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A standard approach to investigate the nonperturbative QCD dynamics is through vacuum models

which emphasize the role played by specific gauge field fluctuations, such as instantons, monopoles, or

vortexes. The effective Hamiltonian describing the dynamics of the low-energy degrees of freedom in

such approaches is usually postulated phenomenologically, or obtained through uncontrolled approx-

imations. In a recent paper, we have shown how lattice field theory simulations can be used to rigorously

compute the effective Hamiltonian of arbitrary vacuum models by stochastically performing the path

integral over all the vacuum field fluctuations which are not explicitly taken into account. In this work,

we present the first illustrative application of such an approach to a gauge theory and we use it to compute

the instanton size distribution in SUð2Þ gluon dynamics in a fully model independent and parameter-

free way.
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I. INTRODUCTION

Contemporary lattice gauge theory (LGT) simulations
allow one to compute from first principles a large class of
hadronic matrix elements in QCD, in some cases even
within a few percent accuracy. On the other hand, such
simulations do not provide much detailed information
about the structure of the gluonic fluctuations which drive
the QCD dynamics in the strongly coupled regime. For
example, despite several decades of investigations, the
dynamical processes underlying chiral symmetry breaking
and color confinement are still a matter of debate.

The problem of identifying the dynamical origin of
such nonperturbative phenomena has been extensively
addressed in the context of phenomenological models
which emphasize the role played by specific vacuum field
fluctuations, such as e.g. instantons [1], monopoles [2], and
center vortexes [3]. The configuration space of these mod-
els is defined by the collective coordinates of the selected
low-energy vacuum fields. On the other hand, the statistical
distribution of such collective coordinates (or, equiva-
lently, their effective Hamiltonian) is usually obtained
through approximations upon which one does not have
full theoretical control, e.g. by completely neglecting the
contribution of the fluctuations around the chosen vacuum
fields [4] or by estimating the role of such fluctuations
through variational methods [5].

In principle, LGT simulations can be used to test the
predictions of the phenomenological vacuum models, for
example, by looking for some specific signatures of the
dynamics generated by instantons [6,7], monopoles [8], or
vortexes [9]. On the other hand, the model dependence

associated to the effective Hamiltonian for the vacuum
field degrees of freedom makes it difficult to draw defini-
tive conclusions about the validity of a given model.
Indeed, a moderate disagreement with the experimental
data or with the results of lattice QCD simulations may
be due to either a wrong choice of the low-energy vacuum
fields, or to the strong approximations involved in the
definition of their partition function.
In order to tackle this problem, in a recent work we have

developed a technique, which we shall refer to as vacuum
manifold projection (VMP), by which lattice simulations
are used to rigorously compute the effective Hamiltonian
of arbitrary vacuum models [10], in a model independent
way. This is done by nonperturbatively performing the path
integral over all the vacuum field configurations which are
not explicitly taken into account in the given low-energy
vacuum model. For example, in an instanton model, one
performs the path integral over all the configurations which
are orthogonal to the functional manifold spanned by
multi-instanton configurations. Clearly, once the partition
function has been evaluated from first principles, any fail-
ure of the model must be entirely due to the wrong choice
of the effective low-energy degrees of freedom.
In our first work, the VMP method was illustrated and

tested by evaluating the instanton-anti-instanton interac-
tion in a simple quantum-mechanical toy model [10].
Here, we present the first application to a gauge theory.
In particular, we use the VMP method to compute the
instanton size distribution in two-color Yang-Mills theory.
The paper is organized as follows. In Sec. II we review

the VMP method for a generic choice of vacuum field
degrees of freedom. In Sec. III we focus on an effective
theory based on instanton degrees of freedom and we use
the VMP method to compute the instanton size distribution
in SUð2Þ gluon dynamics. The main results, conclusions,
and perspectives are summarized in Sec. IV.

*Present address: Theoretical Physics Division, Department of
Mathematical Sciences, University of Liverpool, Liverpool, L69
3BX, UK.

PHYSICAL REVIEW D 84, 034504 (2011)

1550-7998=2011=84(3)=034504(9) 034504-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.034504


II. THE VACUUM MANIFOLD
PROJECTION METHOD

Let us consider a gauge theory defined by the
(Euclidean) path integral

Z ¼
Z

DA�e
�S½A��; (1)

where the S½A�� formally includes the gauge-fixing and

ghost terms, along with the fermionic determinant. In the
following, we shall assume that the path integral is defined
in the Landau gauge, although in principle the formalism to
be presented here holds in any fixed gauge.

Let � � ð�1; . . . ; �kÞ be a set of k collective coordinates
which parametrize a manifoldM of vacuum field configu-

rations ~A�ðx;�1; . . . ; �kÞ. For example, in instanton

models, �1; . . . ; �N are the positions, sizes, and color ori-
entations of all the pseudoparticles in the instanton en-
semble. However, in general, we do not require the field

configurations ~A�ðx;�1; . . . ; �kÞ to be solutions of the

classical Yang-Mills equations of motion.
For any given choice of the set of collective coordinates

�, a generic vacuum gauge field configuration A�ðxÞ con-
tributing to the path integral (1) can be decomposed as

A�ðxÞ � ~A�ðx;�1; . . . ; �kÞ þ B�ðxÞ; (2)

where B�ðxÞ will be referred to as the ‘‘fluctuation field.’’

Our goal is to use LGT to perform the path integral over
such a field. More precisely, we want to compute the
function H ð�1; . . . ; �kÞ such that

Z ¼
Z

DA�e
�S½A�� ¼

Z
d�1 . . . d�ke

�H ð�1;...;�kÞ: (3)

Equation (3) defines a statistical model in which �1; . . . ; �k

are the effective low-energy degrees of freedom and
H ð�1; . . . ; �kÞ is the effective Hamiltonian. We shall see
shortly that such function is defined as the logarithm of a
gauge-fixed path integral.

Since the representation (3) of the path integral contains
k additional integrals over d�1; . . . ; d�k, we need to in-
troduce k constraints. A natural choice is to impose a set of
k orthogonality conditions:

ðB�ðxÞ; g�i;�ðx; ��ÞÞ � Trc

�Z
d4xB�ðxÞg�i;�ðx; ��Þ

�
¼ 0;

i ¼ 1; . . . ; k (4)

g�i;�ðx; ��Þ ¼
@

@�i

~A�ðx;�Þ
���������¼ ��

: (5)

We observe that the functions fg�i
ðx; ��Þgi¼1;...;k identify the

k directions tangent to the manifold M of background
vacuum fields, in the point of curvilinear coordinates
�� ¼ ð ��1; . . . ; ��kÞ—see Fig. 1. We consider only choices

of the manifoldM and of the point �� such that the vectors
(5) define a system of coordinates.
In the path-integral formalism, the orthogonality con-

ditions (4) can be implemented by introducing a Fadeev-
Popov representation of the unity. After some formal
manipulation (see e.g. Refs. [5,10]), one arrives at an
expression in the form of Eq. (3), where the effective
Hamiltonian H ð�1; . . . ; �kÞ is defined as

H ð�1; . . . ;�kÞ¼�log

�Z
DB�½@�B��

�Y
i

�½ðB�ðxÞ;g�i;�ðx; ��ÞÞ�

��½ ~Aðx;�ÞþBðxÞ�e�S½ ~Aðx;�ÞþBðxÞ�
�
; (6)

where � is a Jacobian factor and reads

��1½A�ðxÞ�¼
Z Yk

l¼1

d�l

Z
DU��½@�A�

� �

�Y
i

�½ðA�
� ðxÞ� ~A�ðx;�Þ;g�i;�ðx; ��ÞÞ�: (7)

U�ðxÞ denotes a generic gauge transformation and A�
� ðxÞ

is result of gauge transforming the field A�ðxÞ according to
U�ðxÞ. Note that, while the path integral Z is obviously
gauge invariant, the definition of the effective Hamiltonian
H ð�1; . . . ; �kÞ relies on the choice of the gauge, in this
case the Landau gauge.
The orthogonality condition (4) and the system of coor-

dinates (5) can be used to devise an algorithm to explicitly
compute the effective Hamiltonian (6). We begin by ob-
serving that, on such a system of coordinates, a functional

FIG. 1 (color online). Pictorial representation of the projection
of the gauge field configuration A�ðtÞ of the path integral

Z ¼ R
DA�e

�S½A�� onto a specific vacuum field manifold,

spanned by two collective coordinates �1, and �2. A generic
path is represented by a point in this three-dimensional space.
The constraints given in Eq. (4) imply that the fluctuation field
B�ðxÞ is perpendicular to the plane tangent to the manifold in a

given point.
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point A�ðxÞ which belongs to the vacuum field manifold

M is identified by the coordinates ð�1; . . . ;�kÞ with
�i½A�ðxÞ� ¼ ðA�ðxÞ; g�i;�ðx; ��ÞÞ: (8)

Clearly, also field configurations which lie in a functional
neighborhood of the manifoldM can be projected onto the
same system of coordinates. In this case, for an arbitrary
fixed choice of ��, the orthogonality conditions (4) imply
that there exists a set of collective coordinates � such that

�i½A�ðxÞ� � ðA�ðxÞ; g�i;�ðx; ��ÞÞ
¼ ð ~A�ðx;�Þ þ B�ðxÞ; g�i;�ðx; ��ÞÞ
¼ ð ~A�ðx;�Þ; g�i;�ðx; ��ÞÞ;

ði ¼ 1; . . . ; kÞ: (9)

Such an equation allows one to associate a set of col-
lective coordinate � ¼ ð�1; . . . ; �kÞ to any Landau gauge-
fixed gluon field configuration A�ðxÞ which lies in the

functional vicinity of the manifold M. Based on this
result, it is immediate to devise an algorithm to evaluate
the path integral H ð�1; . . . ; �kÞ stochastically, from LGT
simulations:

(1) An ensemble of Nconf independent lattice configu-

rations fUð1Þ
� ðxÞ; . . . ; UðNconfÞ

� ðxÞg is generated by
standard LGT simulations.

(2) From such configurations, an ensemble of
Landau gauge-fixed lattice configurations

fUgð1Þ
� ðxÞ; . . . ; UgðNconf Þ

� ðxÞg is obtained, e.g. using
the procedure illustrated in Refs. [11,12].

(3) From each lattice configuration, the gluon field
Ag
�ðxÞ at each lattice site is calculated from the

gauge-fixed lattice link variables Ug
�ðxÞ, for ex-

ample using the discretized definition

Ag
�ðxÞ ¼ 1

2ai
ðUg

�ðxÞ �Ug
�ðxÞyÞ: (10)

(4) k nonlinear equations for the �1; . . . ; �k variables
are obtained from Eq. (9):

ðAg
�ðxÞ;gg�1;�ðx; ��ÞÞ¼ð ~Ag

�ðx;�Þ;gg�1;�ðx; ��ÞÞ
. . .

ðAg
�ðxÞ;gg�k;�ðx; ��ÞÞ¼ð ~Ag

�ðx�Þ;gg�k;�ðx; ��ÞÞ:
(11)

On the lattice, the inner products above are obvi-
ously represented as discretized sums,

ðAg
�ðxÞ; gg�i;�ðx; ��ÞÞ ¼ a4

X
n

TrC½Ag
�ðnÞgg�i

ðn; ��Þ�;

ði ¼ 1; . . . ; kÞ; (12)

where n runs over all the lattice sites and TrC refers
to the trace over color labels.
Notice that the quantities on the left-hand side of
Eq. (11) are c numbers which depend only on the
lattice configuration and on the projection point ��.
They correspond to the components of the lattice

field Ag
�ðxÞ in the system of coordinates defined by

the tangent vectors gg�l;�ðx; ��Þ.
On the other hand, the quantities on the right-hand
side of Eq. (11) are functions of the curvilinear
coordinates � which do not depend on the lattice
configurations Ag

�ðxÞ. These functions are com-
pletely specified, for any given fixed choice of the
vacuum field manifold M and of the projection
point ��.
Hence, for any lattice configuration Ug

�ðxÞ the set
of equations (11) can be numerically solved for
� ¼ ð�1; . . . ; �kÞ.

(5) The frequency histogram of �1; . . . ; �k obtained by
repeating this procedure for a large number Nconf of

statistically independent lattice gauge field configu-
rations represents the probability P ð�1; . . . ; �kÞ of a
given set of curvilinear coordinates. Then the
effective Hamiltonian for �1; . . . ; �k is obviously
given by

H ð�1; . . . ; �kÞ ¼ � logP ð�1; . . . ; �kÞ: (13)

Some comments on the VMP algorithm are in order.
First of all, we emphasize that such a scheme relies on
the assumption that the background field configurations
~A�ðx;�Þ are the relevant vacuum degrees of freedom.

More precisely, we are requiring that the field configura-
tions which contribute the most to the path integral (1) lie
in some functional neighborhood of the manifold M, so
that they can be projected onto the system of coordinates
defined in Eq. (5). Under such a condition, the definition of
the effective Hamiltonian H ð�1; . . . ; �kÞ is unique and
does not depend on any additional external parameters.
Once the effective Hamiltonian has been determined,

arbitrary vacuum-to-vacuum matrix elements can be ap-
proximately computed by neglecting the contribution of
the fluctuation field B�ðxÞ to the operators. For example, if

ÔðxÞ is a local operator which depends on the gluonic field
A�ðxÞ, one has

h0jÔ½A�ðxÞ�j0i ¼ 1

Z

Z
DA�O½A�ðxÞ�e�S½A��

’ 1

Z

Z
d�1 . . .d�kO½ ~A�ðx;�Þ�e�H ð�1;...;�kÞ:

(14)

Since the effective Hamiltonian is evaluated from first
principles, any violation of this identity implies that the
fluctuation field B� plays an important role in the observ-

able associated to these matrix elements or that there are
important fluctuations in the path integral which are very
far from the functional manifold M, hence cannot be
projected onto the system of coordinates (5). In both cases,
this would represent an unambiguous signature of the fail-
ure of the vacuum field model.
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We also stress that the VMP results do not depend on the
choice of the gauge. Indeed, in Ref. [10] it was shown that
once the system of Eq. (11) is satisfied in one gauge, it
holds also in any other gauge.

Finally, we note that the VMP procedure is conceptually
analog to a technique routinely adopted in classical statis-
tical mechanics to evaluate the potential of mean force
Gð�1; . . . ; �kÞ as a function of a set of collective coordi-
nates �1; . . . ; �k (see e.g. [13] and references therein). In
the canonical ensemble, the potential of mean-force (free
energy) is defined as

e��Gð�1;...;�kÞ ¼
Z

d�
Yk
i¼1

�½�i � fið�Þ�e��Hð�Þ

ð� ¼ 1=kBTÞ; (15)

where � is the phase-space variable, Hð�Þ is the
Hamiltonian, and the functions fið�Þ specify the definition
of the macroscopic collective coordinate �i in terms of the
microscopic phase-space variable �. The system’s partition
function reads

Z ¼
Z

d�1 . . . d�ke
��Gð�1;...;�kÞ; (16)

in complete analogy with Eq. (3). In order to evaluate
Gð�1; . . . ; �kÞ, one generates an ensemble of statistically
independent equilibrium configurations f�1; . . . ;�Nconf

g, by
means of Monte Carlo or molecular dynamics simulations,
and evaluates �1; . . . ; �k from �i ¼ fið�Þ, for each of such
configurations. In the limit of large number of equilibrium
configurations Nconf , the frequency histogram for the val-
ues �1; . . . ; �k obtained this way yields the equilibrium
probability function for the collective coordinates,
P ð�1; . . . ; �kÞ. The negative of the logarithm of such a
probability defines by construction the free energy

� �Gð�1; . . . ; �kÞ ¼ logP ð�1; . . . ; �kÞ: (17)

III. CALCULATION OF THE INSTANTON SIZE
DISTRIBUTION IN SUð2Þ GLUON DYNAMICS

As a first illustrative application of the VMP method, in
this section we specialize on the case in which the gauge
theory is SUð2Þ gluon dynamics and the vacuum manifold
M is constructed by superimposing singular-gauge instan-
ton and anti-instanton configurations, i.e. in the so-called
instanton vacuum.

Instanton vacuummodels have been successfully used to
investigate the dynamics of light hadrons [1] and the break-
ing of chiral symmetry[14] in QCD. It has been shown that
this model is able to reproduce the spectrum of the ob-
served lowest-lying hadrons [15–17] and of scalar and
pseudoscalar glueballs [18–21], along with the electromag-
netic structure of pions and nucleons [22–25]. In addition,
the instanton liquid model provides an explanation of the
�I ¼ 1=2 rule for nonleptonic hadron decays of kaons [26]

and hyperons [27], by promoting nonperturbative scalar
diquark correlations [28]. While it is well known that
semiclassically inspired vacuum models based only on
singular-gauge instantons do not provide color confine-
ment, a finite string tension was obtained in models em-
ploying cocktails of regular- and singular-gauge instantons
and merons [4,29].
From the theoretical point of view, a main limitation of

the instanton approach to QCD resides in the well-known
‘‘infrared catastrophe’’ of the semiclassical dilute instanton
gas approximation: in the presence of quantum fluctua-
tions, isolated instantons tend to swell. The instanton liquid
model originates from the observation that such an infrared
divergence can be cured if correlations between pseudo-
particles are included [5,30]. Unfortunately, allowing for
such interactions implies giving up a rigorous semiclassi-
cal theory of the QCD vacuum. In the so-called instanton
liquid models, the size distribution of the pseudoparticles
is estimated using variational or phenomenological argu-
ments. In such approaches, the typical instanton size in
QCD is found to be of the order of 1=3 fm—see e.g. [1,5].
In order to extract information about the structure of

instanton ensemble directly from LGT simulations, algo-
rithms such as cooling [31] or eigenvalue filtering [7] have
been proposed. Such methods provide techniques to filter
out (not integrate out) the high-frequency quantum content
of lattice configurations. A problem with these methods is
that their results critically depend on the choice of addi-
tional uncontrolled parameters, such as the number of
cooling steps or of the number of retained low-lying eigen-
modes of the Dirac operator. Clearly, such a dependence
introduces some degree of arbitrariness in the results. For
example, the instanton density vanishes in the limit of a
very large number of cooling steps.
The goal of this section is to show that the VMP method

can be used to rigorously evaluate the instanton size dis-
tribution directly from lattice simulations, without intro-
ducing any arbitrary parameter. The choice of focusing on
SUð2Þ Yang-Mills theory was made in order to keep the
analytical and numerical calculations as simple as possible.

A. The instanton vacuum manifold

We begin our calculation by defining the manifold
of vacuum field configurations. In two-color Yang-Mills
theory, the classical field of an individual instanton or
anti-instanton is specified by four collective coordinates:
� ¼ ðz; �; �1; �2; �3Þ, where z is the position of the pseu-
doparticle, � is its size, and �i (i ¼ 1; 2; 3) are three angles
which specify a SUð2Þ matrix in color space according to

U ¼ expði�k�kÞ: (18)

A configuration of Nþ instanton and N� instantons
A�ðx;�1; . . . ; �NþþN�Þ can be constructed in the so-called

sum ansatz, i.e. by superposing the classical fields of the
pseudoparticles:
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~A�ðx;�Þ ¼
XNþþN�

i¼1

~Ai
�ðx;�iÞ; (19)

where ~Ai
�ðx;�iÞ is the classical field of the ith pseudopar-

ticle:

~Ai
�ðx;�iÞ ¼ Ui�aUy;i ��a

�	

�2
i

ðx� ziÞ2
ðx� ziÞ	

ðx� ziÞ2 þ �2
i

;

ðfor instantonsÞ (20)

~Ai
�ðx;�iÞ ¼ Ui�aUy;i�a

�	

�2
i

ðx� ziÞ2
ðx� ziÞ	

ðx� ziÞ2 þ �2
i

;

ðfor anti-instantonsÞ: (21)

��a
�	 and �a

�	 are the so-called ’t Hooft indexes. It is

important to emphasize that the field obtained from the
sum ansatz (19) is not in general a solution of the Euclidean
Yang-Mills equation of motion.

An effective theory for the two-color Yang-Mills (YM)
theory can be obtained if the path integral over all the
gauge field configurations is replaced by the sum over
all the configurations of a grand-canonical statistical en-
semble of singular-gauge instantons and anti-instantons:

ZYM ¼ X
Nþ;N�

1

Nþ!N�!
ei�ðNþ�N�Þ

Z YNþþN�

i

d�ie
�H ð�1;...�NÞ;

(22)

where � is the angle associated to strong CP violation and
H ð�1; . . . ; �NÞ is the effective Hamiltonian, which repre-
sents the functional integral over the configurations which
do not belong to the instanton vacuum manifold. In the
analogy with classical statistical mechanics discussed in
Sec. II, this term can be interpreted as the ‘‘potential of
mean force’’ between the pseudoparticles generated by all
other quantum gauge field fluctuations in the path integral.
Clearly, if the effective Hamiltonian H ð�1; . . . ; �NÞ is
calculated nonperturbatively from first principles, then
Eq. (22) provides an exact representation of the path
integral, which does not rely at all on the semiclassical
approximation.

If the instanton ensemble is not too dense, it is possible
to perform a many-body expansion of the effective
Hamiltonian H ð�1; . . . ; �NÞ:

H ð�1; . . . ; �NÞ ’
X
i

u1ð�iÞ þ
X
i<j

u2ð�i; �jÞ

þ X
i<j<k

u3ð�i; �j; �kÞ þ � � � : (23)

The gauge invariance and translational invariance of
the vacuum imply that the one-body term of the ith

pseudoparticle, u1ð�iÞ, is only a function of its size �i.
Hence, the function nð�iÞ ¼ exp½�u1ð�iÞ� is called the
(single-)instanton size distribution. The divergence of
such a term in the semiclassical dilute gas limit gives rise
to the ‘‘infrared catastrophe.’’ The terms u2ð�i; �jÞ;
u3ð�i; �j; �kÞ; . . . describe multibody interactions, and de-

pend in general also on the relative positions and color
orientations of the pseudoparticles. With such a definition,
and for � ¼ 0, the partition function reads

ZYM ¼ X
Nþ;N�

1

Nþ!N�!

Z YN
i

d�i

� YNþþN�

i¼1

nð�iÞ
�

� e
�P

i<j

u2ð�i;�jÞþ
P

i<j<k

u3ð�i;�j;�kÞþ���
: (24)

In the following, we present a computation of the single-
instanton size distribution nð�Þ. The calculation of the
many-body terms is conceptually analog and is referred
to future work.

B. Computing the instanton size distribution nð�Þ
In order to calculate nð�Þ, we have implemented the

VMP method on the functional manifold spanned by indi-
vidual instantons (and anti-instantons) defined in the
singular gauge, which is a Landau gauge. The system of
coordinates fg�i;�ðx; ��Þg was obtained by numerically dif-

ferentiating the instanton field (20) and (21) with respect to
each of the eight collective coordinates:

g�;�ðx; ��; �z; f ��igÞ ¼
~A�ðx; ��þ��Þ � ~A�ðx; �����Þ

2��
;

gz	;�ðx; ��; �z; f ��igÞ ¼
~A�ðx; �z	 þ�z	Þ � ~A�ðx; �z	 � �z	Þ

2�z	
;

ð	 ¼ 1; 2; 3; 4Þ

g�i;�ðx; ��; �z; f ��igÞ ¼
~A�ðx; ��i þ��Þ � ~A�ðx; ��i � ��Þ

2��i
;

ði ¼ 1; 2; 3Þ; (25)

where ��; �z1; �z2; �z3; �z4; ��1; ��2; ��3 define an arbitrary point on
the manifold, whose choice will be specified below.
In the VMP method, the distribution of collective coor-

dinates is obtained by projecting lattice field theory con-
figurations, and solving the system of equations (8). We
used three different ensembles of SUð2Þ Landau gauge-
fixed lattice QCD configurations, generated using the
Wilson action [32]:
(i) an ensemble of 100 configurations generated on a

164 lattice at � ¼ 2:3 (corresponding to a lattice
spacing a ’ 0:17 fm);

(ii) an ensemble of 100 configurations generated on a
244 lattice at � ¼ 2:4 (corresponding to a lattice
spacing a ’ 0:12 fm);
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(iii) an ensemble of 25 configurations generated on a
324 lattice at � ¼ 2:5 (corresponding to a lattice
spacing a ’ 0:09 fm).

The gauge-fixing procedure of the lattice configurations
was based on an over-relaxation algorithm, described in
detail in the original publication [32]. In general, such a
minimization does not completely fix the gauge, allowing
for the emergence of Gribov copies, which correspond to
the local minima of the functional being minimized nu-
merically. In particular, the gluon and ghost propagators
evaluated this way have been shown to display a depen-
dence on the choice of Gribov copies in the infrared region
p < 0:5–1 GeV [32–34]. In the following, we shall assume
that such a Gribov ambiguity does not significantly affect
the results of our calculation.

In order to reduce the statistical uncertainty, we have
projected each lattice configuration on ten different pro-
jection points on the manifold. The space-time coordinates
of the projection points �z1; . . . ; �z4 and the color orientation
coordinates ��1; ��2; ��3 were chosen randomly. On the other
hand, the instanton size �� of the projection points was held
fixed to five lattice spacings, �� ¼ 5a. This choice was
made in order to ensure that �� was always much larger
than the lattice spacing a, yet much smaller than the size of
the simulation box.

Treating results of the projection of the same lattice
configuration on different points of the manifold as inde-
pendent and uncorrelated measurements is justified as long

as the typical average four-dimensional distance d̂ between
two randomly picked projection points is much larger than
the average instanton size �̂. In particular, if N is the
number of projection points and V is the volume of the
box, the average distance between the projection points is

d̂� ðN=VÞ1=4. It is immediate to check that the condition

d̂ � �̂ ’ 0:2 fm is satisfied for all lattices considered.
Once the projection equations (11) were solved numeri-

cally for all lattice configurations and for all projection
points, the probabilities for the collective coordinates �, z	,
�1; �2, and �3 were inferred from the corresponding fre-
quency histograms. The distribution of the positions z and
color orientation angles �1; �2; �3 are trivial, as a conse-
quence of the gauge invariance and translational invariance
of the vacuum. On the other hand, the probability distribu-
tion nð�Þ for the instanton size � was found to display
nontrivial structure, as it is expected as a consequence of
dimensional transmutation.
The instanton size distributions nð�Þ obtained from

the three different ensembles of lattice configurations are
shown in Fig. 2. Assuming a normal distribution, the
statistical errors on such distributions can be estimated
from the root of the number of points in each bin of the
frequency histogram. This way, we find that the relative
error on the calculated size distribution turns out to be of
the order of 5%–15%. Within such a statistical error,
the results are independent from the value of the lattice
spacing a. The obtained distributions are peaked around
� ’ 0:25 fm and qualitatively agree with the results of
other methods (see right panel of Fig. 2). On the other
hand, we stress that the present results do not depend on
any arbitrary parameter, and take into account the full
quantum content of the lattice configurations.
It is instructive to compare the small instanton size tail

of the nð�Þ distribution obtained nonperturbatively through
the VMP method with the analytical one-loop formula
obtained by ’t Hooft [35],

none-loopð�Þ / �ð11=3ÞNc�5: (26)

FIG. 2 (color online). Left panel: Instanton size distribution nð�Þ obtained with the VMP technique, from three different sets of
gauge-fixed configurations. The results have been obtained with �� ¼ 5a. Right panel: Results for pure gauge SUð2Þ obtained by
Michael and . Spencer from lattice simulations using the cooling algorithm (squares) [39] and by Shuryak from interacting instanton
liquid model simulations (triangles) [40].
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In Fig. 3 we show that our results are in quantitative
agreement with the leading-order perturbative prediction
in the range 0:1 fm & � & 0:2 fm. The VMP results for
very small-sized instantons (� & 0:1 fm) are affected
by lattice discretization errors, while the perturbative
calculation is not reliable for large instanton sizes, � *
1=�SUð2Þ. Such a comparison shows that the suppression of

the large-sized instantons is a purely nonperturbative effect.
It is also interesting to compare our fully nonperturbative

result, with the variational estimate of the instanton size
distribution obtained by Diakonov and collaborators [5,36]:

nvarð�Þ ¼ none-loopð�Þe�ðð11=6ÞNc�2Þð�2=h�2iÞ: (27)

Note that such a variational ansatz assumes an exponential
suppression of large-size instantons. In order to test such an
assumption, we performed a fit of (27) on our VMP data,
obtained using the a ¼ 0:12 fm lattice. Such a fit was
restricted to the range � 2 ½a; 1 fm� in order to avoid the
bias from discretization errors. The best fit is shown in
Fig. 4, which corresponds to choosing

h�2ifit ¼ 0:083ð3Þ fm2: (28)

This parameter is very close to the numerical value of
the second moment evaluated from the a ¼ 0:12 fm
VMP data:

h�2iVMPða¼0:12 fmÞ ¼ 0:12ð3Þ fm2: (29)

In addition, also the first moment of the fitted curve is
compatible with the VMP results:

h�ifit ¼ 0:27ð1Þ fm (30)

h�iVMPða¼0:12f mÞ ¼ 0:31ð4Þ fm: (31)

We conclude that variational estimates of the instanton size
distribution can be considered realistic.
We conclude this part by commenting on the fact that,

although the total number of pseudoparticles which are
present in a given lattice configuration is neither fixed nor
known, the one-body instanton density has been calculated
by projecting onto a single-instanton manifold. This is
made possible by the fact that the projection functions for
the single-instanton manyfold are peaked around the pro-
jection point. Whatever the number of instantons in the box,
the projection method will only characterize the size of the
pseudoparticle nearest to the projection point. Similarly, if
the vacuum ensemble is sufficiently dilute, the calculation
of the two-body termsmay be performed by projecting onto
a two-pseudoparticle manifold, as was done in Ref. [10].
Clearly, this way, it is not possible to compute the normal-
ization of the different terms in the effective Hamiltonian
(e.g. the total number of instantons and anti-instantons).
On the other hand, these normalization constants can be
evaluated a posteriori, by minimizing the free energy of the
statistical vacuum model—see e.g. Ref. [37].

C. Testing the accuracy of the VMP calculation
of the instanton size

In this section we present a study of the accuracy of our
VMP calculation of the instanton size distribution based on
an instanton model. We generated 1000 configurations of
an ensemble of configurations constructed by superimpos-
ing the fields of 20 instantons and 20 anti-instantons in a
box of volume V ¼ ð2:7 fmÞ4. The positions and color
orientations of the pseudoparticles were randomly chosen,
while the size of the pseudoparticles was sampled from a
Gaussian distribution:

FIG. 3 (color online). Logarithm of the instanton size distri-
bution nð�Þ, obtained with the VMP technique from two differ-
ent sets of gauge-fixed configurations. The results are compared
with the exact one-loop calculation obtained by ’t Hooft [35].
The VMP results are in agreement with the one-loop calculation,
in the small-sized instantons range 0:1 fm & � & 0:2 fm. The
VMP results for very small-sized instantons (� & 0:1 fm) is
affected by lattice discretization errors.

FIG. 4 (color online). Solid line: Instanton size distribution
nð�Þ obtained with the VMP technique, from gauge-fixed con-
figurations with a ¼ 0:12 fm; dashed line: result of the fit of the
VMP data in the range � 2 ½a; 1 fm�, with the variational
estimate nvarð�Þ in Eq. (27).
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nmodelð�Þ / exp

�
�ð�� �0Þ2

2
2

�
; ð0 fm � � � 1 fmÞ;

(32)

with �0 ¼ 0:3 fm and 
 ¼ 0:13 fm. The field configura-
tions were discretized on a lattice of spacing a ¼ 0:17 fm.
The VMP procedure outlined above was applied to such an
ensemble of instanton-model lattice configurations in order
to compute instanton size distribution nð�Þ. In Fig. 5 we
compare the distribution nð�Þ calculated through the VMP
method and the exact nmodelð�Þ which was used to generate
the instantons ensemble. We see that the VMP approach
allows one to very accurately reconstruct the correct in-
stanton size distribution for all values of the instanton size
larger than about a lattice spacing.

IV. CONCLUSIONS

In this work we have presented the first application of
the recently developed VMP method to a gauge theory. We
have used such a method to perform a nonperturbative
calculation of the instanton size distribution in SUð2Þ gluon
dynamics. Our results are in good agreement with other
lattice calculations for all �, and with the one-loop pertur-
bative estimate, in the small instanton size regime. The

VMP calculations of the many-body terms of the effective
Hamiltonian of the instanton vacuum models are concep-
tually analog to the one presented here. For example, in
order to compute the instanton-instanton two-body inter-
action u2ð�i; �kÞ, one would need to project onto the
manifold spanned by the collective coordinates of two
pseudoparticles. Such a calculation was performed in
[10] in the case of a quantum-mechanical toy model and
its extension to gauge theories does not raise conceptual
difficulties.
It should be emphasized that, in the present calculation,

the fluctuations around the instanton field are not just
filtered away, as in the cooling or eigenvalue filtering
algorithms. Instead, they are systematically integrated out.
As a result, the calculation is entirely self-consistent and
does not depend on any arbitrary external parameter.
Recently, Perez and co-workers have proposed a so-called
adjoint filtering method based on Dirac quasizero modes in
the adjoint representation [38], which does not rely on
additional parameters. This method has been used to study
the dynamics of smooth single-instanton configurations
’’heated’’ by Monte Carlo updating steps. The present
VMP method discussed in this paper could be used in
principle to perform the same task. On the other hand, the
VMP approach can be applied also to vacuum field con-
figurations which are not solutions of the equation of mo-
tion. For example, it may be used to guide the development
of vacuum models based on dyonic degrees of freedom.
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