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We present results for a complete set of polarization observables for jet production in lepton-proton

collision, where the final-state lepton is not observed. The calculations are carried out in collinear

factorization at the level of Born diagrams. For all the observables we also provide numerical estimates for

typical kinematics of a potential future electron-ion collider. On the basis of this numerical study, the

prospects for the transverse single target spin asymmetry are particularly promising. This observable is

given by a certain quark-gluon correlation function, which has a direct relation to the transverse

momentum dependent Sivers parton distribution.
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I. INTRODUCTION

In lepton-nucleon scattering one normally detects the
scattered lepton in order to determine the virtuality Q2 of
the exchanged gauge boson. Provided that Q2 is suffi-
ciently large, one can use, for a number of final states,
the machinery of QCD factorization (see Ref. [1] for an
overview) in order to separate the short-distance physics
from the nonperturbative long-distance physics encoded in
different parton correlation functions. In data analyses for
lepton-nucleon scattering, QCD factorization not only has
been used to get a handle on objects like ordinary forward
parton distributions, but also to address generalized parton
distributions and transverse momentum dependent parton
distributions.

In the present work we study inclusive jet production in
lepton-proton scattering with the scattered lepton going
unobserved, i.e., lp ! jetX. In this case, the transverse
momentum of the jet can serve as the large scale, which
is needed for justifying a calculation in perturbative QCD.
The kinematics of this process is rather simple—in par-
ticular, simpler than the kinematics of semi-inclusive deep-
inelastic scattering (DIS)—and in essence coincides with
the one of, e.g., single jet production in hadronic collisions.
We focus here on jet production, as opposed to hadron
production, because this process, in principle, can provide
more direct information about parton correlation functions
of the proton as no uncertainties from parton fragmentation
are involved.

We consider all possible polarization observables for the
process lp ! jetX at the level of Born diagrams.
Neglecting parity violating effects as well as transverse
polarization of the initial-state lepton, one can identify
three spin-dependent cross sections: �LL, �UT , and �LT ,
where the first index refers to the lepton polarization and
the second one to the proton polarization. While �LL, like
the unpolarized cross section �UU, is a twist-2 observable,
the latter two are twist-3 effects.

In order to compute �UT and �LT we make use of
collinear twist-3 factorization, which was pioneered in
the early 1980s [2,3] and applied for the first time to single
spin asymmetries (SSAs) in [2]. These early treatments of
twist-3 SSAs were later revisited and improved [4,5]. In the
meantime many papers on SSAs and related observables
in the collinear twist-3 formalism exist; see, e.g.,
Refs. [6–26]. In particular, various works are dealing
with the QCD evolution of the relevant twist-3 correlators
(see [27–31] and references therein). Moreover, the rela-
tion between the collinear twist-3 factorization and a fac-
torization in terms of transverse momentum dependent
parton correlators [32–34] has been studied in detail for
semi-inclusive deep-inelastic scattering and the Drell-Yan
process [35–38].
Based on our numerical estimate for a typical kinematics

of the currently discussed/planned Electron Ion Collider
(see, e.g., Refs. [39,40]), the transverse SSA AUT ¼
�UT=�UU appears to be rather promising. The QCD
description of AUT contains a specific twist-3 quark-
gluon-quark correlator—the so-called ETQS (Efremov-
Teryaev-Qiu-Sterman) matrix element [2,4]. As pointed
out in [41,42], the ETQS matrix element is related to the
transverse momentum dependent Sivers function [43]. (For
experimental studies of the Sivers effect in semi-inclusive
DIS we refer to [44,45], while extractions of the Sivers
function from data were discussed in [46–51]). Thus, mea-
suring AUT in lp ! jetX would give a direct (complemen-
tary) handle on the Sivers effect. Our prediction for the
longitudinal double spin asymmetry ALL ¼ �LL=�UU is at
the percent level, while for ALT , computed in a Wandzura-
Wilczek-type approximation, we obtain only a tiny effect.
Note also that a detailed study of AUT in lp ! jetX,

based on factorization in terms of transverse momentum
dependent correlators, can be found in Ref. [52]. That work
represents an extension and update of a related earlier
investigation of AUT for lp ! �X [53]. Moreover, AUT
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for pion production was also considered in the collinear
twist-3 approach in two conference proceedings [54].

II. FACTORIZATION AND PREDICTIVE POWER

In this section, we present a QCD factorization formal-
ism for the inclusive high transverse momentum jet pro-
duction in lepton-hadron collision and provide brief
arguments why this factorization formalism should be
valid. We also provide the prescription for calculating the
short-distance hard parts of the formalism, and discuss the
predictive power of perturbative calculations.

A. Factorization formulas

With a large momentum transfer, the transverse momen-

tum PJT � j ~PJTj of the inclusive jet in high-energy colli-
sions, the short-distance dynamics takes place at a time
scale of 1=PJT , which is much shorter than the typical time
scale of hadronic physics, OðfmÞ. The quantum interfer-
ence taking place between these two very different time
scales is likely suppressed by the ratio of these two scales.
Perturbative QCD factorization of hadronic cross sections
effectively neglects the power suppressed quantum inter-
ference and factorizes the cross section into a product or a
convolution of two probabilities: one for finding active
parton(s) inside the identified hadron(s), and the other is
the short-distance part of partonic cross section(s). For
example, the leading power contribution to single inclusive
jet production at large transverse momentum in hadron-
hadron collisions, hðPÞ þ h0ðP0Þ ! jetðPJÞ þ X, can be
factorized as [1],

d�hh0!jetðPJÞX

dPJTdy
� X

ab

Z
dxfa=h1 ðx;�Þ

Z
dx0fb=h

0
1 ðx0; �Þ

� d�̂ab!jetðPJÞX

dPJTdy
ðx; x0; PJT; y; �Þ; (1)

where
P

ab runs over all parton flavors, fa=h1 ðx;�Þ is the

(unpolarized) parton distribution function (PDF) of flavor
a and momentum fraction x of hadron h, and � is the
factorization scale. Since PJT is the only large observed
momentum, Eq. (1) is a collinear factorization formalism

[1]. The d�̂ab!jetðPJ ÞX
dPJTdy

ðx; x0; PJT; y; �Þ in Eq. (1) is the pertur-

batively calculable short-distance hard part, which is ef-
fectively equal to the partonic jet cross section for the
collision between two partons a and b with all collinear
sensitive contribution removed. The predictive power of
Eq. (1) relies on our ability to calculate the partonic hard
parts systematically in perturbative QCD order-by-order in
�s, and the universality of PDFs. The factorization formal-
ism in Eq. (1) works extremely well for describing single
inclusive jet data at the Tevatron for over 10 orders of
magnitude in the production rate [55].

Our ability to calculate the short-distance partonic hard
parts in Eq. (1) relies on the fact that the factorization of

short-distance dynamics is not sensitive to the long-
distance details of the colliding hadron(s). That is, the
factorization formalism in Eq. (1), which is valid for two
colliding hadrons, should also be valid for the collision of
two asymptotic partons. By applying Eq. (1) to the colli-
sion of two partons of various flavors, we can derive all
short-distance hard parts order-by-order in powers of �s

[56]. Since the factorization formalism in Eq. (1) is not
sensitive to the details of the colliding particles, we expect
that the same factorization formalism in Eq. (1) is also
valid for single inclusive jet production at high PJT in
lepton-hadron collision, lðlÞ þ hðpÞ ! jetðPJÞ þ X, as

d�lh!jetðPJÞX

dPJTdy
� X

ab

Z
dxfa=l1 ðx;�Þ

Z
dx0fb=h1 ðx0; �Þ

� d�̂ab!JetðPJÞX

dPJTdy
ðx; x0; PJT; y; �Þ; (2)

where
P

a runs over the lepton, the photon, and all parton

flavors, while
P

b runs over all parton flavors, fa=l1 ðx; �Þ is
the nonperturbative distribution to find a lepton, photon or
parton inside the colliding lepton with the momentum
fraction x. As in the case of hadronic collisions, the

short-distance hard part d�̂ab!JetðPJ ÞX
dPJTdy

ðx; x0; PJT; y; �Þ can be

perturbatively calculated order-by-order in the coupling
constant by applying the factorized formalism in Eq. (2)
to the collision between various lepton, photon or parton
states. For the leading contribution, it might be reasonable
to keep the cross section at the lowest power in �em while
including radiative corrections from the strong interaction
in powers of �s.
Like all perturbative QCD factorization approaches, the

predictive power of Eq. (2) relies on the infrared safety of
the hard parts and the universality of the long-distance
distributions. Unlike the hadronic case in Eq. (1), the jet
production in lepton-hadron collisions requires a set of new

nonperturbative distributions, fa=l1 ðx; �Þ with a ¼ l, �, q,
�q, g. The operator definition of the lepton PDFs should be
the same as the proton PDFs’ except that the proton state is
replaced by the state of the lepton [57]. The operator
definition of the lepton distribution inside a lepton is very
similar to that of a quark distribution,

fl
0=l
1 ðx;�Þ ¼

Z dy�

2�
eixP

þ��hl; ~slj �c l0 ð0Þ

� �þ

2
W �ð0; ��Þc l0 ð��Þjl; ~sli; (3)

where W �ð0; ��Þ ¼ exp½�ie
R��
0 dy�Aþ

� ðy�Þ� is the

gauge link in an Abelian gauge for the lepton moving in
the ‘‘þz’’ direction. If we neglect the role of the strong
interaction, we can calculate the lepton distribution pertur-

batively in QED. At the lowest order, fl
0=l
1 ðx;�Þ ¼

�l0l�ð1� xÞ. The operator definition of the photon distri-
bution inside a lepton is the same as the operator definition
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for the gluon distribution inside a proton with the color
dependence removed and the proton state replaced by the
lepton state,

f�=l1 ðx;�Þ ¼ 1

xPþ
Z d��

2�
eixP

þ��

� hl; ~sljFþ�
em ð0ÞFþ�

em ð��Þjl; ~slið�g��Þ; (4)

where F
�	
em is the electromagnetic field strength tensor,

which can be expressed in terms of gauge invariant electric
and magnetic fields. The photon distribution of the lepton,

f�=l1 ðx;�Þ, could be calculated perturbatively in QED if we
neglect the strong interaction. But, in general, it is a non-
perturbative distribution.

Based on the same argument that the factorization of the
short-distance dynamics is not sensitive to the details of the
colliding particles, and the fact that the single inclusive jet
cross section at high transverse momentum has only one
observed large momentum transfer PJT , we expect that the
twist-3 collinear factorization formalism for calculating
the transverse-spin-dependent cross section in hadronic
collisions [2,4,5] can be applied to the single inclusive jet
cross section in lepton-hadron collisions. Therefore,

d��lh!jetðPJÞXðSTÞ
dPJTdy

� X
ab

Z
dxfa=l1 ðx;�Þ

�
Z

dx0Tb=h
F ðx0; x0; �; STÞHab!JetðPJÞXðx; x0; PJT; y; �Þ;

(5)

where ��ðSTÞ � ½�ðSTÞ � �ð�STÞ�=2 is the transverse-

spin-dependent cross section, with the spin vector ST �
j ~STj of the transversely polarized colliding hadron. The

Tb=h
F ðx; x;�; ~STÞ with b ¼ q, �q, g in Eq. (5) is the universal

twist-3 parton correlation function relevant for the SSAs

[4,27], and the Hab!JetðPJÞXðx; x0; PJT; y; �Þ with a ¼
l; �; q; �q; g and b ¼ q; �q; g are the process-dependent
short-distance hard parts whose leading order contributions
are derived below.

B. Partonic hard parts

In this subsection, we provide the prescription for cal-
culating the partonic hard parts of the factorization formu-
las in Eqs. (2) and (5).

To calculate the short-distance hard parts, d�̂ab!JetðPJ ÞX
dPJTdy

�
ðx; x0; PJT; y;�Þ in Eq. (2), we apply the factorization
formalism to the collision between all possible combina-
tions of two asymptotic incoming lepton, photon, or parton
states. For the leading order (LO) contribution, the jet cross
section is given by the lowest order lepton-quark scatter-
ing, as sketched in Fig. 1(a), and the jet is effectively given
by the final-state quark: jetðPJÞ ! qðPJÞ at the lowest
order. The corresponding hard part can be uniquely derived
by applying Eq. (2) to the collision of the lepton on a quark
state: l ! l and h ! q,

�
lq!qðPJÞ!jetðPJÞ
ð2;0Þ ¼ fl=l1ð0Þ � fq=q1ð0Þ � �̂

lq!qðPJÞ!jetðPJÞ
ð2;0Þ

¼ �̂
lq!qðPJÞ!jetðPJÞ
ð2;0Þ ; (6)

where the subscript ‘‘(2,0)’’ indicates two powers of �em

and zeroth order in �s, and � represents the convolution
over the lepton or parton momentum fraction as shown in
Eq. (2). At the lowest order, the short-distance hard part for
the jet cross section is effectively the same as the lepton-
quark scattering cross section for producing the quark
qðPJÞ and is perturbatively finite.
If we apply the factorization formalism in Eq. (2) to

photon-quark collision by letting l ! � and h ! q, as
sketched in Fig. 2(a), we can have two additional tree-level
contributions to the jet cross section,

��q!qðPJÞ!jetðPJÞ
ð1;1Þ ¼ f�=�1ð0Þ � fq=q1ð0Þ � �̂�q!qðPJÞ!jetðPJÞ

ð1;1Þ

¼ �̂�q!qðPJÞ!jetðPJÞ
ð1;1Þ ;

��q!gðPJÞ!jetðPJÞ
ð1;1Þ ¼ f�=�1ð0Þ � fq=q1ð0Þ � �̂�q!gðPJÞ!jetðPJÞ

ð1;1Þ

¼ �̂
�q!gðPJÞ!jetðPJÞ
ð1;1Þ :

(7)

The difference of these two contributions is whether the jet
is generated by an energetic quark or a gluon. Similarly, if

FIG. 1. Diagram (a): parton model representation for lp ! jetX. The jet is produced by the struck quark, and the final-state lepton
goes unobserved. Diagram (b): contribution from quark-gluon-quark correlation. This diagram, together with its Hermitian conjugate
which is not displayed, needs to be taken into account when computing twist-3 observables.
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we apply Eq. (2) to photon-gluon collision, we obtain two
more tree-level contributions to the jet cross section:

�̂
�g!qðPJÞ!jetðPJÞ
ð1;1Þ and �̂

�g! �qðPJÞ!jetðPJÞ
ð1;1Þ . Since the photon

distribution of the lepton f�=l1 ðx;�Þ carries at least one

power of �em higher than the leading term of fl=l1 ðx;�Þ,
these photon-parton contributions could be formally con-
sidered as an order �s correction to the LO term in Eq. (6).
However, since the photon distribution of the lepton

f�=l1 ðx;�Þ has a large QED logarithm perturbatively, for

certain kinematics these terms could be more important
than typical higher order corrections.

If we apply the factorization formalism in Eq. (2) to
parton-parton collision by letting l ! a and h ! b with a,
b ¼ q, �q, g, the partonic hard parts are to be the same as
those in the hadronic collisions [4,9]. Since the parton

distribution functions of the lepton fa=l1 ðx;�Þ have at least
two powers of �em perturbatively, even the leading Born
contribution here should be considered as higher order
corrections in powers of �s.

Higher order corrections to the short-distance hard parts
of the factorization formalism can be derived in the same
way by applying Eq. (2) to the scattering of various partonic
states at higher orders in �s. For example, we can calculate

the next-to-leading order (NLO) contribution �̂
lq!jetðPJÞ
ð2;1Þ by

applying Eq. (2) to the lepton-quark collision at order �s,

�lq!jetðPJÞ
ð2;1Þ ¼fl=l1ð0Þ �fq=q1ð0Þ � �̂lq!jetðPJÞ

ð2;1Þ

þfl=l1ð0Þ �fq=q1ð1Þ � �̂lq!jetðPJÞ
ð2;0Þ

þf�=l1ð1Þ �fq=q1ð0Þ �½�̂�q!qðPJÞ
ð1;1Þ þ �̂

�q!gðPJÞ
ð1;1Þ �; (8)

which can be written as

�̂lq!jetðPJÞ
ð2;1Þ ¼ �lq!jetðPJÞ

ð2;1Þ � fq=q1ð1Þ � �̂lq!jetðPJÞ
ð2;0Þ

� f�=l1ð1Þ � ½�̂�q!qðPJÞ
ð1;1Þ þ �̂

�q!gðPJÞ
ð1;1Þ �; (9)

where the first term on the right-hand side (RHS) is the
partonic cross section given by the real Feynman diagrams
sketched in Fig. 3(a) plus the virtual diagrams from one-
loop corrections to the tree-diagram in Fig. 1(a). The real
diagrams in Fig. 3(a) have three potential collinear loga-
rithmic divergences. One comes from the final-state gluon
radiation when the gluon is parallel to the parent quark.
Such final-state collinear divergence is taken care of by the
jet definition and its finite cone size. The other two come
from the initial state: when the gluon line is almost parallel
to the incoming quark or when the photon is about parallel
to the incoming lepton. As a result of QCD factorization,
these two divergences are systematically removed by
the second and the third terms in Eq. (9), respectively. The
hard 2 ! 2 scattering cross section of the second term,

�̂lq!jetðPJÞ
ð2;0Þ is derived in Eq. (6), while �̂�q!qðPJÞ

ð1;1Þ and

�̂
�q!gðPJÞ
ð1;1Þ of the third term are given in Eq. (7).

Similarly, we can derive another short-distance contri-

bution at the same order, �̂
lg!jetðPJÞ
ð2;1Þ , by applying Eq. (2) to

the collision between a lepton and a gluon,

�̂
lg!jetðPJÞ
ð2;1Þ ¼ �

lg!jetðPJÞ
ð2;1Þ � fq=g1ð1Þ � �̂

lq!jetðPJÞ
ð2;0Þ

� f�=l1ð1Þ � ½�̂�g!qðPJÞ
ð1;1Þ þ �̂�g! �qðPJÞ

ð1;1Þ �; (10)

where the second and the third terms on the RHS again
remove the collinear divergence of the partonic scattering

J
P J

P
JP JP

FIG. 2. (a) Leading order tree diagrams for photon scattering on an asymptotic quark state. (b) Leading order tree diagrams for
photon scattering on an asymptotic quark-gluon composite state. Note that only the gluon interaction with the observed final-state
parton is nonzero, while the interaction with the unobserved parton cancels.

JP PJ

J
P PJ

FIG. 3. (a) Next-to-leading order tree diagrams for lepton scattering on an asymptotic quark state. (b) Next-to-leading order tree
diagrams for lepton scattering on an asymptotic quark-gluon composite state.
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cross section. In general, the perturbatively calculated hard
parts are effectively equal to the partonic cross sections
with all collinear divergences removed.

In the collinear factorization approach, the spin-
dependent cross section to the SSAs comes from the inter-
ference of the real part of the scattering amplitude with one
active parton and the imaginary part of the scattering
amplitude with two active partons [2,4,5,9]. For the LO

contribution, the partonic hard partHlq!qðPJÞXðx; x0; PJT; yÞ
in Eq. (5) is given by the diagram in Fig. 1(b), and will be
calculated in the following section.

For the higher order corrections, the partonic hard part

Hab!JetðPJÞXðx; x0; PJT; y; �Þ in Eq. (5) can be calculated in
the same way by applying the formalism to the various
partonic states. For example, the LO photon-parton scat-
tering contribution to the SSA comes from the interference
of Feynman diagrams in Fig. 2(a) and 2(b). Similarly,
the NLO lepton-quark scattering contribution to the SSA
comes from the interference of Feynman diagrams in
Fig. 3(a) and 3(b). In the rest of this paper, we will present
our derivation and results of the LO contribution to various
spin asymmetries. We will leave the explicit treatment of
higher order corrections to future work.

III. KINEMATICS AND ANALYTICAL RESULTS

In this section we present some details of the kinematics
for the process lðlÞ þ pðPÞ ! jetðPJÞ þ X, as well as the
tree-level formulas for the various observables. We use the
momenta of the particles to fix a coordinate system accord-

ing to êz ¼ ~P=j ~Pj ¼ �~l=j~lj, êx ¼ ~PJT=j ~PJTj, and êy ¼
êz � êx. Mandelstam variables are defined by

s¼ ðlþPÞ2; t¼ ðP�PJÞ2; u¼ ðl�PJÞ2; (11)

while on the partonic level one has

ŝ ¼ ðlþ kÞ2 ¼ xs; t̂ ¼ ðk� PJÞ2 ¼ xt;

û ¼ ðl� PJÞ2 ¼ u; (12)

with k denoting the momentum of the active quark in the
proton; see also Fig. 1(a). The momentum fraction x
specifies the plus momentum of the quark through
kþ ¼ xPþ.1 Using ŝþ t̂þ û ¼ 0 one finds that x ¼
�u=ðsþ tÞ. In other words, the longitudinal momentum
of the struck quark is fixed by the external kinematics of
the process, like it is in fully inclusive DIS. Of course, this
no longer applies once higher order corrections are taken
into account. For the numerical estimates we will use PJT ,
and the Feynman variable xF (defined in the lepton-proton
cm-frame) for which one has

xF ¼ 2PJzffiffiffi
s

p ¼ t� u

s
: (13)

Next, we turn to the polarization observables for lp !
jetX, which we compute in the collinear factorization
framework. We restrict ourselves to one-photon exchange
between the leptonic and the hadronic part of the process.
Allowing for longitudinal polarization of the initial-state
lepton, as well as longitudinal and transverse polarization
of the proton target, one finds the following expression for
the cross section2:

P0
J

d3�

d3PJ

¼�2
em

s

X
a

e2a
ðsþtÞx

�
fa1 ðxÞHUUþ
l
pg

a
1ðxÞHLL

þ2�M"ijT S
i
TP

j
JT

�
Ta
Fðx;xÞ�x

d

dx
Ta
Fðx;xÞ

�
ŝ

t̂û
HUU

þ
l2M ~ST � ~PJT

�
ð~gaðxÞ�x

d

dx
~gaðxÞÞ ŝ

t̂û
HLL

þxgaTðxÞ
2

t̂

��
: (14)

In Eq. (14), which is the main analytical result of our work,

l and 
p represent the helicity of the lepton and the

proton, respectively. One can project out the four indepen-
dent components of the cross section in (14) according to

�UU ¼ 1

4
ð�ðþ;þÞ þ �ð�;þÞ þ �ðþ;�Þ þ �ð�;�ÞÞ;

(15)

�LL ¼ 1

4
ð½�ðþ;þÞ � �ð�;þÞ� � ½�ðþ;�Þ � �ð�;�Þ�Þ;

(16)

�UT ¼ 1

4
ð½�ðþ; "yÞ þ �ð�; "yÞ� � ½�ðþ; #yÞ þ �ð�; #yÞ�Þ;

(17)

�LT ¼ 1

4
ð½�ðþ; "xÞ � �ð�; "xÞ� � ½�ðþ; #xÞ � �ð�; #xÞ�Þ:

(18)

In these formulas, ’þ’ and ’�’ indicate particle helicities,
whereas ’"x=y’ (’#x=y’) denotes transverse polarization of the
proton along êx=yð�êx=yÞ.
As already mentioned, both �UU and �LL are twist-2

observables. We computed them on the basis of diagram
(a) in Fig. 1 by applying the collinear approximation to the
momentum k of the active quark. In the case of �UU the
result contains the unpolarized quark distribution fa1 , while
for �LL the quark helicity distribution ga1 shows up. The
hard scattering coefficients for these two terms in (14),

1For a generic four-vector v, we define light-cone coordinates
according to v� ¼ ðv0 � v3Þ= ffiffiffi

2
p

and ~vT ¼ ðv1; v2Þ.
2Polarization degrees are suppressed in the cross section

formula (14).
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expressed through the partonic Mandelstam variables in
(12), read

HUU ¼ 2ðŝ2 þ û2Þ
t̂2

; HLL ¼ 2ðŝ2 � û2Þ
t̂2

: (19)

The cross sections�UT and�LT (3rd and 4th term on the
RHS of (14), respectively) represent twist-3 observables.

(Note that M is the proton mass, and "ijT � "�þij with
"0123 ¼ 1.) The transverse SSA AUT ¼ �UT=�UU is analo-
gous to the SSA AN which has been extensively studied in
one-particle inclusive production for hadron-hadron colli-
sions; see also Ref. [52], and [58–60] for experimental
results from RHIC. A similar observable was proposed in
[61,62] for semi-inclusive DIS, but in this case the final-
state lepton still needs to be observed.

Calculational details for such twist-3 observables in
collinear factorization can be found in various papers;
see, e.g., Refs. [4,5,9,22]. We merely mention that one
has to expand the hard scattering contributions around
vanishing transverse parton momenta. While for twist-2
effects only the leading term of that expansion matters, in
the case of twist-3 the second term is also relevant. In
addition, the contribution from quark-gluon-quark correla-
tions, as displayed in diagram (b) in Fig. 1, needs to be
taken into consideration. The sum of all the terms can be
written in a color gauge invariant form, which provides a
consistency check of the calculation.

The quark-gluon-quark correlator showing up in �UT is
the aforementioned ETQS matrix element Ta

Fðx; xÞ [2,4].
The peculiar feature of this object is the vanishing gluon
momentum—that’s why it is also called a ‘‘soft gluon pole
matrix element’’. If the gluon momentum becomes soft one
can hit the pole of a quark propagator in the partonic
scattering process, providing an imaginary part (nontrivial
phase) which, quite generally, can lead to single spin
effects [2,4]. Note also that in our lowest order calculation
of �UT no so-called soft fermion pole contribution (see
[20] and references therein) emerges. For �LT another
quark-gluon-quark matrix element—denoted as ~ga; see,
in particular, Refs. [8,22,28]—appears, together with the
familiar twist-3 quark-quark correlator gaT .

We use the common definitions for g1 and gT . The
quark-gluon-quark correlators TF and ~g are specified ac-
cording to3

TFðx;xÞ¼ 1

2M

Z d��d��

ð2�Þ2 eixP
þ��

�hP;STj �c ð0Þ�þigFþið��Þc ð��ÞjP;STiði"ijT SjTÞ; (20)

~gðxÞ¼ 1

2M

Z d��

2�
eixP

þ��ðSiTÞhP;STj �c ð0Þ�5�
þ

�ðiDi
T� ig

Z 1

0
d��Fþið��ÞÞc ð��ÞjP;STi; (21)

with F�	 representing the gluon field strength tensor, and
D� ¼ @� � igA� the covariant derivative. Equations (20)
and (21) hold in the light-cone gauge Aþ ¼ 0, while in a
general gauge Wilson lines need to be inserted between the
field operators.
It is important that TF and ~g are related to moments of

transverse momentum dependent parton distributions. To
be explicit, one has [22,28,41,42]

�TFðx; xÞ ¼ �
Z

d2kT
~k2T

2M2
f?1Tðx; ~k2TÞjDIS; (22)

~gðxÞ ¼
Z

d2kT
~k2T

2M2
g1Tðx; ~k2TÞ; (23)

where we use the conventions of Refs. [63–65] for the
transverse momentum dependent correlators f?1T and g1T .
In Eq. (14) we take into account that the Sivers function
f?1T [43] depends on the process in which it is probed
[66,67]. In order to obtain numerical estimates for �UT

and �LT we will exploit the relations in (22) and (23).

IV. NUMERICAL ESTIMATES

Now we move on to discuss numerical estimates for the
polarization observables. To this end we consider the three
spin asymmetries ALL, AUT , and ALT , whose definitions are
repeated here for convenience,

ALL ¼ �LL

�UU

; AUT ¼ �UT

�UU

; ALT ¼ �LT

�UU

: (24)

To compute �UU we use the unpolarized parton distribu-
tions from the CTEQ5-parametrization [68]. The helicity
distributions entering �LL are taken from the parametriza-
tion [69]. For the ETQS matrix element TF we explore two
choices: (1) we use the relation (22) between TF and the
Sivers function, and take f?1T from the recent fit provided in
Ref. [51]; (2) we use TF from the parametrization obtained
in [9]—taking into consideration the recently discovered
sign change [70]—by fitting transverse SSAs measured in
hadronic collisions.
In the case of �LT one needs input for gT and ~g. For gT

we resort to the frequently used Wandzura-Wilczek ap-
proximation [71] (see [72] for a recent study of the quality
of this approximation)

gTðxÞ �
Z 1

x

dy

y
g1ðyÞ; (25)

whereas for ~g we use (23) and a Wandzura-Wilczek-type
approximation for the particular kT moment of g1T in (23)
[73], leading to

~gðxÞ � x
Z 1

x

dy

y
g1ðyÞ: (26)

We mention that (26) and a corresponding relation between
chiral-odd parton distributions were used in [74,75] in3Note that in the literature different conventions for TF exist.
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order to estimate certain spin asymmetries in semi-
inclusive DIS. The comparison to data discussed in [75]
looks promising, though more experimental information is
needed for a thorough test of approximate relations like the
one in (26). Measuring the double spin asymmetry ALT ,
which we consider in the present paper, may provide such a
test.

For our numerical estimates we use leading order parton
distributions, and take into account the three light quark
flavors. The transverse momentum of the jet PJT serves as
the scale for the parton distributions. For the following
reasons the scale dependence of all the asymmetries is
rather weak: because the leading order evolution kernels
for f1 and g1 are the same,ALL is almost scale independent.
This also applies toALT when using the approximations (25)
and (26). Since both the parametrization of the Sivers
function in [51] as well as the one for the ETQS matrix
element TF in [9,70] are related to the unpolarized distri-
bution f1, also the scale dependence of AUT is quite mild.

Our results are for typical kinematics accessible at a
potential future electron-ion collider [39,40]: we consider
the energies

ffiffiffi
s

p ¼ 50 GeV and
ffiffiffi
s

p ¼ 100 GeV. The asym-
metries are either presented as function of xF for fixed PJT

or vice versa.
We start by discussing the twist-2 asymmetry ALL. As

shown in Fig. 4, this observable is relatively small (on the

percent level). It is largest in the backward region (negative
xF), and rises with increasing PJT . Despite the small effect,
measuring ALL could provide complementary information
on the quark helicity distributions of the proton. On the
other hand, for the longitudinal double spin asymmetry in
lp ! jetX one faces the same problems one has in inclu-
sive DIS: quarks and antiquarks enter with equal weight,
and a flavor separation is hardly possible. However, if
instead one considers ALL for inclusive hadron production
these problems can, in principle, be circumvented like in
semi-inclusive DIS. According to Fig. 4, ALL clearly in-
creases towards lower values of

ffiffiffi
s

p
. Therefore, ALL for

lp ! HX (at
ffiffiffi
s

p
< 50 GeV) should definitely be a very

interesting observable for studying the quark helicity struc-
ture of the proton.
Let us now turn to the transverse SSA AUT , which is

displayed in Fig. 5 and 6. For both parametrizations we
obtain a healthy asymmetry in the forward region, with
effects at the level 5–10%. (Note also that, for the parame-
trization taken from [51], our numerical results in the
collinear approach are similar to those obtained in
Ref. [52] by using factorization in terms of transverse
momentum dependent parton correlators and the same
input for the Sivers function.) The asymmetry drops with
increasing PJT and hardly changes when varying

ffiffiffi
s

p
(see

Fig. 6). The weak energy-dependence of AUT appears
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FIG. 4 (color online). ALL as a function of xF (left) and PJT (right). Solid line:
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s

p ¼ 50 GeV; dashed line:
ffiffiffi
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p ¼ 100 GeV.
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the fit of the Sivers function in [51] and using the relation in (22), while the dashed line is computed with TF from [9,70].
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because, according to (14), both �UU and �UT have the
same hard scattering coefficient. From Fig. 5 it is obvious
that the transverse SSA AUT seems very promising in order
to experimentally constrain the ETQS matrix element TF

and the Sivers function. Such a constraint is of utmost
importance as the existing parametrizations even differ in
sign [70]. If PJT is sufficiently large, our leading order
calculation should give a reliable estimate of the asymme-
try. One may even be able to check whether TFðx; xÞ
changes sign as function of x, as has been recently specu-
lated [76].

Finally, our numerical estimates for ALT are shown in
Fig. 7. This asymmetry is apparently too small to be
measured. The hard scattering coefficient of �LT is the
same than the one for �LL. Therefore, ALT decreases with
increasing energy like ALL does. The main reason for ALT

being even much smaller than ALL can be traced back to
the factor x showing up on the RHS of the Wandzura-
Wilczek-type approximation (26). Because of this, an ex-
perimental study of ALT can serve as an interesting check
of the relation (26), as already pointed out above. In
addition, like in the case of ALL, measurable effects for
ALT in hadron production at lower values of

ffiffiffi
s

p
can be

expected.

V. SUMMARYAND DISCUSSION

We have studied a complete set of polarization observ-
ables for the process lp ! jetX. Neglecting parity
violating contributions and transverse polarization of the
lepton one can consider three spin asymmetries: ALL, AUT ,
and ALT . We have computed these asymmetries at the level
of Born diagrams in collinear factorization. Moreover,
numerical estimates for typical kinematics of a potential
future electron-ion collider have been provided. (We have
explored the cm energies

ffiffiffi
s

p ¼ 50 GeV and
ffiffiffi
s

p ¼
100 GeV.) In the following we summarize our findings
and add some discussion:
(i) We have discussed in detail how to calculate the

process systematically at higher orders in perturba-
tion theory. It is important to extend our explicit
calculations to the 1-loop level for two reasons.
First, one must investigate how stable the various
asymmetries are upon inclusion of NLO corrections,
in particular, the logarithmically enhanced �� q
channel as pointed out in Sec. II. Second, a 1-loop
calculation for twist-3 observables, in which deriva-
tives of quark-gluon-quark correlators (see dTF=dx
and d~g=dx in (14)) appear, has never been done
before.

(ii) The numerical result for the double spin asymmetry
ALL (ALT) is small (tiny)—on the percent level for
ALL. However, in both cases significant effects can
be expected for lower values of

ffiffiffi
s

p
, let us say around

10–20 GeV. Of course, in this region one cannot
perform jet measurements but has rather to consider
inclusive hadron production.

(iii) We find that in the forward region the transverse
SSA AUT can become of the order 5%–10%. This
observable gives a direct handle on the ETQS twist-
3 matrix element TF—from a theoretical point of
view it is one of the simplest observables for ad-
dressing TF (to leading order neither soft fermion
poles, nor trigluon correlations, nor hard gluon
poles contribute)—and also, by means of (22), to
the transverse momentum dependent Sivers
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FIG. 6 (color online). AUT as a function of PJT at xF ¼ 0:1.
Solid line:

ffiffiffi
s

p ¼ 50 GeV; dashed line:
ffiffiffi
s

p ¼ 100 GeV. The
matrix element TF is taken from the fit of the Sivers function
in [51] and using the relation in (22).
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function f?1T . Given the fact that at present even the
sign of TF is unclear [70], experimental informa-
tion on this observable would be very valuable.

In general, we believe that there is sufficient justification
for further exploration of the potential of high-energy
lepton-nucleon scattering with an unidentified final-state
lepton. This type of reaction may also constitute an inter-
esting part of the physics program at a future electron-ion
collider.

ACKNOWLEDGMENTS

We thank Naomi Makins, Werner Vogelsang, and Feng
Yuan for helpful discussions. We are grateful to RIKEN,
Brookhaven National Laboratory, and the U.S. Department
of Energy (Contract No. DE-AC02-98CH10886) for pro-
viding the facilities essential for the completion of this
work. A.M. acknowledges the support of the NSF under
Grant No. PHY-0855501.

[1] J. C. Collins, D. E. Soper and G. Sterman, in Perturbative

Quantum Chromodynamics, edited by A.H. Mueller,

Advanced Series on Directions in High Energy Physics

Vol. 5 (World Scientific, Singapore, 1988).
[2] A. V. Efremov and O.V. Teryaev, Yad. Fiz. 36, 242 (1982)

[Sov. J. Nucl. Phys. 36, 140 (1982)]; Phys. Lett. B 150,
383 (1985).

[3] R. K. Ellis, W. Furmanski, and R. Petronzio, Nucl. Phys.

B207, 1 (1982); Nucl. Phys. B212, 29 (1983).
[4] J.W. Qiu and G. Sterman, Phys. Rev. Lett. 67, 2264

(1991); Nucl. Phys. B378, 52 (1992); Phys. Rev. D 59,
014004 (1998).

[5] H. Eguchi, Y. Koike, and K. Tanaka, Nucl. Phys. B763,
198 (2007).

[6] P. G. Ratcliffe, Eur. Phys. J. C 8, 403 (1999).
[7] Y. Kanazawa and Y. Koike, Phys. Lett. B 478, 121 (2000);

Phys. Lett. B 490, 99 (2000); Phys. Rev. D 64, 034019
(2001).

[8] H. Eguchi, Y. Koike, and K. Tanaka, Nucl. Phys. B752, 1
(2006).

[9] C. Kouvaris, J.W. Qiu, W. Vogelsang, and F. Yuan, Phys.

Rev. D 74, 114013 (2006).
[10] Y. Koike and K. Tanaka, Phys. Lett. B 646, 232 (2007);

668, 458(E) (2008); Phys. Rev. D 76, 011502 (2007).
[11] C. J. Bomhof, P. J. Mulders, W. Vogelsang, and F. Yuan,

Phys. Rev. D 75, 074019 (2007).
[12] A. Bacchetta, C. Bomhof, U. D’Alesio, P. J. Mulders, and

F. Murgia, Phys. Rev. Lett. 99, 212002 (2007).
[13] P. G. Ratcliffe and O.V. Teryaev, arXiv:hep-ph/0703293.
[14] J.W. Qiu, W. Vogelsang, and F. Yuan, Phys. Lett. B 650,

373 (2007); Phys. Rev. D 76, 074029 (2007).
[15] F. Yuan and J. Zhou, Phys. Lett. B 668, 216 (2008).
[16] Z. B. Kang and J.W. Qiu, Phys. Rev. D 78, 034005 (2008).
[17] J. Zhou, F. Yuan, and Z. T. Liang, Phys. Rev. D 78, 114008

(2008); Phys. Lett. B 678, 264 (2009).
[18] J. P. Ma and H. Z. Sang, J. High Energy Phys. 11 (2008)

090; Phys. Lett. B 676, 74 (2009).
[19] Z. B. Kang, J.W. Qiu, W. Vogelsang, and F. Yuan, Phys.

Rev. D 78, 114013 (2008).
[20] Y. Koike and T. Tomita, Phys. Lett. B 675, 181 (2009).
[21] F. Yuan and J. Zhou, Phys. Rev. Lett. 103, 052001 (2009).
[22] J. Zhou, F. Yuan, and Z. T. Liang, Phys. Rev. D 81, 054008

(2010).
[23] Z. B. Kang, F. Yuan, and J. Zhou, Phys. Lett. B 691, 243

(2010).

[24] K. Kanazawa and Y. Koike, Phys. Rev. D 82, 034009
(2010).

[25] J. Zhou and A. Metz, Phys. Rev. Lett. 106, 172001 (2011).
[26] Z. B. Kang, B.W. Xiao, and F. Yuan, arXiv:1106.0266.
[27] Z. B. Kang and J.W. Qiu, Phys. Rev. D 79, 016003

(2009).
[28] J. Zhou, F. Yuan, and Z. T. Liang, Phys. Rev. D 79, 114022

(2009).
[29] W. Vogelsang and F. Yuan, Phys. Rev. D 79, 094010

(2009).
[30] V.M. Braun, A. N. Manashov, and B. Pirnay, Phys. Rev. D

80, 114002 (2009).
[31] Z. B. Kang, Phys. Rev. D 83, 036006 (2011).
[32] J. C. Collins and D. E. Soper, Nucl. Phys. B193, 381

(1981); B213, 545(E) (1983).
[33] X. d. Ji, J. p. Ma, and F. Yuan, Phys. Rev. D 71, 034005

(2005); Phys. Lett. B 597, 299 (2004).
[34] J. C. Collins and A. Metz, Phys. Rev. Lett. 93, 252001

(2004).
[35] X. Ji, J.W. Qiu, W. Vogelsang, and F. Yuan, Phys. Rev.

Lett. 97, 082002 (2006); Phys. Rev. D 73, 094017 (2006);

Phys. Lett. B 638, 178 (2006).
[36] Y. Koike, W. Vogelsang, and F. Yuan, Phys. Lett. B 659,

878 (2008).
[37] A. Bacchetta, D. Boer, M. Diehl, and P. J. Mulders, J. High

Energy Phys. 08 (2008) 023.
[38] J. Zhou, F. Yuan, and Z. T. Liang, Phys. Lett. B 678, 264

(2009).
[39] A. De Roeck and R. Ent, in Proceedings of XVII

International Workshop on Deep-Inelastic Scattering

and Related Topics, Madrid, Spain, April 2009 edited by

C. Glasman and J. Terron (Science Wise, 2009), 10.3360/

dis.2009.235.
[40] M. Anselmino et al., Eur. Phys. J. A 47, 35 (2011).
[41] D. Boer, P. J. Mulders, and F. Pijlman, Nucl. Phys. B667,

201 (2003).
[42] J. P. Ma and Q. Wang, Eur. Phys. J. C 37, 293 (2004).
[43] D.W. Sivers, Phys. Rev. D 41, 83 (1990); Phys. Rev. D 43,

261 (1991).
[44] A. Airapetian et al. (HERMES Collaboration), Phys. Rev.

Lett. 94, 012002 (2005); Phys. Rev. Lett. 103, 152002
(2009).

[45] V. Y. Alexakhin et al. (COMPASS Collaboration), Phys.

Rev. Lett. 94, 202002 (2005); E. S. Ageev et al.

(COMPASS Collaboration), Nucl. Phys. B765, 31

EXPLORING THE STRUCTURE OF THE PROTON THROUGH . . . PHYSICAL REVIEW D 84, 034046 (2011)

034046-9

http://dx.doi.org/10.1016/0370-2693(85)90999-2
http://dx.doi.org/10.1016/0370-2693(85)90999-2
http://dx.doi.org/10.1016/0550-3213(82)90132-8
http://dx.doi.org/10.1016/0550-3213(82)90132-8
http://dx.doi.org/10.1016/0550-3213(83)90597-7
http://dx.doi.org/10.1103/PhysRevLett.67.2264
http://dx.doi.org/10.1103/PhysRevLett.67.2264
http://dx.doi.org/10.1016/0550-3213(92)90003-T
http://dx.doi.org/10.1103/PhysRevD.59.014004
http://dx.doi.org/10.1103/PhysRevD.59.014004
http://dx.doi.org/10.1016/j.nuclphysb.2006.11.016
http://dx.doi.org/10.1016/j.nuclphysb.2006.11.016
http://dx.doi.org/10.1007/s100529901101
http://dx.doi.org/10.1016/S0370-2693(00)00261-6
http://dx.doi.org/10.1016/S0370-2693(00)00969-2
http://dx.doi.org/10.1103/PhysRevD.64.034019
http://dx.doi.org/10.1103/PhysRevD.64.034019
http://dx.doi.org/10.1016/j.nuclphysb.2006.05.036
http://dx.doi.org/10.1016/j.nuclphysb.2006.05.036
http://dx.doi.org/10.1103/PhysRevD.74.114013
http://dx.doi.org/10.1103/PhysRevD.74.114013
http://dx.doi.org/10.1016/j.physletb.2007.01.044
http://dx.doi.org/10.1016/j.physletb.2008.09.026
http://dx.doi.org/10.1103/PhysRevD.76.011502
http://dx.doi.org/10.1103/PhysRevD.75.074019
http://dx.doi.org/10.1103/PhysRevLett.99.212002
http://arXiv.org/abs/hep-ph/0703293
http://dx.doi.org/10.1016/j.physletb.2007.05.023
http://dx.doi.org/10.1016/j.physletb.2007.05.023
http://dx.doi.org/10.1103/PhysRevD.76.074029
http://dx.doi.org/10.1016/j.physletb.2008.08.045
http://dx.doi.org/10.1103/PhysRevD.78.034005
http://dx.doi.org/10.1103/PhysRevD.78.114008
http://dx.doi.org/10.1103/PhysRevD.78.114008
http://dx.doi.org/10.1016/j.physletb.2009.06.041
http://dx.doi.org/10.1088/1126-6708/2008/11/090
http://dx.doi.org/10.1088/1126-6708/2008/11/090
http://dx.doi.org/10.1016/j.physletb.2009.04.071
http://dx.doi.org/10.1103/PhysRevD.78.114013
http://dx.doi.org/10.1103/PhysRevD.78.114013
http://dx.doi.org/10.1016/j.physletb.2009.04.017
http://dx.doi.org/10.1103/PhysRevLett.103.052001
http://dx.doi.org/10.1103/PhysRevD.81.054008
http://dx.doi.org/10.1103/PhysRevD.81.054008
http://dx.doi.org/10.1016/j.physletb.2010.07.003
http://dx.doi.org/10.1016/j.physletb.2010.07.003
http://dx.doi.org/10.1103/PhysRevD.82.034009
http://dx.doi.org/10.1103/PhysRevD.82.034009
http://dx.doi.org/10.1103/PhysRevLett.106.172001
http://arXiv.org/abs/1106.0266
http://dx.doi.org/10.1103/PhysRevD.79.016003
http://dx.doi.org/10.1103/PhysRevD.79.016003
http://dx.doi.org/10.1103/PhysRevD.79.114022
http://dx.doi.org/10.1103/PhysRevD.79.114022
http://dx.doi.org/10.1103/PhysRevD.79.094010
http://dx.doi.org/10.1103/PhysRevD.79.094010
http://dx.doi.org/10.1103/PhysRevD.80.114002
http://dx.doi.org/10.1103/PhysRevD.80.114002
http://dx.doi.org/10.1103/PhysRevD.83.036006
http://dx.doi.org/10.1016/0550-3213(81)90339-4
http://dx.doi.org/10.1016/0550-3213(81)90339-4
http://dx.doi.org/10.1016/0550-3213(83)90235-3
http://dx.doi.org/10.1103/PhysRevD.71.034005
http://dx.doi.org/10.1103/PhysRevD.71.034005
http://dx.doi.org/10.1016/j.physletb.2004.07.026
http://dx.doi.org/10.1103/PhysRevLett.93.252001
http://dx.doi.org/10.1103/PhysRevLett.93.252001
http://dx.doi.org/10.1103/PhysRevLett.97.082002
http://dx.doi.org/10.1103/PhysRevLett.97.082002
http://dx.doi.org/10.1103/PhysRevD.73.094017
http://dx.doi.org/10.1016/j.physletb.2006.05.044
http://dx.doi.org/10.1016/j.physletb.2007.11.096
http://dx.doi.org/10.1016/j.physletb.2007.11.096
http://dx.doi.org/10.1088/1126-6708/2008/08/023
http://dx.doi.org/10.1088/1126-6708/2008/08/023
http://dx.doi.org/10.1016/j.physletb.2009.06.041
http://dx.doi.org/10.1016/j.physletb.2009.06.041
http://dx.doi.org/10.3360/dis.2009.235
http://dx.doi.org/10.3360/dis.2009.235
http://dx.doi.org/10.1140/epja/i2011-11035-2
http://dx.doi.org/10.1016/S0550-3213(03)00527-3
http://dx.doi.org/10.1016/S0550-3213(03)00527-3
http://dx.doi.org/10.1140/epjc/s2004-02009-x
http://dx.doi.org/10.1103/PhysRevD.41.83
http://dx.doi.org/10.1103/PhysRevD.43.261
http://dx.doi.org/10.1103/PhysRevD.43.261
http://dx.doi.org/10.1103/PhysRevLett.94.012002
http://dx.doi.org/10.1103/PhysRevLett.94.012002
http://dx.doi.org/10.1103/PhysRevLett.103.152002
http://dx.doi.org/10.1103/PhysRevLett.103.152002
http://dx.doi.org/10.1103/PhysRevLett.94.202002
http://dx.doi.org/10.1103/PhysRevLett.94.202002
http://dx.doi.org/10.1016/j.nuclphysb.2006.10.027


(2007); M. Alekseev et al. (COMPASS Collaboration),
Phys. Lett. B 673, 127 (2009).

[46] A. V. Efremov, K. Goeke, S. Menzel, A. Metz, and P.
Schweitzer, Phys. Lett. B 612, 233 (2005).

[47] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F.
Murgia, and A. Prokudin, Phys. Rev. D 71, 074006 (2005);
72, 094007 (2005); 72, 099903(E) (2005).

[48] W. Vogelsang and F. Yuan, Phys. Rev. D 72, 054028
(2005).

[49] J. C. Collins, A. V. Efremov, K. Goeke, S. Menzel, A.
Metz, and P. Schweitzer, Phys. Rev. D 73, 014021 (2006).

[50] S. Arnold, A. V. Efremov, K. Goeke, M. Schlegel, and P.
Schweitzer, arXiv:0805.2137.

[51] M. Anselmino et al., Eur. Phys. J. A 39, 89 (2008).
[52] M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F.

Murgia, and A. Prokudin, Phys. Rev. D 81, 034007 (2010).
[53] M. Anselmino, M. Boglione, J. Hansson, and F. Murgia,

Eur. Phys. J. C 13, 519 (2000).
[54] Y. Koike, in SPIN 2002: 15th International Spin Physics

Symposium and Workshop on Polarized Electron Sources
and Polarimeters, edited by Y. Makdisi, A. Luccio and W.
MacKayAIP Conf. Proc. No. 675, (AIP, New York, 2003);
Nucl. Phys. A721, C364 (2003).

[55] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 78,
052006 (2008); 79, 119902(E) (2009); V.M. Abazov et al.
(D0 Collaboration), Phys. Rev. Lett. 101, 062001 (2008),
and references therein.

[56] R. Brock et al. (CTEQ Collaboration), Rev. Mod. Phys.
67, 157 (1995).

[57] J. C. Collins and D. E. Soper, Nucl. Phys. B194, 445
(1982).

[58] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 92,
171801 (2004); B. I. Abelev et al. (STAR Collaboration),
Phys. Rev. Lett. 101, 222001 (2008).

[59] S. S. Adler et al. (PHENIX Collaboration), Phys. Rev.
Lett. 95, 202001 (2005).

[60] I. Arsene et al. (BRAHMS Collaboration), Phys. Rev.
Lett. 101, 042001 (2008).

[61] J. She, Y. Mao, and B.Q. Ma, Phys. Lett. B 666, 355
(2008).

[62] B. Sun, J. She, B. Zhang, Y. J. Mao, and B.Q. Ma, Eur.
Phys. J. C 65, 163 (2009).

[63] P. J. Mulders and R.D. Tangerman, Nucl. Phys. B461, 197
(1996); B484, 538(E) (1997).

[64] D. Boer and P. J. Mulders, Phys. Rev. D 57, 5780 (1998).
[65] A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P. J. Mulders,

and M. Schlegel, J. High Energy Phys. 02 (2007) 093.
[66] J. C. Collins, Phys. Lett. B 536, 43 (2002).
[67] S. J. Brodsky, D. S. Hwang and I. Schmidt, Nucl. Phys.

B642, 344 (2002).
[68] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P.M.

Nadolsky, and W.K. Tung, J. High Energy Phys. 07
(2002) 012.

[69] M. Gluck, E. Reya, M. Stratmann, and W. Vogelsang,
Phys. Rev. D 63, 094005 (2001).

[70] Z. B. Kang, J.W. Qiu, W. Vogelsang, and F. Yuan, Phys.
Rev. D 83, 094001 (2011).

[71] S. Wandzura and F. Wilczek, Phys. Lett. B 72, 195 (1977).
[72] A. Accardi, A. Bacchetta, W. Melnitchouk, and M.

Schlegel, J. High Energy Phys. 11 (2009) 093.
[73] A. Metz, P. Schweitzer, and T. Teckentrup, Phys. Lett. B

680, 141 (2009).
[74] A. Kotzinian, B. Parsamyan, and A. Prokudin, Phys. Rev.

D 73, 114017 (2006).
[75] H. Avakian, A. V. Efremov, K. Goeke, A. Metz, P.

Schweitzer, and T. Teckentrup, Phys. Rev. D 77, 014023
(2008).

[76] D. Boer, arXiv:1105.2543.

KANG et al. PHYSICAL REVIEW D 84, 034046 (2011)

034046-10

http://dx.doi.org/10.1016/j.nuclphysb.2006.10.027
http://dx.doi.org/10.1016/j.physletb.2009.01.060
http://dx.doi.org/10.1016/j.physletb.2005.03.010
http://dx.doi.org/10.1103/PhysRevD.71.074006
http://dx.doi.org/10.1103/PhysRevD.72.094007
http://dx.doi.org/10.1103/PhysRevD.72.099903
http://dx.doi.org/10.1103/PhysRevD.72.054028
http://dx.doi.org/10.1103/PhysRevD.72.054028
http://dx.doi.org/10.1103/PhysRevD.73.014021
http://arXiv.org/abs/0805.2137
http://dx.doi.org/10.1140/epja/i2008-10697-y
http://dx.doi.org/10.1103/PhysRevD.81.034007
http://dx.doi.org/10.1007/s100520000339
http://dx.doi.org/10.1016/S0375-9474(03)01070-4
http://dx.doi.org/10.1103/PhysRevD.78.052006
http://dx.doi.org/10.1103/PhysRevD.78.052006
http://dx.doi.org/10.1103/PhysRevD.79.119902
http://dx.doi.org/10.1103/PhysRevLett.101.062001
http://dx.doi.org/10.1103/RevModPhys.67.157
http://dx.doi.org/10.1103/RevModPhys.67.157
http://dx.doi.org/10.1016/0550-3213(82)90021-9
http://dx.doi.org/10.1016/0550-3213(82)90021-9
http://dx.doi.org/10.1103/PhysRevLett.92.171801
http://dx.doi.org/10.1103/PhysRevLett.92.171801
http://dx.doi.org/10.1103/PhysRevLett.101.222001
http://dx.doi.org/10.1103/PhysRevLett.95.202001
http://dx.doi.org/10.1103/PhysRevLett.95.202001
http://dx.doi.org/10.1103/PhysRevLett.101.042001
http://dx.doi.org/10.1103/PhysRevLett.101.042001
http://dx.doi.org/10.1016/j.physletb.2008.07.068
http://dx.doi.org/10.1016/j.physletb.2008.07.068
http://dx.doi.org/10.1140/epjc/s10052-009-1191-z
http://dx.doi.org/10.1140/epjc/s10052-009-1191-z
http://dx.doi.org/10.1016/0550-3213(95)00632-X
http://dx.doi.org/10.1016/0550-3213(95)00632-X
http://dx.doi.org/10.1016/S0550-3213(96)00648-7
http://dx.doi.org/10.1103/PhysRevD.57.5780
http://dx.doi.org/10.1088/1126-6708/2007/02/093
http://dx.doi.org/10.1016/S0370-2693(02)01819-1
http://dx.doi.org/10.1016/S0550-3213(02)00617-X
http://dx.doi.org/10.1016/S0550-3213(02)00617-X
http://dx.doi.org/10.1088/1126-6708/2002/07/012
http://dx.doi.org/10.1088/1126-6708/2002/07/012
http://dx.doi.org/10.1103/PhysRevD.63.094005
http://dx.doi.org/10.1103/PhysRevD.83.094001
http://dx.doi.org/10.1103/PhysRevD.83.094001
http://dx.doi.org/10.1016/0370-2693(77)90700-6
http://dx.doi.org/10.1088/1126-6708/2009/11/093
http://dx.doi.org/10.1016/j.physletb.2009.08.052
http://dx.doi.org/10.1016/j.physletb.2009.08.052
http://dx.doi.org/10.1103/PhysRevD.73.114017
http://dx.doi.org/10.1103/PhysRevD.73.114017
http://dx.doi.org/10.1103/PhysRevD.77.014023
http://dx.doi.org/10.1103/PhysRevD.77.014023
http://arXiv.org/abs/1105.2543

