370 89 0.250 73 0.185 906 0.364 952 0.221 968

S2 16� 83 0 0.176 656 0.103 129 0.633 081 0.570 268 0.117 478 0.603 322

S3 16� 83 0.25 0.054 422 1 0.891 48 0.546 006 0.402 862 0.863 709 0.524 572

S4 16� 83 0.5 0.412 61 0.213 066 0.745 81 0.769 548 0.198 067 0.685 742

S5 16� 83 0.75 0.798 726 0.721 695 0.723 448 0.773 543 0.764 52 0.658 796

S6 16� 83 0.9 0.914 745 2.123 96 2.852 72 2.626 16 2.197 36 2.969 89

A0 16� 83 0.95 1.170 47 2.877 97 3.536 52 3.173 06 3.0289 3.705 67

A1 16� 83 0.975 1.482 67 3.037 48 3.0976 3.696 49 3.1175 4.284 69

A2 16� 83 1 1.085 58 3.307 53 3.8366 3.396 84 3.389 91 3.995 93

A3 16� 83 1.025 1.504 36 4.027 95 5.567 33 4.938 76 4.087 13 5.906 23

A4 16� 83 1.05 1.447 32 4.8367 9.425 37 8.005 32 4.942 94 12.0426

A5 16� 83 1.075 0.854 806 3.471 75 6.880 26 4.079 07 3.406 87 5.065 41

A6 16� 83 1.1 0.761 814 3.250 19 5.457 58 4.427 01 3.037 32 5.346 94

A7 16� 83 1.125 1.073 67 3.4146 5.774 55 4.517 91 3.050 06 4.975 78

A8 16� 83 1.15 0.769 772 2.642 52 3.779 74 2.612 07 2.056 69 3.824 54

A9 16� 83 1.175 0.567 182 1.702 04 1.912 51 0.632 631 1.611 41 2.250 52

TABLE XII. Pull of wall-smeared results from local results on a 24� 123 lattice.

Lattice V �am0 am amPS a2GPS aFPS amV aFV

B0 24� 123 0.95 0.774 467 0.783 603 1.423 61 1.408 95 0.8713 24 1.537 57

B1 24� 123 1 0.159 875 1.401 15 1.183 23 0.807 577 1.360 64 1.469 37

B2 24� 123 1.05 0.457 775 1.859 51 0.417 244 0.680 213 2.013 02 0.207 503

B3 24� 123 1.075 0.431 929 2.359 26 0.376 053 0.036 731 3 2.574 14 0.556 833

B4 24� 123 1.1 0.273 78 4.084 46 5.1113 4.655 01 4.100 09 5.441 29

B5 24� 123 1.125 0.092 912 3 4.425 96 3.326 75 1.769 42 3.942 36 2.575 02

B6 24� 123 1.15 0.886 415 2.496 18 4.857 51 3.772 26 2.044 29 3.868 22

B7 24� 123 1.175 0.252 409 2.908 99 3.776 84 1.8568 2.293 01 2.326 82

B8 24� 123 1.18 0.623 981 1.973 81 2.989 03 1.748 13 1.6552 2.725 08

B9 24� 123 1.185 0.455 37 1.691 78 2.276 98 0.544 327 0.994 413 2.105 43

B10 24� 123 1.19 0.107 576 1.616 24 1.861 86 0.8264 0.831 428 1.556 31

TABLE XIII. Pull of wall-smeared results from local results on a 32� 163 lattice.

Lattice V �am0 am amPS a2GPS aFPS amV aFV

C0 32� 163 1.15 0.082 699 8 2.765 28 4.432 89 3.498 37 2.510 94 3.698 38

C1 32� 163 1.175 0.656 922 1.804 44 3.885 21 2.7899 1.636 12 3.349 12

C2 32� 163 1.18 0.297 786 2.346 19 3.686 42 2.424 67 2.038 04 3.610 78

C3 32� 163 1.185 0.067 722 6 2.363 42 2.478 07 0.443 416 1.667 51 1.681 51

C4 32� 163 1.19 0.136 12 2.190 63 3.100 32 0.7232 1.754 68 2.793 63
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TABLE XIV. Pull of wall-smeared results from local results on a 64� 243 lattice.

Lattice V �am0 am amPS a2GPS aFPS amV aFV

D0 64� 243 1.18 0.231 276 1.684 37 10.7124 3.654 89 1.980 21 2.999 79

D1 64� 243 1.185 0.753 454 0.491 626 8.317 95 2.830 08 0.281 183 1.973 54

D2 64� 243 1.19 0.302 909 0.037 698 7 10.0776 0.153 963 0.124 777 0.183 138

TABLE XV. Pull of wall-smeared results from local results on a 16� 83 lattice.

Lattice V �am0 am2
PS=m mV=FPS mV=mPS a3ðmPSFPSÞ2=m FV=FPS

S0 16� 83 �0:5 579.839 103.336 42.4374 14.8134 29.6658

S1 16� 83 �0:25 355.964 115.643 28.3108 17.5745 40.2534

S2 16� 83 0 256.472 102.845 27.2575 17.0714 36.0592

S3 16� 83 0.25 161.5 76.8603 27.1434 13.7659 30.298

S4 16� 83 0.5 105.789 55.6038 25.8027 10.1067 25.9244

S5 16� 83 0.75 67.0073 41.9002 22.8086 6.02327 18.2194

S6 16� 83 0.9 162.403 326 21.9192 10.0395 20.4498

A0 16� 83 0.95 42.936 27.5523 19.6178 1.61548 14.8302

A1 16� 83 0.975 34.6138 20.3632 18.5986 5.082 23 15.0627

A2 16� 83 1 29.2933 12.2385 15.9358 7.946 12 10.4417

A3 16� 83 1.025 27.2297 8.32147 13.3442 16.2042 10.4521

A4 16� 83 1.05 27.2413 2.958 47 13.634 32.67 7.681 35

A5 16� 83 1.075 16.7288 0.223 305 3.820 08 26.723 3.435 54

A6 16� 83 1.1 16.2186 2.762 73 1.6808 24.4004 0.595 224

A7 16� 83 1.125 19.8065 2.299 41 0.273 288 21.8378 1.642 39

A8 16� 83 1.15 21.8515 4.29543 0.285 916 27.8008 3.788 25

A9 16� 83 1.175 20.4856 11.9002 0.005 403 29 27.7572 3.35479

TABLE XVI. Pull of wall-smeared results from local results on a 24� 123 lattice.

Lattice V �am0 am2
PS=m mV=FPS mV=mPS a3ðmPSFPSÞ2=m FV=FPS

B0 24� 123 0.95 0.396 346 1.386 81 0.717 94 1.400 66 0.622 82

B1 24� 123 1 0.495 822 0.681 721 0.7434 0.948 186 1.251 64

B2 24� 123 1.05 0.562 277 0.944 498 1.535 68 0.612 448 2.129 25

B3 24� 123 1.075 1.167 16 0.223 536 1.730 31 0.172 471 1.358 59

B4 24� 123 1.1 2.543 33 3.710 56 2.364 72 5.766 23 2.854 06

B5 24� 123 1.125 3.114 13 1.036 24 0.533 927 2.646 76 1.600 02

B6 24� 123 1.15 1.510 09 3.610 68 0.122 117 4.287 13 0.420 703

B7 24� 123 1.175 3.053 79 0.169 209 0.492 669 3.590 39 0.854 043

B8 24� 123 1.18 1.845 39 0.456 036 0.226 258 2.9395 1.209 18

B9 24� 123 1.185 1.718 52 0.384 545 1.350 89 1.918 35 1.489 33

B10 24� 123 1.19 1.742 55 1.0647 0.897 999 1.214 23 1.908 16

TABLE XVII. Pull of wall-smeared results from local results on a 32� 163 lattice.

Lattice V �am0 am2
PS=m mV=FPS mV=mPS a3ðmPSFPSÞ2=m FV=FPS

C0 32� 163 1.15 1.931 71 3.068 61 0.882 135 4.343 96 1.473 96

C1 32� 163 1.175 1.064 68 2.325 32 0.137 237 3.318 04 0.411 924

C2 32� 163 1.18 2.036 76 1.546 44 0.0619 247 3.396 86 1.573 62

C3 32� 163 1.185 2.396 44 0.563 872 0.653 246 1.823 22 1.421 52

C4 32� 163 1.19 2.261 97 0.559 476 0.623 971 2.590 77 1.876 11
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