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We present an exploratory study for charmonium radiative transitions: J=c ! �c�, �c0 ! J=��, and

hc ! �c� using Nf ¼ 2 twisted-mass lattice QCD gauge configurations. The single-quark vector form

factors for �c and �c0 are also determined. The simulation is performed at a lattice spacing of

a ¼ 0:067ð2Þ fm and the lattice size is 323 � 64 with a pion mass of about 485 MeV. After extrapolation

of lattice data at nonzero Q2 to 0, we compare our results with previous quenched lattice results and the

available experimental values.
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I. INTRODUCTION

Charmonium physics plays an important and unique role
in our knowledge of quantum chromodynamics (QCD),
which is believed to be the fundamental theory for strong
interactions. In some sense, it is comparable to the hydro-
gen atom for atomic physics, the basic theory of which
being quantum electrodynamics (QED). However, charmo-
nium physics is much more involved in the sense that, due
to its intermediate energy scale and the special features of
QCD, both perturbative and nonperturbative physics are
present. It is therefore an ideal testing ground for our
understanding of QCD from both perturbative and non-
perturbative sides.

Radiative transitions among various charmonium states
are particularly important in the study of charmonium
physics. Most charmonium ground states lie below the
open-charm (D �D) threshold which makes these states par-
ticularly interesting. Because of the suppression of the
Okubo-Zweig-Iizuka (OZI) rule, these charmonium states
usually have rather narrow widths. This makes their radia-
tive transitions and radiative decays have significant
branching ratios and be experimentally accessible. It is
also believed to be the ideal hunting ground for exotic
hadronic states like the glueballs whose existence is an-
ticipated in QCD while its experimental signature remains
obscure. Recently, the experimental interests have been
revived with the upgrade for the BESIII experiment at

BEPCII storage ring [1,2] which collects charmonium
samples that are orders of magnitude larger than ever.
On the theoretical side, charmonium transitions have

been studied using various methods. The physical process
involves both electromagnetic (e.m.) and strong interac-
tions, the former being perturbative in nature with the
latter being nonperturbative. Therefore, nonperturbative
lattice calculations are preferred. Radiative transitions
of charmonia have been studied comprehensively in
quenched lattice QCD for the normal ground state
charmonia [3] and even for some excited and exotic ones
[4]. However, an unquenched lattice study is still lacking.
In this paper, wewould like to pursue the feasibility of such
a calculation using Nf ¼ 2 dynamical twisted-mass fer-

mion configurations generated by the European Twisted
Mass Collaboration (ETMC). Twisted-mass fermions
have been utilized successfully in various lattice QCD
studies, see Refs. [5–17]. In this exploratory study, the
calculation is performed at one value of lattice spacing
[a ¼ 0:067ð2Þ fm] [18]. We note, however, that the sys-
tematic uncertainties due to lattice artifacts are Oða2Þ with
our discretization.
This paper is organized as follows: In Sec. II, we briefly

describe the lattice setup for the calculation of the hadron
matrix element from three-point correlation functions in
the theory. In Sec. III, simulation details are provided and
the results are presented. This includes the charmonium
spectrum and the dispersion relations, the single-quark
form factors for �c, �c0 and the radiative transition matrix
elements responsible for J=� ! �c�, �c0 ! J=��, and
hc ! �c�. From these hadronic matrix elements that we
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obtained in our lattice calculation, we compute the tran-
sition decay width for these channels which are then com-
pared with experimental values and the quenched results.
In Sec. IV we will summarize our results and conclude.

II. THREE-POINTAND TWO-POINT
CORRELATION FUNCTIONS

The lattice setup in this calculation is analogous to the
vector form factor calculation of pions which has been
studied extensively [19–25]. Here we will briefly review
the general ideas involved.

The transitions among charmonium states are triggered

by the electromagnetic interaction:Lðe:m:Þ
int ¼ R

d4xA�ðxÞ�
jðe:m:Þ
� ðxÞ between the quark degrees of freedom and the

photon field. Here A�ðxÞ is the photon field and jðe:m:Þ
� ðxÞ is

the electromagnetic vector current of the quarks. Since the
electromagnetic interaction is weak, one can treat it per-
turbatively. This leads to the computation of the hadronic
matrix element of the current operator between the initial

(jii) and the final (hfj) charmonium states: hfjjðe:m:Þ
� ðxÞjii.

We emphasize that, although the electromagnetic interac-
tion is perturbative, the matrix element of the current
between two hadronic states is in general nonperturbative.
This is the quantity that we would like to compute using
genuine nonperturbative methods like lattice QCD.

Within the framework of lattice QCD, charmonium
states are realized by applying appropriate interpolating
operators (O1 and O2 in the formula below) to the QCD
vacuum j�i. Thus, the computation of the hadronic matrix

element hfjjðe:m:Þ
� ðxÞjii naturally leads to the following

three-point function:

G�ðt2; t;p2;p1Þ ¼
X

x2;x

e�ip2�x2eþiq�xh�jTO2ðt2;x2Þ

� jðe:m:Þ
� ðt;xÞOy

1 ð0; 0Þj�i: (1)

In this formula, interpolating operators which will create/
annihilate the appropriate charmonium states are inserted
at time slices t ¼ 0 (the source operator) and t ¼ t2
(the sink operator), respectively. Local operators are used
at the source and the sink. The sink operator is further
Fourier transformed to acquire a definite three-momentum
p2. The current insertion at time slice t also carries a
definite three-momentum q. Momentum conservation
then implies that the initial state also has a definite mo-
mentum p1 with q ¼ p2 � p1. Physically speaking, the
three-point function defined above represents a process in
which an initial charmonium state with three-momentum

p1 created by Oy
1 makes an electromagnetic transition to

the final charmonium state with three-momentum p2 anni-
hilated by O2 while the three-momentum difference q is
carried away by the photon.

Inserting a complete set of states between the electro-
magnetic current operator and the charmonium operators,

one finds that, when t2 � t � 1, the states with the lowest
energy dominate the three-point function:

G�ðt2; t;p2;p1Þ

���!t2�t�1 e�E2t2e�ðE1�E2Þt

4E1ðp1ÞE2ðp2Þ h�jO2jfðp2Þihiðp1ÞjOy
1 j�i

�hfðp2Þjjðe:m:Þ
� ð0Þjiðp1Þi: (2)

Therefore, the desired hadronic matrix element

hfðp2Þjjðe:m:Þ
� ð0Þjiðp1Þi can be obtained once the energies

E1, E2 and the corresponding overlap matrix elements

h�jO2jfðp2Þi, hiðp1ÞjOy
1 j�i are known, all of which can

be obtained from corresponding two-point functions for
the initial and final charmonium states.
For this purpose, two-point correlation functions for the

interpolating operatorsOi for i ¼ 1; 2 are also computed in
the simulation:

Ciðt;pÞ �
X

x

e�ip�xh�jOiðt;xÞOy
i ð0; 0Þj�i

���!t�1 jZiðpÞj2
EiðpÞ e�EiðpÞ�ðT=2Þ cosh

�
EiðpÞ �

�
T

2
� t

��
;

(3)

where ZiðpÞ ¼ h�jOijNðpÞi is the corresponding overlap
matrix element.
With the relevant two-point and three-point functions,

the hadronic matrix element hfðp2Þjjðe:m:Þ
� ð0Þjiðp1Þi could

be extracted using two methods: The first is to fit the two-
point function Eq. (3) and three-point function Eq. (2)
simultaneously. The second is to form an appropriate ratio
from the two-point and three-point functions and extract

the matrix element hfðp2Þjjðe:m:Þ
� ð0Þjiðp1Þi directly from the

ratio. In this study, the second method is utilized and the
relevant ratio is defined as

R�ðtÞ¼
G�ðt2;t;p2;p1Þ

C2ðt2;p2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1ðt2� t;p1ÞC2ðt;p2ÞC2ðt2;p2Þ
C2ðt2� t;p2ÞC1ðt;p1ÞC1ðt2;p1Þ

s

’hfðp2Þjjðe:m:Þ
� ð0Þjiðp1Þi

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðp2ÞE1ðp1Þ

p ; (4)

where the second line becomes valid when t2 � t � 1,
assuming only the corresponding ground states dominate.
In this case, R�ðtÞ becomes independent of t and fitting the

ratio to a plateau behavior yields the desired hadronic

matrix element hfðp2Þjjðe:m:Þ
� ð0Þjiðp1Þi.

Because of different implementations for fermions on

the lattice, the electromagnetic current operator jðe:m:Þ
� ðxÞ

might take different forms as compared with its continuum
counterpart. For Wilson-like fermions, like the twisted-
mass fermions that we use in this study, one could use
either the local current or the conserved current. The local
current is simpler in form but it is not conserved on the
lattice. It thus requires an additional multiplicative renor-
malization given by the factor ZV , which of course can be
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determined nonperturbatively [3]. The conserved current is
slightly more complicated but due to its conservation, it
does not need further renormalization, i.e. its multiplica-
tive renormalization constant ZV � 1. In this work, we use
the conserved current and the fact that ZV ¼ 1 is also
verified numerically in our simulation.

In computing the three-point function defined in Eq. (2),
various quark contributions arise. Since the electromag-
netic current consists of contributions for all flavors of
quarks, light flavors (i.e. u, d, and s quarks) also contribute.
Since our charmonium interpolating operators are formed
only from charm quarks, the contribution from the light
flavors can only occur through the so-called disconnected
diagrams. The computation of these diagrams requires the
light flavor quark propagators at basically all points on the
lattice (the so-called all-to-all propagators). This is com-
putationally extremely costly. Since the total electric
charge of light quarks adds up to zero, one could argue
that this contribution vanishes exactly in the flavor SUð3Þ
limit. In this study, these contributions are neglected as is
the case for previous quenched studies [3]. Thus, we only
need the charm quark contribution for the electromagnetic
current which is proportional to the conserved current

j�ðxÞ on the lattice via jðe:m:Þ
� ðxÞ ¼ Qcj�ðxÞ with Qc being

the electric charge of the charm quark. The conserved
current j�ðxÞ for the twisted-mass quark is given by

j�ðxÞ¼ �cðxÞ���1

2
U�ðxÞcðxþ�Þþ �cðxþ�Þ��þ1

2

�Uy
�ðxÞcðxÞ: (5)

When this current is inserted into the three-point function,
disconnected diagrams due to the charm quark in principle
can still arise. These are neglected in this study since charm
quark is much heavier than the light quarks and they are
also OZI suppressed. Therefore, within the approximations
described above, we only have to compute the connected
diagrams from the charm current which can be treated
using the sequential source method [3,26].

III. SIMULATION DETAILS

A. The simulation setup for Nf ¼ 2
twisted-mass fermions

Twisted-mass fermions at the maximal twist are utilized
in our study with two degenerate light flavors in the sea.
The framework of maximally twisted-mass fermions has
been utilized in various studies of lattice QCD and are
shown to be highly promising. It offers several advantages
when tuned to maximal twist: (i) automaticOðaÞ improve-
ment [27] is obtained when the bare untwisted quark mass
is tuned to its critical value. Thus, only one parameter
needs to be tuned. (ii) The determinant of the twisted-
mass Dirac operator is strictly positive, protecting it
against possible zero modes in the so-called exceptional

configurations. (iii) It simplifies the operator mixing prob-
lem for renormalization.
In this study, gauge field configurations using Nf ¼ 2

(u and d quark) twisted-mass fermion are utilized.
Other quark flavors, namely the strange and charm quarks,
are introduced as valence quarks. As discussed in
Refs. [6,10,11,28], we implement nondegenerate valence
quarks in the twisted-mass formulation by formally intro-
ducing a twisted doublet for each nondegenerate quark
flavor. So, in the valence sector we introduce three twisted
doublets, ðu; dÞ, ðs; s0Þ, and ðc; c0Þ with masses �l, �s, and
�c, respectively. Within each doublet, the two valence
quarks are regularized in the physical basis with Wilson
parameters of opposite signs (r ¼ �r0 ¼ 1). The fermion
action for the valence sector in the so-called ‘‘twisted
basis’’ reads

S¼ð ��u; ��dÞðDWþmcritþ i�l�5�3Þ �u

�d

� �
þð ��s; ��s0 Þ

�ðDWþmcritþ i�s�5�3Þ �s

�s0

� �
þð ��c; ��c0 Þ

�ðDWþmcritþ i�c�5�3Þ �c

�c0

� �
; (6)

where DW is the usual Wilson-Dirac operator, and mcrit is
the critical quark mass which is predetermined from the
simulation by ETMC. The relation between the fields in the
twisted basis and the physical basis is as follows:

u

d

� �
¼ expði!�5�3=2Þ �u

�d

� �
s

s0

� �

¼ expði!�5�3=2Þ �s

�s0

� �
c

c0

� �

¼ expði!�5�3=2Þ �c

�c0

� �
; (7)

where ! ¼ �=2 implements the full twist.
In this work, all computations are done using Nf ¼ 2

twisted-mass fermion configurations at the lattice spacing
of a ¼ 0:067ð2Þ fm (� ¼ 4:05) [18]. The size of the lattice
is 323 � 64 so that the spatial extent of the lattice is about
2.14 fm, which is a safe value for charmonium physics. In
the temporal direction, an antiperiodic boundary condition
is applied for the quark field while a periodic boundary
condition is utilized in all spatial directions. The simula-
tion parameters for our study are summarized in Table I.
As for the charmonium states, we only need the valence

charm quark. So we have adopted the Osterwalder-Seiler
variant of the twisted-mass fermion [15,29]. In the physical
basis, they read �c�c and the corresponding form in twisted

TABLE I. Simulation parameters in this study.

L3 � T � �c a [fm] a� m� [MeV] Nconf

323 � 64 4.05 0.15701 0.067(2) 0.0080 485 201
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basis ��c�
0�c can also be obtained easily. These are tabu-

lated in Table II together with the possible JPC quantum
numbers in the continuum and the names of the corre-
sponding particle.1

Two-point functions are computed as usual for all char-
monium states involved (those listed in Table II) in our
calculation. Fitting these two-point functions yields the
energy for the corresponding charmonium states, both
with and without three-momentum. As for the three-point
functions, since only connected diagrams involving charm
propagators are needed, a sequential source method is
utilized [26]. The results for the two-point and three-point
functions are then employed to construct the relevant ratio
defined in Eq. (4). For definiteness, we set t2 ¼ 32 in our
simulations which makes the three-point function antisym-
metric (for j�¼0) or symmetric (for ji with i ¼ 1; 2; 3) [19]

about the time slice t2 ¼ 32. In practice, we average the
data from the two halves to improve statistics. All errors in
this study are estimated using the conventional jackknife
method.

B. Charmonium spectrum and dispersion relations

Before computing the transition matrix element, the
mass and the energy dispersion relations for the relevant
charmonium states have to be verified. This is particularly
important for our study due to the following reasons.
Although charmonium spectrum has been studied exten-
sively in quenched lattice QCD and the overall picture
agrees reasonably well with the experiment, some quanti-
ties like the mass splitting between �c and J=� disagrees
with the experimental value. It is widely believed that this
discrepancy mainly originates from the quenched approxi-
mation. It is therefore useful to check, using unquenched
twisted-mass configurations, whether this discrepancy can
be resolved. Furthermore, although twisted-mass configu-
rations have been used successfully to study the light
flavors, using them on heavy charm quark needs some
care. Being relatively heavy, the charm quark mass pa-
rameter �ca� 0:2 in our study is not tiny. Of course, the
good news from the maximally twisted-mass lattice QCD
is that it isOðaÞ improved. Therefore, one would still hope

to bring the lattice discretization errors under control.
Another measure of the possible lattice artifacts is the
charmonium mass, say the mass of the �c meson m�c

in

lattice units. In our study, it turns out that m�c
a� 1. For

charmonium states with nonzero three-momentum, this
number becomes even larger. Therefore, one should care-
fully verify that these possible lattice artifacts for the
charmonium states are not out of control. Only after these
reassurances can one possibly proceed to calculate transi-
tions among charmonium states reliably. Since in this study
only one lattice spacing is employed, this issue is particu-
larly important. As we will illustrate below, in our simula-
tion, most of these lattice artifacts are remedied by using
the lattice dispersion relations for the charmonium states.
Following Eq. (3), the energy EðpÞ for a particular

charmonium state with three-momentum p can be obtained
from the corresponding two-point function via

coshðEðpÞÞ ¼ Cðp; t� 1Þ þ Cðp; tþ 1Þ
2Cðp; tÞ : (8)

The two-point function is symmetric about t ¼ T=2. In real
simulation we average the data from two halves about
t ¼ T=2 to improve statistics. For each channel, several
three-momenta (including the zero three-momentum) have
been computed. Different momentum modes that are re-
lated by lattice symmetries are averaged over.
The effective mass plateaus at zero three-momentum

for the charmonium states studied in this work are illus-
trated in Fig. 1. These plateaus are found automatically by
minimizing the �2 per degree of freedom. From lower to
higher values, the plateau corresponds to the charmonium
state of �c, J=�, �c0, hc, and �c1, respectively. It is seen
that the effective mass values for �c and J=� have shown
very clear and well-established plateau behavior, resulting
in rather small statistical errors. We use the mass of J=�
from our simulation to set the bare charm quark mass

TABLE II. Local interpolating fields for charmonium states
studied in this work in both physical and twisted basis, �c�c ¼
��c�

0�c. Also listed are the names of the corresponding particle
and their JPC quantum numbers in the continuum.

J=c �c �c0 �c1 hc

� �i �5 1 �i�5 	ij

�0 �i 1 �5 �i�5 	0i

JPC 1�� 0�þ 0þþ 1þþ 1þ�

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0  5  10  15  20  25  30  35

am
ef

f

t/a

ηc J/ψ χc0 χc1 hc

FIG. 1 (color online). Charmonium effective mass plateaus.
From lower to higher values, the plateau corresponds to the
charmonium state �c, J=�, �c0, hc, and �c1, respectively.

1In the first row of the table, we list the names of the
charmonium states where �c0 and �c1 are not to be confused
with the charm quark field in the twisted basis.
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parameter �c. After some tuning, we find a�c ’ 0:203
roughly corresponds to the value that is consistent with
the value quoted in the Particle Data Group (PDG).
We then fix �c at this particular value for all our subse-
quent calculations. Since twisted-mass lattice QCD is
OðaÞ improved, the anticipated cutoff effects induced
by the charm quark mass is roughly Oða2�2

cÞ, which is at
a few percent level. This of course still needs further
verification from measured physical quantities. The effec-
tive mass plateaus for other charmonium states (�c0, �c1,
and hc) are relatively noisy with larger statistical errors.
The fitted effective mass values are collected in Table III
which can be compared with the corresponding values
from PDG.

Our lattice result suggests mJ=� �m�c
¼ 104 MeV,

which is close to the PDG value of about 117 MeV. This
is already an improvement over the quenched studies
where the lattice results are typically away by dozens of
MeV. This can be understood qualitatively as follows. The
scale of lattice studies are set using long-distance quanti-
ties (static quark antiquark potential in quenched and f�
for unquenched). However, the running coupling for the
quenched gives a smaller coupling at the higher scale, say
the charm scale which results in a smaller mass splitting
than unquenched result. This remaining discrepancy might
come from lattice artifacts (since we are simulating at a
fixed lattice spacing without taking the continuum extrapo-
lation) and/or from the fact that we have neglected anni-
hilation diagrams for the charm quark in the two-point
function, as estimated in Ref. [30]. One should bare in
mind though that our calculation is done at one particular
lattice spacing. Therefore, the estimate of the lattice errors
should be viewed as qualitative in nature. This will also
affect the value of charm quark mass as shown in Ref. [18].

To get a feeling about the size of the lattice artifacts for
the charmonium states with nonvanishing three-momenta,
we investigate the dispersion relations for �c, J=�, and
�c0 states. The energy EðpÞ is obtained from the corre-
sponding effective mass plateaus of the two-point func-
tions with prescribed three-momentum. As said in the
beginning of this subsection, since the charmonium states
are relatively heavy in lattice units, the continuum disper-
sion relation E2 ¼ m2 þ c2p2 may not be a good descrip-
tion, where c is the speed of light which should be close to
unity if lattice artifacts are small and the physical meson is
weakly interacting. Indeed, our data suggest that the naive
continuum dispersion relation is violated with the fitted
value of c2 substantially away from unity by as much as

12% even for �c and J=� states. However, we find that, if
we utilize the standard lattice dispersion relation

4sinh2
�
EðpÞ
2

�
¼ 4sinh2

�
m

2

�
þ Z� 4

X

i

sin2
�
pi

2

�
; (9)

which recovers the naive dispersion relation in the contin-
uum limit, we could describe our data extremely well with
the fitted values of Z for �c and J=� rather close to unity.
The dispersion relations for �c, J=�, and �c0 are illus-

trated in Figs. 2–4, respectively. We find that Z�c
¼

1:063ð8Þ, ZJ=� ¼ 1:056ð7Þ, and Z�c0
¼ 1:13ð24Þ, all of

which are close to the anticipated value Z ’ 1. The differ-
ence seems to be at the order of Oðð�caÞ2Þ � 4% as the
naive estimate suggests. In evaluating the two-point func-
tion, thanks to the averaging of various p related by lattice

TABLE III. Charmonium effective mass [unit: MeV].

�c J=c �c0 �c1 hc

Mass (this work) 2997.4 3101.0 3329.1 3613.2 3466.8

Error 0.5 0.7 6.3 18.4 23.0

PDG 2980.3 3096.9 3414.7 3510.7 3525.9

 1.2

 1.3

 1.4

 1.5

 1.6

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

4*
si

nh
2 (E

/2
)

4*∑i sin2(pi /2)

J/ψ Dispersion Relation

Z=1.056(7)

FIG. 3 (color online). The same as Fig. 2 but for J=�.

 1.1

 1.2

 1.3

 1.4

 1.5

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

4*
si

nh
2 (E

/2
)

4*∑i sin2(pi /2)

ηc Dispersion Relation

Z=1.063(8)

FIG. 2 (color online). The �c dispersion relation obtained
from our calculation. Following the lattice dispersion relation

(9), the quantity 4sinh2ðEðpÞ2 Þ (vertical axis) is plotted versus

different values of 4
P

isin
2ðpi

2 Þ (horizontal axis). The data points
with errors are simulation results while the straight line is a
linear fit according to Eq. (9) with the fitted value of Z indicated
in the upper right corner of the plot.
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symmetries, we get a very good dispersion relation even
at p2 as large as 10p2

min, where pmin ¼ ð100Þ [in unit of

ð2�Þ=L]is the minimal lattice momentum. It is also seen
that, even at the largest three-momentum, the lattice dis-
persion relation still offers a very good description of the
data. This gives us confidence that, at this particular lattice
spacing that we are simulating, most of the lattice artifacts
for the charmonium states are taken care of by using the
lattice dispersion relation (9).

C. Form factors for �c and �c0

In the continuum, the hadronic matrix element
h�cðp2Þjj�ð0Þj�cðp1Þi may be parametrized by only one

form factor fðQ2Þ as [3]
h�cðp2Þjj�ð0Þj�cðp1Þi � fðQ2Þðp1 þ p2Þ�; (10)

where Q2 � �ðp2 � p1Þ2 is the square of four momentum
transfer. This quantity is also called the single-quark elastic
form factor in Ref. [31]. It is not a directly measurable
quantity experimentally. But it is a quantity that can be
computed in lattice simulations which can then be utilized
to compare with similar results frommodels (see Ref. [31]).
Note that this form automatically ensures the current con-
servation h�cðp2Þj@�j�j�cðp1Þi ¼ 0 since q � ðp1 þ p2Þ ¼
ðp2 � p1Þ � ðp2 þ p1Þ ¼ 0. On a finite lattice, the partial
derivatives are replaced by corresponding finite differences
on the lattice. For the temporal components of the four-
momenta, this amounts to replacing the continuum energy
by its lattice counterpart: ðpiÞ0 ! 2 sinhðEi=2Þ. Note that
similar modifications apply to some of the energy factors in
Eq. (4). Of course, in principle the spatial components
should also be modified according to the lattice dispersion
relation (9). But since our three-momenta are relatively
small in lattice units, this replacement does not make a
significant change. For the temporal components, however,
since aEðpÞ � 1 for all charmonium states being studied,
this modification is crucial. For example, according to
Eq. (10), the form factor fðQ2Þ is a scalar function which

is the same for all indices � ¼ 0; 1; 2; 3. Only after using
the modifications suggested by the lattice dispersion
relation can we obtain consistent results for fðQ2Þ at differ-
ent values �.
To obtain the desired hadronic matrix element

h�cðp2Þjj�ð0Þj�cðp1Þi, we form the ratio defined in

Eq. (4). This is done for the zero three-momentum case
p2 ¼ ð0; 0; 0Þ and for various nonvanishing three-momenta.
In Figs. 5 and 6, we display the typical behaviors for R0ðtÞ
for p2 ¼ ð0; 0; 0Þ and p2 ¼ ð0; 0; 1Þ, respectively. The pla-
teaus are found automatically by minimizing the �2 per
degree of freedom. It is seen that clear plateau behaviors
have been established fromwhich the form factor fðQ2Þ can
be extracted. We have checked that taking the temporal and
spatial components of the current yields consistent results
for fðQ2Þ although the results obtained from � ¼ 0
[i.e. R0ðtÞ] gives smaller statistical errors, which we take
as the final result for the form factor at that particular Q2.
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The fitted values of fðQ2Þ obtained from the ratio are
shown in Fig. 7 versus different values of Q2 where two
different types of symbols stand for p2 ¼ ð0; 0; 0Þ and
p2 ¼ ð0; 0; 1Þ, respectively. It is seen that the data obtained
in the two cases tend to lie on a universal curve. Following
Ref. [3], we fit the data for the form factor with the
following function:

fðQ2Þ ¼ exp

�
� Q2

16�2
ð1þ 
Q2Þ

�
: (11)

The fitted parameters turn out to be


 ¼ �0:096ð6Þ GeV�2; � ¼ 567ð2Þ MeV: (12)

This value of � is larger than the corresponding value
480(3) MeV obtained in the quenched approximation in
Ref. [3], making the corresponding form factor obtained
from our unquenched calculation ‘‘harder’’ (i.e. decays
slower with increasing Q2). The comparison of this form
factor obtained from various phenomenological models
with the corresponding quenched result has been addressed
in Refs. [3,31]. It was noted that using the simple harmonic
oscillator wave functions yields a harder form factor when
compared with the quenched lattice result. In the quark
model of Isgur-Scora-Grinstein-Wise [32], however, an
extra factor � ’ 0:7 was introduced such that the form
factor takes the form fðQ2Þ � expð�Q2=ð16�2�2ÞÞ near
Q2 ¼ 0 which agrees with the quenched lattice result well,
given a phenomenological value of �� 710 MeV. Since
our unquenched lattice result suggests a harder behavior
for the form factor than the quenched case, we find that, for
the same value of � taken in the model, a factor of � ’ 0:8
will make the model predictions in good agreement with
our unquenched lattice results. One can define a squared

mean charge radius
ffiffiffiffiffiffiffiffihr2ip

with hr2i given by

hr2i ¼ �6
d

dQ2
fðQ2Þ

��������Q2¼0
¼ 6

16�2
: (13)

Our unquenched lattice result then yields
ffiffiffiffiffiffiffiffihr2ip ¼

0:213ð1Þ fm which is smaller than the corresponding
quenched value of 0.255(2) fm.
We should emphasize that both our study and the pre-

vious quenched study presented in Ref. [3] are performed
at one value of lattice spacing, with different lattice regu-
larization schemes which results in different size of the
lattice artifacts. Therefore, although the estimated lattice
artifacts are believed to be relatively small in both cases,
the comparisons between the quenched results and our
results should still be taken at the qualitative level.
Our unquenched result yields a harder behavior for the

form factors which can be understood qualitatively.
Physical scales on the lattice are usually set by some
long-distance physical quantities, like the static quark
antiquark potential in the quenched or the pion decay
constant in the Nf ¼ 2 twisted-mass lattice QCD.

However, it is known that quenched lattice QCD did not
reproduce the true QCD � function due to the lack of the
quark loops. In particular, when running from the lower
energy scale up to the scale of charmonium physics,
quenched lattice QCD gives a more weakened strong cou-
pling constant than unquenched lattice QCD. This is be-
lieved to be the major reason for the discrepancy between
the mass splitting of J=� and �c in quenched lattice QCD
with the true experimental result. Therefore, unquenching
the quarks will basically make the effective coupling con-
stant stronger at charmonium scale when compared with
the quenched case. This in turn gives a smaller charge
radius for the unquenched case, in agreement with what
we find in our calculation.
The hadronic matrix element h�c0ðp2Þjj�ð0Þj�c0ðp1Þi

for �c0 has the same form of decomposition as that for
�c. The corresponding form factor is defined as in Eq. (10).
In exactly the same manner, we can obtain the form factor
fðQ2Þ for �c0 except that we have only computed the case
p2 ¼ ð0; 0; 0Þ. This is illustrated in Fig. 8. The data is fitted
with the function

fðQ2Þ ¼ fð0Þ exp
�
� Q2

16�2

�
: (14)

The fit parameters are

fð0Þ ¼ 1:0002ð5Þ; � ¼ 510ð16Þ MeV: (15)

This value of � is also larger than the quenched value of
393(12) MeV from Ref. [3] (i.e. the unquenched form
factor is also harder than the quenched one). Note that
our fitted value of � for �c0 is smaller than that for �c

resulting in a larger charge radius for �c0 when compared
with that for �c. This is consistent with the quark model
picture since �c0 in this model is a L ¼ 1 state and the
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FIG. 7 (color online). The form factor fðQ2Þ for �c obtained
from p2 ¼ ð0; 0; 0Þ (red data points) and p2 ¼ ð0; 0; 1Þ (blue data
points). The curve is a fit for all the data using the functional
form of Eq. (11).
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charge radius is naturally larger due to the presence of the
centrifugal potential.

Finally, we remark that, in cases of both �c and �c0,
although some data might have large errors at nonvanish-
ing Q2, the form factor as zero momentum transfer is
always consistent with unity which is in fact a manifesta-
tion of the current conservation: ZV ¼ 1. Therefore, the
conserved current requires no extra multiplicative renor-
malization as it should. This is verified numerically by our
simulation data.

D. J=� ! �c� transition

The matrix element h�cðp2Þjj�ð0Þj½J=��rðp1Þi is re-
sponsible for the calculation of the J=� ! �c� transition
rate. Here we use the index r to designate the polarization
of the initial J=� state whose polarization vector is de-
noted by ��ðp1; rÞ. In the continuum, this matrix element

can be decomposed as [3]

h�cðp2Þjj�ð0Þj½J=��rðp1Þi

� 2VðQ2Þ
m�c

þm�

��
��p2
p1���ðp1; rÞ: (16)

Thus, the matrix element is characterized by one form
factor VðQ2Þ. By forming the appropriate ratio, relevant

lattice results V̂ðQ2Þ are extracted from the plateaus of the

ratios. The relation of V̂ðQ2Þ with its continuum counter-

part VðQ2Þ is VðQ2Þ ¼ 2� 2
3 e� V̂ðQ2Þ, where the factor 2

comes from the quark and the antiquark while the factor
ð2e=3Þ is due to the charge of the charm quark. The results

for the transition form factor V̂ðQ2Þ thus obtained are
illustrated in Fig. 9. Following Ref. [3], the data is fitted
with the function

V̂ðQ2Þ ¼ V̂ð0Þ exp
�
� Q2

16�2

�
: (17)

The resulting fitted parameters we find are as follows:

V̂ð0Þ ¼ �2:01ð2Þ; � ¼ 580ð19Þ MeV: (18)

This is to be compared with similar results from pre-

vious quenched lattice study: V̂ð0Þ ¼ �1:85ð4Þ and � ¼
540ð10Þ MeV in Ref. [3].
With the values of the transition form factor on the

lattice, the J=� ! �c� decay width can be obtained:

�ðJ=� ! �c�Þ ¼ 

64

27

jqj3
ðm�c

þm�Þ2
jV̂ð0Þj2; (19)

where q is frame dependent. If we choose the frame
in which the initial J=� is at rest, we have jqj2 ¼
ðm2

� �m2
�c
Þ2=ð4m2

�Þ. Substituting this into Eq. (19), we

then get the J=� ! �c� decay width:

�mphy
¼ 2:84ð6Þ KeV; �mlat

¼ 1:99ð6Þ KeV; (20)

where �mphy
denotes the result with physical mass values

(e.g. values from PDG) are substituted into Eq. (19), while
�mlat

stands for using the mass values computed from the

lattice directly. This difference arises since our lattice
results for the masses for J=� and �c in Sec. III B (see
Table III) do not coincide with their experimental values
exactly. Although our lattice value for the mass of the J=�
is quite close and that for �c is also closer to the experi-
mental value than the corresponding quenched value, the
decay width turns out to be proportional to ðmJ=� �m�c

Þ3
which magnifies the difference. Note that, for quenched
lattice calculations, using different charmonium mass val-
ues makes a even bigger difference, as noted in Ref. [3].
The corresponding results are �mphy

¼2:57ð11ÞKeV, �mlat
¼

1:61ð7ÞKeV. This is due to the fact that quenched lattice
calculations yield a much smaller value for mJ=� �m�c

when compared with the true experimental value. In our
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unquenched study, however, we see that this difference is
somewhat milder compared with the previous quenched
situation. Both our lattice result and the previous quenched
result for this quantity are to be compared with the value
�PDG ¼ 1:58ð38Þ KeV quoted by the PDG. Note that the
PDG value is an average of CLEO result and the Crystal
Ball result, the former being 1.92(30) KeV which is closer

to our lattice result while the latter from Crystal Ball being
1.18(33) KeV, smaller than lattice results.

E. �c0 ! J=�� transition

In the continuum, this transition matrix element has the
following decomposition [3]:

hSðpSÞjj�ð0ÞjVðpV; rÞi ¼ ��1ðQ2Þ
�
E1ðQ2Þ½�ðQ2Þ��ðpV; rÞ � �ðpV; rÞ � pSðp�

VpV � pS �m2
Vp

�
S Þ�

þ C1ðQ2Þ
ffiffiffiffiffi
q2

p mV�ðpV; rÞ � pS½pV � pSðpV þ pSÞ� �m2
Sp

�
V �m2

Vp
�
S �
�

(21)

with �ðQ2Þ ¼ ðpV � pSÞ2 �m2
Vm

2
S. Therefore, the had-

ronic matrix element is characterized by two form factors
E1ðQ2Þ and C1ðQ2Þ. At the physical photon point with
Q2 ¼ 0, only the former contributes.

The form factor E1ðQ2Þ can be obtained by following a
similar process as the other form factors. We can always
choose some combinations of pV; pS such that

hSðpSÞjj�ð0ÞjVðpV; rÞi / E1ðQ2Þ:
The final lattice results for Ê1ðQ2Þ are shown in Fig. 10. We
then use the following form

Ê 1ðQ2Þ ¼ Ê1ð0Þ
�
1þQ2

�2

�
exp

�
� Q2

16�2

�
; (22)

to fit the data [3]. The fitted parameters we obtain are

aÊ1ð0Þ ¼ �0:1699ð51Þ; � ¼ 871ð85Þ MeV;

� ¼ 451ð62Þ MeV: (23)

The fitted value of Ê1ð0Þ at Q2 ¼ 0 is also indicated
in Fig. 10 together with its error. These results are

to be compared with similar results from previous
quenched lattice study [3]: � ¼ 542ð35Þ MeV and � ¼
1:08ð13Þ GeV.
At the physical photon point Q2 ¼ 0, the decay width

for this radiative transition is given by

�ð�c0 ! J=��Þ ¼ 

16

9

jqj
m2

�c0

jÊ1ð0Þj2; (24)

where Ê1 is related to E1 by

E1ðQ2Þ ¼ 2� 2
3e� Ê1ðQ2Þ:

Substituting our lattice result for Ê1ð0Þ, we then can get the
decay width in physical unit:

�mphy
¼ 85ð7Þ KeV; �mlat

¼ 65ð4Þ KeV (25)

which is to be compared with the quenched lattice result
of �mphy

¼ 232ð41Þ KeV and �mlat
¼ 288ð60Þ KeV. It is

seen that our unquenched result for this decay width is
substantially smaller than their quenched values. The value
for this quantity quoted by the PDG is given by �PDG ¼
119ð11Þ KeV, which lies in between the quenched and
unquenched results.

F. hc ! �c� transition

The form factor decomposition for this process is iden-
tical to Eq. (21). However, the signal for the state hc is
much noisier. It turns out that we could only get reasonable
signal with phc ¼ 000. In order to get various values ofQ2,

we vary the values of q and p�c
simultaneously such that hc

is always at rest.
The form factor we obtain is illustrated in Fig. 11. We fit

the data with a functional form [3]:

Ê 1ðQ2Þ ¼ Ê1ð0Þ exp
�
� Q2

16�2

�
; (26)

and the fitted parameters come out to be

aÊ1ð0Þ ¼ �0:39ð1Þ; � ¼ 440ð23Þ MeV: (27)

The fitted value of Ê1ð0Þ is also shown in Fig. 11 atQ2 ¼ 0
together with the corresponding error. These numbers are
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FIG. 10 (color online). �c0 ! J=�� transition form factor
Ê1ðQ2Þ obtained from our simulation. The curve is a fit accord-
ing to Eq. (22). The fitted value of Ê1ðQ2 ¼ 0Þ is also indicated
at Q2 ¼ 0 with its error.
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to be compared with the corresponding quenched result
of � ¼ 689ð133Þ MeV [3].

The physical decay width for the transition is given by

�ðhc ! �c�Þ ¼ 

16

27

jqj
m2

hc

jÊ1ð0Þj2: (28)

With our lattice result for Ê1ð0Þ substituted in, we find

�mphy
¼ 234ð12Þ KeV; �mlat

¼ 210ð13Þ KeV: (29)

The corresponding quenched lattice values are �mphy
¼

601ð55Þ KeV and �mlat
¼ 663ð132Þ KeV, both of which

are about a factor of 3 larger than our unquenched result,
though the errors are somewhat large. The lattice results for
this decay can now be compared with the recent measure-
ment at BESIII [33]. The total width for hc and the corre-
sponding branching ratio for the radiative transition are
found to be

�tot
exp ¼ 730	 450	 280 KeV;

Bðhc ! �c�Þ ¼ ð54:3	 6:7	 5:2Þ%;

where the first error is statistical and the second is
systematic. If we multiply the central values for the
above two quantities and add the errors in quadrature, we
find the decay width �ðhc ! �c�Þ ¼ 396ð294Þ KeV,
which could be compared with our lattice result. The
agreement within a large error is seen although improve-
ments from both experiment and lattice calculations are
required to cut down the large uncertainties for this
quantity.

IV. SUMMARYAND CONCLUSIONS

In this exploratory study, we calculate the form factors
for some of the ground state charmonia and their radiative
transitions using unquenched Nf ¼ 2 twisted-mass fermi-

ons. The s and c quarks are quenched which are incorpo-
rated via a twisted doublet for each nondegenerate quark
flavor in the valence sector. Our study focuses on the form
factors for �c, �c0 and the J=� ! �c�, �c0 ! J=��,
hc ! �c� radiative transitions. The mass spectrum and
dispersion relations for these charmonium states are first
examined. Good agreement of the computed spectrum
with the experiment is found. It is also verified that, by
using lattice dispersion relations instead of the naive con-
tinuum ones, the lattice artifacts for these charmonium
states are well under control. By computing various appro-
priate ratios of the three-point functions to the two-point
functions, hadronic matrix elements for these transitions
are obtained at various of Q2. Using the parametrized
form in terms of relevant form factors, we obtain the
lattice results for the relevant form factors and the radiative
decay widths for these channels. Our results are summa-
rized in Table IV which are to be compared with those
obtained in previous quenched lattice studies and experi-
mental values.
Although some quantities from our unquenched study

turn out to be comparable with the quenched results, quite a
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FIG. 11 (color online). The hc ! �c� transition form factor
Ê1ðQ2Þ obtained from our calculation (the data points). The
curve is a fit using Eq. (26). Also shown at Q2 ¼ 0 is the fitted
value of Ê1ð0Þ together with its error.

TABLE IV. Summary of the results obtained in this work. Also listed are the corresponding
results from quenched lattice QCD [3]. Experimental values or values from PDG are also listed
whenever available.

Fitted parameter � [MeV] for form factors

�c �c0

This work 567(2) 510(16)

Ref. [3] 480(3) 393(12)

�mphy
=�mlat

[KeV] for transitions

J=� ! �c� �c0 ! J=�� hc ! �c�

PDG 1.58(38) 119(11) 396(294)

This work 2:84ð6Þ=1:99ð6Þ 85ð7Þ=65ð4Þ 234ð12Þ=210ð13Þ
Ref. [3] 2:57ð11Þ=1:61ð7Þ 232ð41Þ=288ð60Þ 601ð55Þ=663ð132Þ
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number of the results still differ substantially, as is seen
from Table IV. For example, for the form factors of �c and
�c0 a harder behavior (a larger value of � hence a smaller
charge radius) than the quenched result is found. As for the
decay width for J=� ! �c�, a value larger than the
quenched result is obtained. Because of the improvement
of the mass splitting for the charmonium in unquenched
study, the discrepancy between the results using the physical
mass and the lattice computed mass is somewhat narrowed,
although the value is still larger than the value quoted by
PDG. For the decay width of �c0 ! J=��, a value smaller
than the PDG value (and also the quenched result) is ob-
tained. As for the hc ! �c� transition, the signal is noisy
and our unquenched result is much smaller than the
quenched value with a large statistical uncertainty. It is still
compatible with the recently measured value at BESIII
which also has a large error. To get better signals for this
channel, variational methods or smearing techniques might
be necessary which will be investigated in the future.

In this preliminary study, we simulate at only one lattice
spacing and sea quark mass, and no chiral nor continuum
extrapolation is made. The physics involved in this study
mainly concerns the heavy flavor part of the theory which
should not be sensitive to the pion mass. As for the lattice
artifacts, we argued that, thanks to the automatic OðaÞ
improvement, the lattice artifacts is under control.
Indeed, by using the lattice dispersion relations, we verified
that all charmonium states that we studied exhibit

controlled lattice errors in their dispersion relations of
about a few percent, which is roughly at the order of
ð�caÞ2 for our simulation. Of course, to get a full control
of the lattice errors, the calculation needs to be done on
several lattice spacings and continuum limit has to be
taken. With the experience gained in this study, it would
be better and also possible to study charmonium radiative
transitions in a more systematic manner (more lattice
spacings, more pion mass values, etc.) using unquenched
lattice QCD. It is also tempting to perform similar studies
with theNf ¼ 2þ 1þ 1 dynamical twisted-mass fermion.

Given the promising experimental status of BESIII at
BEPCII, the unquenched lattice studies on charmonium
transitions will certainly be an interesting project to pursue
in the future.
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