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We investigate the H-dibaryon, an IðJPÞ ¼ 0ð0þÞ with s ¼ �2, in the chiral and continuum regimes

on anisotropic lattices in quenched QCD. Simulations are performed on modest lattices with refined

techniques to obtain results with high accuracy over a spatial lattice spacing in the range of

as � 0:19–0:40 fm. We present results for the energy difference between the ground state energy of

the hexa-quark stranglet and the free two-baryon state from our ensembles. A negative energy shift

observed in the chirally extrapolated results leads to the conclusion that the measured hexa-quark state

is bound. This is further confirmed by the attractive interaction in the continuum limit with the observed

H-dibaryon bound by 47� 37 MeV.
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I. INTRODUCTION

Search for dibaryons is one of the most challenging
theoretical and experimental problems in the physics of
strong interaction. In the nonstrange sector, only one di-
baryon, the deuteron, is known experimentally. In the
strange sector, on the other hand, it is still unclear whether
there are bound dibaryons or dibaryon resonances. Among
others, the flavor-singlet state (uuddss), the H-dibaryon,
has been suggested to be the most promising candidate [1].
The H-dibaryon may also be a doorway to strange matter
that could exist in the core of neutron stars and to exotic
hyper-nuclei [2,3]. A deeply bound H with the binding
energy BH > 7 MeV from the �� threshold has been
ruled out by the discovery of the double � nuclei [4].
The double-hypernucleus events have either more than
one interpretation for the products or the possibility of
production of excited states. The analysis of the events in
[4] ignored the possibility that the single or double-
hypernucleus was produced in an excited state in which
case the value of the binding energy would increase by the
excitation energy. Thus there still remains a possibility of a
shallow bound state or a resonance in this channel. Since
the Bag Model prediction of a deeply bound H-dibaryon,
with large binding energy of Oð100Þ MeV [5], many ex-
periments have been triggered to look for this possible
particle, but few of them have confirmed the existence of
the H-dibaryon [6–10]. The experiments were inspired by
the Skyrme model prediction, and the experimental dis-
coveries have in turn spawned intense interest on the
theoretical side, with studies ranging from chiral soliton
and large Nc models, quark models, phase-shift analysis
and QCD sum rules [11]. Summarizing the previous theo-
retical and experimental investigations a slightly bound or
unbound H-dibaryon is predicted.

In the search for such exotic states lattice QCD plays an
important role in which precise predictions for hadronic

observables with quantifiable uncertainties are made. A
considerable interest in the H-dibaryon started with
Jaffe’s work [5] demonstrating the role of the chromomag-
netic interaction in the stability of light multiquarks. Since
then a number of quenched LQCD calculations have been
performed for the search of the H-dibaryon but no definite
conclusions have been reported. Earlier lattice investiga-
tions [12,13] gave somewhat mixed and contradicting
results on the spatially localized resonance status of the
H-dibaryon. These studies however, suffered from low
statistics, relatively large quark masses and considerable
finite-size effects could not be ruled out for the smaller
lattice size. More precise studies on large volumes con-
cluded an unbound H-dibaryon in infinite volume limit
[14–16] while others reported hints of a bound
H-dibaryon for a range of light-quark masses [17].
Very recently, the NPLQCD and HALQCD Collab-

orations reported results from their fully dynamical lattice
calculation that shed new light on the status of the
H-dibaryon [18,19]. The NPLQCD Collaboration pre-
sented a strong evidence for a bound H-dibaryon from
their calculations performed in four lattice volumes.
Using the Lusher method [20] to extract two-particle scat-
tering amplitude below threshold, the NPLQCD
Collaboration found the H-dibaryon bound by 16.6 MeV
at a pion mass of m� ¼ 390 in the infinite volume
limit [18]. Using their recently proposed approach of the
baryon-baryon potential [21], the HALQCD Collaboration
performed calculations in three lattice volumes at three
different quark masses and reported a bound H-dibaryon
with the binding energy of 30–40 Mev for the pion mass of
673–1015 MeV [19]. These calculations provide strong
evidence of capability of lattice QCD in calculating the
energy of simple nuclei, with the H-dibaryon being an
example. Having said that, it still remains an open question
whether the H-dibaryon is bound at the physical point and
with the inclusion of the electroweak interactions. This
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provides a strong motivation for pursuing numerical cal-
culations at smaller lattice spacings, and over a range of
quark masses including those of nature.

The target of this work is to address the status of the
H-dibaryon by calculating the mass differences between
the candidateH-dibaryon and the free two-baryon states in
the continuum limit and at physical quark masses. Using
some refined methods and techniques, we carry a multi-
lattice spacing analysis at and near physical pion mass on
improved anisotropic lattices with an attractive feature that
with modest lattice sizes one can access large spatial
volumes while having a fine temporal resolution. Rather
than extracting the hadron mass from the ratio of two
temporal nearest correlators, the Levenberg-Marquardt al-
gorithm is adopted to solve the hyperbolic-cosine ansatz of
hadron correlation functions. This is very useful in finding
a larger temporal fit range, hence more clear signals for
precise hadron masses. Continuum limit is also considered
in this work which will provide a real physical picture of
the H-dibaryon.

The rest of the paper is organized as follows. The tech-
nical details of the lattice simulations are discussed in
Sec. II, where we outline the construction of the correlation
functions from interpolating operators and the actions used
in this study. This section also discusses the procedures of
chiral and continuum extrapolations. The results are pre-
sented and discussed in Sec. III, where we attempt to take
the chiral and continuum limits and address chiral, finite-
spacing and quenching effects. This sets the stage for a
discussion of lattice resonance signature of the H-dibaryon
lying lower than two-� channel masses in the physical
regime. Finally, we present our conclusions in Sec. IV.

II. SIMULATION DETAILS

A. Choice of interpolating fields

The explicit construction of the operator for the
H-dibaryon requires the symmetrization of the color and
spinor indices of two triplets of quarks in order to obtain
the color and spin singlet. Our choice for the appropriate
operator is motivated by possible structure of the
H-dibaryon and based on the idea of diquark formulation
and has the following form [22,23]:

OHðxÞ¼3ðudsudsÞ�3ðussuddÞ�3ðdssduuÞðudsudsÞ
¼3�abc�defðC�5Þ��ðC�5Þ��ðC�5Þ��
�½ua�db�sc�ud�de�sf��; (1)

where the roman letters denote the color indices, Greek
letters represent the spinor indices and �abc the usual
antisymmetric tensor defined over the range of their in-
dices. Taking the symmetry properties of the �-tensor and
the ðC�5Þ-matrix under the interchange of two indices
into account, the H-dibaryon correlation function can be
obtained from

CHð ~x; tÞ ¼ hOHð ~x; tÞOy
Hð0Þi: (2)

The hadron masses Mh and M�, needed to obtain the
energy shift �E ¼ Eh � 2m�, are calculated by the fitting
the correlation functions with a multi-hyperbolic-cosine
ansatz

CðtÞ ¼ Xn
i¼0

Ai cosh½miðT=2� tÞ�; (3)

where mi is the effective mass of the ith excited state and
Ai the amplitude corresponding to this state. The method of
calculation is straightforward in principle, not differing
essentially from the calculation of hadron masses. We
determine the mass of the ground state for each particle,
and the mass difference�MðH � 2�Þ from the fit. In order
to reduce the contaminations of the excited states, the
maximum time separation is used to extract the results.
This is achieved by adopting the Levenberg-Marquardt
algorithm to solve this nonlinear least-squares fit. The
hyperbolic-cosine fits are performed over the time interval
in which an acceptable value of the probability, used to
estimate the goodness-of-fit of the data, is obtained.
Considering the contribution of ground state only, the
correlation function is fitted by the form

CðtÞ ¼ A0 cosh½m0ðT=2� tÞ�: (4)

To account for the strong correlation of data in time, we use
the full covariance matrix to construct the �2 function

�2¼X
i;j

½Cðti;A0;m0Þ�DðtiÞ�M�1
ij ½Cðtj;A0;m0Þ�DðtjÞ�;

(5)

and obtain the covariance matrix Mij as

Mij ¼ 1

NcðNc � 1Þ
XNc

k¼1

½Dðk; tiÞ �DðtiÞ�½Dðk; tjÞ �DðtjÞ�;

(6)

where the Dðk; tiÞ is the kth correlator and DðtiÞ the mean
value of the correlator at time ti, Nc denotes the total
number of configurations. At minimum �2, the gradient
of �2 with respect to the parameters ðA0; m0Þ will be zero
and the mass of ground state m0 is estimated.

B. Anisotropic lattice actions

To examine the H-dibaryon in lattice QCD, we explore
the improved actions on anisotropic lattices. These actions
display nearly perfect scaling, thus lattice-spacing artifact
contributions are expected to be small, and providing
reliable continuum limit results at finite lattice spacings
can be obtained. With most of the finite-lattice artifacts
having been removed, one can use coarse lattices with
fewer sites and much less computational effort. Using
a tadpole-improved anisotropic gauge action [24], we
generate quenched configurations on a 123 � 60 lattice at
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five couplings in the range � ¼ 2:0–4:0 and at a bare
anisotropy of 	 ¼ 5:0. We generated 500 gauge field
configurations for each lattice and the configurations are
separated by 100 compound sweeps after skipping 1000
sweeps for the thermalization. We define a compound
sweep as five over-relaxation [25] sweeps followed by
one Cabbibo-Marinari [26] sweep.

For the fermion fields, we employ the space-time asym-
metric clover quark action on anisotropic lattice [27,28]
with spatial Wilson parameter rs ¼ 1. The clover improve-
ment coefficients cs;t are estimated from tree-level tadpole

improvement whereas for the ratio of hopping parameters

 ¼ Kt=Ks we adopt both the tree-level improved value
and a nonperturbative one. Since it becomes harder to
obtain a reasonable signal-to-noise ratio at lighter quark
masses for the multiquark systems, we employ relatively
heavy quark masses in our calculations. The bare strange
quark mass is set by measuring the s�s pseudoscalar mass at
four heavy quark hopping parameters �h. At each strange
quark mass, hadron propagators are measured for six light
hopping parameters �l such that the mass ratio ofMK=MN

compares well with the experimental value. Our quenched
quark propagators cover a range of quark masses, corre-
sponding to pion masses from 1325 MeV down to
500 MeV. We also considered two smaller masses, but
find that the signal for these becomes highly unstable,
hence do not include these in our analysis.

C. Smearing technique

To increase the overlap of the operators with the ground
state, all of the hadronic correlators were calculated using
the method of smearing the interpolating operator, essen-
tially making the hadronic operator spread around their
central location in space. In this study, we use the Gaussian
smearing which is obtained by replacing the quark field
qðxÞ by the smeared quark field qsmearðxÞ defined as [29]

qsmearðt; ~xÞ ¼ N
X
y

exp

�
� j ~x� ~yj2

2�2

�
qðt; ~yÞ; (7)

where N is an appropriate normalization factor and � the
smearing size parameter. This technique has numerical
advantages since the smearing function separates into
two factors, one belonging to the quark and the other to
the antiquark, and thus will help to maximize the ground
state contribution relative to the ones of the excited states.
The problem is that the smeared operators are no longer
gauge-invariant because the quark and the antiquark are
spatially separated. We employed Coulomb gauge fixing to
overcome this problem.

D. Extrapolation to the physical quark mass and
continuum limits

Chiral extrapolations of the H-dibaryon mass and
binding energy to the physical point are important issues.
In the exact SU(3) flavor symmetry, the noninteracting

IðJPÞ ¼ 0ð0þÞ with strangeness s ¼ �2 ground state is
multiple degenerate, comprised of the states ��, N� and
�� with the H-dibaryon as the ground state. A tightly
bound H-dibaryon would indicate the chiral expansion of
the form of that for single hadrons. The chiral extrapolation
of single hadrons, such as the lowest-lying octet baryon
masses, is an ongoing topic of discussion and motivates a
deeper understanding of extrapolation form. The baryon
chiral perturbation theory seems reluctant to reproduce
LQCD results for the octet baryon masses, including the
results for nucleonmass. Leinweber et al. [30] demonstrated
that the chiral extrapolation method based upon a finite-
range regulator leads to an extremely accurate value for
the mass of physical nucleon with systematic errors of less
than 1%.
To address the challenges of SU(3) chiral perturbation

theory to describe the baryon masses, Walker-Loud et al.
detailed a comprehensive chiral extrapolation analysis of
the octet and decuplet baryon masses, using both the con-
tinuum SU(3) heavy baryon �PT as well as its mixed
action generalization [31,32]. The results placed the sig-
nature of linearity of the nucleon mass in m�, providing a
remarkable agreement with both the lattice data as well as
the physical nucleon mass. This is in contrast with the
expectations of chiral limit expansion of the general form
MNðm�Þ ¼ aþ bm2

� þOðm3
�Þ, where a and b are pa-

rameters determined from the lattice QCD data. Sharpe
and Labrenz [33] also found a more complicated and
available form of chiral expansion of baryon masses in
quenched approximation. The problem is that we have only
several binding energies for each lattice spacing; using the
form made by Sharpe and Labrenz with so many coeffi-
cients may provide an unavailable and unreliable fit.
Considering that the form of binding energy is not known
yet, we apply the general one to perform the chiral ex-
trapolation and in fact we obtain a good result.
To avoid the ambiguity in the chiral limit estimates, we

extrapolate mass difference and �M ¼ MH � 2M� and
mass ratios �M=M� using the simplest ansatz consistent
with leading-order chiral effective theory,

f ¼ �þ �x; (8)

where x represents the pion mass squared and � and � are
fit parameters. The quantities f and x are accompanied by
statistical errors. We intend to find the combination of �
and � which minimizes

X
i

ðfð�;�; xiÞ � hfiiÞ2
2

fi
þ �22

xi

; (9)

where i indexes different data points fx; fg and  is the
statistical error of each quantity. The extrapolation is taken
to physical point at fixed strange mass and M� is taken as
experimental input to make physical predictions.
The continuum extrapolation for the chirally extrapolated

quantities is another important issue in lattice calculations.
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The possible error that might affect the simulation results
comes from the scaling violation for our action. Expecting
that the dominant part of scaling violation is largely elimi-
nated by tadpole-improvement, we adopt an a2s-linear ex-
trapolation to the continuum limit, since the lattice-spacing
artifacts in our calculations are expected to scale as Oða2sÞ.
Also, since the Oða2sÞ effects largely cancel in forming the
binding energy, we expect such contributions to be small.

III. RESULTS AND DISCUSSION

Typical examples of the effective mass plot at ð�l; �Þ ¼
ð0:3110; 3:60Þ and (0.3115, 4.00) are shown in Fig. 1. As can
be seen, smearing improves the overlapwith theH-dibaryon
ground state resulting in an earlier plateau. Consequently the
contributions of excited states were substantially reduced.
We find clear signals up to larger time separations with
insignificant statistical fluctuation domination. The fit range
½tmin; tmax� is determinedbyfixing tmax andfinding a range of
tmin where the ground state is stable against tmin. The statis-
tical error analysis is performed by a single-elimination
jackknife method and the goodness of the fit is gauged by
the �2 per degree of freedom, chosen according to criteria
that �2=NDF is preferably close to 1.0. The resulting effec-
tive masses of H-dibaryon and � states for other values of
atm� at � ¼ 3:60 are tabulated in Table I.

In order to determine the energy difference �M ¼
Mh � 2M� precisely, we work in a regime where t is small
enough that t�M � 1, and at the same time t is large
enough that the contributions of excited states are sup-
pressed. Using the Levenberg-Marquardt algorithm, we
indeed found such a range of t where the linear term
suffices in the data presented here. Figure 2 shows the
mass splitting between the H-dibaryon and 2� threshold
for the parameter combination (0.3110, 0.3115) at as ¼
0:211 and 0.188 fm, respectively. In the time interval where
a single state dominates, the plateau region is reasonably
consistent with that obtained for the effective mass of the

H-dibaryon. The energy gap shows the negative value in
the plateau region of 12 � t � 22 and seems more pro-
nounced with theH-mass smaller than two�’s. The signal
of mass difference is dominated by the large fluctuations in
the H-dibaryon correlators beyond t ’ 22.
The results on the other lattice spacings show consis-

tency in the behavior of mass difference over the range of
our pion mass range (see Tables II, III, and IV).
With all prerequisites available to measure the energy

shift of the H-dibaryon relative to the 2� threshold, we
display, in Fig. 3, the resulting mass differences extrapo-
lated to physical quark mass value using the ansatz in
Eq. (8). We note that the slope of a linear fit in m2

� is
slightly different at all lattice spacings. On the other hand,
the mass difference is almost constant and weakly depen-
dent on quark mass. Nevertheless the results on all lattice
spacings exhibit a negative value in the physical region.
The negative mass difference observed in this region would
imply an attractive interaction and hence a signature of the
H-dibaryon as a bound state.
Since the quenched spectroscopy is quite reliable for

the mass ratio of stable particles, it is physically even
more motivating to extrapolate mass ratio instead of
mass. This allows for the cancellation of systematic errors
since the hadron states are generated from the same gauge
configuration and hence systematic errors are correlated.

FIG. 1 (color online). Effective masses of the IðJPÞ ¼ 0ð0þÞ stranglet (solid triangles) and lambda baryon (solid circles) at ð�l; �Þ ¼
ð0:3110; 3:60Þ (left panel) and ð�l; �Þ ¼ ð0:3115; 4:00Þ (right panel).

TABLE I. Effective masses of the lambda baryon and
H-dibaryon on the 123 � 60 lattice at � ¼ 3:60 for various
values of atm�.

atm� atM� atMh

0.38847(77) 0.5202(24) 1.0320(71)

0.36661(78) 0.4979(24) 0.9865(71)

0.34327(78) 0.4746(24) 0.9386(72)

0.31759(77) 0.4489(24) 0.8868(72)

0.28848(77) 0.4199(24) 0.8287(73)

0.25438(77) 0.3861(24) 0.7606(73)
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Figure 4 shows the chiral extrapolation of the ratio�M=M�

at our smaller lattice spacings. The ratio shows a weaker
dependence on quark mass and moves into the physical
region with a trend of attractive interaction. In the chiral
limit the estimated mass difference at our smallest and
largest lattice spacings is consistent with those obtained by
the NPLQCD and HALQCD Collaborations [18,19]. The
uncertainties from the chiral fits range from 2% to 10%
for to the smallest to largest lattice spacings explored here.

The quenching effects might be one of the largest
sources of the systematic uncertainties. However, with
appropriate definition of scale, the mass ratios of stable
hadrons differ from the corresponding observed values by
less than 6% in quenched approximation [34,35]. In order
to absorb as many quenching effects as possible, we set the
scale by the physical �s by calculating the ratio M�=MN .
We found that the ratio deviates in the range of 3–4% from
its experimental value verifying that the value of �s used is
very close to the physical quark mass. However, since our
calculations use rather heavy pion masses (>500 MeV),
the quenching effects are less noticeable within our statis-
tics. We include a modest estimate of order 5% quenching
uncertainties in our analysis.

Whether the energy difference moves in the continuum
with an attractive interaction needs to be explored. Since

the finite-spacing errors in our calculations are expected to
scale as a2s , we expect such a contribution to have a small
effect on binding energy. Consequently, we expect the
observation of the H-dibaryon to survive the continuum
extrapolation. We perform the continuum extrapolation of
the chirally extrapolated mass ratios in Fig. 5 and present
the results in Table V. Using an a2s-linear extrapolation, we
adopt the choice which shows the smoothest scaling be-
havior for the final values, and use another to estimate the
systematic errors.
As is clear from the figure, the mass ratio shows a weak

dependence on the lattice spacing and varies only slightly
over the fitting range. Thus we expect our continuum
extrapolation to be accurate and unambiguous. The con-
tinuum extrapolation is accompanied with an order 8%
systematic uncertainty from the linear fit in a2s . Using the

TABLE III. The same as Table II but at � ¼ 3:20.

atm� at�M �M=M�

0.41147(45) �0:0125ð49Þ �0:0223ð87Þ
0.39017(46) �0:0138ð49Þ �0:0256ð92Þ
0.36742(46) �0:0140ð49Þ �0:0271ð94Þ
0.34252(46) �0:0143ð48Þ �0:0291ð98Þ
0.31463(46) �0:0141ð49Þ �0:0304ð104Þ
0.28250(47) �0:0143ð49Þ �0:0332ð112Þ

FIG. 2 (color online). Effective mass difference between the H-dibaryon state and the S-wave �þ� two-particle state at
ð�l; �Þ ¼ ð0:3110; 3:60Þ (left panel) and ð�l; �Þ ¼ ð0:3115; 4:00Þ (right panel).

TABLE II. Mass differences and mass ratios between the
H-dibaryon and (�þ�) two-particle state for various values
of atm� at � ¼ 2:00.

atm� at�M �M=M�

0.57298(32) �0:0351ð45Þ �0:0396ð51Þ
0.55564(31) �0:0348ð42Þ �0:0401ð49Þ
0.53723(30) �0:0319ð44Þ �0:0375ð51Þ
0.51770(29) �0:0335ð43Þ �0:0402ð51Þ
0.49682(29) �0:0331ð42Þ �0:0407ð52Þ
0.47430(28) �0:0312ð42Þ �0:0394ð52Þ

TABLE IV. The same as Table II, but at � ¼ 4:00.

atm� at�M �M=M�

0.37144(91) �0:0070ð70Þ �0:0141ð141Þ
0.34893(91) �0:0094ð70Þ �0:0199ð148Þ
0.32486(90) �0:0095ð70Þ �0:0211ð155Þ
0.29802(89) �0:0098ð70Þ �0:0233ð165Þ
0.26725(88) �0:0101ð70Þ �0:0260ð178Þ
0.22738(111) �0:0109ð71Þ �0:0307ð199Þ
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physical � mass M� ¼ 1115:68 MeV, we obtain a con-
tinuum estimate of binding energy 47� 37 MeV for the
binding energy. The uncertainty shown here results from
the statistic and systematic uncertainties combined in

quadrature. The systematic uncertainty including quench-
ing, chiral and continuum extrapolation effects is estimated
to be of the order of 15%. Note that we cannot estimate the
finite-size effects since we have been working with one
lattice size. Even though our spatial extent of L is reason-
ably large, we cannot rule out the possibility of the volume
dependence of the binding energy in the large volume
limit. We intend to pin down this problem for a conclusive
signature in future work.

IV. CONCLUSIONS

The question of whether the H-dibaryon is a bound or
unbound state is still under debate. The observed negative
energy shift pattern favors the former. In conclusion, we
have presented evidence for the existence of the bound
H-dibaryon state in the physical limit from quenched
lattice QCD calculations. The calculations were performed
over a range of pion masses and lattice spacings using
improved anisotropic lattices with refined computational
techniques. Attractive interaction was found in the chiral
limit for all pion masses used in this study and the con-
tinuum limit estimate seems to agree with the predicted
value, which is one of the main results of our paper. Our
results seem to be consistent with the recent results of the
NPLQCD and HALQCD Collaborations for the energy
shift. Our analysis takes into account possible artifacts,
such as statistical, chiral and continuum extrapolation un-
certainties and those arising from quenching effects. On
the basis of our lattice calculation we speculate that the
H-dibaryon is to be identified as bound state. However, the
final conclusions will have to await dynamical simulations
incorporating a systematic study of various possible inter-
polators that are likely to have a good overlap with the
H-dibaryon. We plan to further develop this calculation to
involve a combination of �������� interpolators
on larger volumes.

FIG. 3 (color online). Effective energy shift between the
H-dibaryon state and �þ� two-particle state as a function of
atm� squared. Solid circles, diamonds and triangles show the
results at � ¼ 2:00, 2.80 and 3.20, respectively.

FIG. 4 (color online). Plot of mass ratio �M=M� as a function
of atm� squared. Solid circles, diamonds and triangles show the
results at � ¼ 3:20, 3. 60 and 4.00, respectively. Dotted lines are
the linear extrapolations to the chiral limit.

TABLE V. Mass ratios between the H-dibaryon and (�þ�)
two-particle state at various lattice spacings.

as (fm) �M=M�

0.3974(34) �0:0409ð66Þ
0.3234(43) �0:0391ð73Þ
0.2599(62) �0:0486ð78Þ
0.2347(57) �0:0422ð149Þ
0.2114(70) �0:0403ð242Þ
0.1875(56) �0:0392ð296Þ

FIG. 5 (color online). Compilation of results for the mass ratio,
�M=M� in the continuum limit. The solid line represents a2s
linear extrapolation to the physical limit.

ZHI-HUAN LUO, MUSHTAQ LOAN, AND YAN LIU PHYSICAL REVIEW D 84, 034502 (2011)

034502-6



ACKNOWLEDGMENTS

Z.H. L. is grateful to Professor Qiong-Gui Lin for
discussions and valuable suggestions. This work is sup-
ported by the National Natural Science Foundation of
China (Grant Nos. 10947126 and 11047021). M. L. is

supported in part by the Department of Foreign
Academic Affairs of Jinan University. We would like to
express our gratitude to the Theoretical Physics Group at
Sun Yat-Sen University for the access to its computing
facility.

[1] E. Farhi and R. L. Jaffe, Phys. Rev. D 30, 2379 (1984).
[2] C.Greiner and J. Schaffner-Bielich, arXiv:nucl-th/9801062.
[3] C. Alcock, E. Farhi, and A. Olinto, Nucl. Phys. B, Proc.

Suppl. 21, 92 (1991).
[4] H. Takahashi et al., Phys. Rev. Lett. 87, 212502 (2001).
[5] R. Jaffe, Phys. Rev. Lett. 38, 195 (1977).
[6] B. A. Shahbazian, V.A. Sashin, A. O. Kechechyan, and

A. S. Martynov, Phys. Lett. B 235, 208 (1990).
[7] B.A.Shahbazian,T.A.Volokhovskaya,V.N.Yemelyanenko,

and A. S. Martynov, Phys. Lett. B 316, 593 (1993).
[8] Yemelyanenko, A. S. Martynov, and V. S. Rikhvitzkiy,

Nucl. Phys. B, Proc. Suppl. 75, 63 (1999).
[9] A. Trattner, Ph.D. thesis, LBL, UMI-32-54109, 2006.
[10] C. Yoon et al., Phys. Rev. C 75, 022201 (2007).
[11] T. Sakai et al., Prog. Theor. Phys. Suppl. 137, 121 (2000).
[12] P. B. Mackenzie and H. B. Thacker, Phys. Rev. Lett. 55,

2539 (1985).
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