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We study the scaling behavior of physical observables in strongly-flavored asymptotically free gauge

theories, such as many-flavor QCD. Such theories approach a quantum critical point when the number of

fermion flavors is increased. It is well-known that physical observables at this quantum critical point

exhibit an exponential scaling behavior (Miransky scaling), provided the gauge coupling is considered as a

constant external parameter. This scaling behavior is modified when the scale dependence of the gauge

coupling is taken into account. Provided that the gauge coupling approaches an IR fixed point, we derive

the resulting universal power-law corrections to the exponential scaling behavior and show that they are

uniquely determined by the IR critical exponent of the gauge coupling. To illustrate our findings, we

compute the universal corrections in many-flavor QCD with the aid of nonperturbative functional

renormalization group methods. In this case, we expect the power-law scaling to be quantitatively

more relevant if the theories are probed, for instance, at integer Nf as done in lattice simulations.

DOI: 10.1103/PhysRevD.84.034045 PACS numbers: 11.10.Hi, 05.30.Rt

I. INTRODUCTION

Strongly-flavored asymptotically free theories, such as
QCD and QED3 are currently very actively researched. In
particular, QCD with many quark flavors has drawn a lot of
attention in recent years. On the one hand, the number of
(massless) fermions can be considered as an external pa-
rameter. Such gauge theories are then expected to exhibit a
quantum phase transition from a chirally broken to a
conformal phase when the number of fermion flavors is
increased. On the other hand, the understanding of
strongly-flavored gauge theories underlies (walking) techni-
colorlike scenarios for the Higgs sector; see e.g. Refs. [1–9].

The phase structure of gauge theories with Nf fermions
can indeed be rich, as simple considerations may already
suggest. Because of the screening property of fermionic
fluctuations, asymptotic freedom is lost for large Nf . For
instance, SUðNcÞ gauge theory with Nf fermions is no
longer asymptotically free (a.f.) for Nf >Na:f:

f
:¼ 11

2 Nc.

Another special fermion number NCBZ
f potentially exists

denoting the minimum flavor number for the occurrence of
an infrared fixed point g2� of the running gauge coupling.
For instance, the two-loop � function of the gauge cou-
pling g2 exhibits the so-called Caswell-Banks-Zaks (CBZ)
fixed point [10], as the screening nature of fermion fluctu-
ations dominates the two-loop coefficient for Nf >NCBZ

f .

For instance for SUð3Þ, we have NCBZ
f ’ 8:05 in the two-

loop approximation. A perturbative treatment of the theory
seems possible near Na:f:

f , Nf & Na:f:
f , where g2� is small,

indicating the existence of a conformally invariant limit in
the deep infrared [11]. For decreasing Nf , g

2� becomes
larger, suggesting the onset of chiral symmetry breaking.
The decoupling of massive fermions then destabilizes the
Caswell-Banks-Zaks fixed point g2� in the gauge sector of

the theory. The infrared of the theory is then dominated by
massless bosonic excitations, the Goldstone modes, and
the spectrum of the theory is characterized by a dynami-
cally generated mass gap. A similar reasoning also applies
to QED3; see e.g. [12,13].
These considerations suggest the existence of a quantum

critical point associated with a critical flavor number
NCBZ

f � Nf;cr <Na:f:
f above which gauge theories approach

a conformally invariant limit in the infrared. Thus, Nf

serves as a control parameter for the quantum phase
transition.
Studies of the phase structure of strongly-flavored gauge

theories have been performed employing continuum
methods as well as lattice simulations. In QED3 many
studies have performed estimates to determine Nf;cr using

Dyson-Schwinger equations and resummation techniques
[12–22]. Since the dynamically generated mass is substan-
tially smaller than the scale set by the gauge coupling,
lattice simulations of QED3 with many flavors are remark-
ably challenging [23–26]. The phase structure of many-
flavor QCD has also been studied employing continuum
methods [10,11,27–44], as well as lattice simulations
[45–59]. Recent results suggest in this case that a confor-
mal phase indeed exists with a quantum phase transition
occurring near 9 & Ncr

f & 13.
Given the existence of such a quantum critical point in

an asymptotically free gauge theory with Nf flavors, the
question arises how the spectrum of the theory behaves
when we approach this quantum critical point from below.
This question is tightly bound to the question of the Nf

dependence of the dynamically generated scale associated
with chiral symmetry breaking. It is well-known from
studies of Dyson-Schwinger equations in the rainbow-
ladder approximation that physical observables, e.g. the
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fermion condensate, exhibit an exponential scaling close to
Nf;cr, provided that the (momentum) scale dependence of

the gauge coupling can be neglected [29,60–62],

kSB / ��ðNf;cr � NfÞ exp
�
� �

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1jNf;cr � Nfj

q
�
: (1)

Here, kSB denotes a scale characteristic for the onset of
symmetry breaking, being directly proportional, say, to a
symmetry breaking condensate. The quantities � and �1

are pure constants arising from the details of the theory and
will be defined below. This behavior can be viewed as a
generalization of essential Berezinskii-Kosterlitz-Thouless
(BKT) scaling [63–65] to higher dimensional systems [66].
We rush to add that the spectrum of the different theories
below and above Nf;cr are substantially different. In par-

ticular, a construction of an effective low-energy theory
in terms of light scalar fields may no longer be possible
above Nf;cr.

Taking into account the running of the gauge coupling
and going beyond the standard rainbow-ladder approxima-
tion, the scaling behavior of physical observables close to
Nf;cr has been analyzed in [38,39,67]. More precisely, the

Nf dependence of a strict upper bound for the symmetry
breaking scale has been studied, scaling according to a
power law,

kcr / �jNf;cr � Nfj�ð1=�0Þ: (2)

Here, kcr denotes the scale where the dynamics leading to
symmetry breaking becomes critical. This means that op-
erators that trigger symmetry breaking become relevant in
a renormalization group (RG) sense. As the system still has
to run toward lower energy scales into the broken phase,
we have kcr > kSB, implying that Eq. (2) is an upper bound
for Eq. (1). Near the critical flavor number the correspond-
ing scaling exponent is uniquely determined by the critical
exponent �0 of the gauge coupling at its infrared fixed
point. This upper bound for the (chiral) symmetry breaking
scale can be translated into an upper bound for physical
observables [67]. In fact, the chiral-phase-transition tem-
perature as a function of the ‘‘external’’ control parameter
Nf has been computed with nonperturbative functional
renormalization group methods. The scaling of the phase
boundary has been found to be compatible with the analyti-
cally derived scaling behavior [38,39].

Recently, the scaling behavior of physical observables
has been investigated again with the aid of Dyson-
Schwinger equations in the rainbow-ladder approximation
also taking into account part of (momentum) scale depen-
dence of the gauge coupling by a proper adjustment of the
scale [68]. It was then found that the exponential scaling
behavior close to Nf;cr of the symmetry breaking scale is

supplemented by a power-law behavior similar to the one
found in Refs. [38,39,67].

In the present work, we aim to reveal the relation be-
tween these supposedly different scaling laws and to show
rigorously what kind of scaling behavior we should expect
close to the quantum critical point of asymptotically free
gauge theories with many flavors. Our arguments are based
on very general RG considerations and involve only a few
assumptions about the underlying fixed-point structure of
the theory under consideration. In fact, we shall show that
the above-given scaling laws arise as two different limits of
one and the same RG flow. In addition, we point out the
importance of the scale-fixing procedure applied in the first
place in order to compare theories with different flavor
numbers. As the scaling behavior of the low-energy
observables is accessible to a variety of nonperturbative
methods, we believe that a rigorous understanding of scal-
ing behavior near the phase transition to the conformal
phase will be very useful.
In Sec. II, we briefly repeat the arguments that lead to an

exponential scaling behavior at the quantum phase transi-
tion. In addition, we derive the leading-order correction to
the exponential scaling behavior. In Sec. III, we then dis-
cuss the issue of scale fixing underlying a meaningful
comparison between theories with different flavor num-
bers. Moreover, we briefly review the arguments from
Refs. [38,39,67], which lead to a power-law-like scaling
behavior for a strict upper bound for the (chiral) symmetry
breaking scale. In Sec. IV we then discuss the interrelation
of the scaling laws put forward in Refs. [39,60,67,68] and
derive the leading-order scaling behavior of a given infra-
red observable at the quantum critical point. To illustrate
our analytic findings, we present numerical results from a
nonperturbative functional renormalization group study of
the scaling behavior in many-flavor QCD in Sec. V.

II. MIRANSKY SCALING

In this section we study exponential scaling behavior in
gauge theories near a quantum critical point, also known as
Miransky scaling [28,60].
We shall keep our discussion as general as possible. For

our purposes, however, we consider a general class of
theories where symmetry breaking and condensate forma-
tion is driven by fermionic self-interactions. Independently
of whether these interactions may be fluctuation-induced
(as in QCD) or fundamental, this class of theories can be
parametrized by the following action:

SM ¼
Z

ddxf �c ði@þ �gAÞc þ ������
�c �c �

�c �c �g; (3)

where �;� . . . denote a specific set of collective indices
including, e.g., flavor and/or color indices. In general, we
expect to have more than just one four-fermion interaction
channel; see e.g. Sec. V for QCD with many flavors. Note
that symmetry breaking is ultimately triggered by the
interactions approaching criticality, i.e., becoming RG
relevant.
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Here and in the following we do not allow for terms in
the action which explicitly break the underlying symmetry,
such as current quark mass terms in QCD.1

From the action (3) we can derive the � function of
the dimensionless four-fermion coupling �. It assumes the
following simple form:

�� � @t� ¼ ðd� 2Þ�� a�2 � b�g2 � cg4: (4)

Here, t ¼ lnðk=�Þ denotes the RG ‘‘time’’ with k being the
RG scale and � being a UV cutoff scale. The couplings

�� ��=kðd�2Þ and g� �g=k4�d denote dimensionless and
suitably renormalized couplings. The first term in Eq. (4)
arises from simple dimensional rescaling. The quantities a,
b, and c do not depend on the RG scale but may depend on
control parameters, such as the number of quark flavors Nf

or the number of colorsNc.
2The various terms on the right-

hand side of Eq. (4) can be understood in terms of pertur-
bative Feynman diagrams [72]; see Fig. 1. Equation (4) can
also be derived from nonperturbative flow equations in the
limit of pointlike (momentum-independent) interactions;
see Sec. V. Note that we have dropped terms proportional
to the anomalous dimension of the fermionic fields in
Eq. (4). We assume these contributions to be small in the
following. This is indeed the case in the chirally symmetric
regime of QCD; here the anomalous dimension even van-
ishes in the Landau gauge [73].

In Eq. (3) we have not further specified the gauge sector.
In fact, let us ignore the running of the gauge coupling in
this section, and consider the gauge coupling as a scale-
independent external parameter. The RG flow of the gauge
coupling is then trivially governed by

@tg
2 � 0: (5)

For example, this may be an acceptable approximation in
the vicinity of an IR fixed point g2�. Note that the value of
g2� may depend on other control parameters such as Nf or
Nc; cf. our discussion of QCD with many flavors in Sec. V.
In Fig. 2 we show a sketch for the�� function, implicitly

assuming that a > 0, b > 0, and c > 0 in Eq. (4). For a
vanishing gauge coupling g2 we find two fixed points, an
IR attractive Gaussian fixed point at � ¼ 0 and an IR
repulsive fixed point at � > 0. For increasing g2 these fixed
points approach each other and eventually merge for a
critical value g2cr,

g2cr ¼ d� 2

bþ 2
ffiffiffiffiffiffi
ac

p : (6)

For g2 > g2cr the four-fermion coupling then becomes a
relevant operator and increases rapidly toward the IR in-
dicating the onset of (chiral) symmetry breaking. Thus, the
four-fermion coupling � necessarily3 diverges for g2 > g2cr
at a finite RG scale kSB ¼ kSBðg2Þ. This divergence is, of
course, an artifact of the over-simplistic approximation (3),
but can be related to a symmetry breaking transition in the
effective Landau-Ginzburg-type potential for fermion-
bound states. Even though kSB is not a direct observable,

(a) (b) (c)

FIG. 1. Representation of the terms on the right-hand side of
the RG flow equation (4) by means of Feynman diagrams. Our
functional RG studies (see Sec. V) include resummations of all
diagram types including ladder diagrams generated by type (b)
and (c) as well as the corresponding crossed-ladder topologies.

FIG. 2 (color online). Sketch of a typical � function for the
fermionic self-interactions � (see [37] and also [39] for a
generalization to finite temperature): at zero gauge coupling,
g2 ¼ 0 (upper black curve), the Gaussian fixed point � ¼ 0 is IR
attractive. For g2 ¼ g2cr (middle blue curve), the fixed points
merge due to a shift of the parabola induced by the gauge-field
fluctuations �g4. For gauge couplings larger than the critical
coupling g2 > g2cr (lower red curve), no fixed points remain and
the self-interactions rapidly grow large, signaling chiral symme-
try breaking. The arrows indicate the direction of the flow toward
the infrared.

1The scaling behavior of observables with the (current) quark
mass in the (quasi)conformal phase of strongly-flavored gauge
theories is of particular interest for lattice simulations and
currently under investigation; see Refs. [69–71].

2Note that the coefficients a, b, and c in general are regulari-
zation scheme-dependent and thus can depend implicitly on the
RG scale as soon as we introduce a dimensionful external
parameter, e.g., temperature T. However, the coefficients remain
dimensionless since they depend only on the ratio T=k; see e.g.
[38,39].

3Here, we assume that the initial conditions at the UV scale
k ¼ � for the four-fermion coupling � are chosen such that ��
is smaller than the value of the IR repulsive fixed point; see
Fig. 2. In beyond-standard model applications �� is sometimes
considered to be a finite parameter; see e.g. [74]. We therefore
add that the exponential scaling behavior discussed below can
only be observed when �� is chosen to be smaller than the value
of the repulsive fixed point for a given g2. Otherwise, we expect
a power-law-like scaling behavior [75].
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it sets the scale for observables such as condensates, decay
constants, critical temperatures, etc. This picture of the
emergence of chiral symmetry has been put forward in
[27,37–39,67,76,77] and successfully employed for an
analysis of the phase structure of QCD with various num-
bers of flavors and colors at zero and finite temperature
[37–39,67]. Moreover, this picture has also been employed
to study conformal scaling in quantum field theories; see
e.g. Ref. [66].

Let us now briefly discuss the scaling behavior of the
symmetry breaking scale kSB when g2 is varied by hand as
a constant external parameter. To this end, we have to solve
the RG flow equation (4). We find

lnk� ln� ¼ �
2 arctanðbg2�ðd�2Þþ2a�0

�ðg2Þ Þ
�ðg2Þ

��������
�

�UV

; (7)

with

�ðg2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4acg4 � ððd� 2Þ � bg2Þ2

q
: (8)

Here and in the following we assume b > 0without loss of
generality. From Eq. (7), we obtain kSB by solving for the
zero of 1=�ðkÞ, i.e. 1=�ðkSBÞ ¼ 0,

lnkSB � ln� ¼ � �

�ðg2Þ þ const: (9)

Here, we have chosen the initial conditions such that
�UV ¼ �max, where �max denotes the position of the maxi-
mum of the �� function, i.e., the peak of the parabola in
Fig. 2. An expansion of (9) around g2cr yields

4

kSB / ��ðg2 � g2crÞ exp
�
� �

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðg2 � g2crÞ

p
�
; (10)

where � is a numerical factor,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd� 2Þð2acþ b

ffiffiffiffiffiffi
ac

p Þ
bþ 2

ffiffiffiffiffiffi
ac

p
s

; (11)

which in general depends on the details of the theory under
consideration, e.g. the number of colors and flavors in
QCD. In any case, we find an exponential Miransky-
scaling behavior of kSB for g2 close to g2cr. Since the
dynamically generated scale kSB sets the scale for the
low-energy sector, we expect that all IR observables O
scale according to

O ¼ fOk
dO
SB; (12)

where dO is the canonical mass dimension of the observ-
able O and fO is a function which does not depend on g2cr
but may depend on g2 and other external parameters, e.g.,

Nf and/or Nc. The function fO can be computed system-
atically within certain approximation schemes such as
large-Nc expansions or chiral perturbation theory; see
e.g. [67,68]. In the context of QCD the scaling law in
Eq. (10) has been first derived by Miransky [28,60] but
has also been found in the context of specific two-
dimensional condensed-matter systems [65]. The deriva-
tion of the scaling law (10) via an analysis of the RG flow
of four-fermion operators has been recently pointed out by
Kaplan, Lee, Son, and Stephanov [66].
Let us now briefly discuss the consequences of the

scaling law (10) when we apply our considerations to
strongly-flavored gauge theories, such as QCD with
many quark flavors orQED3. In these cases we may choose
the IR fixed point of the gauge coupling as an external
parameter, i.e. g2 ¼ g2�ðNfÞ in Eq. (10). Depending on the

Nf dependence of the coefficients a, b, and c in the ��

function, the critical value for the gauge coupling may
depend on the number of flavors as well, g2cr ¼ g2crðNfÞ.
The critical number of quark flavors Nf;cr can then be

obtained from the criticality condition

g2crðNf;crÞ ¼ g2�ðNf;crÞ: (13)

This corresponds to the coupling value for which the two
fixed points of the four-fermion coupling �merge and then
annihilate each other for g2 > g2cr. Expanding g2�ðNfÞ �
g2crðNf;crÞ around Nf;cr,

g2�ðNfÞ � g2crðNf;crÞ ¼ �1ðNf � Nf;crÞ
þ �2ðNf � Nf;crÞ2 þ � � � ; (14)

and plugging (14) into (10), we find the exponential Nf

scaling of kSB,

kSB / ��ðNf;cr � NfÞ

� exp

�
��ð1� �2

�1
jNf;cr � Nfj þ � � �Þ

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�1jjNf;cr � Nfj

q
�
: (15)

Whether the size of the regime for exponential scaling is
small depends on the ratio �2=�1, which in turn depends
on the theory under consideration. Thus, the size of the
scaling regime may presumably be different in, e.g., QCD
and QED3. In Sec. V we compare the analytic findings of
this section with results from a numerical analysis of QCD
with many flavors.

III. POWER-LAW SCALING

In this section we discuss how the running of the
gauge coupling affects the RG flow of the four-fermion
coupling(s). In particular, we argue that (chiral) symmetry
breaking in strongly-flavored gauge theories is a multiscale
problem, in contrast to the scenario discussed in the pre-
vious section. In other words, the (chiral) symmetry break-
ing scale kSB discussed above and its scaling with the

4Note that g2cr is defined to be the value of g2 for which the ��

function has exactly one zero. In general there exist two solu-
tions for g2cr, however, one of which can be excluded from a
physical point of view.
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control parameters, e.g. the number of flavors Nf , depends
on the scale fixing and its potential flavor dependence.

In the following, we include the running of the gauge
coupling which goes beyond standard rainbow-ladder ap-
proaches employed in the context of strongly-flavored
gauge theories; see e.g. Ref. [33].

Since we are eventually interested in the scaling behav-
ior of IR observables, e.g. the fermion condensate, it is
important to realize that a variation of the flavor number
does not quite correspond to a change of a parameter of the
theory. It rather corresponds to changing the theory itself.
We would like to stress that there is indeed no unique way
to unambiguously compare theories of different flavor
number with each other, as different theories may be fixed
at different scales.

As we have argued in more detail in Ref. [67], fixing the
scale of theories with, say, different flavor numbers Nf by
keeping the running coupling at some scale� (e.g. 	mass)
fixed to a certain value, seems to be a well accessible
prescription for many nonperturbative methods. In general,
it is important to take care that this scale-fixing procedure
is not (or as little as possible) spoiled by scheme depen-
dencies. The latter constraint essentially rules out �QCD as

a proper scale in QCD to be kept fixed in theories with
different flavor numbers. Of course, it is also possible, e.g.
in lattice QCD simulations, to keep the value of an IR
observable fixed for theories with differentNf , e.g. the pion
decay constant or the critical temperature. We shall briefly
comment on such a procedure below. For what follows,
however, we choose a midmomentum scale for the scale
fixing, lying in between the high-scale perturbative running
and the more interesting nonperturbative dynamics. Thus,
we fix the theories at any Nf by keeping the running
coupling at some intermediate scale � fixed to a certain
value, say ��.

To be more specific, we shall focus our discussion on
strongly-flavored asymptotically free gauge theories, such

as QCDwith many flavors andQED3.
5 In such theories, the

dependence of the running coupling on the scale and on
further control parameters such asNf is expected to modify
Miransky scaling. In particular, an understanding of the
universal scaling behavior of observables in the ordered
phase close to the phase transition at Nf;cr is of interest.

However, the arguments also apply to other theories in
which dynamical chiral symmetry breaking is triggered
by a running coupling which approaches a nontrivial IR
fixed point.
For a monotonically increasing coupling flow, the value

of the nontrivial IR fixed point g2� of the gauge coupling
corresponds to the maximum possible coupling strength
of the system in the conformal window, i.e. for Nf;cr <
Nf <Na:f:

f . As both g2� and g2cr depend on the number of

flavors, the criticality condition g2�ðNf;crÞ ¼ g2crðNf;crÞ de-
fines the lower end of the conformal window and thus the
critical flavor number; see Sec. II and the left panel of
Fig. 3 for an illustration.
For g2� > g2cr, our model (3) is below the conformal

window and runs into the broken phase. Slightly below
the conformal window, the running coupling g2 exceeds
the critical value while it is in the attractive domain of the
IR fixed point g2�. The flow in this fixed-point regime can
approximately be described by a � function expanded
around the fixed point g2�,

�g2 � @tg
2 ¼ ��ðg2 � g2�Þ þOððg2 � g2�Þ2Þ: (16)

The universal ‘‘critical exponent’’’ � denotes (minus) the
first expansion coefficient. We know that �< 0, since the
fixed point is IR attractive; see right panel of Fig. 3. In
general, the critical exponent depends on Nf , � ¼ �ðNfÞ.

FIG. 3 (color online). Left panel: illustration of the IR running of the gauge coupling in comparison with the critical value of the
gauge coupling g2cr. Below the conformal window, Nf <Nf;cr, g

2 exceeds the critical value g2cr, triggering the approach to 
SB. For

increasing flavor number, the IR fixed-point value g2� becomes smaller than the critical value, indicating that the theory is inside the
conformal window. Right panel: sketch of the � function of the running gauge coupling. The slope of the � function at the IR fixed
point corresponds to minus the critical exponent �; cf. Eq. (16). The vertical line to the right gives the value of g2cr. The dotted line
gives the value of the gauge coupling at the UV scale�which we keep fixed for all Nf . By contrast, the value of g

2
cr may depend on Nf .

The arrows indicate the direction of the flow toward the infrared.

5By asymptotic freedom, we refer to the vanishing of the
dimensionless renormalized coupling in the UV.
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The solution to Eq. (16) for the running coupling in the
fixed-point regime simply reads

g2ðkÞ ¼ g2� �
�
k

k0

���
; (17)

where the scale k0 is implicitly defined by a suitable initial
condition and is kept fixed in the following as we keep the
UV scale � fixed.

The scale k0 corresponds to a scale where the system is
already in the fixed-point regime. For the present fixed-
point considerations, k0 provides for all dimensionful
scales. However, from the knowledge of the full RG tra-
jectory, k0 can be related to the initial scale �, say the 	
mass scale in QCD, by RG evolution.

A necessary condition for (chiral) symmetry breaking is
that g2� > g2cr. This implies that g2ðkÞ exceeds g2cr at some
scale kcr, which is implicitly defined by the criticality
condition, g2�ðNf;crÞ ¼ g2crðNf;crÞ, and therefore

kcr � kSB; (18)

where kSB is the scale at which the four-fermion coupling �
diverges; see Sec. II. Thus, kcr is an upper bound for the
symmetry breaking scale kSB. From Eq. (17) and the
criticality condition g2ðkcrÞ ¼ g2cr, we derive an estimate
for kcr valid in the fixed-point regime

kcr ’ k0ðg2� � g2crÞ�ð1=�Þ: (19)

The scale kcr is dynamically generated. Note that
kcr=k0 ! 0 for g2� ! g2cr from above. Because of our
scale-fixing procedure, this scale depends on Nf and Nf;cr

in a nontrivial way.6 Using Eq. (14) and a Taylor expansion
of the critical exponent near the quantum phase transition,

�ðNfÞ¼�0þ�1ðNf�Nf;crÞþOððNf�Nf;crÞ2Þ; (20)

we find the following Nf dependence of kcr for Nf � Nf;cr:

kcr ’ k0jNf;cr�Nfj�ð1=�0Þ

�
�
1�jNf;cr�Nfj

�0

�
�2

j�1j�
�1

�0

lnðj�1jjNf;cr�NfjÞ
��

þ��� ; (21)

where �0 ¼ �ðNf;crÞ. Since kcr defines the scale at which
the fixed points in the � function of the four-fermion
coupling merge, the existence of a finite kcr can be consid-
ered as a necessary condition for (chiral) symmetry
breaking. Thus, we expect that the scale for a given IR
observable O for Nf � Nf;cr is set by kcr,

O ¼ fOk
dO
cr ; (22)

where dO is the canonical mass dimension and fO de-
pendes on Nf but not on Nf;cr; see also Eq. (12).

However, we would like to stress that kcr does not include
the full dependence of kSB on (Nf � Nf;cr), i.e. kcr=kSB �
const: is still a function of the control parameter, as we
shall discuss in the subsequent section.
In Refs. [38,39,67] we have implicitly used the existence

of a finite kcr to estimate the chiral phase transition tem-
perature in QCD as a function of Nf . For a given value of
Nf the phase transition temperature is given by the highest
temperature for which we still have kcr > 0. We have
indeed found that Tcr scales according to Eq. (21),

Tcr � k0jNf;cr � Nfj�ð1=�0Þ: (23)

Strictly speaking, this is only an upper bound for the chiral-
phase-transition temperature because it is only sensitive to
the emergence of a fermion condensate on intermediate
(momentum) scales but insensitive to a fate of the conden-
sate in the deep IR close to Tcr due to fluctuations of
Goldstone modes [78], also known as a local ordering phe-
nomena. Such strong IRfluctuations of theGoldstonemodes
may yield corrections to the scaling law for the critical
temperature given above.7 Nevertheless, relation (23) is an
analytic prediction for the shape (of the upper bound of) the
chiral phase boundary in the (T;Nf) plane.
At vanishing temperature, the analysis of the scaling

behavior of IR observables is simplified compared to a
scaling analysis at finite temperature since dimensional
reduction does not set in in the deep IR enhancing the
Goldstone modes. Based on the observed scaling behavior
of kcr with the number of flavors, we are therefore in a
position to derive the Nf scaling of low-energy observ-
ables, such as fermion condensates, at zero temperature.

IV. BEYOND MIRANSKY SCALING

Let us now discuss how the symmetry breaking scale
kSB � kcr depends on (Nf � Nf;cr). We consider again a

Lagrangian of the form (3), and assume that Nf & Nf;cr.

The crucial new ingredient compared to the derivation
of Miransky scaling is the RG flow of the coupling. We
also assume that the system has already evolved from
the initial UV scale � to the scale kcr at which the fixed
points of the � function of the four-fermion coupling
have merged. Sufficiently close to Nf;cr, the flow of the

gauge coupling is governed by the fixed-point regime for
g2 > g2cr. The running of the gauge coupling is then given
by [cf. Eq. (17)]

6Note that it is, in principle, possible to adjust the initial value
of the coupling at the initial scale such that the scale kcr is
independent of Nf and Nf;cr. As indicated above, we expect that
such a scale-fixing procedure would, however, be strongly af-
fected by scheme dependencies at least in our truncation.

7We would naively expect that corrections to Eq. (23) can be
only resolved in lattice simulations with very small masses for
the pseudo-Goldstone modes and on very large lattice sizes; see
also Sec. IV.
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g2ðkÞ ¼ g2� � ðg2� � g2crÞ
�
k

kcr

��� ¼ g2� � ð�g2Þ
�
k

kcr

���
;

(24)

where �g2 ¼ g2� � g2cr. Recall that g
2� � Nf and �g2 �

jNf;cr � Nfj. Plugging Eq. (24) into Eq. (4), we find

�� � @t� ¼ ��

��������g2�
�@��

@g2

��������g2�
ð�g2Þ

�
k

kcr

��� þ � � �

¼ ðd� 2Þ�� a�2 � b�g2�

� cg4� � @��

@g2

��������g2�

�
k

k0

��� þ � � � ; (25)

where we have used Eq. (19). Recall that k � kcr 	 k0 and
�< 0. We observe that the zeroth order in �g2 coincides
with the �� function for which we have found an (implicit)
analytic solution for constant g2 in Sec. II, yielding
Miransky scaling. We refer to this analytic solution as
�g2� . The solution of the � function (25) can then be found

by an expansion around the solution �g2� ,

� ¼ �g2� þ ð�g2Þ��þ . . . ¼ �g2� þ
�
kcr
k0

���
��þ � � � ;

(26)

where �� ¼ �ð@�=@g2Þjg2� . This allows us to systemati-

cally compute the scaling behavior for Nf & Nf;cr. Since

we are interested in the (chiral) symmetry breaking scale
kSB we have to solve 1=�ðkSBÞ ¼ 0 for kSB. In zeroth order
the scale kSB can be computed along the lines of our
analysis in Sec. II. We find

kSB / kcr�ðNf;cr � NfÞ exp
�
� �

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�1jjNf;cr � Nfj

q
�

’ k0�ðNf;cr � NfÞjNf;cr � Nfj�ð1=�0Þ

� exp

�
� �

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�1jjNf;cr � Nfj

q
�
; (27)

where we have used Eq. (21) in leading order. Higher order
corrections to Eq. (27) can be computed systematically as
outlined above and in the previous sections. Thus, we have
found a universal correction to the exponential scaling
behavior which is uniquely determined by the universal
critical exponent �. A similar result has been suggested
very recently by Jarvinen and Sannino using a standard
rainbow-ladder approach with a constant gauge coupling
but a properly adjusted scale [68]. Our RG analysis pro-
vides a simple and systematic justification for such a
leading order analysis.

Let us now turn to the scaling behavior of physical
observables. The scale of all low-energy observables is
set by kSB. In other words, kSB represents the UV cutoff
of an effective theory at low energies, such as chiral
perturbation theory, quark-meson or Nambu-Jona-Lasinio

type-type models in case of QCD. At zero temperature we
therefore expect that a given IR observable O with mass
dimension dO scales according to

O ¼ fOðNfÞ�ðNf;cr � NfÞkdOSB; (28)

where fOðNfÞ is a function which depends onNf but not on
Nf;cr. As mentioned above, fOðNfÞ can be in principle

systematically computed in QCD using, e.g., chiral pertur-
bation theory or a large-Nc expansion. For instance, in a
large-Nc expansion it is straightforward to derive the lead-
ing Nf dependence of the function fOðNfÞ for the pion
decay constant f�. It reads [67]

ff�ðNfÞ �
ffiffiffiffiffiffi
Nf

p
: (29)

The scaling law (28) together with (27) represents one of
the main results of this work. It can be used as an ansatz to
fit, e.g., data from lattice simulations. This scaling law is
remarkable for a number of reasons. First, it relates two
universal quantities with each other: quantitative values of
observables and the IR critical exponent. Second, it estab-
lishes a quantitative connection between the (chiral) phase
structure and the IR gauge dynamics (�). Third, it is a
parameter-free prediction following essentially from scal-
ing arguments. Moreover, it shows that Miransky scaling
and power-law scaling are simply two limits of the very
same set of RG flows: in the limit � ! 1 we find pure
Miransky-scaling behavior, while we have pure power-law
scaling in the limit � ! 0.
At this point, we would like to emphasize once more that

the scaling behavior of any IR observable near Nf;cr de-

pends crucially on the scale-fixing procedure applied in the
first place. Still, the universal scaling will always show up
at one or the other place and thus cannot be removed, as
stressed in Ref. [67]. Our choice to fix the scale at m	

which is large enough not to be affected by chiral symme-
try breaking is certainly not unique. In principle, the point
where to fix the scale can be chosen as a free function of
Nf . In Eqs. (17) and (28), this would correspond to the
choice of an arbitrary function k0 ¼ k0ðNfÞ for the global
scale, which then appears also in the scaling relations (21),
(23), and (27). Indeed, an extreme choice would be given
by measuring all dimensionful scales in units of a scale
induced by chiral symmetry breaking (such as Tcr or f�).
In this case, all chiral observables would jump nonanalyti-
cally across Nf ¼ Ncr

f . Nevertheless, the scaling relations

would then translate into scaling relations for other non-
chiral external scales, e.g., the scale k at which the running
coupling acquires a specific value (say � ¼ 0:322)

would diverge with Nf ! Ncr
f according to k� jNf �

Ncr
f j�ð1=j�0jÞ. This point of view can constitute a different

way of verifying our scaling relations on the lattice.
Let us conclude this section with a discussion of the

importance of the corrections to the exponential scaling
behavior due to the running of the gauge coupling. To that
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end, it is convenient to consider the logarithm of the
(chiral) symmetry breaking scale kSB,

lnkSB¼ lnk0� 1

�0

lnjNf;cr�Nfj� �

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�1jjNf;cr�Nfj

q ;

(30)

with constant k0. This expression can be used to estimate
the regime in which the corrections to the exponential
scaling become subdominant. For this, we compute the
minimum of the function

1

j�0j lnjNf;cr � Nfj þ �

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�1jjNf;cr � Nfj

q ; (31)

with respect to jNf;cr � Nfj. In accordance with Eq. (20),

we assume jNf;cr � Nfj< 1 here. From this, we can then

estimate that corrections to the exponential scaling behav-
ior are subdominant as long as

jNf � Nf;crj & �2j�0j2
16�2j�1j

; (32)

with � being defined in Eq. (11). We observe that correc-
tions to Miransky scaling due to the running of the gauge
coupling are small when j�0j 
 1 and large when
j�0j 	 1. To be more specific, let us consider QCD
with many flavors: assuming Nf;cr � 12, we extract

�0 � 0:4 from the two-loop �g2 function. From Eq. (32)

the region where pure Miransky scaling dominates is then
found to be confined to the regime jNf � Nf;crj & 0:3. Thus,
we expect that the exponential scaling behavior is domi-
nantly visible only very close to Nf;cr. According to this

estimate, the �-dependent universal corrections are there-
fore more significant in QCD.

In QCD, it appears to be a general feature that �0

decreases with Nf;cr. Estimates of �0 within two- and

higher-loop approximations in theMS scheme are summa-
rized in Fig. 4. Therefore, power-law scaling is more

prominent for larger Nf;cr. In particular, power-law scaling

should be visible if theories are probed only for integer
values of Nf as, e.g., on the lattice.
The role of j�j for the scaling behavior close to Nf;cr can

also be understood by simply looking at the�g2 function of

the gauge coupling; see Fig. 3. For j�j 
 1 the gauge
coupling runs very fast into its IR fixed point once it has
passed g2cr. Thus, the situation for g2 > g2cr is as close as
possible to the situation studied in Sec. II. The coupling
can simply be approximated by a constant. For j�j 	 1
the gauge coupling runs very slowly (’’walks’’) into its IR
fixed point once it has passed g2cr. This walking behavior
for g2 * g2cr then gives rise to sizable corrections to the
exponential scaling behavior.
Finally, we would like to discuss the finite-temperature

many-flavor phase boundary in QCD. In [38,39] it was
found that the scaling of the phase boundary is consistent
with the pure power-law scaling behavior (23). From the
above discussion this result is now understandable since
the exponential scaling behavior sets in only very close to
Nf;cr for Nf;cr � 12 and thus remains invisible in numerical

fits over a wider range of Nf as used in [38,39]. Of course,
power-law scaling behavior for the chiral phase-transition
temperature still remains an upper bound even if we took
into account the exponential factor in Eq. (28). This is due
to the fact that strong fluctuations of Goldstone modes in
the IR may yield further corrections and lower the phase
transition temperature; see e.g. Ref. [78]. Whether these
corrections at finite temperature yield additional correc-
tions to the scaling behavior cannot be answered within the
scaling analysis presented in this work. However, it may
very well be that such corrections depend only on Nf but
not on Nf;cr. Nevertheless, we would like to stress that a

further investigation of the finite-temperature scaling be-
havior at the quantum critical point, Nf ¼ Nf;cr, seems

worthwhile in QCD since the scaling behavior in the Nf

direction may significantly differ from the expected power-
law scaling behavior in the temperature direction at fixed
Nf ; see [79].

V. QUANTITATIVE SCALING ANALYSIS
IN MANY-FLAVOR QCD

Having derived analytic scaling relations for physical
observables in the previous sections, we present results
from a numerical study of the scaling behavior in QCD
with many flavors in this section.

A. Renormalization group setup

Our numerical analysis is based on previous works on
strongly-flavored gauge theories in the framework of a
functional RG approach using the Wetterich equation [80];
for reviews, see [81–90]. In [37] the zero-temperature
quantum phase transition of QCD with Nc colors and Nf

flavors has been computed using the functional RG. The

 0
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FIG. 4 (color online). Critical exponent �0 of the running
gauge coupling at the Caswell-Banks-Zaks fixed point as a
function of the number of flavors Nf as obtained from two-,
three-, and four-loop perturbation theory in the MS scheme.
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phase diagram at finite temperature as a function of Nf has
first been computed in [38,39]. We briefly review these
results in this section and employ them for our numerical
analysis of the scaling behavior.

In [37–39] the RG flow of QCD starting from the micro-
scopic degrees of freedom in terms of quarks and gluons
was studied within a covariant derivative expansion. A
crucial ingredient for chiral symmetry breaking is the
scale-dependent gluon-induced quark self-interactions of
the type included in (3). We note that dynamical quarks
influence the RG flow of QCD by qualitatively different
mechanisms. First, quark fluctuations directly modify the
running of the gauge coupling due to the screening nature
of these fluctuations. On the other hand, gluon exchange
between quarks induces quark self-interactions which can
become relevant operators in the IR as we have already
discussed in the previous sections. These two mechanisms
strongly influence each other as well. As we have seen,
however, it is possible to disentangle the system once
we accept that these fluctuations can be associated with
different scales in the problem.

From now on we restrict ourselves to d ¼ 4 Euclidean
space-time dimensions and work solely in the Landau
gauge. In a consistent and systematic operator expansion
of the effective action, the lowest nontrivial order is given
by [73]

�k ¼
Z

d4x

�
�c ði@þ �gAÞc þ 1

2
½ ���ðV�AÞ þ ��þðVþAÞ

þ ���ðS� PÞ þ ��VA½2ðV� PÞadj þ ð1=NcÞðV� PÞ��
�
:

(33)

This ansatz for the effective action underlies our nonper-
turbative RG study. The four-fermion interactions occur-
ring here have been classified according to their color and
flavor structure. Color and flavor singlets are

ðV� AÞ ¼ ð �c��c Þ2 þ ð �c���5c Þ2; (34)

ðVþ AÞ ¼ ð �c��c Þ2 � ð �c���5c Þ2; (35)

where (fundamental) color (i; j; . . . ) and flavor (
; ; . . . )
indices are contracted pairwise, e.g., ð �c c Þ � ð �c 


i c


i Þ.

The remaining operators have nonsinglet color or flavor
structure,

ðS� PÞ ¼ ð �c 
c Þ2 � ð �c 
�5c
Þ2

� ð �c 

i c


i Þ2 � ð �c 


i �5c

i Þ2;

ðV� AÞadj ¼ ð �c��T
ac Þ2 þ ð �c���5T

ac Þ2; (36)

where ð �c 
c Þ2 � �c 
c  �c c 
, etc., and ðTaÞij denote

the generators of the gauge group in the fundamental
representation.

We stress that the set of fermionic self-interactions in-
troduced in Eq. (33) forms a complete basis. This means
that any other pointlike four-fermion interaction which is
invariant under SUðNcÞ gauge symmetry and SUðNfÞL �
SUðNfÞR flavor symmetry can be related to those in
Eq. (33) by means of Fierz transformations. In our numeri-
cal analysis, we neglect UAð1Þ-violating interactions in-
duced by topologically nontrivial gauge configurations,
since we expect them to become relevant only inside the

SB regime or for small Nf . In addition, the lowest-order
UAð1Þ-violating term schematically is �ð �c c ÞNf . Thus,
larger Nf correspond to larger RG ‘‘irrelevance’’ by naive
power-counting. Moreover, interactions of the type
�ð �c c ÞNf for Nf > 3 do not contribute directly to the
flow of the four-fermion interactions due to the one-loop
structure of the underlying RG equation for the effective
action.
As a severe approximation, we drop any nontrivial mo-

mentum dependencies of the ��’s and study these couplings
in the pointlike limit ��ðjpij 	 kÞ in our scaling analysis.
Therefore our ansatz for the effective action does not allow
us to study QCD properties in the chirally broken regime,
since, e.g., mesons manifest themselves as momentum
singularities in the ��’s. Nonetheless, our pointlike approxi-
mation can be reasonable in the chirally symmetric
regime. This has been indeed shown in [37], where the
regularization-scheme independence of universal quanti-
ties has been found to hold remarkably well in the pointlike
limit.
Using the truncated effective action (33), we obtain the

following � functions for the dimensionless couplings
�i ¼ ��i=k

2 (see [37,73]):

@t�� ¼ 2�� � 4v4l
ðFBÞ;4
1;1

�
3

Nc

g2�� � 3g2�VA

�

� 1

8
v4l

ðFBÞ;4
1;2

�
12þ 9N2

c

N2
c

g4
�

� 8v4l
ðFÞ;4
1 f�NfNcð�2� þ �2þÞ þ �2�

� 2ðNc þ NfÞ���VA þ Nf�þ�� þ 2�2
VAg; (37)

@t�þ ¼ 2�þ � 4v4l
ðFBÞ;4
1;1

�
� 3

Nc

g2�þ
�

� 1

8
v4l

ðFBÞ;4
1;2

�
� 12þ 3N2

c

N2
c

g4
�

� 8v4l
ðFÞ;4
1

�
�3�2þ � 2NcNf���þ

� 2�þð�� þ ðNc þ NfÞ�VAÞ þ Nf����

þ �VA�� þ 1

4
�2
�

�
; (38)
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@t�� ¼ 2�� � 4v4l
ðFBÞ;4
1;1 ½6C2ðNcÞg2�� � 6g2�þ�

� 1

4
v4l

ðFBÞ;4
1;2

�
� 24� 9N2

c

Nc

g4
�
� 8v4l

ðFÞ;4
1 f2Nc�

2
�

� 2���� � 2Nf���VA � 6�þ��g; (39)

@t�VA ¼ 2�VA � 4v4l
ðFBÞ;4
1;1

�
3

Nc

g2�VA � 3g2��
�

� 1

8
v4l

ðFBÞ;4
1;2

�
� 24� 3N2

c

Nc

g4
�

� 8v4l
ðFÞ;4
1

�
�ðNc þ NfÞ�2

VA þ 4���VA

� 1

4
Nf�

2
�

�
: (40)

Here, C2ðNcÞ ¼ ðN2
c � 1Þ=ð2NcÞ is a Casimir operator of

the gauge group, and v4 ¼ 1=ð32�2Þ. The regularization-
scheme dependence of the RG flow equations is controlled
by (dimensionless) threshold functions l which arise from
Feynman diagrams and incorporate fermionic and/or bo-
sonic fields [91]. For the linear regulator [92–94], we find

lðFÞ;41 ¼1

2
; lðFBÞ;41;1 ¼1��A

6
; lðFBÞ;41;2 ¼3

2
��A

6
: (41)

The scheme dependence of flows toward criticality has
been quantitatively studied already in [37]. Whereas the

threshold functions lðFÞ;41 , lðFBÞ;41;1 , lðFBÞ;41;2 can vary substan-

tially�Oð1Þ, the predictions of universal quantities such as
Nf;cr change only on the percent level due to the truncation

in the chiral sector. In our numerical analysis, we have
dropped contributions from the anomalous dimensions of
the fermions and the gauge coupling �A ¼ �g2=g

2. While

the first one is proportional to the gauge-fixing parameter
and vanishes identical in the Landau gauge in the chirally
symmetric regime [73], we have found by a comparison of
our numerical results with those from [37] that the contri-
butions / �A in the threshold function do not strongly
affect our result for Nf;cr. In fact, we have �A ! 0 for

Nf ! Na:f:
f and g2 < g2�. Moreover, we find for g2 < g2�

that j�2�loop
A j & 1 for Nf * 11 and j�4�loop

A j & 0:5 for

Nf * 8. In total, this may lead to quantitative corrections
at most on the percent level.

Let us now discuss the running of the gauge coupling.
Even though the running coupling has been computed
within the functional RG approach [38,39,95–97], we em-
ploy for simplicity the two- and four-loop result obtained

in the MS scheme [98,99], as our results show a satisfac-
tory convergence in the strongly-flavored regime. We will
often restrict ourselves to the two-loop case, as it already
shows all qualitative features and can be dealt with analyti-
cally. The analytic expression for the two-loop �g2 func-

tion reads explicitly

@tg
2 ¼ �

�
�0 þ �1

�
g2

16�2

�
þ � � �

�
g4

8�2
; (42)

with

�0¼11

3
Nc�2

3
Nf ; �1¼34N3

cþ3Nf�13N2
cNf

3Nc

: (43)

Note that the chosen regularization scheme in the matter

sector and the MS scheme do not coincide. This incon-
sistency results in an undetermined systematic error for our
estimate for the critical number of quark flavors. Since we
are rather interested in the scaling behavior which is related
to the universal critical exponent �, our results are only
influenced indirectly by this approximation.8 Because of
this scheme dependence, the results using the four-loop
running may not necessarily be considered as a more
precise calculation. Instead, the difference between two-

loop and four-loop MS results should be viewed as an
estimate of the dependence of our results on the quantita-
tive details of the running gauge sector.
A comment on contributions to the running of the gauge

coupling induced by the presence of the quark self-
interactions �i is in order here: To render the RG flow
gauge invariant we have to take regulator-dependent Ward-
Takahashi identities into account [95,100]. In the present
case, these symmetry constraints yield contributions to the
running of the gauge coupling which depend on the quark
self-interactions. However, these contributions are propor-
tional to the � functions of the four-fermion couplings, as
has been pointed out in Refs. [37,73]. Therefore, these
contributions vanish as long as the four-fermion couplings
are at their fixed points, i.e. as long as g2 � g2cr. Thus, we
expect that these contributions do not alter the scaling law
(27) in leading order.9 In particular, the power-law behav-
ior is unaffected by these corrections arising due to sym-
metry constraints. In the present approximation, we ignore
these corrections in our numerical analysis.

B. Miransky-type scaling

Let us start with a numerical analysis of many-flavor
QCD with a constant gauge coupling,

@tg
2 ¼ 0:

As discussed above, the gauge coupling can then be con-
sidered as an external Nf-dependent parameter of the the-
ory. For our numerical study we choose the fixed-point
value of the gauge coupling at the two-loop level,

8Of course, the actual value of �0 ¼ �ðNf;crÞ depends on the
actual value of Nf;cr which itself, as a universal quantity, depends
on the difference of the scheme-dependent quantities g2cr and g2�.

9In addition to the presented next-to-leading order corrections
to (27), these symmetry constraints may shift the fixed-point
value g2� of the gauge coupling and therefore cause additional
higher-order corrections to the scaling law (27).
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g2�;2�loopðNfÞ ¼ 16ð11N2
c � 2NcNfÞ�2

13N2
cNf � 34N3

c � 3Nf

: (44)

In the matter sector we employ two different truncations
to which we refer as one-channel and all-channels approxi-
mation. The latter one is Fierz complete. In the all-
channels approximation we take into account the full set
of flow equations (37)–(40), while we only take into ac-
count the RG flow of the scalar-pseudoscalar channel ��

in the one-channel approximation and set all other four-
fermion couplings to zero,

@t�� ¼ 2�� � a��
2
� � b���g

2 � c�g
4; (45)

with

a� ¼ Nc

4�2
; b� ¼ 3

4�2
C2ðNcÞ;

c� ¼ 3

256�2

�
9N2

c � 24

Nc

�
:

(46)

Here, we have adopted the conventions of Sec. II for the
coefficients a, b, c.
Now we can compute the critical values of the gauge

coupling in the one-channel and in the all-channels ap-
proximation. In the one-channel approximation we find

g2cr;one ¼ 32�2ð2N3
c � 2Nc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3N6

c � 8N4
c

p Þ
3ð4þ N4

cÞ
�ðNc¼3Þ

10:86;

(47)

which does not depend on Nf . In the all-channels approxi-
mation the critical value has to be computed numerically.
As found in [37], the resulting critical value g2cr;all of the

gauge coupling then depends on Nf ; for a given number of
colors, g2cr;all decreases weakly with increasing Nf .

The fixed-point value g2�;2�loop together with the critical

value of the gauge coupling can be used to estimate the
critical number of quark flavors above which there is no
chiral symmetry breaking in the IR. In agreement with the
results given in Ref. [37], we find

None
f;cr ¼

169N6
c � 136N4

c þ 132N2
c � 68

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N4

cð3N2
c � 8Þp

N3
c

58N5
c � 64N3

c � 26
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N4

cð3N2
c � 8Þp

N2
c þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N4

cð3N2
c � 8Þp þ 36Nc

�ðNc¼3Þ
11:7; (48)

for the one-channel approximation and

Nall
f;cr � 11:9 (49)

for the all-channels approximation. We may use our esti-
mate for Nf;cr from the one-channel approximation to
estimate Nf;cr in the limit Nc ! 1,

None
f;cr

Nc

¼ 68
ffiffiffi
3

p � 169

2ð13 ffiffiffi
3

p � 29Þ � 3:95: (50)

Our results for Nf;cr are in accordance with the results from
Dyson-Schwinger equations in the rainbow-ladder ap-
proximation; see e.g. [6,33,74] as well as with those from
current lattice simulations [45–58].

Let us now study the dependence of the symmetry
breaking scale kSB on Nf for the specific case Nc ¼ 3. In
Fig. 5 we show our results for lnðkSB=�Þ as function of
ðNf;cr � NfÞ=Nf as obtained from the one-channel (dots)

and from the all-channels (triangles) approximation using
g2�;2�loop as a fixed input parameter. As initial conditions for

the �i’s for a given g2�;2�loopðNfÞ we have used the solution
of the coupled set of linear equations

@ð@t�iÞ
@�i

¼ 0; (51)

where i 2 fþ;�; �;VAg. This corresponds to starting the
flow at the maxima (extrema) of the parabolas.

We observe that for a given Nf the symmetry breaking
scale kSB is smaller in the all-channels approximation
compared to the one-channel approximation. The fits to

the data points are also shown in Fig. 5. In agreement with
our analytic results we find

lnkoneSB � const:� 2:481

jNf;cr � Nfj0:494
;

lnkallSB � const:� 3:932

jNf;cr � Nfj0:516
:

(52)

Thus, we clearly observe the expected exponential scaling
behavior in the one-channel and in the all-channels ap-
proximation for Nf ! Nf;cr.
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FIG. 5 (color online). Logarithm of the (chiral) symmetry
breaking scale lnðkSB=m	Þ as a function of ðNf;cr � NfÞ=Nf;cr

for an Nf-dependent but scale-independent, i.e. constant gauge
coupling. The corresponding fits are given in Eq. (52).
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The result from the one-channel approximation is in
reasonable agreement with the analytic leading-order
(LO) result found in Sec. II,

lnkLOSB ¼ const:� �

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�1jjNf;cr � Nfj

q

� const:� 2:386ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jNf;cr � Nfj

q : (53)

Note that j�2=�1j � 0:273. Differences to the numerical
results are due to numerical errors of the fit and higher-
order corrections which we have derived in Sec. II.

C. Power-law scaling and beyond

Let us now take into account the (momentum) scale
dependence of the running gauge coupling. In order to
compare the theories with different flavor numbers we fix
the scales by keeping the running coupling at the 	-mass
scale � ¼ m	 fixed to �ðm	Þ � 0:322. Since we apply the
truncation (33) to QCD, we do not consider the four-
fermion couplings �� as independent external parameters
as, e.g., in Nambu–Jona-Lasinio-type models. More pre-
cisely, we impose the boundary condition ��i ! 0 for
k ! 1 which guarantees that the ��’s at finite k are solely
generated by quark-gluon dynamics, e.g., by one-particle-
irreducible box diagrams with two-gluon exchange;
cf. Figure 1(c).

In Fig. 6 and 7 we show our results for the Nf depen-
dence of the scales kcr and kSB as obtained from a study
with a running gauge coupling in the two-loop and the

four-loop approximation, respectively. Note that Nf;cr

becomes smaller when we employ the running coupling
in the four-loop approximation. We find

N4�loop
f;cr � 10:0 (54)

in the all-channels approximation and N4�loop
f;cr � 9:8 in the

one-channel approximation, in agreement with Ref. [37].
The data points can be fitted to our analytic results for

the scaling behavior of kSB and kcr. For the all-channels
approximation, we find

lnk
2�loop
cr � const:þ 2:566 lnjNf � Nf;crj; (55)

lnk2�loop
SB � const:� 3:401

jNf � Nf;crj0:54
þ 2:540 lnjNf � Nf;crj; (56)

and

lnk
4�loop
cr � const:þ 1:180 lnjNf � Nf;crj; (57)

lnk
4�loop
SB � const:� 5:196

jNf �Nf;crj0:52
þ 1:171 lnjNf �Nf;crj:

(58)

Thus, the fits are in reasonable agreement with our analytic
predictions. For the multiparameter fits (56) and (58),
we have fixed the coefficient of the ln-term which is
the inverse critical exponent �0 ¼ �ðNf;crÞ. It should be

stressed that the predicted values for the critical exponent
�ðNf;crÞ are substantially different for the running coupling
in the two- and four-loop approximation (cf. Fig. 4),
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FIG. 6 (color online). Double logarithmic plot of Nf depen-
dence of kcr and kSB as obtained from a study with a running
coupling in the two-loop approximation. The criticality scale kcr
(blue circles) is dominated by power-law scaling (straight line
with slope �j�0j�1 in this double-log plot), and clearly serves
as an upper bound for the symmetry breaking scale kSB (red
triangles), being a superposition of power-law and Miransky
scaling. If the theories are probed at integer Nf , i.e., �Nf *
Oð1Þ, the contribution due to Miransky scaling may not be
visible. A pure power-law fit to chiral observables �kSB, may
however overestimate the critical exponent �0.
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FIG. 7 (color online). Double logarithmic plot of Nf depen-
dence of kcr and kSB as obtained from a study with a running
gauge coupling in the four-loop approximation. The contribu-
tions due to Miransky scaling, roughly parametrized by the
difference between kcr (blue circles) and kSB (red triangles),
extend to larger values of �Nf ¼ Nf;cr � Nf , as the estimate for

the critical exponent �0 ¼ �ðNf;crÞ at four-loop is larger than at

two-loop. In this perturbative estimate for the running coupling,
the curves cannot be extended to larger values of �Nf ; see text.
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1

j�ðNf;crÞj � 2:540 ðtwo-loopÞ;
1

j�ðNf;crÞj � 1:171 ðfour-loopÞ:
(59)

In Figs. 6 and 7 we observe that the critical exponent �
clearly influences the scaling behavior close to the quan-
tum critical point Nf;cr. In agreement with our analytic

findings, the size of the regime with exponential scaling
increases with increasing critical exponent �. Using
Eq. (32) we can give a quantitative estimate for the size
of the regime in which the exponential scaling behavior
dominates. For the one-channel approximation [cf.
Eq. (48)], we find

�Nf :¼jNf�Nf;crj&0:3 ðtwo-loop;Nf;cr�11:7Þ: (60)

Using a running coupling in four-loop order (Nf;cr � 9:8)
the size of this Miransky scaling regime can be estimated
to be larger than one flavor. This is in agreement with our
numerical results; see Figs. 6 and 7. With this perturbative
estimate for the running coupling, however, the curves in
Figs. 6 and 7 cannot be extended to larger values of�Nf ¼
Nf;cr � Nf . For instance, in the four-loop case, we have

Nf;cr ’ 9:8 on the one hand. On the other hand, the

Caswell-Banks-Zaks fixed point vanishes for Nf & 8.
Our RG arguments based on expansions about an IR fixed
point hence only extend to �Nf;max ’ 1:8; cf. Fig. 7. In
nonperturbative functional studies where an IR fixed point
appears to exist already in the pure gauge sector and
thus also at lower Nf [38,39,101–108], no restriction on
�Nf arises.

To summarize: since Nf;cr * 9 in current lattice simula-

tions [45–58], we expect that the pure exponential scaling
behavior is difficult to resolve and the corrections due to
the running of the gauge coupling (�) might be more

relevant for lattice simulations. From the viewpoint of
such simulations, one might be interested in keeping
the power of the ‘‘Miransky’’ term fixed to 1=2 and use
the scaling law to fit Nf;cr and the critical exponent

�0 ¼ �ðNf;crÞ.
To illustrate the influence of the critical exponent � we

have also computed the scaling behavior of the scales kcr
and kSB using a model for the running gauge coupling. This
model is inspired by the two-loop approximation modified
by an artificial higher-order term. The latter is constructed
such that the critical exponent � can be changed by hand,
still leaving the two-loop fixed point unaffected,

@tg
2 � �g2 ¼ �2�loop

g2
þ�g6ðg2 � g2�;2�loopÞ; (61)

where the parameter � allows us to change � without
changing Nf;cr. In Fig. 8 we present our results kSB and

kcr for � ¼ 0:003 (i.e. j�ðNf;crÞj � 4:3) in the left panel

and for � ¼ �0:0001 (i.e. j�ðNf;crÞj � 0:3) in the right

panel. The results clearly confirm that the size of the
exponential-scaling regime depends strongly on �.

VI. CONCLUSIONS

In this work we have analyzed how physical observables
in asymptotically free gauge theories, such as QCD or
QED3, scale when the number of flavors is varied. When
the number Nf of fermion flavors in such theories is in-
creased, a regime may open up along the Nf axis in which
the theory is asymptotically free but remains chirally sym-
metric in the infrared. This gives rise to the existence of a
quantum critical point on the Nf axis. The exact determi-
nation of the location of this quantum critical point in QCD
as well as in QED3 is currently a very active frontier in
theoretical physics.
Even though we have presented estimates for Nf;cr as

obtained from a functional RG approach (see also [37,39]),
the focus of this work is on the actual scaling behavior of
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FIG. 8 (color online). Nf dependence of kcr (blue circles) and kSB (red triangles) as obtained from a study with a model for the
running gauge coupling[cf. Eq. (61)] that allows one to tune the critical exponent � by hand. We show the results for �0 ¼
j�ðNf;crÞj � 4:3 (left panel) and j�0j � 0:3 (right panel). Contributions due to Miransky scaling are visible as deviations from a

straight-line behavior (power law) in this double-log plot. These results confirm our estimate that the Miransky-scaling window is
larger for larger j�0j (left panel), whereas power-law scaling dominates for small j�0j (right panel).
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physical observables close to the quantum critical point.
This scaling behavior of observables such as the fermion
condensate close to Nf;cr is not only interesting in its own

right but may also help to guide future lattice simulations
in this field.

Ignoring the running of the gauge coupling, it has long
been known that physical observables obey Miransky scal-
ing, i.e., an exponential scaling law close to the quantum
critical point [28,60,63–65]. In more recent studies [39,67]
we have shown that an upper bound for the scaling behav-
ior of, e.g., the chiral phase transition temperature, can be
derived from an analysis of the fixed-point structure in
the matter sector. In combination with the running of the
gauge coupling in its fixed-point regime, the upper bound
for physical observables then scales according to a power
law. The associated critical exponent is related to the
universal critical exponent � at the IR fixed-point of the
gauge coupling; see Eq. (21).

From another viewpoint, we have shown that Miransky
scaling close to Nf;cr receives universal power-law correc-

tions, which are uniquely determined by the critical ex-
ponent at the IR fixed point of the gauge coupling. Both
scaling laws follow from one and the same set of RG flow
equations and can be considered as two different limits of a
general scaling law: pure exponential Miransky scaling
arises in the limit of large � ! 1, whereas power-law
scaling becomes more prominent at small � ! 0.
Quantitatively, we have estimated the size of the regime
with almost pure exponential scaling in strongly-flavored
QCD and found it to be small, jNf;cr � Nfj & 0:3 for

Nf;cr � 11:7. Outside this regime the scaling behavior of

physical observables is controlled by the critical exponent
�. Our numerical analysis of scaling in many-flavor QCD

based on functional RG methods is indeed in agreement
with these analytic findings.
Finally we would like to add that the scaling behavior

close to the quantum critical point can be contaminated by
the scale-fixing procedure. As also argued in [67], a com-
parison of theories with different Nf is not unique for
nonconformal theories but indeed requires a specific
choice of a dimensionful scale. This scale is used as a ruler
for the different theories. In the present work, we have
fixed the scales by keeping the gauge coupling fixed to the
same value for all Nf at an initial midmomentum scale, e.g.
the 	 mass scale in QCD. Alternatively, theories with
different Nf can be fixed by keeping an IR observable
characteristic for the ordered phase for all Nf fixed, say
the pion decay constant f� or Tcr in QCD. However, the
behavior of physical observables at the quantum critical
point is then discontinuous.
In any case, the scaling relation (28) is a parameter-free

testable prediction for the behavior of physical observables
near the quantum critical point. On the one hand, it might
be tested directly by lattice simulations. On the other hand,
our prediction might also be helpful to guide future lattice
simulations of strongly-flavored gauge theories.
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