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We investigate low-lying fermion modes in SUð2Þ gauge theory at temperatures above the phase

transition. Both staggered and overlap spectra reveal transitions from chaotic (random matrix) to

integrable (Poissonian) behavior accompanied by an increasing localization of the eigenmodes. We

show that the latter are trapped by local Polyakov loop fluctuations. Islands of such ‘‘wrong’’ Polyakov

loops can therefore be viewed as defects leading to Anderson localization in gauge theories. We find

strong similarities in the spatial profile of these localized staggered and overlap eigenmodes. We discuss

possible interpretations of this finding and present a sparse random matrix model that reproduces these

features.
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I. INTRODUCTION

The vacuum of quantum chromodynamics (QCD) is a
prominent nonperturbative system, whose strongly inter-
acting nature persists even above the transition to the
quark-gluon plasma. To get insight into its mechanism,
spectral properties of the QCD Dirac operator are very
useful. A nonzero density of eigenvalues at zero gives
rise to chiral symmetry breaking via the Banks-Casher
formula [1]. Moreover, exact zero modes are related to
the topological charge via index theorems.

In recent years, localization properties of the Dirac
eigenmodes have attracted attention as they can be used
to draw analogies to condensed matter phenomena: con-
cepts like the mobility edge and Anderson localization can
be studied in QCD lattice simulations. In this spirit the
chiral transition at finite temperature1 has been conjectured
to be an Anderson (metal-insulator) transition.

This goes hand in hand with different random matrix
theory (RMT) descriptions of the Dirac spectra. In the low
temperature phase, the existence of the chiral condensate
connects QCD to chiral perturbation theory and random
matrix theory (becoming exact in the epsilon-regime),
which explains the statistics of the low-lying part of the
Dirac spectrum [3].

The spectral gap in the high temperature phase, on the
other hand, seems to call for the ‘‘soft edge’’ description of
RMT, which, however, could not be supported by lattice
data [4–7]. Instead, a transition to independent eigenmodes
obeying Poisson statistics has been suggested [8]. A refined
analysis by one of us has shown, that the bulk of the
spectrum is still delocalized and subject to RMT, while
the lowest-lying eigenmodes display a transition to local-
ization and Poissonian behavior of the eigenvalues [9,10].
This effect has been confirmed to be universal in the sense

that it does not depend on the resolution of the lattice.
Observables, like e.g. the number of localized modes,
rather scale with the physical volume. On the other hand,
Ref. [11] found that localization is essentially a finite
volume artifact. However, they used a different, less re-
strictive definition of localization and thus their results are
not in conflict with the rest of the above cited literature.
In this work we give another crucial ingredient of

Anderson localization in QCD, namely, we identify the
‘‘defects’’ causing it. We show that at high temperature
local Polyakov loop fluctuations trap low-lying modes. The
average Polyakov loop as an order parameter of the de-
confinement (or center) phase transition approaches 1 with
increasing temperature. Locally, however, the Polyakov
loop takes on other values, in particular, close to other
center elements, �1 in the case of gauge group SUð2Þ.
The phase transition can actually be viewed as a percola-
tion of the physical sector embracing such islands where
the Polyakov loop is close to other center elements [12,13].
The locations of these Polyakov loop fluctuations

(which are similar to Weiss domains in ferromagnetism)
are correlated with maxima in the profile of low-lying
Dirac modes. We will demonstrate this for eigenmodes of
both the overlap and staggered operator. Similarities be-
tween the spectrum of the overlap and staggered Dirac
operator have already been found in the Schwinger model
[14] and also in QCD [15]. Our present study is, however,
the first one when similarity of staggered and overlap Dirac
eigenmodes is seen in lattice simulations and we consider
this an important side result of our study.
The observed localization can be understood via

Polyakov loops compensating the twist caused by the
antiperiodic boundary conditions in the temporal direction.
The correspondingMatsubara frequency is effectively low-
ered (locally) which results in lower eigenvalues. Actually,
our finding has been inspired by a similar localization
effect in the spectrum of the gauge-covariant Laplace
operator [16]. The Laplacian is the square of the Dirac

1At zero temperature the situation is not clear due to the
continuum limit, see [2] and references therein.
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operator in the free case, so the twist picture applies.
Otherwise this operator does not share important chiral
features like topological zero modes and condensates.

Likewise, our finding is consistent with the existence of
a chiral condensate in the Polyakov loop sector close to
other center elements [17–24] (also needed for center
symmetry breaking [25]), which implies low Dirac eigen-
values in islands of such Polyakov loops.

The connection of these islands to topological excita-
tions like magnetic monopoles is attractive, but in its naive
form contradicts the observed topological susceptibility
quantitatively, see below.

For the construction of random matrix models valid at
high temperature we investigate the distribution of local
Polyakov loops and find them to be uncorrelated to a good
approximation. Hence, Polyakov loops in fact provide the
Poissonian ingredient for the Dirac spectrum. This is built
into a novel Anderson-like random matrix model through
supplementing it by random matrix entries that represent
nearest neighbor hoppings in three-dimensional space. We
motivate this model and show, that with a few parameters it
reproduces the main features of the Dirac modes: chirality,
spectral gap, RMT-Poisson transition and localization (to
the analogue of local Polyakov loops).

Our findings are based on quenched lattice simulations
with the SU(2) gauge group, we strongly believe that the
described phenomena are present in more realistic gauge
theories, too.

The paper is organized as follows. In the next section we
describe the Dirac spectra at high temperature including
the RMT-Poisson (chaotic to integrable) transition and the
similarity of the staggered and overlap modes. Section III
is devoted to the connection between local Polyakov loops
and low-lying modes. In Sec. IV thereafter we investigate
two possible interpretations of this finding, effective
Matsubara frequencies and topological objects. In Sec. V
we introduce and explore our random matrix model and
finally Sec. VI contains our conclusions.

II. DIRAC SPECTRA AT HIGH TEMPERATURE

We analyze quenched SUð2Þ lattice configurations gen-
erated with Wilson action on a 243 � 4 lattice at � ¼ 2:6
which amounts to a temperature of 2:6Tc. The average
Polyakov loop of 0.37 signals deconfinement (by
Polyakov loop we refer to the trace of the products of all

temporal links Lð ~xÞ ¼ 1=2 � TrQNt

x0¼1 U0ðx0; ~xÞ and we se-

lected the physical sector of positive Polyakov loops by
hand).

We measured the 256 lowest eigenvalues with positive
imaginary parts of the overlap [26,27] (with parameter
s ¼ 0:4 cf. [9]) and staggered Dirac operator on 1136
(overlap)/3149 (staggered) configurations. For a set of
1102 configurations, we also measured the 12 lowest
eigenmodes of both staggered and overlap operator. In all
cases the quark mass was set to zero.

The eigenvalues are ordered according to their imagi-
nary parts and the corresponding eigenvalue densities2 are
plotted in Fig. 1. They display a gaplike behavior with the
eigenvalue density starting to differ from zero considerably
at a� ’ 0:15 and a� ’ 0:5, respectively. In addition, the
overlap operator possesses exact zero modes, which we use
to determine the topological charge of the configuration.
To describe the RMT vs Poissonian behavior of the

Dirac spectra we will scan windows in the range of avail-
able eigenvalues and measure the level spacing distribu-
tions PðsÞ on unfolded eigenvalues [3], a typical quantity
describing the eigenvalue statistics. The Gaussian RMT
ensembles provide predictions for it, which also apply to
systems with chiral symmetry, depending only on the
universality class. For gauge group SUð2Þ the latter are
the Gaussian orthogonal ensemble (GOE) for the overlap
operator (like for the continuum Dirac operator) and the
Gaussian symplectic ensemble (GSE) for the staggered
operator. The main difference of those PðsÞ formulae lies
in the different repulsion strength of nearby eigenvalues,
which results in a linear and quartic behavior of PðsÞ near
s ¼ 0, respectively. Independent eigenvalues, on the other
hand, lack such a repulsion and the unfolded level spacing
is a Poissonian distribution, i.e. PðsÞ ¼ expð�sÞ.
Figure 2 shows the level spacing distribution of overlap

eigenvalues (see [10] for staggered spectra). It clearly re-
veals that the level spacing agrees with the associated RMT
predictions in the bulk andmoves towards Poissonian when
the spectral window is shifted towards lower eigenvalues.
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FIG. 1 (color online). Logarithm of the spectral density along
the imaginary axis for the staggered (red, at smaller �) and
overlap (blue) Dirac operator from the lowest 256 eigenvalues.

2Because of chirality, the nonzero eigenvalues come in pairs of
opposite imaginary part and we restrict ourselves to the half with
positive imaginary part. In other words, all plots can be extended
symmetrically around � ¼ 0.
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To observe such a level spacing at least a few independently
(Poissonian) distributed eigenvalues are needed on each
configuration. Since independent modes occur only at the
very low end of the spectrum where the spectral density is
low, large enough volumes are required for that. In [9] also
the independence of these data of the lattice spacing has
been demonstrated for the staggered case.

The properties of the independent and localized modes
at the lower ends of the spectra are the main subject of the
rest of the paper. We therefore check first, whether the
modes of the overlap and the staggered operator see similar
physical effects, meaning that their profiles are correlated
and localized to similar locations.

First of all we remark that for every overlap zero mode
we find a staggered eigenvalue with unusually small value.
In the topological sector Q ¼ 0, the average smallest ei-
genvalue is 0.175(1), whereas it is 0.109(3) for jQj ¼ 1
(and 0:098ð8Þ=0:141ð6Þ for jQj ¼ 2, where we have two
small eigenvalues). This can also be seen in Fig. 7 bottom.

Next, the scatter plot of Fig. 3 gives a strong indication
for the correlation of the local mode amplitudes in a typical

example configuration, which is further visualized by the
two-dimensional profiles in Fig. 4.
In order to quantify the similarity and localization of two

modes we propose the following ‘‘interlocalization’’

I :¼ N
X
x

jc ov
m ðxÞj2jc st

n ðxÞj2; (1)

where N is the number of lattice sites, and jc ov;st
m ðxÞj is the

absolute value (L2-norm) of the mth overlap/staggered
eigenmode summed up over gauge—and in the case of
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FIG. 2 (color online). Spacing distributions of the overlap spectrum in spectral windows indicated by the insets showing the spectral
density. The pure RMT (GOE) prediction and the Poissonian distribution are plotted for comparison.
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FIG. 3 (color online). Scatter plot of staggered (horizontal) vs
overlap (vertical) amplitudes for the lowest modes, jc st

1 ðxÞj vs
jc ov

1 ðxÞj, on a Q ¼ 0 configuration over the whole lattice. Data

points with small amplitudes – as indicated by the circle—have
been excluded to avoid overcrowding the plot.
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FIG. 4 (color online). Profile of the overlap (top) and staggered
(bottom) lowest mode of the configuration of Fig. 3, in a
lattice plane where the overlap mode takes on its maximum.
(The absolute maximum of the staggered mode is separated
from the overlap one by
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lattice spacings in the remaining

directions.)
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overlap also spinor—indices at lattice site x. This is a
positive quantity that receives large contributions when
both modes are considerably large at some locations.
Moreover, for two identical modes it becomes their inverse
participation ratio (IPR). The latter is a well-known mea-
sure for the localization, taking on a value of N for modes
localized on a single point (on the lattice) and 1 for
constant modes. In fact, we find I ’ 1 also for two normal-
ized modes with independent Gaussian distributed ampli-
tudes at each site. Only modes that are similar and
localized generate large values of I.

We utilize I for matching the overlap and staggered
modes.3 We start by taking the lowest overlap mode and
pair it with the staggered mode that has the largest inter-
localization with it. Going up in the overlap spectrum we
continue this matching procedure in the same way, but use
only those staggered modes that have not yet been paired
up with a lower overlap mode. In Fig. 5 we plot the inter-
localization values for the lowest modes matched in this
way as a function of the corresponding overlap eigenvalue
�m. From this plot it is clear that the zero modes (of the
overlap operator, near-zero modes of the staggered opera-
tor) are matching close to perfectly. The value of 300 is
actually in the same order of magnitude as the IPR of the
individual overlap zero modes.4 Then I drops quickly and

after a few modes it reaches the reference value 1 discussed
above.

III. POLYAKOV LOOPS AS DEFECTS/TRAPS

As an appetizer of our main finding we show in Fig. 6 the
Polyakov loops (of one example configuration) in the
lattice plane, where the lowest overlap and staggered
eigenmodes take on their maximum, as shown in Fig. 4.
The Polyakov loop is dominated by UV fluctuations at the
scale of the lattice spacing as almost every lattice observ-
able. Therefore it is virtually impossible to see any struc-
tures in it.
We applied 6 sweeps of APE smearing [29,30] with

� ¼ 0:55 to the configuration, which leads to a smoother
Polyakov loop landscape. Indeed, an island of Polyakov
loop with opposite sign emerges at the location of the
maximum of the lowest Dirac mode on the original un-
smeared configuration. A similar profile becomes visible
after simply averaging the (traced) Polyakov loops with
their neighbors.
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FIG. 5 (color online). The interlocalization I, Eq. (1), for
matched modes (see text) as a function of the averaged overlap
eigenvalue ha�mi (in lattice units), on a logarithmic scale and
ensemble averaged. The maximal possible value for I on our
lattice is 243 � 4 ’ 5:5� 104, whereas delocalized modes yield
I ’ 1, indicated by the dashed gray line. Horizontal error bars
visualize the spreads of the eigenvalues.
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FIG. 6 (color online). Profile of the unsmeared (top) and
smeared (bottom) Polyakov loop for the same configuration
and in the same plane as in Fig. 4. By the naked eye nothing
seems particular in this plane for the unsmeared case, whereas
the smeared Polyakov loop actually takes its minimum (� 0:68,
compared to an average smeared Polyakov loop of 0.80) at the
hotspot visible in the fermion modes in Fig. 4. (A correlation of
the unsmeared Polyakov loop to fermion modes is exposed by
virtue of statistical measurements, see text.)

3In [28] the positions of the highest peaks were used to reveal
similarities between overlap and staggered modes.

4The associated low-lying staggered modes have a slightly
larger IPR, around 400, presumably because in contrast to the
overlap operator the staggered operator is ultralocal.
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Let us stress, that the lower panel of Fig. 6 is the only
occasion that we present a smeared result. We now return
to correlation functions of unsmeared Polyakov loops for
the rest of this paper.

To check the correlation of Polyakov loop islands and
low Dirac modes in a quantitative way, we define
‘‘Polyakov loops as averaged by a particular mode,’’ i.e.
Polyakov loops weighted with the density of a normalized
Dirac mode, cf. [16],

Lm :¼ X
x

jc mðxÞj2LðxÞ: (2)

This quantity is restricted to the interval ½�1; 1�, just like
the Polyakov loop L. It is clear that a wavelike mode c m

with approximately constant amplitude yields an Lm

close to the average Polyakov loop
P

xLðxÞ=V, whereas

a strongly localized mode picks the Polyakov loop in
that region. If the latter happens to be an island of
‘‘wrong’’ Polyakov loops, Lm tends to zero or even be-
comes negative.
Figure 7 shows the ratio of Lm averaged over different

configurations and the average Polyakov loop, both for the
low-lying overlap and low-lying staggered modes. The
Polyakov loops averaged by the low-lyingmodes are indeed
smaller than on average. Higher modes, on the contrary,
tend to see the average Polyakov loop.
The connection between local Polyakov loops and low-

lying Dirac modes is confirmed from a slightly different
perspective by the following ‘‘Polyakov loop distribution
as seen by a mode.’’ For that we weight the probability of
Polyakov loops L by the amplitudes of the low-lying
modes at those positions x where LðxÞ ¼ L,

pmðLÞ ¼
X
x

��ðL� LðxÞÞjc mðxÞj2; (3)

in continuous notion with some smeared delta-function ��

(in practice we rescale histograms). The quantity Lm is
recovered by the L-expectation value with this probability,

Lm ¼
Z

dLpmðLÞL;
�Z

dLpmðLÞ ¼ 1

�
: (4)

Thus the probability pm visualizes how the global quantity
Lm is generated by modifying the distributions of the local
Polyakov loops.
In Fig. 8 we show this probability for the lowest modes

of the overlap operator, p1ðLÞ, on Q ¼ 0 configurations.
One can clearly see that low fermion modes enhance low
Polyakov loops down to L ’ �1.0
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FIG. 7 (color online). The ratio of ‘‘Polyakov loops as aver-
aged by low-lying modes’’ Lm, Eq. (2), to the average Polyakov
loop for overlap (top) and staggered modes (bottom) as a
function of the corresponding averaged eigenvalue ha�mi.
Horizontal error bars visualize the spreads of the eigenvalues.
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FIG. 8 (color online). The ‘‘Polyakov loop distribution as seen
by the lowest overlap mode’’, p1ðLÞ from Eq. (3), in the Q ¼ 0
sector compared to the Polyakov loop distribution and the Haar
measure (valid in the low temperature phase).
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IV. INTERPRETATIONS

A. Effective Matsubara frequencies

In a background of constant temporal and vanishing
spatial gauge fields the influence of the Polyakov loop on
the Dirac spectra is very clear. We first diagonalize the
Polyakov loop introducing its phase ’,

YNt

x0¼1

U0ðx0Þ ¼ exp

�
i’

1
�1

� ��
; (5)

L ¼ cos’ ’ 2 ½0; ��: (6)

We gauge it into the last time slice, where it effectively
changes the temporal boundary condition.

The lowest modes of the free Dirac operator in the
presence of this Polyakov loop are constant in space and
plane waves in time, expðipx0TÞ. The quantum numbers p
are governed by a combination of the antiperiodic temporal
boundary condition for fermions and the Polyakov loop
phase, namely p ¼ �� ’þ 2�Z, where the different
signs emerge from the different color components, see
Eq. (5).

The eigenvalues of the free Dirac operator are these
numbers multiplied by the temperature. The lowest ones,

�cont
M ¼ ð�� ’ÞT; (7)

we name effective Matsubara frequencies. These hold in
the limit Nt ! 1, whereas on the lattice one has

�M ¼ 1

a
sin

�
�� ’

Nt

�
: (8)

At high temperatures the Polyakov loop (at fixed lattice
spacing) becomes trivial, L ! 1, hence ’ ! 0 and the
Matsubara frequency is �M ¼ 1

a sinð�=NtÞ. A more realis-

tic estimate is obtained by using the average Polyakov loop
at our temperature hLi ¼ 0:37, from which we obtain the
effective Matsubara frequency in lattice units (T ¼ 1=Nta)
as

�Ma ¼ sin

�
�� arccos0:37

4

�
¼ 0:47; (9)

which is the same order of magnitude as the lower end of
the bulk of eigenvalues we measured (consistent with the
findings of [11]).

The main point of these considerations is that wrong
Polyakov loops, L ¼ �1 with ’ ¼ �, would lead to a
vanishing effective Matsubara frequency, �M ¼ 0, and
thus to the lowest Dirac eigenvalues.

Of course, in realistic configurations one has to take into
account that the Polyakov loop varies in space and that
nontrivial spatial links are present. Both will change the
Dirac eigenvalues away from the free ones. Nonetheless,
the tendency that wrong Polyakov loops give rise to
smaller eigenvalues persists and explains our finding about
their pinning nature.

B. Topological objects

Topological excitations of the gauge field and their zero
modes are an attractive hypothesis to explain low-lying
Dirac modes in Yang-Mills theory (and QCD). The chiral
condensate at zero temperature is thought of as due to
instantons of realistic size and density and the first con-
jecture about the metal-insulator transition at finite tem-
perature was based on instanton ensembles [31,32].
The natural topological excitations at finite temperature

are magnetic monopoles. They appear as self-dual or anti-
self-dual solutions of the Yang-Mills equations of motion
at finite temperature. As they are also electrically charged,
they are called dyons. Dyons can be constituents of calo-
rons (finite temperature instantons) [33,34], but may exist
in isolation as well [35].
In gauge group SUð2Þ, there are two dyons (and two

antidyons) with opposite magnetic charge. One sort of
these dyons is characterized by properties that exactly
match our findings: the Polyakov loop at their core is �1
and they possess zero modes with the physical antiperiodic
boundary conditions [36,37] (just like the constant
configurations discussed above). The other sort has
Polyakov loop þ15 and zero modes with periodic bound-
ary conditions.
In dilute ensembles of dyons most of the zero modes

should remain low-lying modes. Then the first sort of
dyons could explain the localized modes we analyzed,
while the second sort could be responsible for low-lying
periodic modes. At a positive average Polyakov loop one
expects fluctuations to�1much less frequent than those to
þ1, cf. Figure 9. Hence the first sort of dyons could give
independent low-lying modes, while the second sort could
yield a condensate at periodic boundary conditions. This
different appearance can be made quantitative by the dif-
ferent fractions of unit topological charge the two dyon
sorts have, which are such that the �1 dyons are indeed
heavier as they have a larger (classical) action, see [40] for
lattice evidence of this picture and [41] for a simple model.
From the relation of magnetic monopoles to both low-

lying modes and topological charge a crucial test of this
picture is to compare these two quantities at given tem-
perature and volume. Above the finite temperature transi-
tion fluctuations of the topological charge decrease sharply.
This can be clearly seen by looking at how the topological
susceptibility decreases at higher temperatures. As a result,
at high temperature, topological objects presumably form a
dilute gas of noninteracting objects. From the index of the
overlap Dirac operator we have full information about the
fluctuations of the total topological charge. Assuming that
in the dilute gas topological objects are uncorrelated, this
can be used to compute the density of topological objects

5Monopoles also appear as defects [38] of the Polyakov gauge
[39], where they have L ¼ �1 or L ¼ þ1 by definition.
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that in turn can be compared to the density of localized
Poissonian Dirac eigenmodes.

In Table I we show the probability of different topologi-
cal sectors extracted from the index of the overlap Dirac
operator. From the low occurrence of the topological
charge sector �1 and, in particular, of the sector �2 it is
indeed clear that topological objects form a very dilute gas.
In these volumes it very rarely happens that there is more
than one topological object on any given configuration.
Since we need only an order of magnitude estimate of
the density of topological objects we will ignore the proba-
bility of two or more objects occurring on any single
configuration. In this approximation we can shortcut the
calculation of the density of topological objects, and the
average number of topological objects per configuration is
just given by the probability of the jQj ¼ 1 sector. On our
volumes it is between 0.04 and 0.1 which is clearly far too
small to account for the few localized Poissonian modes
we found on average per configuration.

This comparison rules out models based on uncorrelated
gluonic objects that carry both (Oð1Þ) topological charge
and (antiperiodic) zero modes. However, it does not ex-
clude combinations of topological objects in which the
topological charge cancels, like instanton–anti-instanton
molecules originally suggested to be present with light
dynamical quarks [42] or molecules of dyons called ’bions’
carrying one near-zero mode [43].

V. RANDOM MATRIX MODEL USING
THE STAGGERED DIRAC OPERATOR

Transitions between correlated and uncorrelated eigen-
values like the one observed in the lattice data can be
described by RMT models in various ways. One of the
simplest possible ansätze is to start with a diagonal matrix,
whose entries are uncorrelated random numbers, and add a
matrix taken from one of the Gaussian ensembles. This
model shows the desired transition in between parts of its
spectrum with different eigenvalue density, however, the
interpolating spacing distributions are different from the
ones in the spectrum of the staggered operator [44]. A
possible explanation is the sparseness of this operator
and the spatial information that is contained in the next-
neighbor interactions. In contrast, the full matrices from
the Gaussian ensembles blindly connect all diagonal ele-
ments with equal strength.

A. Motivation

We construct a better suited randommatrix model, based
on sparse matrices, in the following. This model can be
nicely motivated by our previous findings. Concerning the
Polyakov loop, which will be connected to a random
potential, three properties are relevant: (i) the distribution
of local Polyakov loops extends to negative values and
thus small effective Matsubara frequencies, cf. Figure 8,
(ii) Polyakov loops become independent quickly with
their distance and therefore (iii) the level spacings of
the Polyakov loop trace L—neglecting the spatial infor-
mation – are distributed according to a Poissonian distri-
bution. The last two properties are depicted in Fig. 9.
Hence the Polyakov loops could provide the Poissonian

ingredient for the statistics of the Dirac eigenvalues. To
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ðhL2ðxÞi � hLðxÞi2Þ as a function of the lattice distance
jx� yj=a (containing the same information as the free energy).
Bottom: the level spacing distribution (of the Polyakov loop
trace L) compared to the Poisson distribution.

TABLE I. The probability of different charge sectors in the
163 � 4 (first two columns) and 243 � 4 ensemble (last three
columns). The probabilities of charge sectors with the same
magnitude but opposite sign have been added.

jQj 0 1 0 1 2

PQ 0.958(6) 0.042(6) 0.89(1) 0.105(9) 0.009(3)
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become more concrete, we remind the reader of the defi-
nition of the staggered Dirac operator,

Dxx0 ¼ 1

2a

X4
�¼1

��ðxÞ½�xþ�̂;x0U�ðxÞ � �x��̂;x0U
y
�ðx0Þ�;

(10)

with ��ðxÞ ¼ ð�1Þ
P

	<�
x	 and U 2 SUð2Þ. We split this

operator in the temporal and spatial part

D ¼ DTE þDSP: (11)

DTE contains the hopping terms in the temporal direction,
whereas spatial hoppings are included in DSP.

The temporal part has a block-diagonal structure, with
one block for each spatial site. We want to approximate
each block and thus the whole Dirac operator by restricting
it to the subspace of the smallest eigenvalue quadruplet of
the temporal operator at each spatial lattice site. The
quadruplet consists of two eigenvalue pairs with opposite
sign. The plus-minus degeneracy is necessary to conserve
chiral symmetry, whereas the exact twofold degeneracy6

has to be kept in order to have the right RMT universality
class we find in the SU(2) staggered spectra.

In this basis, the temporal part of the Dirac operator can
be brought in the form

DTEðn¼0Þ
~x ~x ¼

�
~x 0 0 0

0 �
~x 0 0

0 0 
~x 0

0 0 0 
~x

0
BBBBB@

1
CCCCCA; (12)

with


~x ¼ 1

a
sin

�
�� ’~x

Nt

�
; (13)

which resemble the effective Matsubara frequencies on the
lattice, as given in Eq. (8), however as a function of the
local rather than averaged Polyakov loop phase ’~x.

Therefore, DTEðn¼0Þ is a diagonal matrix with very weakly
coupled entries, as argued above. Physically speaking, the
temporal part represents a (chiral) random potential.
The spatial part becomes in the restricted basis

DSPðn¼0Þ
~x; ~xþ{̂ ¼ U~x; ~xþ{̂ V ~x; ~xþ{̂

V ~x; ~xþ{̂ U~x; ~xþ{̂

 !
; (14)

where the 2-by-2 matrices U and V can be shown to
represent real quaternions.
These have a concrete meaning: U connects eigenvalue

pairs of equal sign, and is therefore responsible for the
GSE-like level repulsion between nearest neighbors. V on
the other hand generates the gap around zero in the spec-
trum as it connects eigenvalues of different signs.
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FIG. 10 (color online). Spacing distributions in several parts of our RMT spectrum plotted along with the GSE prediction and the
Poissonian distribution. The parameters were fixed as discussed in the text. The data was obtained by an ensemble average over 2000
random matrices.

6In RMT language, this is Kramers degeneracy of the GSE.
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B. Explicit construction of the model

We propose a random matrix model based on matrices

M ¼ MTE þMSP; (15)

that consist of two parts. MTE has the same diagonal

structure like DTEðn¼0Þ, i.e.

MTE
~x ~x ¼

�#~x 0 0 0

0 �#~x 0 0

0 0 #~x 0

0 0 0 #~x

0
BBBBB@

1
CCCCCA; (16)

where the diagonal entries

#~x ¼ tð���~xÞ (17)

are random numbers constructed with an overall scale t and
a random angle �~x 2 ½0; ��. These quantities are equiva-
lent to the effective Matsubara frequencies 
~x in the con-
tinuum, Eq. (7), the temperature T and the angle ’~x of the
local Polyakov loop, respectively.

For �~x we have taken the empirical distribution of the
angle arccosLð ~xÞ of local Polyakov loops, by converting
the fine histogram in Fig. 8 accordingly. This yields an
asymmetric distribution of �~x between 0 and � with a
maximum below �=2 (i.e. at positive Polyakov loop). Its
most important feature, however, seems to be the tail
towards the ‘‘trapping’’ �~x ’ � (negative Polyakov loop
locally), since we have observed that most of the features
of the model persist when using the Haar measure sin2� as
distribution [not shown].

For the spatial part, one first of all needs to fix the
periodicity of the underlying space, i.e. an integer Ns

such that ~x is identified with ~xþ Ns{̂, with unit vectors {̂

in each of the spatial directions. MSP, like DSPðn¼0Þ, has
nonvanishing entries only at positions that connect next
neighbors in that space. Its blocks

MSP
~x; ~xþ{̂ ¼

u~x; ~xþ{̂ v ~x; ~xþ{̂

v ~x; ~xþ{̂ u ~x; ~xþ{̂

 !
; (18)

consist of random real quaternions u and v, that are RMT
counterparts of U and V from Eq. (14). We have taken
them to be Gaussian distributed around zero with their
mean deviations �u, �v as parameters of the model.

By rescaling all the random matrices M it is clear, that
only the ratios of the scales t, �u and �v are relevant
parameters. To fix them we have measured the ratio of
the average determinants7 of the empirical quaternionic
hopping terms finding hdetVi=hdetUi � 1:62 and took
this ratio over for the ratio of �2

u=�
2
v. The remaining ratio

�u=t ¼ 0:2 (�v=t ¼ 0:32) was put in by hand to obtain
desired properties of the RMTmodel, namely, a gap at zero

and a transition between a Poissonian and a GSE spacing
distribution.
The eigenvalue density and spacing distribution of this

model are plotted in Fig. 10 for a spatial extent Ns ¼ 12
and t ¼ 1=4. We observe a similar transition like in the
spectrum of the staggered Dirac operator. Another feature
that this model shares with the staggered operator is the
increasing localization of eigenmodes as the corresponding
eigenvalues decrease, quantified by the IPR’s in Fig. 11
top.
In order to measure the correlation of the lowest eigen-

modes of this RMTmodel to the diagonal entries, we again
define the latter ‘‘as averaged by a particular mode’’
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FIG. 11 (color online). Top: Inverse participation ratios of the
25 lowest-lying eigenmodes for the RMT model, plotted versus
the average eigenvalue of that mode. The data was obtained by
an ensemble average over 2000 random matrices. Bottom:
diagonal entries ‘‘as averaged by the lowest modes’’ of the
RMT model, #m from Eq. (19), divided by the average diagonal
entry, to be compared with Fig. 7. Horizontal error bars visualize
the spreads of the eigenvalues.

7For real quaternions, the determinant is just the sum over all
squared components.
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#m :¼ X
~x

jc mð ~xÞj2#~x: (19)

One can see in Fig. 11 bottom, that the low modes are
indeed localized to ‘‘islands’’ of low #, which are equiva-
lent to low Polyakov loops. Hence this important effect is
shared by our random matrix model, too.

VI. CONCLUSIONS

In the present paper we found a possible explanation for
the emergence of localized Poissonian modes at the low
end of the high temperature QCD Dirac spectrum. We
showed that the localized modes are strongly correlated
with large fluctuations of the Polyakov loop. This lowers
the effective Matsubara frequencies for modes concen-
trated there. We argued that the lowest part of the Dirac
spectrum consists of this type of eigenmodes. We verified
this picture for eigenmodes of both the staggered and the
overlap Dirac operator. As a side result we also demon-
strated that the spatial structure of the lowest overlap and
staggered modes is highly correlated. This shows that
different discretizations of the Dirac operator are sensitive
to the same type of gauge field fluctuations.

We also looked at the topological charge fluctuations as
given by the index of the overlap. Assuming that at high
temperature topological objects form a dilute gas and are
uncorrelated, we could safely rule them out in creating the
localized low modes.

Finally, we proposed a dimensionally reduced random
matrix model. It is based on sparse matrices encoding the
three-dimensional nature of the problem through nearest
neighbor couplings from a lattice Dirac operator. To the

best of our knowledge this is an example of a new kind of
random matrix models for QCD, where so far only full
matrices have been used. Beside chirality and the spectral
gap our model reproduces the transition from localized
Poissonian to delocalized random matrix type modes
observed in the lattice Dirac spectrum as well as the
correlation of the localized modes to islands of low on
site ‘‘potential.’’
It is instructive to compare the Dirac operator to the

Hamiltonian of Anderson type models, see [45,46] for
reviews. In the latter case usually diagonal (on site) dis-
order is responsible for creating the transition to localized
eigenmodes. In the case of the Dirac operator, the on site
terms do not seem to be relevant. In fact, in the staggered
operator they are exactly zero. However, in our dimension-
ally reduced three-dimensional effective model the non-
zero fluctuating on site terms are dynamically generated by
fluctuations of the local Matsubara frequency resulting
from fluctuations of the Polyakov loop. In this way our
dimensionally reduced effective random matrix model is
analogous to the Anderson model. It would be interesting
to study further how the presence and details of the tran-
sition depend on the parameters and matrix size defining
the random matrix ensemble.
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