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We reexamine the question of measuring the weak phase � in B ! K�� decays. To this end, we

express all B ! K�� amplitudes in terms of diagrams. We show that, as in B ! K�, relations exist

between certain tree and electroweak-penguin diagrams. The imposition of these relations allows the

extraction of � from measurements of the B ! K�� observables. We estimate the theoretical error in this

method to be Oð5%Þ.
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I. INTRODUCTION

In the standard model, CP violation is due to a phase in
the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix. The CKM phase information is conventionally pa-
rametrized in terms of the unitarity triangle, in which the
interior (CP-violating) angles are known as�,�, and� [1].
In this paper, we discuss a method for measuring � in
B ! K�� decays. In order to put this discussion into
context, we beginwith a review ofweak phases inB ! K�.

At the end of the 1980s, it was thought that B ! K�
receives contributions only from tree-type diagrams (pro-
portional to ei�) and penguin diagrams (no weak phase).
The appearance of two contributions with different weak
phases meant that it was not possible to obtain clean weak-
phase information from the measurement of the indirect
CP asymmetry. In 1991, Nir and Quinn (NQ) [2] showed
that one can use an isospin analysis to eliminate the
‘‘penguin pollution,’’ so that one could indeed obtain �
from B ! K� decays. However, several years later it
was noted that, in fact, these decays receive significant
electroweak-penguin (EWP) contributions [3], and that
their appearance makes the NQ analysis fail. Several
years after that, it was shown that, under flavor SU(3)
symmetry, the EWP diagrams are proportional to the tree
diagrams (apart from their weak phases) [4,5]. Finally,
in 2004, all this information was put together, and it
was found that it is possible to modify the NQ analysis
using the EWP-tree relations, and cleanly extract � from
B ! K� [6].

Weak phases in B ! K�� follow a similar story (up
to a point). (Note: assuming isospin symmetry, the wave
function in B ! K�� decays must be symmetrized
with respect to the exchange of the final-state pions.
Depending on their relative angular momentum, the
�� isospin state must be symmetric or antisymmetric.)
In 1991, Lipkin, Nir, Quinn, and Snyder (LNQS)

performed an isospin analysis of K��, and obtained
the relations among the amplitudes for the various
B ! K�� decays, for both the symmetric and antisym-
metric cases [7]. Assuming the experimental separation
of these cases, they noted that the relations permit one to
extract clean weak-phase information from B ! K��
decays. However, their analysis was based in part on
that of Nir and Quinn, i.e. EWP contributions were
neglected. Once these are included, the LNQS method
fails. In 2003, Deshpande, Sinha, and Sinha (DSS) at-
tempted to revive the LNQS analysis for the case of
symmetric �� isospin states [8]. They included EWPs in
a schematic way, and assumed that these can be related
to the tree diagrams, as in Refs. [4,5]. Within their
assumptions, they argued that it is possible to extract �
from B ! K��. However, it was subsequently noted
that the assumed EWP-tree relation in K�� does not
hold [9], so that we are back to the situation of being
unable to obtain weak-phase information from B ! K��.
This is how things stand presently.
In light of this, in this paper we reexamine the question

of whether it is possible to measure � in B ! K�� decays.
To this end, we express the B ! K�� amplitudes in terms
of diagrams and note that the number of unknown theo-
retical parameters does indeed exceed the number of ob-
servables. Thus, one cannot extract weak phases without
additional information.
This input comes from EWP-tree relations. It is true that

the relation assumed by DSS does not hold. However, we
show that there are other relations between certain EWP
and tree diagrams. If these are taken into account, this
reduces the number of unknown theoretical parameters,
so that the extraction of � is possible. Experimentally, it
is not easy, but it is fairly clean theoretically.
In Sec. II, we introduce the diagrams and show how to

express the B ! K�� amplitudes in terms of these. EWP-
tree relations are discussed in Sec. III. The contractions
formalism is used to derive such relations for B ! K��
decays. In Sec. IV, we show how the EWP-tree relations
permit the measurement of � in B ! K�� decays. We
conclude in Sec. V.
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II. B ! K�� AMPLITUDES

There are six processes in B ! K�� decays:
Bþ!Kþ�þ��, Bþ!Kþ�0�0, Bþ!K0�þ�0, B0

d!
Kþ���0, B0

d ! K0�þ��, and B0
d ! K0�0�0. For the

moment, we assume only isospin symmetry, as in
Refs. [7,8]. In all of these decays, the overall wave function
of the final �� pair must be symmetrized with respect to
the exchange of these two particles. If the relative ��
angular momentum is even (odd), the isospin state must be
symmetric (antisymmetric). We refer to these two cases as
I
sym
�� and Ianti�� .
In Ref. [10] it was shown that I

sym
�� and Ianti�� can be

determined experimentally. We briefly summarize the
argument. Consider, for example, B0

d ! K0�þ�� (other

decays are treated similarly). The events in the Dalitz plot
can be described by the following two variables:

sþ ¼ m2
K0�þ ¼ ðpK0 þ p�þÞ2;

s� ¼ m2
K0�� ¼ ðpK0 þ p��Þ2: (1)

Now, a Dalitz-plot analysis permits the extraction of the
decay amplitude, Mðsþ; s�Þ, including both resonant
and nonresonant contributions. The key point is that, under
the exchange of the two pions, we have p�þ $ p�� , i.e.
sþ $ s�. Thus, the symmetric and antisymmetric ampli-
tudes are simply 1ffiffi

2
p ½Mðsþ; s�Þ �Mðs�; sþÞ�.

In fact, the full amplitude cannot be obtained—its
global phase is undetermined. Thus, it is really jMj which
is extracted. Similarly, one can obtain j �Mj from the
CP-conjugate decay. Therefore, for each decay one
measures the momentum-dependent branching ratio

(/ jMj2 þ j �Mj2) and the momentum-dependent direct

CP asymmetry (/ jMj2 � j �Mj2). In addition, for
K0�þ�� (where the K0 is seen as KS), the momentum-
dependent indirect CP asymmetry1 can be measured and

gives M� �M for this decay.
In the I

sym
�� scenario, there are several relations

among the amplitudes, including AðBþ ! K0�þ�0Þsym ¼
�AðB0

d ! Kþ���0Þsym [7]. This implies that there are

only five independent decays. For Ianti�� , there are only
four processes: Bþ ! Kþ�þ��, Bþ ! K0�þ�0, B0

d !
Kþ���0, and B0

d ! K0�þ�� (one cannot antisymme-

trize a �0�0 state).
Now, the goal here is to extract the weak phase � from

measurements of B ! K�� decays. This can be done
if the number of unknown theoretical parameters in the
amplitudes is less than or equal to the number of observ-
ables. In the Isym�� case, there are 11 observables: the
momentum-dependent branching ratios and direct CP

asymmetries of Bþ ! Kþ�þ��, Bþ ! Kþ�0�0, B0
d !

Kþ���0, B0
d ! K0�þ��, and B0

d ! K0�0�0, and the

momentum-dependent indirect CP asymmetry of B0
d !

K0�þ�� (the indirect CP asymmetry of B0
d ! K0�0�0

will essentially be impossible to measure). For Ianti�� , there
are 9 observables: the momentum-dependent branching
ratios and direct CP asymmetries of Bþ ! Kþ�þ��,
Bþ ! K0�þ�0, B0

d ! Kþ���0, and B0
d ! K0�þ��,

and the momentum-dependent indirect CP asymmetry
of B0

d ! K0�þ��. We therefore conclude that the Isym��

scenario is the more promising for extracting �, and we
concentrate on it exclusively below.

FIG. 1. Diagrams contributing to B ! K��.

1The indirect CP asymmetry depends on the CP of the final
state, and a priori K0�þ�� is a mixture of CPþ and CP� .
However, the separation of symmetric and antisymmetric ��
states also fixes the final state CP: K0ð��Þsym and K0ð��Þanti
have CPþ and �, respectively.
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It was shown in Ref. [10] that the amplitudes for three-
body B decays can be expressed in terms of diagrams.
The diagrams are shown in Fig. 1 (all annihilation- and
exchange-type diagrams have been neglected). Note the
following:

(i) In all diagrams, it is necessary to ‘‘pop’’ a quark pair
from the vacuum. This pair is u �u or d �d.

(ii) The subscript 1 indicates that the popped quark pair
is between two (nonspectator) final-state quarks;
the subscript 2 indicates that the popped quark pair
is between two final-state quarks including the
spectator.

One difference compared to two-body B decays is that
here, because the final state contains three particles, the
diagrams are momentum dependent. However, this does
not pose a problem. The diagrams (magnitudes and relative
strong phases) are determined via a fit to the data. But since
the experimental observables are themselves momentum
dependent, the fit will yield the momentum dependence of
each diagram.
In terms of diagrams, the B ! K�� amplitudes are

given by

ffiffiffi
2

p
AðBþ ! K0�þ�0Þsym ¼ �T0

1e
i� � C0

2e
i� þ P0

EW2 þ P0C
EW1;

AðB0
d ! K0�þ��Þsym ¼ �T0

1e
i� � C0

1e
i� � ~P0

uce
i� þ ~P0

tc þ 1
3P

0
EW1 þ 2

3P
0C
EW1 � 1

3P
0C
EW2;ffiffiffi

2
p

AðB0
d ! K0�0�0Þsym ¼ C0

1e
i� � C0

2e
i� þ ~P0

uce
i� � ~P0

tc � 1
3P

0
EW1 þ P0

EW2 þ 1
3P

0C
EW1 þ 1

3P
0C
EW2;

AðBþ ! Kþ�þ��Þsym ¼ �T0
2e

i� � C0
1e

i� � ~P0
uce

i� þ ~P0
tc þ 1

3P
0
EW1 � 1

3P
0C
EW1 þ 2

3P
0C
EW2;ffiffiffi

2
p

AðBþ ! Kþ�0�0Þsym ¼ T0
1e

i� þ T0
2e

i� þ C0
1e

i� þ C0
2e

i� þ ~P0
uce

i� � ~P0
tc � 1

3P
0
EW1 � P0

EW2 � 2
3P

0C
EW1 � 2

3P
0C
EW2;ffiffiffi

2
p

AðB0
d ! Kþ�0��Þsym ¼ T0

1e
i� þ C0

2e
i� � P0

EW2 � P0C
EW1; (2)

where ~P0 � P0
1 þ P0

2, and all amplitudes have been multi-
plied by

ffiffiffi
2

p
. Above we have explicitly written the weak-

phase dependence [this includes � and the minus sign
from V�

tbVts ( ~P
0
tc and EWPs)], while the diagrams contain

strong phases.
Although there are a large number of diagrams in these

amplitudes, they can be combined into a smaller number of
effective diagrams:

ffiffiffi
2

p
AðBþ!K0�þ�0Þsym¼�T0

ae
i��T0

be
i�

þP0
EW;aþP0

EW;b;

AðB0
d!K0�þ��Þsym¼�T0

ae
i��P0

ae
i�þP0

b;ffiffiffi
2

p
AðB0

d!K0�0�0Þsym¼�T0
be

i�þP0
ae

i��P0
b

þP0
EW;aþP0

EW;b;

AðBþ!Kþ�þ��Þsym¼�P0
ae

i�þP0
b�P0

EW;a;ffiffiffi
2

p
AðBþ!Kþ�0�0Þsym¼T0

ae
i�þT0

be
i�þP0

ae
i�

�P0
b�P0

EW;b;ffiffiffi
2

p
AðB0

d!Kþ�0��Þsym¼T0
ae

i�þT0
be

i��P0
EW;a�P0

EW;b;

(3)

where

T0
a �T0

1�T0
2; T0

b �C0
2þT0

2; P0
a � ~P0

ucþT0
2þC0

1;

P0
b � ~P0

tcþ 1
3P

0
EW1þ 2

3P
0C
EW1� 1

3P
0C
EW2;

P0
EW;a �P0C

EW1�P0C
EW2; P0

EW;b �P0
EW2þP0C

EW2: (4)

The amplitudes can therefore be written in terms of 6
effective diagrams. This corresponds to 12 theoretical pa-
rameters: 6 magnitudes of diagrams, 5 relative (strong)
phases, and �. However, as noted above, there are only
11 experimental observables. Therefore, in order to extract
�, one requires additional input.
One obvious idea is the following. In two-body �b ! �s

B decays, the diagrams are expected to obey the approxi-
mate hierarchy [11]

1: P0
tc; ��: T0; P0

EW; ��2: C0; P0
uc; P

0C
EW; (5)

where �� ’ 0:2. If the three-body decay diagrams obey a
similar hierarchy, one can neglect C0

1, C
0
2,

~P0
uc, P

0C
EW1, and

P0C
EW2, with only a �5% theoretical error. But if these

diagrams are neglected, then two of the effective diagrams
vanish: P0

EW;a ! 0 and T0
b � P0

a ! 0 [Eq. (4)]. In this case,

the amplitudes can be written in terms of 4 effective dia-
grams, corresponding to 8 theoretical parameters: 4 mag-
nitudes of diagrams, 3 relative (strong) phases, and �.
Given that there are 11 experimental observables, the
weak phase � can be extracted.
The problem here is that it is difficult to test the assump-

tion that C0
1, C

0
2,

~P0
uc, P

0C
EW1, and P0C

EW2 are negligible, so

that the theoretical error is really unknown. Given this, it is
perhaps better to look for another method, in which the
theoretical error is better under control.
As mentioned in the Introduction, in Ref. [8], DSS

proposed a new method for measuring � in B ! K��
decays. Although the details are different, at its heart the
method is similar to that outlined above. While DSS do not
write the amplitudes in terms of diagrams, they do note that

MEASURING � IN B ! K�� DECAYS PHYSICAL REVIEW D 84, 034041 (2011)

034041-3



each decay amplitude receives two contributions, one pro-
portional to ei�, the other with no weak phase. The key
point is that there is no gluonic-penguin contribution to
Bþ ! K0�þ�0—its amplitude has only tree and EWP
pieces. DSS’s assumption, which provides the additional
input and allows � to be extracted, is that the EWP and tree
contributions in Bþ ! K0�þ�0 are related to one another
as in Refs. [4,5]. Unfortunately, it was then shown that this
relation does not hold [9], so that � cannot be obtained
using DSS’s method.

Now, in terms of diagrams, the DSS assumption is that
T0
1 þ C0

2 is related to P
0
EW2 þ P0C

EW1 [Eq. (2)]. Although this

is not true, it does not preclude other EWP-tree relations.
Indeed, as we will see in the next section, such relations do
exist, and their imposition does allow � to be extracted
from B ! K�� decays.

Finally, we return to the issue of the underlying symme-
try. The above discussion is for the case where only isospin
symmetry is considered. However, below wewill see that it
may be necessary to assume full flavor SU(3) symmetry. In
this case, the final state involves three identical particles, so
that the six permutations of these particles (the group S3)
must be taken into account. Correspondingly, there are
six possible wave functions, in which the three particles
are in a totally symmetric state, a totally antisymmetric
state, or one of four mixed states. These six states can be
chosen such that the ��wave function is either symmetric
or antisymmetric. A symmetric �� state is then a linear
combination of the totally symmetric S3 state and one
mixed state. Consequently, the parametrization of Eq. (3)
holds even under full SU(3) symmetry, as long as the state
is symmetric under �� exchange.

III. EWP-TREE RELATIONS

EWP-tree relations are well known in the context of
B ! PP decays (P is a pseudoscalar meson), particularly
B ! K�. They have been very useful for reducing the
number of free theoretical parameters. The starting point
is the electroweak effective Hamiltonian for quark-level �b
decays [12]:

Heff ¼ GFffiffiffi
2

p X
q¼d;s

0
@ X

p¼u;c

�ðqÞ
p ðc1ð�ÞOp

1 ð�Þ þ c2ð�ÞOp
2 ð�ÞÞ

� �ðqÞ
t

X10
i¼3

cið�ÞOið�Þ
1
A; (6)

where �ðqÞ
p ¼ V�

pbVpq.� is the renormalization point, typi-

cally taken to be OðmbÞ. All physical quantities must be
independent of �. The Wilson coefficients ci include
gluons (QCD corrections) whose energy is above � (short
distance), while the operators Oi include QCD corrections
of energy less than � (long distance). Note: factors of

GF=
ffiffiffi
2

p
are omitted for the remainder of this paper.

The operators take the following form:

Op
1 ¼ ð �b�p�ÞV�Að �p�q�ÞV�A;

Op
2 ¼ ð �b�p�ÞV�Að �p�q�ÞV�A;

(7)

summed over color indices � and �. These are the usual
(tree-level) current-current operators induced by W-boson
exchange.

O3 ¼ ð �b�q�ÞV�A

X
q0
ð �q0�q0�ÞV�A;

O4 ¼ ð �b�q�ÞV�A

X
q0
ð �q0�q0�ÞV�A;

O5 ¼ ð �b�q�ÞV�A

X
q0
ð �q0�q0�ÞVþA;

O6 ¼ ð �b�q�ÞV�A

X
q0
ð �q0�q0�ÞVþA;

(8)

summed over the light flavors q0 ¼ u, d, s, and c. These are
referred to as QCD (gluonic) penguin operators.

O7 ¼ 3

2
ð �b�q�ÞV�A

X
q0
eq0 ð �q0�q0�ÞVþA;

O8 ¼ 3

2
ð �b�q�ÞV�A

X
q0
eq0 ð �q0�q0�ÞVþA;

O9 ¼ 3

2
ð �b�q�ÞV�A

X
q0
eq0 ð �q0�q0�ÞV�A;

O10 ¼ 3

2
ð �b�q�ÞV�A

X
q0
eq0 ð �q0�q0�ÞV�A;

(9)

with eq0 denoting the electric charges of the quarks. These

are the electroweak-penguin operators. The quark current
ð �q1q2ÞV�A denotes �q1�

�ð1� �5Þq2. The key observation
is that the Wilson coefficients c7;8 are small compared to

c9;10. Neglecting them, the tree and EWP operators then

have exactly the same structure, up to a Fierz transforma-
tion of the fermions, and can be related.
Various approaches have been used to exploit this fact

for B ! K� decays. Neubert and Rosner (NR) showed
that a basic SU(3) EWP-tree relation can be obtained by
manipulating the effective Hamiltonian itself at the level of
quark operators [4]. Later, Gronau, Pirjol, and Yan (GPY)
used a more general technique based on group theory to
find additional SU(3) EWP-tree relations [5]. Recently, it
was shown that these relations can be obtained by studying
Wick contractions of the effective Hamiltonian [13].
In this section, we will apply the contractions approach

to B ! K�� decays. As we will see, the correct SU(3)
EWP-tree relations in B ! K�� are between specific
diagrams. For example, P0

EW1 is related to T0
1 and C0

1, and
not to T0

2 and C0
2. Since different diagrams such as T0

1 and
T0
2 cannot be distinguished at the level of operators or

group theory, the NR and GPY approaches may not be
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applicable [14]. In the following section, we give a brief
review of the contractions formalism.

A. Contractions

The formalism of contractions gives a bridge between
the effective Hamiltonian and the language of diagrams.
Contractions include all the short-distance information of
Wilson coefficients, and also exploit the fact that trees
and EWPs arise from long-distance operators with almost
identical structures. In Ref. [13], contractions are discussed
at length for B ! PP decays (see also Ref. [15]). Here
only isospin symmetry is assumed initially. It is shown that
all diagrams can be expressed in terms of contractions, and
the EWP-tree relations of Refs. [4,5] are reproduced.
However, these relations hold only if SU(3) symmetry is
imposed. For this reason, in our review below, we assume
SU(3) from the beginning. Also, for definitiveness, and to
make the comparison with B ! K�� clearer, we focus on
the decay B ! K�.

The idea is as follows: (i) one symmetrizes or antisym-
metrizes the final state, (ii) one takes the operators of
effective Hamiltonian, (iii) one adds initial and final states,
and (iv) one computes the sum of all possible Wick con-
tractions, applying the basic rules of quantum field theory.
This gives the decomposition of the decay amplitude in
terms of contractions. This can be compared with the

decomposition in terms of diagrams and therefore gives
us the structure of each diagram in terms of contractions.
It is this comparison which allows us to match diagrams
and contractions and thus yields the EWP-tree relations.
Since the spinless B meson decays into a pair of pseu-

doscalar mesons K and �, these are necessarily in an
S wave. Under SU(3), K and � mesons are identical
particles, and so one must symmetrize the final state jfi:

jfi ¼ 1ffiffiffi
2

p ðjKðp1Þ�ðp2Þi þ j�ðp1ÞKðp2ÞiÞ: (10)

When calculating the amplitude for a particular B ! K�
decay, one must ‘‘sandwich’’ all operators of the effective
Hamiltonian between initial and final states. All such terms
have the form

h �q1q2 �q3q4j �bq5 �q6q7j �bq8i: (11)

(Dirac and color structures are omitted for notational
convenience.) �bq8 is the B meson. The final-state mesons
contain the quarks �q1, q2, �q3, and q4. The two choices are
K ¼ �q1q2 and � ¼ �q3q4, or � ¼ �q1q2 and K ¼ �q3q4, and
these correspond to the two states in Eq. (10).
For a given B decay, there are 4! ¼ 24 possible contrac-

tions. However, not all are independent. For example,
consider the two contractions2

(The prime indicates a �b ! �s transition.) Here the labels
(1) and (2) correspond, respectively, to the momentum
assignments Kðp1Þ�ðp2Þ and �ðp1ÞKðp2Þ. It is clear that
the above contractions are not independent since one can
be obtained from the other with an exchange of mesons, so
that EM0ð1Þ ¼ EM0ð2Þ.

Now, if one performs the contractions with the operators
Ou

1 and Ou
2 of Eq. (6), one finds that the T0 diagram is

related to the EM0-type contractions [13]:

T0 ¼ 1ffiffiffi
2

p j�ðsÞ
u jðc1EM0

1ð1Þ þ c1EM
0
1ð2Þ

þ c2EM
0
2ð1Þ þ c2EM

0
2ð2ÞÞ

¼ 1ffiffiffi
2

p j�ðsÞ
u jc1

�
EM0

1ð1Þ þ EM0
1ð2Þ

þ c2
c1

EM0
2ð1Þ þ

c2
c1

EM0
2ð2Þ

�
; (13)

where EM0
i is an EM0-type contraction of the operator Oi.

Similarly, the P0
EW diagram is related to the EM0

i contrac-
tion of the operators O9 and O10:

P0
EW ¼ � 1ffiffiffi

2
p 3

2
j�ðsÞ

t jðc9EM0
9ð1Þ þ c9EM

0
9ð2Þ

þ c10EM
0
10ð1Þ þ c10EM

0
10ð2ÞÞ

¼ � 1ffiffiffi
2

p 3

2
j�ðsÞ

t jc9
�
EM0

9ð1Þ þ EM0
9ð2Þ

þ c2
c1

EM0
10ð1Þ þ

c2
c1

EM0
10ð2Þ

�
: (14)

Here, we have used the fact that the Wilson coefficients
obey c1=c2 ¼ c9=c10 to about 5%. (In the rest of the paper,
we assume this equality.)
Now, the T0 diagram contains EM0-type contractions of

Ou
1;2, while the P0

EW diagram contains EM0-type contrac-

tions of O9;10. However, since s-quark contractions are

equal to u- or d-quark contractions in the SU(3) limit,
Oq

9�ð �b�s�ÞV�Að �q�q�ÞV�A¼ð �b�u�ÞV�Að �u�s�ÞV�A�Ou
1 .

That is, Oq
9 and Ou

1 have the same form under SU(3).

Things are similar for Oq
10 and Ou

2 . We therefore see that

P0
EW is proportional to T0:

P0
EW ¼ � 3

2

j�ðsÞ
t j

j�ðsÞ
u j

c9 þ c10
c1 þ c2

T0: (15)
2Here EM stands for ‘‘emission.’’ See Ref. [13] for details.
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The argument is much the same for C0 and P0C
EW. Two other contractions are

The diagrams C0 and P0C
EW are related to the EM0

C-type contractions:

C0 ¼ 1ffiffiffi
2

p j�ðsÞ
u jðc1EM0

C1ð1Þ þ c1EM
0
C1ð2Þ þ c2EM

0
C2ð1Þ þ c2EM

0
C2ð2ÞÞ

¼ 1ffiffiffi
2

p j�ðsÞ
u jc1

�
EM0

C1ð1Þ þ EM0
C1ð2Þ þ

c2
c1

EM0
C2ð1Þ þ

c2
c1

EM0
C2ð2Þ

�
;

P0C
EW ¼ � 1ffiffiffi

2
p 3

2
j�ðsÞ

t jðc9EM0
C9ð1Þ þ c9EM

0
C9ð2Þ þ c10EM

0
C10ð1Þ þ c10EM

0
C10ð2ÞÞ

¼ � 1ffiffiffi
2

p 3

2
j�ðsÞ

t jc9
�
EM0

C9ð1Þ þ EM0
C9ð2Þ þ

c2
c1

EM0
C10ð1Þ þ

c2
c1

EM0
C10ð2Þ

�
: (17)

In the SU(3) limit, EM0
C9ðnÞ ¼ EM0

C1ðnÞ and EM0
C10ðnÞ ¼

EM0
C2ðnÞ (n ¼ 1, 2), so that P0C

EW is proportional to C0:

P0C
EW ¼ � 3

2

j�ðsÞ
t j

j�ðsÞ
u j

c9 þ c10
c1 þ c2

C0: (18)

Above, we have described the formalism of contractions
in the context of two-body decays. Our aim now is to
apply this to the problem of B ! K�� decays and derive
EWP-tree relations. As we saw above, different contrac-
tions can be made equal through the imposition of SU(3).
However, this can lead to some subtleties in the case of
three-body decays.

Under SU(3), � and K mesons are treated as identical
particles, and the total wave function of the final state must
be symmetric under the exchange of these particles. For
B ! K� decays, since the final state has to be in an
S wave, it is automatically symmetric under the exchange
of the final-state mesons. However, for B ! K��, higher
states of angular momentum are possible, and the final
state is then not necessarily symmetric under permutations
of the mesons. As mentioned earlier, the group of permu-
tations is S3, and there are six possible states: the three
particles can be in a totally symmetric state, a totally
antisymmetric state, or one of four mixed states. To be
completely explicit, we define

j1i � jKðp1Þ�1ðp2Þ�2ðp3Þi;
j2i � jKðp1Þ�2ðp2Þ�1ðp3Þi;
j3i � j�2ðp1ÞKðp2Þ�1ðp3Þi;
j4i � j�2ðp1Þ�1ðp2ÞKðp3Þi;
j5i � j�1ðp1Þ�2ðp2ÞKðp3Þi;
j6i � j�1ðp1ÞKðp2Þ�2ðp3Þi;

(19)

where the pi are the momenta of the final-state mesons.
The six states of S3 can then be defined as

jSi � 1ffiffiffi
6

p ðj1i þ j2i þ j3i þ j4i þ j5i þ j6iÞ;

jM1i � 1ffiffiffiffiffiffi
12

p ð2j1i þ 2j2i � j3i � j4i � j5i � j6iÞ;

jM2i � 1ffiffiffi
4

p ðj3i � j4i � j5i þ j6iÞ;

jM3i � 1ffiffiffi
4

p ð�j3i � j4i þ j5i þ j6iÞ;

jM4i � 1ffiffiffiffiffiffi
12

p ð2j1i � 2j2i � j3i þ j4i � j5i þ j6iÞ;

jAi � 1ffiffiffi
6

p ðj1i � j2i þ j3i � j4i þ j5i � j6iÞ:

(20)

Note that jSi, jM1i, and jM2i are all symmetric under the
exchange of the two pions, while jM3i, jM4i, and jAi are all
antisymmetric.
Below, we present two cases which illustrate the features

of all six S3 states. First, we examine the totally symmetric
SU(3) state jSi. This can be determined experimentally
as follows. Consider again the decay B0

d ! K0�þ��.
In Sec. II it was noted that the Dalitz-plot events can be
described by sþ and s� [Eq. (1)], and that the decay
amplitude, Mðsþ; s�Þ, can be extracted. We introduce
the third Mandelstam variable, s0 ¼ ðp�þ þ p��Þ2. It is
related to sþ and s� as follows:

s0 ¼ m2
B þ 2m2

� þm2
K0 � sþ � s�: (21)

The totally symmetric SU(3) decay amplitude is then
given by

1ffiffiffi
6

p ½Mðsþ; s�Þ þMðs�; sþÞ þMðsþ; s0Þ þMðs0; sþÞ

þMðs0; s�Þ þMðs�; s0Þ�: (22)

Other decays can be treated similarly.
Second, we examine the state which is symmetric only

under the exchange of the two pions (we denote this
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state as jS��i, and refer to it as �� symmetric).
Previous analyses of B ! K�� concentrated on the
��-symmetric case with isospin symmetry [7,8,10,16].
It is written as

jS��i¼ 1ffiffiffi
2

p ðjKðp1Þ�1ðp2Þ�2ðp3ÞiþjKðp1Þ�2ðp2Þ�1ðp3ÞiÞ

¼
ffiffiffi
1

3

s
jSiþ

ffiffiffi
2

3

s
jM1i: (23)

Thus, the ��-symmetric state is a mixture of the totally
symmetric state and a mixed state of S3.

B. Totally symmetric case

We begin with the totally symmetric state jSi. The
amplitude is obtained by summing over all possible
contractions:

A ðB ! K�1�2Þtot-sym ¼ X
contractions

hSjH eff jBi: (24)

Here there are 5! ¼ 120 possible contractions. Even after
removing those which are not independent, there are a
large number of contractions involved.
Below we concentrate on the tree and EWP contrac-

tions/diagrams. We use the same notation as for B ! K�.
To be specific, XiðnÞ (n ¼ 1–6) is an X-type contraction
of the operator Oi of H eff arising from the momentum
assignments of the states jni ¼ j1i; j2i; . . . ; j6i. For ex-
ample, T0

1;2ð2Þ denotes a contraction of the tree operator

O2 related to the T0
1 diagram with momentum assign-

ments Kðp1Þ, �1ðp3Þ, and �2ðp2Þ. The explicit forms of
contractions for the trees and EWPs that interest us are
the following:

These are easy to verify from Fig. 1.
Recall that the momentum assignment (1) corresponds to Kðp1Þ, �1ðp2Þ, and �2ðp3Þ, while (2) corresponds to Kðp1Þ,

�2ðp2Þ, and �1ðp3Þ. Contractions of type (2) can be obtained by acting with P23, where Pij is the permutation operator

which exchanges the ith and jth mesons of the final state. For example, the contraction C0
1ð2Þ is

In the same vein, contractions of type (n) can be obtained by acting on contractions of type (1) with the appropriate
permutation operator (exchanges, cyclic or anticyclic permutations).

With these, it is straightforward to express the tree and EWP diagrams in terms of contractions. We have

T0
j ¼

j�ðsÞ
u jffiffiffi
6

p ciðT0
j;ið1Þ þ � � � þ T0

j;ið6ÞÞ; C0
j ¼

j�ðsÞ
u jffiffiffi
6

p ciðC0
j;ið1Þ þ � � � þ C0

j;ið6ÞÞ;

P0
EWj ¼ � 3

2

j�ðsÞ
t jffiffiffi
6

p ciðP0
EWj;ið1Þ þ � � � þ P0

EWj;ið6ÞÞ; P0C
EWj ¼ � 3

2

j�ðsÞ
t jffiffiffi
6

p ciðP0C
EWj;ið1Þ þ � � � þ P0C

EWj;ið6ÞÞ; (27)

where the sum is over i ¼ 1, 2 for trees and i ¼ 9, 10 for EWPs.
The point is that, with a totally symmetric state, the contractions T0

j;iðmÞ and P0
EWj;iðnÞ are simply different ways of

writing the same thing. Applying the permutation operator P13 (for example), it is easy to show that
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P13T
0
j;ið1Þ ¼ P0

EWj;ið1Þ; P13T
0
j;ið2Þ ¼ P0

EWj;ið6Þ;
P13T

0
j;ið3Þ ¼ P0

EWj;ið5Þ; P13T
0
j;ið4Þ ¼ P0

EWj;ið4Þ;
P13T

0
j;ið5Þ ¼ P0

EWj;ið3Þ; P13T
0
j;ið6Þ ¼ P0

EWj;ið2Þ: (28)

The situation here is very similar to what we found in the
B ! K� decay. In that case, both T0 and P0

EW diagrams
were written in terms of EM0-type contractions. Here, we
use a slightly different notation, but the above equation
proves that T0

i and P0
EWi diagrams (i ¼ 1, 2) actually con-

tain the same type of contraction.
Similar relations exist between the C0

j;iðmÞ and P0C
EWj;iðnÞ

contractions. Thus, assuming the Wilson coefficients
respect the approximate equality c1=c2 � c9=c10, it is
straightforward to find the following SU(3) relations
from Eq. (27):

P0
EW1 ¼ � 3

2

j�ðsÞ
t j

j�ðsÞ
u j

c9 þ c10
c1 þ c2

T0
1;

P0
EW2 ¼ � 3

2

j�ðsÞ
t j

j�ðsÞ
u j

c9 þ c10
c1 þ c2

T0
2;

P0C
EW1 ¼ � 3

2

j�ðsÞ
t j

j�ðsÞ
u j

c9 þ c10
c1 þ c2

C0
1;

P0C
EW2 ¼ � 3

2

j�ðsÞ
t j

j�ðsÞ
u j

c9 þ c10
c1 þ c2

C0
2:

(29)

Now, these relations assume only SU(3) symmetry and
the approximate ratio of Wilson coefficients. The expected
error due to SU(3)-breaking effects is Oð30%Þ. However,
when all contributions to B ! K�� are taken into ac-
count, the net error is much smaller, Oð5%Þ, since EWPs
and trees are subleading effects. This is consistent with the
error estimates for EWP-tree relations in B ! K� given in
Ref. [4].

Finally, we note that the assumption c1=c2 ¼ c9=c10 is
not necessary. It is actually possible to prove EWP-tree
relations which are exact under SU(3). They are

P0
EWi ¼�3

4

j�ðsÞ
t j

j�ðsÞ
u j

�
c9þc10
c1þc2

ðT0
iþC0

iÞþ
c9�c10
c1�c2

ðT0
i�C0

iÞ
�
;

P0C
EWi ¼�3

4

j�ðsÞ
t j

j�ðsÞ
u j

�
c9þc10
c1þc2

ðT0
iþC0

iÞ�
c9�c10
c1�c2

ðT0
i�C0

iÞ
�
;

(30)

for i ¼ 1, 2. These are similar to the exact SU(3) EWP-tree
relations for B ! K� given in Ref. [5]. [When we assume
that c1=c2 ¼ c9=c10, we recover the relations of Eq. (29).]

C. ��-symmetric case

We now consider the ��-symmetric state. Applying the
formalism of contractions to jS��i with the effective
Hamiltonian H eff , we obtain the amplitude from

A ðB ! K�1�2Þ��-sym ¼ X
contractions

hS��jH effjBi: (31)

Again, there are many contractions involved.
We use the same notation as in the previous section, but

now the number in parentheses only goes from 1 to 2. Thus,
Xið1Þ [Xið2Þ] denotes an X-type contraction of operator Oi

of H eff arising from the first (second) term of the first
relation in Eq. (23). The expressions for the trees and
EWPs in terms of contractions are the same as for the
totally symmetric state jSi [Eq. (27)], but with only two
permutation terms:

T0
j ¼

j�ðsÞ
u jffiffiffi
2

p ciðT0
j;ið1Þ þ T0

j;ið2ÞÞ;

C0
j ¼

j�ðsÞ
u jffiffiffi
2

p ciðC0
j;ið1Þ þ C0

j;ið2ÞÞ;

P0
EWj ¼ � 3

2

j�ðsÞ
t jffiffiffi
2

p ciðP0
EWj;ið1Þ þ P0

EWj;ið2ÞÞ;

P0C
EWj ¼ � 3

2

j�ðsÞ
t jffiffiffi
2

p ciðP0C
EWj;ið1Þ þ P0C

EWj;ið2ÞÞ;

(32)

where, as usual, the sum is over i ¼ 1, 2 for trees and
i ¼ 9, 10 for EWPs.
Based on the EWP-tree relations in B ! K�, from the

previous equation we would expect to find a relation be-
tween T0

j and P
0
EWj (or between C

0
j and P

0C
EWj) under SU(3)

symmetry. And indeed, there is such a relation: for ex-
ample, P0

EW1ð1Þ can be obtained from T0
1ð1Þ by applying the

permutation operator P13:

P0
EW1ð1Þ ¼ P13T

0
1ð1Þ: (33)

The above equality can be verified easily from Eq. (25).
Other pairs of contractions are related similarly. The prob-
lem is that P13 corresponds to the exchange of theK meson
and one of the �’s. But a K $ � exchange is not a valid
operation here since the initial state is not defined as being
symmetric under such an exchange. More generally, this
conclusion applies to all four states of mixed symmetry.
Thus, there are no exact SU(3) EWP-tree relations for
the mixed states in B ! K�� decays. This means that,
for these states, we need different additional input in order
to reduce the number of effective diagrams.
Fortunately, there is a possible piece of additional infor-

mation. The EWP-tree relations of Eqs. (15) and (18) hold
for B ! K� to all orders in �s. However, it was shown in
Ref. [13] that one can also work order by order in �s, i.e.
perform the contractions analysis for processes with 0, 1, 2,
etc. internal gluons. At leading order (LO), different EWP-
tree relations appear. As we see below, a similar behavior
holds for B ! K��.
Contractions are related to Fierz tranformations [q7 $ q9

in Eq. (25)] in the following way:
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C0
1;1 ¼FierzP0

EW1;10; C0
1;2 ¼FierzP0

EW1;9; C0
2;1 ¼FierzP0

EW2;10; C0
2;2 ¼FierzP0

EW2;9;

T0
1;1 ¼FierzP0C

EW1;10; T0
1;2 ¼FierzP0C

EW1;9; T0
2;1 ¼FierzP0C

EW2;10; T0
2;2 ¼FierzP0C

EW2;9: (34)

That is, since Fierz relations hold at the level of operators, contractions of operators O1;2 are related to those of operators
O10;9, respectively. Applying this to diagram P0

EW1 of Eq. (32) for example, we have

P0
EW1 ¼ � 3

2

j�ðsÞ
t jffiffiffi
2

p ciðP0
EW1;ið1Þ þ P0

EW1;ið2ÞÞ

¼ � 3

2

j�ðsÞ
t jffiffiffi
2

p ðc9P0
EW1;9ð1Þ þ c10P

0
EW1;10ð1Þ þ c9P

0
EW1;9ð2Þ þ c10P

0
EW1;10ð2ÞÞ

¼Fierz� 3

2

j�ðsÞ
t jffiffiffi
2

p ðc9C0
1;2ð1Þ þ c10C

0
1;1ð1Þ þ c9C

0
1;2ð2Þ þ c10C

0
1;1ð2ÞÞ: (35)

We also have

C0
1 ¼

j�ðsÞ
u jffiffiffi
2

p ciðC0
1;ið1Þ þC0

1;ið2ÞÞ

¼ j�ðsÞ
u jffiffiffi
2

p ðc1C0
1;1ð1Þ þ c2C

0
1;2ð1Þ þ c1C

0
1;1ð2Þ þ c2C

0
1;2ð2ÞÞ:

(36)

We therefore see that P0
EW1 is not proportional to the C

0
1. It

would be if the Wilson coefficients respected the equality
c1=c2 ¼ c10=c9, but this obviously does not hold (what is
true is that c1=c2 � c9=c10).

This can be ameliorated by working only to LO in �s.
In this case, color effects can be extracted out [13], so that
the above equations become

P0
EW1¼�3

2

j�ðsÞ
t jffiffiffi
2

p ðc9N2
c
�C0
1ð1Þþc10Nc

�C0
1ð1Þ

þc9N
2
c
�C0
1ð2Þþc10Nc

�C0
1ð2ÞÞ

¼�3

2

j�ðsÞ
t jffiffiffi
2

p ðc9N2
cþc10NcÞð �C0

1ð1Þþ �C0
1ð2ÞÞþOð�sÞ;

C0
1¼

j�ðsÞ
u jffiffiffi
2

p ðc1Nc
�C0
1ð1Þþc2N

2
c
�C0
1ð1Þ

þc1Nc
�C0
1ð2Þþc2N

2
c
�C0
1ð2ÞÞ

¼ j�ðsÞ
u jffiffiffi
2

p ðc1Ncþc2N
2
cÞð �C0

1ð1Þþ �C0
1ð2ÞÞþOð�sÞ; (37)

in which Nc ¼ 3 is the number of colors in QCD and the
overline notation indicates color-extracted contractions.
We therefore obtain the relation

P0
EW1 � � 3

2

j�ðsÞ
t j

j�ðsÞ
u j

c9 þ c10=Nc

c1=Nc þ c2
C0
1; (38)

which is valid at LO and under isospin symmetry [SU(3)
was not used above]. The same procedure can be applied
to other diagrams, with the result that

P0
EW2 � � 3

2

j�ðsÞ
t j

j�ðsÞ
u j

c9 þ c10=Nc

c1=Nc þ c2
C0
2;

P0C
EW1 � � 3

2

j�ðsÞ
t j

j�ðsÞ
u j

c9=Nc þ c10
c1 þ c2=Nc

T0
1;

P0C
EW2 � � 3

2

j�ðsÞ
t j

j�ðsÞ
u j

c9=Nc þ c10
c1 þ c2=Nc

T0
2:

(39)

We refer to these as ‘‘crossed’’ EWP-tree relations.
As noted above, the crossed relations hold only at LO—

these are not reproduced by the higher-order diagrams. The
error is thereforeOð�sÞ. The size of this error then depends
crucially on what the value of �s is for this calculation. For
example, if soft gluons are important, then �s is large, and
the use of these relations is not a good approximation. To
address this question, we rely on theoretical input. There
are basically three approaches used in calculations of
hadronic B decays: QCD factorization (QCDf) [17], per-
turbative QCD (pQCD) [18], and soft collinear effective
theory (SCET) [19]. All three methods perform their stud-
ies of two-body decays by taking the mb ! 1 limit and
separating the nonperturbative low-energy (soft) effects
from those at high energies (hard effects).3 All gluons
(soft and hard) between two quarks in the same meson
are absorbed into the parameters describing hadronization
(decay constants). Other gluons between quarks of two
different mesons are absorbed into the form factors. For
the remaining gluons, in all three approaches it was found
that soft gluons are suppressed, so that �s ¼ �sðmbÞ �
20% [13]. This permits an expansion in �s, and this was
done in QCDf, pQCD, and SCET. Here we assume that this
also holds in the case of three-body decays, so that the use
of crossed EWP-tree relations is, in fact, a reasonable

3In fact, there are three energy scales for gluons: �QCD (soft),

mb (hard), and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�QCDmb

q
(hard collinear). The presence of these

three scales affects calculations within a specific model, but does
not change our conclusions regarding the value of �s in the
expansion.
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approximation. (There have been some studies of such
decays, and they support this assumption [20].)

The relations suffer from an additional error due to the
fact that the ratio of Wilson coefficients is strongly depen-
dent on the choice of renormalization scale. This effect can
be taken into account by considering a large range of
values for this ratio. On the whole, we estimate that the
total error is roughly comparable to that when SU(3) is
assumed, Oð30%Þ. However, since EWPs and trees are
themselves subleading effects in B ! K�� decays, the
net effect in concrete applications is much smaller,Oð5%Þ.

IV. MEASURING �

The EWP-tree relations found above do indeed permit
the extraction of � from B ! K�� decays. However, the
precise procedure used depends on what the K�� state is.
One can use only events corresponding to the totally
symmetric final state jSi. Or one can combine the two S3
states, both symmetric under the exchange of the two
pions, whose sum forms jS��i [Eq. (23)].

If the K�� state is jSi, the exact SU(3) EWP-tree
relations [Eq. (29)] hold. For the effective diagrams, this
implies that

P0
EW;b ¼ � 3

2

j�ðsÞ
t j

j�ðsÞ
u j

c9 þ c10
c1 þ c2

T0
b: (40)

Thus, there are only five effective diagrams in the six
B ! K�� decay amplitudes. This corresponds to 10 theo-
retical parameters: 5 magnitudes of diagrams, 4 relative
(strong) phases, and �. Since there are 11 experimental
observables, � can be extracted by doing a fit.

The fit itself is somewhat unusual. All experimental
observables are momentum dependent, as are the dia-
grams. In obtaining the best-fit ‘‘values’’ of the diagrams,
one will determine the momentum dependence of their
magnitudes and relative strong phases. However, � is
independent of the particles’ momenta. Thus, the fit must
yield a momentum-independent value for �. The error on �
must take into account any momentum dependence.

Now, the extraction of the decay amplitudes from the
Dalitz plots is rather difficult and has a certain amount
of input—distributions of resonant effects (e.g. Breit-
Wigner), treatment of nonresonant contributions, etc. It is
possible the input chosen is imprecise and can lead to a
momentum-dependent value for �. In this sense, the re-
quirement that � be momentum independent may provide
some hints regarding the form of the decay amplitudes.

In the ��-symmetric case, we have shown above that
there are no exact SU(3) EWP-tree relations for jS��i.
However, the crossed EWP-tree relations [Eq. (39)] do
hold. By applying these to the effective diagrams of
Eq. (4) we have

P0
EW;a � � 3

2

j�ðsÞ
t j

j�ðsÞ
u j

c9=Nc þ c10
c1 þ c2=Nc

T0
a: (41)

Once again, the number of effective diagrams is reduced to
five, which makes the extraction of � possible. One can
even use both the exact and crossed EWP-tree relations, in
which case fewer observables are needed to obtain �.
In both cases, the theoretical error is Oð5%Þ. The ad-

vantage of using jS��i rather than jSi is that the number of
events is somewhat larger.

V. CONCLUSIONS

It has been known for some time that there are relations
between the EWP and the tree contributions to B ! K�
decays. In particular, apart from the weak phases, the dia-
grams P0

EW and P0C
EW are proportional to T0 and C0, respec-

tively, to a good approximation. In 2003, Deshpande, Sinha,
and Sinha attempted to use these EWP-tree relations to
extract � from B ! K�� decays. Working with the
��-symmetric K�� states (jS��i), they noted that Bþ !
K0�þ�0 receives only tree and EWP contributions. DSS’s
assumption was that these are related as in B ! K�, and
this additional information allowed � to be obtained.
Unfortunately, it was subsequently shown that the EWP-
tree relation does not hold, so that � cannot be extracted
using DSS’s method.
In this paper, we revisit the question of measuring � in

B ! K�� decays, and we show that, in fact, it is possible.
We first define the diagrams contributing to B ! K��.
Because there are three particles in the final state, there are
two types of each diagram. We call them T0

1, T
0
2, P

0
EW1,

P0
EW2, etc. We then express each B ! K�� amplitude

in terms of these diagrams. DSS’s assumption is that
P0
EW2 þ P0C

EW1 is proportional to T0
1 þ C0

2. Using the con-
tractions formalism, we are able to express all diagrams in
terms of contractions and thereby show that there are, in
fact, EWP-tree relations. To be specific, we find that
P0
EWi / T0

i (i ¼ 1, 2) and P0C
EWi / C0

i (i ¼ 1, 2). From
this, we see immediately that the DSS assumption is
indeed false.
Now, when one writes the amplitudes in terms of dia-

grams, one sees that there are more unknown theoretical
parameters than there are observables, so that weak-phase
information cannot be obtained without additional input.
The EWP-tree relations provide this input and allow � to
be measured in B ! K�� decays. But there is a compli-
cation. EWP-tree relations require flavor SU(3) symmetry.
Since K and � are equivalent under this symmetry, one has
to deal with three identical particles in the K�� final
states. The permutation group of three objects is S3, which
has as eigenstates a totally symmetric state of the three
objects, a totally antisymmetric state, and four mixed
states. However, since the relative angular momentum
between the particles is not fixed (due to the fact that we
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have a three-particle final state), the state is not necessarily
symmetric under permutations of the mesons. On the other
hand, it turns out that the EWP-tree relations apply only to
the totally symmetric state (jSi). Thus, if one wants to
apply these relations, one must isolate those events which
correspond to the state jSi.

The state jS��i is a combination of jSi and one of the S3
mixed states. As such, the above EWP-tree relations do not
apply to it. Fortunately, there is an alternative. If one works
to LO in �s, we find crossed EWP-tree relations: P0C

EWi /
T0
i (i ¼ 1, 2) and P0

EWi / C0
i (i ¼ 1, 2). We expect these

to hold approximately, since �sðmbÞ � 0:2. The crossed
EWP-tree relations can be used with jS��i. They are valid
under isospin symmetry—SU(3) is not used.

In both cases, we estimate the theoretical error to be
Oð5%Þ. Experimentally, one can choose to use either state.
The advantage of jSi over jS��i is that the EWP-tree
relations are exact, as opposed to LO. On the other hand,
the advantage of jS��i over jSi is that the number of events
is somewhat larger.
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