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We express the amplitudes for charmless three-body B decays in terms of diagrams. In addition, we

show how to use Dalitz-plot analyses to obtain decay amplitudes which are symmetric or antisymmetric

under the exchange of two of the final-state particles. When annihilation/exchange-type diagrams are

neglected, as in two-body decays, many of the exact, purely isospin-based results are modified, leading to

new tests of the standard model. Some of the tests can be performed now, and we find that present data

agree with the predictions of the standard model. Furthermore, contrary to what was thought previously, it

is possible to cleanly extract weak-phase information from three-body decays, and we discuss methods for

B ! K��, KK �K, K �K�, and ���.
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I. INTRODUCTION

The B factories BABAR and Belle ran for over ten years,
and made an enormous number of measurements of ob-
servables in B decays. For the most part, these decays were
of the form B ! M1M2 (Mi is a meson), as these are most
accessible experimentally. Nevertheless, there have still
been some probes of three-body B ! M1M2M3 decays.
To be specific, experiments have obtained Dalitz plots
for many of the decay modes in B ! K��, KK �K, K �K�,
���, and made measurements of (or obtained upper limits
on) the branching ratios and indirect (mixing-induced) CP
asymmetries of a number of these decays [1].

Things are similar on the theory side. The vast majority
of theoretical analyses involve two-body B decays. This
is in part due to the relative angular momentum of the
final-state particles. For example, consider B0

d ! �þ��.
Because there are two particles in the final state, it has a
fixed value of l (in this case l ¼ 0), and so �þ�� is a CP
eigenstate. On the other hand, in the decay B0

d !
KS�

þ��, the�þ�� can have even or odd relative angular
momentum, so that KS�

þ�� is not a CP eigenstate. This
makes it much more difficult to find clean predictions of
the standard model (SM) to compare with experimental
measurements. This is a general property of three-body
decays.

Still, there have been some theoretical analyses of
CP-conserving observables in three-body B ! K��,
KK �K decays [2–5]. In general, these studies examined
the isospin decomposition of the decay amplitudes, and
the symmetry relations among them. The analyses were
carried out using isospin amplitudes.

In this paper, we examine the amplitudes of the three-
body charmless decays B ! K��, KK �K, K �K�, and ���

using diagrams. In addition, using Dalitz-plot analyses
of such decays, we show how to separate the amplitudes
into pieces which are symmetric or antisymmetric under
the exchange of two of the final-state particles. This is
useful for any decay that contains particles that are iden-
tical under isospin. Now, as has been shown in Ref. [6],
the amplitudes for two-body B decays can be expres-
sed in terms of 9 diagrams. However, 3 of these—the
annihilation/exchange-type diagrams—are expected to be
quite a bit smaller than the dominant diagrams, and can be
neglected, to a good approximation. This same procedure
can be applied to three-body decays.
The point of this is as follows. When one neglects

annihilation/exchange-type diagrams, new features appear.
A given set of three-body decays (e.g. B ! K��) contains
a number of different transitions (e.g. Bþ ! Kþ�þ��,
B0
d ! Kþ�0��, etc.). There are exact relations among the

symmetric or antisymmetric amplitudes for these specific
decays. However, when one neglects certain diagrams,
these relations can be modified, and this can lead to
new effects. For example, some linear combinations of
the isospin amplitudes vanish for certain decays. Also,
there are additional tests of the SM. In some cases, it is
even possible to obtain clean information about the
CP-violating phases.
In Sec. II, we present the diagrams describing B !

M1M2M3 processes. We review Dalitz-plot analyses of
three-body decays in Sec. III, and show how to obtain
amplitudes which are symmetric or antisymmetric under
the exchange of two of the final-state particles. The decays
B ! K��, B ! KK �K, B ! K �K�, and B ! ��� are
discussed in Secs. IV, V, VI, and VII, respectively. In all
cases, we give the expressions for the decay amplitudes in
terms of diagrams, and examine the prospects for the clean
extraction of weak-phase information. Other subjects re-
lated to the particular decays are also discussed: reso-
nances and penguin dominance in B ! K�� (Sec. IV),
penguin dominance and isospin amplitudes in B ! KK �K
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(Sec. V), T dominance in B ! K �K� (Sec. VI), and Dalitz
plots in B ! ��� (Sec. VII). We conclude in Sec. VIII.

II. DIAGRAMS

It has been shown in Ref. [6] that the amplitudes for two-
body B decays can be expressed in terms of 9 diagrams: the
color-favored and color-suppressed tree amplitudes T and
C, the gluonic-penguin amplitudes Ptc and Puc, the color-
favored and color-suppressed electroweak-penguin (EWP)
amplitudes PEW and PC

EW, the annihilation amplitude A, the
exchange amplitude E, and the penguin-annihilation am-
plitude PA. These last three all involve the interaction of
the spectator quark and are expected to be much smaller
than the other diagrams. It is standard to neglect them.

At this point it is useful to revisit the expected size of
these diagrams. In Ref. [6] it was noted that, when the
spectator quark is involved, there is an additional suppres-
sion factor fB=mB, where fB ’ 200 MeV is the B-meson
decay constant. This is Oð ��2Þ, where �� ’ 0:2. There is an
additional factor of �� due to color suppression, so that
jA=Tj, jE=Tj, and jPA=Pj are all estimated to be Oð ��3Þ.
However, a few years later it was shown in Ref. [7]
that rescattering effects can be important. One decay ex-
amined in detail was B0

d ! D�
s K

þ, which proceeds

through the W-exchange diagram. The contributing
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements
are V�

cbVud. Now, B
0
d ! D�

s K
þ also receives a contribution

due to the rescattering of the T decay B0
d ! D��þ, which

is nonsuppressed and governed by the same CKM matrix
elements. It was shown that this contribution is roughly
1= �� larger than that due to E, so that rescattering is indeed
important.

Now, the key point here is that all E transitions poten-
tially have associated with them a T rescattering contribu-
tion. It is therefore reasonable to combine them into an
effective E diagram:

Eeff ¼ Equark þ Erescatt; (1)

in which jEquark=Tj ¼ Oð ��3Þ, but jErescatt=Tj can be larger.
The A and PA transitions can be redefined similarly
(though the rescattering diagram for PA is P). We therefore
see that the annihilation/exchange-type decays can be
larger than previously thought. This is qualitatively con-
sistent with the QCD-based theoretical approaches (QCD
factorization [8], perturbative QCD [9], soft collinear ef-
fective theory [10]), in which annihilation/exchange-type
transitions can be important.

The branching ratio for B0
d ! D�

s K
þ has been measured

to be 1:99� 10�5 [11], to be compared with the branching
ratio for B0

d ! D��þ: 2:7� 10�3 [12]. From these,

we deduce that jEB0
d
!DsK

rescatt =Tj, and hence jEB0
d
!DsK

eff =Tj,
is ’ 0:09. The decay B0

s ! �þ��, which was recently
observed by the CDF Collaboration [13] with a branching
ratio of 0:6� 10�6, has a similar behavior. Here the

rescattering comes from B0
s ! KþK�, which is dominated

by P (so that B0
s ! �þ�� is mainly PA), and whose

branching ratio is 26:5� 10�6. This implies that

jPAB0
s!��

rescatt =Pj, and hence jPAB0
s!��

eff =Pj, is ’ 0:15.
Given that jPAquark=Pj ¼ Oð ��3Þ, this is a significant

enhancement.
However, it is not clear that all E=A=PA diagrams are

similarly increased in size. The above decays are both pure
E or PA transitions and the rescattering inelastic. But what

about a decay like B0
s ! D�

s K
þ? There is an EB0

s!DsK
quark

contribution: jEB0
s!DsK

quark =Tj ¼ Oð ��3Þ. But now the T decays

directly to the same final state, so that the rescattering
contribution to E is elastic. This has not been calculated,
so it is not certain that the enhancement is as large as in the
inelastic case. Most of the decays discussed in this paper
are of this form, so the actual size of the annihilation/
exchange-type contributions is uncertain. It might be as
large as above, e.g. jEeff=Tj ’ 0:1, but it might also be
smaller.
For the three-body decays considered in this paper, we

adopt a similar procedure to that used in two-body decays.
That is, we neglect all annihilation/exchange-type dia-
grams (whose size is estimated to be & 0:1jTj), and ex-
press all amplitudes in terms of tree, penguin, and EWP
diagrams. We assume isospin invariance, but not flavor
SU(3) symmetry. [It is straightforward to modify our
analysis by imposing SU(3).] The diagrams are shown in
Fig. 1. A few words of explanation are in order. These
diagrams are for the decay B ! ���. There are changes
of notation for the other decays:
(i) For �b ! �d transitions (B ! K �K�, ���), the dia-

grams are written without primes; for �b ! �s transi-
tions (B ! K��, KK �K), they are written with
primes.

(ii) In all diagrams, it is necessary to ‘‘pop’’ a quark pair
from the vacuum. It is assumed that this pair is u �u or
d �d (� q �q); if the popped pair is s�s, the diagram is
written with an additional subscript s. Thus, for
B ! K �K�, KK �K, in the penguin or EWP diagrams
with a popped q �q pair, the virtual particle decays to
s�s; if the popped quark pair is s�s (so that the
diagram is written with an additional subscript s),
the virtual particle decays to q �q.

(iii) The subscript 1 indicates that the popped quark pair
is between two (nonspectator) final-state quarks;
the subscript 2 indicates that the popped quark
pair is between two final-state quarks including
the spectator.

In principle, one can also include the gluonic-penguin
diagrams in which the popped quark pair is between the
pair of quarks produced by the gluon. This corresponds
to the case where the virtual spin-1 gluon decays to two
spin-0 mesons (with relative angular momentum l ¼ 1). In
order to account for the color imbalance, additional gluons
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must be exchanged. Although this can take place at low
energy, it will still suppress these diagrams somewhat, and
so we do not include them here. (Note: their inclusion does
not change any of our conclusions.)

One important difference compared to two-body
B-decay diagrams is momentum dependence. In two-
body decays, in the rest frame of the B, the three-momenta
of the final-state particles are equal and opposite. One does
not have the same type of behavior in three-body decays.
Although the sum of the three-momenta of the final parti-
cles is zero, there is no constraint on any individual parti-
cle. As such, the three-body diagrams are momentum
dependent, and this must be taken into account whenever
the diagrams are used.

III. DALITZ PLOTS

In this section, we review certain aspects of the Dalitz-
plot analysis. To illustrate these, we focus on the decay
Bþ ! Kþ���þ [14]. However, a similar type of analysis
can be applied to any three-body B decay.
Bþ ! Kþ���þ can take place via intermediate reso-

nances, as well as nonresonant decays. The events in the
Dalitz plot are therefore described by the following two
variables:

x ¼ m2
Kþ�� ¼ ðpKþ þ p��Þ2;

y ¼ m2
�þ�� ¼ ðp�þ þ p��Þ2: (2)

Now, one of the great advantages of a Dalitz-plot analysis
is that it allows one to extract the full amplitude of the
decay. To this end, we write

M ðBþ ! Kþ���þÞ ¼ X
j

cje
i�jFjðx; yÞ; (3)

where the sum is over all decay modes (resonant and
nonresonant). cj and �j are the magnitude and phase of

the j contribution, respectively, measured relative to one of
the contributing channels. The distributions Fj, which

depend on x and y, describe the dynamics of the individual
decay amplitudes. In the experimental analyses, these
take different (known) forms for the various contributions.
The key point is that a maximum likelihood fit over the
entire Dalitz plot gives the best values of the cj and �j.

Thus, the decay amplitude can be obtained.
In this paper, the following issue is of central impor-

tance. In Bþ ! Kþ���þ, since the �’s are identical
particles under isospin, the overall ���þ wave function
must be symmetric. If the�� pair is in a state of even (odd)
isospin, the wave function (or, equivalently, the Bþ !
Kþ���þ decay amplitude) must be symmetric (antisym-
metric) under the exchange p�þ $ p�� . Unfortunately, the
amplitude of Eq. (3) does not possess such a symmetry.
It is the use of the parameters x and y which is problem-

atic. A better choice of variables would be sþ and s�,
where

sþ ¼ m2
Kþ�þ ¼ ðpKþ þ p�þÞ2;

x ¼ s� ¼ m2
Kþ�� ¼ ðpKþ þ p��Þ2: (4)

Now, under the exchange p�þ $ p�� , we simply have
sþ $ s�. Thus, if we had started with the amplitude
MðBþ ! Kþ���þÞ ¼ gðsþ; s�Þ, the symmetric combi-
nation would be 1ffiffi

2
p ½gðsþ; s�Þ þ gðs�; sþÞ�, i.e. it would

correspond to the production of the ���þ pair with
a symmetric wave function; 1ffiffi

2
p ½gðsþ; s�Þ � gðs�; sþÞ�

would be antisymmetric.
The problem is that the wave function of Eq. (3) is not

given in terms of sþ and s�. Fortunately, there is a

FIG. 1. Diagrams contributing to B ! ���.
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resolution to this problem: the independent Mandelstam
variables y, sþ, and s� satisfy

y ¼ m2
B þ 2m2

� þm2
Kþ � sþ � s�: (5)

This implies that fðx; yÞ ¼ fðs�; yÞ ¼ fðs�; m2
B þ 2m2

� þ
m2

Kþ � sþ � s�Þ � gðsþ; s�Þ. Given the decay amplitude

Mðx; yÞ of Eq. (3), one can therefore easily construct
the amplitude which is symmetric/antisymmetric in
p�þ $ p�� . The same method applies to other
B ! K�� decays, and indeed to all three-body decays.
Thus, if there are identical particles in the final state, the
B-decay Dalitz plot allows us to construct the amplitude
for the production of these particles in a symmetric/
antisymmetric state.

Above, we argued that the Dalitz-plot analysis allows
one to obtain the amplitudeM of any three-body B decay.
Actually, this is not quite accurate—the global phase of
the amplitude is undetermined. Thus, it is really jMj that
should be compared with theory. Similarly, one can obtain

j �Mj of the CP-conjugate decay. In the rest of the paper,
we refer to the momentum-dependent branching ratio and
direct CP asymmetry of a particular decay. These are

proportional to jMj2 þ j �Mj2 and jMj2 � j �Mj2, respec-
tively. Finally, for a self-conjugate final state such as
K0�þ�� (where the K0 is seen as KS), the momentum-
dependent indirect CP asymmetry1 can be measured, and

gives M� �M for this decay.

IV. B ! K�� DECAYS

We begin with B ! K�� decays, a �b ! �s transition.
There are six processes: Bþ ! Kþ�þ��, Bþ!Kþ�0�0,

Bþ ! K0�þ�0, B0
d ! Kþ�0��, B0

d ! K0�þ��, and

B0
d ! K0�0�0. In all of these, the overall wave function

of the final �� pair must be symmetrized with respect to
the exchange of these two particles. There are two possi-
bilities. If the relative angular momentum is even (odd),
the isospin state must be symmetric (antisymmetric). We
refer to these two cases as Isym�� and Ianti�� . As shown in
Sec. III, they can be determined experimentally. We dis-
cuss them in turn.
We first consider I

sym
�� , i.e. I ¼ ð0; 2Þ. The final state has

I ¼ 1
2 ,

3
2 , or

5
2 . The B meson has I ¼ 1

2 and the weak

Hamiltonian has �I ¼ 0 or 1. The final state with I ¼ 5
2

cannot be reached. So there are three different ways of
getting to the final state. Given that there are six decays,
this means that there should be three relations among their
amplitudes. This conclusion is an exact result; the relations
can be found by applying the Wigner-Eckart theorem:

AðBþ!K0�þ�0Þsym¼�AðB0
d!Kþ�0��Þsym;ffiffiffi

2
p

AðBþ!K0�þ�0Þsym¼AðB0
d!K0�þ��Þsym

þ ffiffiffi
2

p
AðB0

d!K0�0�0Þsym;ffiffiffi
2

p
AðB0

d!Kþ�0��Þsym¼AðBþ!Kþ�þ��Þsym
þ ffiffiffi

2
p

AðBþ!Kþ�0�0Þsym:
(6)

These relations were first given (implicitly) in Ref. [5].
The subscript ‘‘sym’’ indicates that the �� isospin state is
symmetrized.
In terms of diagrams, the amplitudes are given by

ffiffiffi
2

p
AðBþ ! K0�þ�0Þsym ¼ �T0

1e
i� � C0

2e
i� þ P0

EW2 þ P0C
EW1;

AðB0
d ! K0�þ��Þsym ¼ �T0

1e
i� � C0

1e
i� � ~P0

uce
i� þ ~P0

tc þ 1
3P

0
EW1 þ 2

3P
0C
EW1 � 1

3P
0C
EW2;ffiffiffi

2
p

AðB0
d ! K0�0�0Þsym ¼ C0

1e
i� � C0

2e
i� þ ~P0

uce
i� � ~P0

tc � 1
3P

0
EW1 þ P0

EW2 þ 1
3P

0C
EW1 þ 1

3P
0C
EW2;

AðBþ ! Kþ�þ��Þsym ¼ �T0
2e

i� � C0
1e

i� � ~P0
uce

i� þ ~P0
tc þ 1

3P
0
EW1 � 1

3P
0C
EW1 þ 2

3P
0C
EW2;ffiffiffi

2
p

AðBþ ! Kþ�0�0Þsym ¼ T0
1e

i� þ T0
2e

i� þ C0
1e

i� þ C0
2e

i� þ ~P0
uce

i� � ~P0
tc � 1

3P
0
EW1 � P0

EW2 � 2
3P

0C
EW1 � 2

3P
0C
EW2;ffiffiffi

2
p

AðB0
d ! Kþ�0��Þsym ¼ T0

1e
i� þ C0

2e
i� � P0

EW2 � P0C
EW1;

(7)

where ~P0 � P0
1 þ P0

2. (Note: all amplitudes have been
multiplied by

ffiffiffi
2

p
.) Above we have explicitly written the

weak-phase dependence [including the minus sign from
V�
tbVts ( ~P

0
tc and EWP’s)], while the diagrams contain strong

phases. [The phase information in the Cabibbo-Kobayashi-
Maskawa quark mixing matrix is conventionally

parametrized in terms of the unitarity triangle, in which

the interior (CP-violating) angles are known as�,�, and �
[12].] It is straightforward to verify that the three relations

of Eq. (6) are reproduced. Thus, in this case, there is no

difference between the exact and diagrammatic amplitude

relations.
We now turn to Ianti�� , i.e. I ¼ 1. Here there are

four processes: Bþ ! Kþ�þ��, Bþ ! K0�þ�0, B0
d !

Kþ�0��, and B0
d ! K0�þ�� (one cannot antisymme-

trize a �0�0 state). The final state has I ¼ 1
2 or

3
2 , so there

are still three different paths to get to the final state. We

1The indirect CP asymmetry depends on the CP of the final
state, and a priori K0�þ�� is a mixture of CPþ and CP� .
However, the separation of symmetric and antisymmetric ��
states also fixes the final-state CP: K0ð��Þsym and K0ð��Þanti
have CPþ and �, respectively.
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therefore expect one relation among the four amplitudes.
Reference [5] notes that it is similar to that in B ! �K:ffiffiffi
2

p
AðBþ ! Kþ�þ��Þanti þ AðBþ ! K0�þ�0Þanti
¼ ffiffiffi

2
p

AðB0
d ! K0�þ��Þanti þ AðB0

d ! Kþ�0��Þanti;
(8)

where the subscript ‘‘anti’’ indicates that the �� isospin
state is antisymmetrized.

Writing the amplitudes in terms of diagrams is a bit
more complicated because antisymmetrization is involved.
Depending on the order of the pions, there might be an
extra minus sign. To account for this, we use the following
prescription:

(i) All diagrams with the pions in order of decreasing
charge from top to bottom are unmodified; all
diagrams with the pions in order of increasing
charge from top to bottom get an additional factor
of �1.

This requires that diagrams always be drawn the same
way. For example, the spectator quark for all tree diagrams
should always appear in the same place (e.g. at the bottom
of the diagram), and the decay products of the neutral
bosons in penguin and EWP diagrams should always ap-
pear in the same order (e.g. quark on top, antiquark on the
bottom).
With this rule, the amplitudes take the form2

ffiffiffi
2

p
AðBþ ! K0�þ�0Þanti ¼ �T0

1e
i� � C0

2e
i� � 2 ~P0

uce
i� þ 2 ~P0

tc � P0
EW2 � 1

3P
0C
EW1 þ 2

3P
0C
EW2;

AðB0
d ! K0�þ��Þanti ¼ �T0

1e
i� � C0

1e
i� � ~P0

uce
i� þ ~P0

tc þ P0
EW1 � 2

3P
0C
EW1 þ 1

3P
0C
EW2;

AðBþ ! Kþ�þ��Þanti ¼ T0
2e

i� � C0
1e

i� þ ~P0
uce

i� � ~P0
tc þ P0

EW1 � 1
3P

0C
EW1 þ 2

3P
0C
EW2;ffiffiffi

2
p

AðB0
d ! Kþ�0��Þanti ¼ T0

1e
i� þ 2T0

2e
i� � C0

2e
i� þ 2 ~P0

uce
i� � 2 ~P0

tc � P0
EW2 þ 1

3P
0C
EW1 þ 4

3P
0C
EW2:

(9)

(As above, all amplitudes have been multiplied by
ffiffiffi
2

p
.)

The relation of Eq. (8) is reproduced. Therefore, there is no
difference between the exact and diagrammatic amplitude
relations in the antisymmetric case.

A. Resonances

It is possible that the B decays to an intermediate on-
shell M1M2 state, which then subsequently decays to

K��. Examples of such resonances are M1M2 ¼ K�,
K��, and Kf0ð980Þ. The question now is how does
the diagrammatic analysis presented above jibe with
resonant decays? To answer this, we examine the reso-
nances in turn.
Consider first M1M2 ¼ K�. The four decays are Bþ !

Kþ�0, Bþ ! K0�þ, B0
d ! K0�0, and B0

d ! Kþ��,
whose amplitudes take the form

ffiffiffi
2

p
AðBþ ! Kþ�0Þ ¼ �T0

Ve
i� � C0

Pe
i� � P0

uc;Ve
i� þ P0

tc;V þ P0
EW;P þ 2

3P
0C
EW;V ;

AðBþ ! K0�þÞ ¼ P0
uc;Ve

i� � P0
tc;V þ 1

3P
0C
EW;V ;ffiffiffi

2
p

AðB0
d ! K0�0Þ ¼ �C0

Pe
i� þ P0

uc;Ve
i� � P0

tc;V þ P0
EW;P þ 1

3P
0C
EW;V ;

AðB0
d ! Kþ��Þ ¼ �T0

Ve
i� � P0

uc;Ve
i� þ P0

tc;V þ 2
3P

0C
EW;V ;

(10)

where the subscripts P or V indicate which final-state
meson [pseudoscalar (K) or vector (�)] contains the spec-
tator quark of the B meson [15]. [Note that the diagrams
that describe resonant decays are a subset of those used for
B ! K�� (Fig. 1). Above, the diagram DV (DP) is the
same as D2 (D1).] The relation among the amplitudes is

ffiffiffi
2

p
AðBþ ! Kþ�0Þ þ AðBþ ! K0�þÞ
¼ ffiffiffi

2
p

AðB0
d ! K0�0Þ þ AðB0

d ! Kþ��Þ: (11)

Given that �0 ! �þ��, �þ ! �þ�0, and �� ! �0��,
this reproduces Eq. (8), which is the relation for the anti-
symmetric �� isospin state. This makes sense, since the �
decays to ð��Þanti.
Consider now M1M2 ¼ Kf0ð980Þ. There are two de-

cays: Bþ ! Kþf0ð980Þ and B0
d ! K0f0ð980Þ. It is

straightforward to show that there is no relation between
the two amplitudes. However, the f0ð980Þ decays to a

pion pair in a symmetric isospin state, with Aðf0 !
ð�þ��ÞsymÞ ¼ � ffiffiffi

2
p

Aðf0 ! �0�0Þ. This leads to

AðB0
d ! K0�þ��Þ þ ffiffiffi

2
p

AðB0
d ! K0�0�0Þ ¼ 0;

AðBþ ! Kþ�þ��Þ þ ffiffiffi
2

p
AðBþ ! Kþ�0�0Þ ¼ 0:

(12)
2Note: even though the diagrams of Eq. (9) have the same

names as those of Eq. (7), they are not the same diagrams. That
is, in general, they take different values.
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Given that the Kf0ð980Þ resonance does not contribute
to AðBþ ! K0�þ�0Þ, AðB0

d ! Kþ�0��Þ, or AðBþ !
K0�þ�0Þ, the decays B ! Kf0ð980Þ ! K�� satisfy
Eq. (6), which are the relations for the symmetric ��
isospin state.

Finally, consider M1M2 ¼ K��. The four decays
are Bþ ! K�0�þ, Bþ ! K�þ�0, B0

d ! K�þ��, and

B0
d ! K�0�0. The amplitudes are [15]

AðBþ ! K�0�þÞ ¼ P0
uc;Pe

i� � P0
tc;P þ 1

3P
0C
EW;P;ffiffiffi

2
p

AðBþ ! K�þ�0Þ
¼ �T0

Pe
i� � C0

Ve
i� � P0

uc;Pe
i� þ P0

tc;P

þ P0
EW;V þ 2

3P
0C
EW;P;

AðB0
d ! K�þ��Þ ¼ �T0

Pe
i� � P0

uc;Pe
i� þ P0

tc;P þ 2
3P

0C
EW;P;ffiffiffi

2
p

AðB0
d ! K�0�0Þ

¼ �C0
Ve

i� þ P0
uc;Pe

i� � P0
tc;P

þ P0
EW;V þ 1

3P
0C
EW;P: (13)

The relation among the amplitudes is

AðBþ ! K�0�þÞ þ ffiffiffi
2

p
AðBþ ! K�þ�0Þ

¼ AðB0
d ! K�þ��Þ þ ffiffiffi

2
p

AðB0
d ! K�0�0Þ: (14)

What does this relation imply for K�� decays?
We consider decays of the general form B !

Kðp1Þ�ðp2Þ�ðp3Þ, and take into account both K� !
Kðp1Þ�ðp2Þ andK� ! Kðp1Þ�ðp3Þ. We define the reduced
matrix elements:

D2 � AðK�ð�p2Þ ! Kðp1Þ�ðp3ÞÞ;
D3 � AðK�ð�p3Þ ! Kðp1Þ�ðp2ÞÞ:

(15)

In addition, a K� can decay to two different K� states. The
relative contributions are given by the Clebsch-Gordan
coefficients:

K�þ !
ffiffiffiffiffiffiffiffi
1=3

p
Kþ�0 �

ffiffiffiffiffiffiffiffi
2=3

p
K0�þ;

K�0 ! ffiffiffiffiffiffiffiffi
2=3

p
Kþ�� � ffiffiffiffiffiffiffiffi

1=3
p

K0�0:

(16)

We begin with B ! K�� ! Kð��Þsym. There are three
Bþ decays: Bþ ! Kþð�þ��Þsym, Bþ ! K0ð�þ�0Þsym,
and Bþ ! Kþ�0�0, and three B0 decays: B0 !
Kþð�0��Þsym, B0 ! K0ð�þ��Þsym, and B0 ! K0�0�0.

The expressions for the decay amplitudes are given in
terms of the above reduced matrix elements. For example,
the amplitude for the resonant contribution to
K0ð�þ�0Þsym is

� D2ffiffiffi
2

p � AðBþ ! K�0ð�p2Þ�þðp2ÞÞ

�D3 � AðBþ ! K�þð�p3Þ�0ðp3ÞÞ
�D2 � AðBþ ! K�þð�p2Þ�0ðp2ÞÞ
� D3ffiffiffi

2
p � AðBþ ! K�0ð�p3Þ�þðp3ÞÞ: (17)

The other B decay amplitudes can be found similarly.
Now, the general linear combination of the amplitudes

for Bþ decays can be written in terms of the arbitrary
coefficients X, Y, and Z; for B0 decays, the coefficients
are T, U, and V. The expressions are

X � AðBþ ! Kþð�þ��ÞsymÞres
þ Y � AðBþ ! K0ð�þ�0ÞsymÞres
þ Z � AðBþ ! Kþ�0�0Þres

¼ D2½ðX � Y=
ffiffiffi
2

p ÞAðBþ ! K�0ð�p2Þ�þðp2ÞÞ
þ ð�Y=

ffiffiffi
2

p þ Z=
ffiffiffi
2

p Þ ffiffiffi
2

p
AðBþ ! K�þð�p2Þ�0ðp2ÞÞ�

þ ð2 $ 3Þ; (18)

T � AðB0 ! Kþð�0��ÞsymÞres
þU � AðB0 ! K0ð�þ��ÞsymÞres
þ V � AðB0 ! K0�0�0Þres

¼ D2½ðT=
ffiffiffi
2

p �UÞAðB0 ! K�þð�p2Þ��ðp2ÞÞ
þ ðT= ffiffiffi

2
p � V=

ffiffiffi
2

p Þ ffiffiffi
2

p
AðB0 ! K�0ð�p2Þ�0ðp2ÞÞ�

þ ð2 $ 3Þ: (19)

The requirement that Eqs. (18) and (19) be consistent with
Eq. (14) puts constraints on the parameters. Specifically,

we have Z ¼ ffiffiffi
2

p
X and V ¼ ffiffiffi

2
p

U from the Bþ and B0

pieces of Eq. (14). And setting Eqs. (18) and (19) equal
requires

ðX� Y=
ffiffiffi
2

p Þ ¼ ðT= ffiffiffi
2

p �UÞ ) U ¼ T=
ffiffiffi
2

p þ Y=
ffiffiffi
2

p � X:

(20)

Thus, the K�� relation of Eq. (14) leads to the following
for K�� decays:

X � AðBþ ! Kþð�þ��ÞsymÞres
þ Y � AðBþ ! K0ð�þ�0ÞsymÞres
þ ffiffiffi

2
p

X � AðBþ ! Kþ�0�0Þres
¼ T � AðB0 ! Kþð�0��ÞsymÞres

þ ðT= ffiffiffi
2

p þ Y=
ffiffiffi
2

p � XÞ � AðB0 ! K0ð�þ��ÞsymÞres
þ ðT þ Y � ffiffiffi

2
p

XÞ � AðB0 ! K0�0�0Þres: (21)

This decomposes into three independent relations, one for
each arbitrary coefficient:
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AðBþ!Kþð�þ��ÞsymÞresþ
ffiffiffi
2

p
AðBþ!Kþ�0�0Þres

¼�AðB0!K0ð�þ��ÞsymÞres�
ffiffiffi
2

p
AðB0!K0�0�0Þres;

AðBþ!K0ð�þ�0ÞsymÞres
¼ 1ffiffiffi

2
p AðB0!K0ð�þ��ÞsymÞresþAðB0!K0�0�0Þres;

0¼AðB0!Kþð�0��ÞsymÞres
þ 1ffiffiffi

2
p AðB0!K0ð�þ��ÞsymÞresþAðB0!K0�0�0Þres:

(22)

It is straightforward to show that these are equivalent to the
symmetric K�� relations in Eq. (6).

We now turn to the antisymmetric case. We have

Kþð�þ��Þanti ¼ 1ffiffiffi
2

p ðKþðp1Þ�þðp2Þ��ðp3Þ

� Kþðp1Þ�þðp3Þ��ðp2ÞÞ;
K0ð�þ�0Þanti ¼ 1ffiffiffi

2
p ðK0ðp1Þ�þðp2Þ�0ðp3Þ

� K0ðp1Þ�þðp3Þ�0ðp2ÞÞ;
Kþð�0��Þanti ¼ 1ffiffiffi

2
p ðKþðp1Þ�0ðp2Þ��ðp3Þ

� Kþðp1Þ�0ðp3Þ��ðp2ÞÞ;
K0ð�þ��Þanti ¼ 1ffiffiffi

2
p ðK0ðp1Þ�þðp2Þ��ðp3Þ

� K0ðp1Þ�þðp3Þ��ðp2ÞÞ: (23)

There are no antisymmetric Kþ�0�0 or K0�0�0 states.
Using the above, we can easily write out the amplitudes for
the resonant contributions to Kð��Þanti.

Here, the general linear combination of the amplitudes
for Bþ decays is written as a function of X and Y; for B0

decays, the coefficients are T and U. The expressions are

X �AðBþ!Kþð�þ��ÞantiÞresþY �AðBþ!K0ð�þ�0ÞantiÞres
¼D2½ðX�Y=

ffiffiffi
2

p ÞAðBþ!K�0ð�p2Þ�þðp2ÞÞ
þðY= ffiffiffi

2
p Þ ffiffiffi

2
p

AðBþ!K�þð�p2Þ�0ðp2ÞÞ��ð2$3Þ;
(24)

T �AðB0!Kþð�0��ÞantiÞresþU �AðB0!K0ð�þ��ÞantiÞres
¼D2½ðU�T=

ffiffiffi
2

p ÞAðB0!K�þð�p2Þ��ðp2ÞÞ
þðT= ffiffiffi

2
p Þ ffiffiffi

2
p

AðB0!K�0ð�p2Þ�0ðp2ÞÞ��ð2$3Þ:
(25)

Comparing Eqs. (24) and (25) with Eq. (14), we require

Y ¼ X=
ffiffiffi
2

p
; T ¼ U=

ffiffiffi
2

p
; X ¼ U: (26)

Only one arbitrary coefficient remains, leading to the
antisymmetric relationffiffiffi
2

p
AðBþ ! Kþð�þ��ÞantiÞres þ AðBþ ! K0ð�þ�0ÞantiÞres
¼ AðB0 ! Kþð�0��ÞantiÞres
þ ffiffiffi

2
p

AðB0 ! K0ð�þ��ÞantiÞres: (27)

This is the same as the antisymmetric K�� relation of
Eq. (8).
We therefore see that resonances reproduce the symmet-

ric/antisymmetric K�� relations.

B. Penguin dominance

In general, the dominant contribution to �b ! �s transi-
tions comes from the penguin amplitude. In Ref. [3],
Gronau and Rosner explore the consequences for
B ! K�� decays of assuming penguin dominance and
neglecting all other contributions. They note that, in this
limit, the amplitudes must respect isospin reflection (i.e.
u $ d), which implies that

AðBþ ! Kþ�þ��Þ ¼ AðB0
d ! K0�þ��Þ;

AðBþ ! K0�þ�0Þ ¼ AðB0
d ! Kþ�0��Þ;

AðB0
d ! K0�0�0Þ ¼ AðBþ ! Kþ�0�0Þ;

(28)

up to possible relative signs. They find that, on the whole,
the data respect these relations.
The expression of the amplitudes in terms of diagrams

allows us to go beyond these results. Using the method of
Sec. III to distinguish Isym�� and Ianti�� , it is possible to con-
sider the two cases separately, under the condition that only
the diagram ~P0

tc is retained in the amplitudes.
In the symmetric scenario, we have the following

predictions:

AðBþ ! K0�þ�0Þ ¼ AðB0
d ! Kþ�0��Þ ¼ 0;

AðBþ ! Kþ�þ��Þ ¼ AðB0
d ! K0�þ��Þ

¼ � ffiffiffi
2

p
AðB0

d ! K0�0�0Þ
¼ � ffiffiffi

2
p

AðBþ ! Kþ�0�0Þ: (29)

And in the antisymmetric scenario, we have

AðB0
d ! K0�0�0Þ ¼ AðBþ ! Kþ�0�0Þ ¼ 0;

AðBþ ! K0�þ�0Þ ¼ �AðB0
d ! Kþ�0��Þ

¼ � ffiffiffi
2

p
AðBþ ! Kþ�þ��Þ

¼ ffiffiffi
2

p
AðB0

d ! K0�þ��Þ: (30)

These provide further tests of the SM.
In fact, several of these decays have been measured:

Bþ ! Kþ�þ�� [14,16], B0
d ! K0�þ�� [17], and B0

d !
Kþ�0�� [18]. We can therefore test some of the above
relations. Specifically, in terms of branching ratios (inte-
grated over the entire Dalitz plot), the predictions are
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BðKþ�0��Þsym ¼ 0;

BðKþ�þ��Þsym ¼ ð�þ=�0ÞBðK0�þ��Þsym;
1
2ð�þ=�0ÞBðKþ�0��Þanti ¼ BðKþ�þ��Þanti

¼ ð�þ=�0ÞBðK0�þ��Þanti: (31)
We determine the symmetric and antisymmetric ampli-

tudes for the three decays using the Dalitz-plot method
described in Sec. III. Consider first Bþ ! Kþ�þ��. We
write this amplitude in terms of x � ðpKþ þ p�þÞ2 and
y � ðpKþ þ p��Þ2. Given the decay amplitude fðx; yÞ,
the symmetric amplitude is taken to be fsym ¼ 1ffiffi

2
p �

ðfðx; yÞ þ fðy; xÞÞ, and we compute the integral of jfsymj2
and jfj2 over the Dalitz plot.3 A similar procedure is
carried out for the antisymmetric amplitude fanti ¼ 1ffiffi

2
p �

ðfðx; yÞ � fðy; xÞÞ. The other two decays are treated in the
same way.

Although the full amplitudes for Bþ ! Kþ�þ�� and
B0
d ! K0�þ�� are split roughly equally between

symmetric and antisymmetric, the same is not true for
B0
d ! Kþ�0��:

�ðKþ�þ��Þsym ¼ 0:65�ðKþ�þ��Þ;
�ðK0�þ��Þsym ¼ 0:68�ðK0�þ��Þ;
�ðKþ�0��Þsym ¼ 0:11�ðKþ�0��Þ:

(32)

With these, we obtain

BðKþ�0��Þsym ¼ ð4:0� 0:3Þ � 10�6;

BðKþ�þ��Þsym ¼ ð33:3� 2:0Þ � 10�6;

ð�þ=�0ÞBðK0�þ��Þsym ¼ ð36:4� 1:5Þ � 10�6;

1
2ð�þ=�0ÞBðKþ�0��Þanti ¼ ð17:1� 1:3Þ � 10�6;

BðKþ�þ��Þanti ¼ ð17:6� 1:0Þ � 10�6;

ð�þ=�0ÞBðK0�þ��Þanti ¼ ð17:0� 0:7Þ � 10�6:

(33)

(Note that the above errors do not include the errors in the
parameters obtained from the Dalitz-plot analyses of the
three decays.) We therefore see that the data agree with
the predictions of Eq. (31). In particular, BðKþ�0��Þsym
is indeed greatly suppressed, in agreement with the SM.

C. Weak-phase information

Since the expressions for the decay amplitudes include
the weak phase �, it is natural to ask whether � can be
extracted from measurements of B ! K�� decays. The
answer is ‘‘yes’’ if the number of unknown theoretical
parameters in the amplitudes is less than or equal to the

number of observables. In performing this comparison,
we examine separately the I

sym
�� and Ianti�� scenarios.

Consider first the I
sym
�� case. Here there are six B !

K�� decays. On the other hand, the first relation in
Eq. (6) shows that the amplitudes for Bþ ! K0�þ�0

and B0
d ! Kþ�0�� are equal (up to a sign), so that there

are only five independent decays. The Dalitz-plot analyses
of these decays allow one to obtain the momentum-
dependent branching ratios and direct CP asymmetries
of Bþ ! Kþ�þ��, Bþ ! Kþ�0�0, B0

d ! Kþ�0��,
B0
d ! K0�þ��, and B0

d ! K0�0�0. In addition, one can

measure the momentum-dependent indirect CP asymme-
try of B0

d ! K0�þ��. (The indirect CP asymmetry of

B0
d ! K0�0�0 will be very difficult, if not impossible,

to measure.) Thus, there are essentially 11 (momentum-
dependent) observables in Isym�� B ! K�� decays.
For the case of Ianti�� , there are four decays, yielding 9

observables: the momentum-dependent branching ratios
and direct CP asymmetries of Bþ ! Kþ�þ��, Bþ !
K0�þ�0, B0

d ! Kþ�0��, and B0
d ! K0�þ��, and the

momentum-dependent indirect CP asymmetry of B0
d !

K0�þ��. Since this is fewer than above, we conclude
that the Isym�� scenario is the more promising for extracting�.
The six Isym�� amplitudes are given in Eq. (7). Although

there are a large number of diagrams in these amplitudes,
they can be combined into a smaller number of effective
diagrams:

ffiffiffi
2

p
AðBþ!K0�þ�0Þsym¼�T0

ae
i��T0

be
i�þP0

EW;aþP0
EW;b;

AðB0
d!K0�þ��Þsym¼�T0

ae
i��P0

ae
i�þP0

b;ffiffiffi
2

p
AðB0

d!K0�0�0Þsym¼�T0
be

i�þP0
ae

i��P0
b

þP0
EW;aþP0

EW;b;

AðBþ!Kþ�þ��Þsym¼�P0
ae

i�þP0
b�P0

EW;a;ffiffiffi
2

p
AðBþ!Kþ�0�0Þsym¼T0

ae
i�þT0

be
i�þP0

ae
i�

�P0
b�P0

EW;b;ffiffiffi
2

p
AðB0

d!Kþ�0��Þsym¼T0
ae

i�þT0
be

i��P0
EW;a�P0

EW;b;

(34)

where

T0
a � T0

1 � T0
2;

T0
b � C0

2 þ T0
2;

P0
a � ~P0

uc þ T0
2 þ C0

1;

P0
b � ~P0

tc þ 1
3P

0
EW1 þ 2

3P
0C
EW1 � 1

3P
0C
EW2;

P0
EW;a � P0C

EW1 � P0C
EW2;

P0
EW;b � P0

EW2 þ P0C
EW2:

(35)

The amplitudes can therefore be written in terms of 6
effective diagrams. This corresponds to 12 theoretical

3Note that, because of the coefficient 1ffiffi
2

p in fsym, one must
integrate over only half of theDalitz plot to avoid double counting.
Alternatively, fsym can be defined with a factor 1

2 , and one
integrates over the entire Dalitz plot. There are no such issues
with f.
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parameters4: 6 magnitudes of diagrams, 5 relative (strong)
phases, and �. We remind the reader that the diagrams are
momentum dependent. This does not pose a problem.
They will be determined via a fit to the data. But since
the experimental observables are themselves momentum
dependent, the fit will yield the momentum dependence of
each diagram.

Unfortunately, as noted above, there are only 11 experi-
mental observables. Therefore, in order to extract weak-
phase information (�), one requires additional input.

A previous analysis made an attempt in this direction. In
2003, Deshpande, Sinha, and Sinha (DSS) wrote schematic
expressions for the symmetric B ! K�� amplitudes, in-
cluding tree and EWP contributions [19]. Now, in B ! �K
decays, it was shown that, under flavor SU(3) symmetry,
the EWP diagrams are proportional to the tree diagrams
(apart from their weak phases) [20]. DSS assumed that the
EWP and tree contributions to Bþ ! K0�þ�0 are related
in the same way. This gives additional input and allows the
measurement of �. Unfortunately, it was subsequently
noted that the assumed EWP-tree relation in K�� does
not hold [21], so that � cannot be extracted. This is the
present situation.

In fact, the situation can be remedied. Referring to the
B0
d ! K0�þ�0 amplitude in Eq. (7), DSS made the as-

sumption that T0
1 þ C0

2 is related to P0
EW2 þ P0C

EW1, and this

was shown not to be true. We agree with this. However,
there are other EWP-tree relations which do hold, and their
inclusion does allow the extraction of �. The full derivation
is rather complicated, and so we present this in a separate
paper [22].

Finally, we note that there is another method for obtain-
ing � from B ! K�� decays. In two-body �b ! �s B
decays, the diagrams are expected to obey the approximate
hierarchy [6]

1: P0
tc; ��: T0; P0

EW;
��2: C0; P0

uc; P
0C
EW; (36)

where �� ’ 0:2. If the three-body decay diagrams obey a
similar hierarchy, one can neglect C0

1, C
0
2,

~P0
uc, P

0C
EW1, and

P0C
EW2, and incur only a �5% theoretical error. But if these

diagrams are neglected, then two of the effective diagrams
vanish: P0

EW;a ! 0 and T0
b � P0

a ! 0 [Eq. (35)]. In this

case, the amplitudes can be written in terms of 4 effective
diagrams, corresponding to 8 theoretical parameters: 4
magnitudes of diagrams, 3 relative (strong) phases, and
�. Given that there are 11 experimental observables, the
weak phase � can be extracted.5

The down side of this method is that it is difficult to
test the assumption that certain diagrams are negligible.
Indeed, the presence of resonances may change the hier-
archy. In light of this, the theoretical error is uncertain, and
this must be addressed if this method is used.

V. B ! KK �K DECAYS

We now turn to B ! KK �K decays, also a �b ! �s
transition. The four processes are Bþ ! KþKþK�, Bþ !
KþK0 �K0, B0

d ! KþK0K�, and B0
d ! K0K0 �K0. Here the

overall wave function of the final KK pair must be sym-
metrized. If the relative angular momentum is even, the
isospin state must be symmetric (I ¼ 1); if it is odd, the
isospin state must be antisymmetric (I ¼ 0).
For the symmetric case, the final state has I ¼ 1

2 or
3
2 , so

there are three different ways of reaching it. There should
therefore be one relation among the four decay amplitudes.
From the Wigner-Eckart theorem, it is

AðBþ ! KþKþK�Þsym þ ffiffiffi
2

p
AðBþ ! KþK0 �K0Þsym

¼ ffiffiffi
2

p
AðB0

d ! KþK0K�Þsym þ AðB0
d ! K0K0 �K0Þsym:

(37)

In terms of diagrams, the amplitudes are given by

AðBþ ! KþKþK�Þsym ¼ �T0
2;se

i� � C0
1;se

i� � P̂0
uce

i� þ P̂0
tc þ 2

3P
0
EW1;s � 1

3P
0
EW1 þ 2

3P
0C
EW2;s � 1

3P
0C
EW1;ffiffiffi

2
p

AðBþ ! KþK0 �K0Þsym ¼ P̂0
uce

i� � P̂0
tc þ 1

3P
0
EW1;s þ 1

3P
0
EW1 þ 1

3P
0C
EW2;s þ 1

3P
0C
EW1;ffiffiffi

2
p

AðB0
d ! KþK0K�Þsym ¼ �T0

2;se
i� � C0

1;se
i� � P̂0

uce
i� þ P̂0

tc þ 2
3P

0
EW1;s � 1

3P
0
EW1 þ 2

3P
0C
EW2;s � 1

3P
0C
EW1;

AðB0
d ! K0K0 �K0Þsym ¼ P̂0

uce
i� � P̂0

tc þ 1
3P

0
EW1;s þ 1

3P
0
EW1 þ 1

3P
0C
EW2;s þ 1

3P
0C
EW1;

(38)

where P̂0 � P0
2;s þ P0

1. It is straightforward to verify that the relation of Eq. (37) is reproduced. On the other hand, one sees
that there are, in fact, two relations:

AðBþ ! KþKþK�Þsym ¼ ffiffiffi
2

p
AðB0

d ! KþK0K�Þsym;
ffiffiffi
2

p
AðBþ ! KþK0 �K0Þsym ¼ AðB0

d ! K0K0 �K0Þsym: (39)

4In fact, there is another theoretical parameter—the phase of B0
d-

�B0
d mixing. � enters in the expression for the indirect CP

asymmetry. However, the value for � can be taken from the indirect CP asymmetry in B0
d ! J=cKS [12].

5This technique does not work when the �� pair is in an antisymmetric state of isospin. In this case, there are still more theoretical
unknowns than observables, so that � cannot be extracted.
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What is happening is the following. Equation (37) is exact.
However, when annihilation/exchange-type diagrams are
neglected—as is done in our diagrammatic expressions of
amplitudes—then one finds the two relations above. This is
an example of how one can go beyond the exact relations if
certain negligible diagrams are dropped.

In order to test these relations, it is necessary to isolate
the symmetric piece of the decay amplitudes. Bþ !
KþKþK� and B0

d ! K0K0 �K0 are automatically symmet-

ric since the final states contain truly identical particles. On
the other hand, for B0

d ! KþK0K� and Bþ ! KþK0 �K0,

the symmetric amplitude can be obtained using the Dalitz-
plot method of Sec. III. Now, the Dalitz plot of B0

d !
KþK0K� has already been measured [23,24]. This allows
us to test the first relation in Eq. (39).

We use the Dalitz-plot analysis of B0
d ! KþKSK

�

given in Ref. [23], with AðB0
d ! KþK0K�Þ ¼ ffiffiffi

2
p

AðB0
d !

KþKSK
�Þ. We find �ðB0

d ! KþK0K�Þsym ¼ 0:57�ðB0
d !

KþK0K�Þ. This then gives

2ð�þ=�0ÞBðB0
d ! KþK0K�Þsym ¼ ð30:0� 2:8Þ � 10�6:

(40)

(Note that the above error does not include the errors in
the parameters obtained from the Dalitz-plot analysis of
Ref. [23].) This is to be compared with [1]

B ðBþ ! KþKþK�Þ ¼ ð32:5� 1:5Þ � 10�6: (41)

We therefore see that the first relation in Eq. (39) is
satisfied. This supports our assumption that annihilation/
exchange-type diagrams are negligible.
In the antisymmetric case, there are only two decays:

Bþ ! KþK0 �K0 and B0
d ! KþK0K�. AðBþ!KþKþK�Þ

and AðB0
d ! K0K0 �K0Þ vanish because there is no way of

antisymmetrizing the KþKþ or K0K0 pair. Here the final
state has I ¼ 1

2 , and there are two different ways of reaching

it. We therefore expect no relation between the amplitudes.
In order to write the amplitudes in terms of diagrams, we

have to antisymmetrize the Kþ-K0 state. As was done for
K��, we adopt the following rule: all diagrams with the
Kþ-K0 in order of decreasing charge from top to bottom
are unmodified; all diagrams with the Kþ-K0 in order of
increasing charge from top to bottom get an additional

factor of �1. The amplitudes (multiplied by
ffiffiffi
2

p
) are then

given by

ffiffiffi
2

p
AðBþ ! KþK0 �K0Þanti ¼ �P̂0

uce
i� þ P̂0

tc � 1
3P

0
EW1;s � 1

3P
0
EW1 þ 1

3P
0C
EW2;s þ 1

3P
0C
EW1;ffiffiffi

2
p

AðB0
d ! KþK0K�Þanti ¼ �T0

2;se
i� þ C0

1;se
i� � P̂0

uce
i� þ P̂0

tc þ 2
3P

0
EW1;s � 1

3P
0
EW1 � 2

3P
0C
EW2;s þ 1

3P
0C
EW1:

(42)

As expected, there is no relation between these two
amplitudes.

A. Penguin dominance

Assuming penguin dominance, Gronau and Rosner
(GR) find that isospin reflection implies the following
equalities [3]:

AðBþ ! KþKþK�Þ ¼ �AðB0
d ! K0K0 �K0Þ;

AðBþ ! KþK0 �K0Þ ¼ �AðB0
d ! KþK0K�Þ:

(43)

By distinguishing the symmetric and antisymmetric iso-
spin states, it is possible to go beyond these predictions.

In the symmetric scenario, if only P̂0
tc is retained, we

predict

AðBþ ! KþKþK�Þ ¼ �AðB0
d ! K0K0 �K0Þ

¼ � ffiffiffi
2

p
AðBþ ! KþK0 �K0Þ

¼ ffiffiffi
2

p
AðB0

d ! KþK0K�Þ: (44)

[Note: the relations given in Eq. (39) actually hold for

all diagrams, not just P̂0
tc.] As discussed above, the

present data confirm the relation AðBþ ! KþKþK�Þ ¼ffiffiffi
2

p
AðB0

d ! KþK0K�Þ. In the antisymmetric scenario,

we have only AðBþ ! KþK0 �K0Þ ¼ AðB0
d ! KþK0K�Þ.

As with K�� decays, these provide further tests of the
SM.

B. Isospin amplitudes

In Ref. [2], GR write the amplitudes for B ! KK �K
decays in terms of isospin amplitudes. It is instructive to
compare this with the diagrammatic description.
As described above, there are five independent iso-

spin amplitudes, denoted by A
IðKKÞ;If
�I �hIðKKÞ;Ifj�Ij12i,

where IðKKÞ is the isospin of the KK pair [IðKKÞ ¼
1ð0Þ is symmetric (antisymmetric)], If is the isospin of

the final state, and the weak Hamiltonian has �I ¼ 0

or 1. They are listed as A0;ð1=2Þ
0 , A1;ð1=2Þ

0 , A0;ð1=2Þ
1 , A1;ð1=2Þ

1 ,

and A1;ð3=2Þ
1 .

As noted by GR, the B ! KK �K amplitudes depend on
the kaons’ momenta. The amplitudes for Bþ ! KþK0 �K0

and B0
d ! KþK0K� take different values when theKþ and

K0 momenta are exchanged. Thus, GR obtain expressions
for six decay amplitudes in terms of the five isospin
amplitudes:
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AðBþ!KþKþK�Þp1p2p3
¼2A1;1=2

0 �2A1;1=2
1 þA1;3=2

1 ;

AðB0
d!K0K0 �K0Þp1p2p3

¼�2A1;1=2
0 �2A1;1=2

1 þA1;3=2
1 ;

AðBþ!KþK0 �K0Þp1p2p3

¼A0;1=2
0 �A1;1=2

0 �A0;1=2
1 þA1;1=2

1 þA1;3=2
1 ;

AðBþ!KþK0 �K0Þp2p1p3

¼�A0;1=2
0 �A1;1=2

0 þA0;1=2
1 þA1;1=2

1 þA1;3=2
1 ;

AðB0
d!KþK0K�Þp1p2p3

¼A0;1=2
0 þA1;1=2

0 þA0;1=2
1 þA1;1=2

1 þA1;3=2
1 ;

AðB0
d!KþK0K�Þp2p1p3

¼�A0;1=2
0 þA1;1=2

0 �A0;1=2
1 þA1;1=2

1 þA1;3=2
1 : (45)

The above amplitudes are related to those of Eqs. (38) and
(42) as follows:

AðBþ !KþKþK�Þsym¼AðBþ !KþKþK�Þp1p2p3
;

AðB0
d !K0K0 �K0Þsym ¼AðB0

d !K0K0 �K0Þp1p2p3
;ffiffiffi

2
p

AðBþ !KþK0 �K0Þsym
¼AðBþ !KþK0 �K0Þp1p2p3

þAðBþ !KþK0 �K0Þp2p1p3
;ffiffiffi

2
p

AðB0
d !KþK0K�Þsym

¼AðB0
d!KþK0K�Þp1p2p3

þAðB0
d!KþK0K�Þp2p1p3

;ffiffiffi
2

p
AðBþ !KþK0 �K0Þanti
¼AðBþ !KþK0 �K0Þp1p2p3

�AðBþ !KþK0 �K0Þp2p1p3
;ffiffiffi

2
p

AðB0
d !KþK0K�Þanti

¼AðB0
d!KþK0K�Þp1p2p3

�AðB0
d!KþK0K�Þp2p1p3

:

(46)

Now, because there are six decay amplitudes, but only
five isospin amplitudes, there must be a relation between
the decay amplitudes. GR give this relation as

AðBþ ! KþKþK�Þp1p2p3
þ AðBþ ! KþK0 �K0Þp1p2p3

þ AðBþ ! KþK0 �K0Þp2p1p3
¼ AðB0

d ! K0K0 �K0Þp1p2p3

þ AðB0
d ! KþK0K�Þp1p2p3

þ AðB0
d ! KþK0K�Þp2p1p3

¼ 3A1;3=2
1 : (47)

This is the same as the relation in Eq. (37). However, when
one expresses the amplitudes in terms of diagrams, there
are, in fact, two relations instead of one [Eq. (39)]. This
implies that

A1;1=2
1 ¼ �1

4A
1;3=2
1 ; (48)

so that there are really four independent isospin amplitudes
instead of five. As described above, the extra relation is a
consequence of neglecting the annihilation/exchange-type
diagrams. In other words, the above relation among isospin

amplitudes is a good approximation and could not have
been deduced without performing a diagrammatic analysis.
It is straightforward to express the remaining isospin

amplitudes in terms of diagrams:

A1;1=2
0 ¼ 1

4½�T0
2;se

i� � C0
1;se

i� � 2P̂0
uce

i� þ 2P̂0
tc

þ 1
3P

0
EW1;s � 2

3P
0
EW1 þ 1

3P
0C
EW2;s � 2

3P
0C
EW1�;

A1;3=2
1 ¼ 1

3½�T0
2;se

i� � C0
1;se

i� þ P0
EW1;s þ P0C

EW2;s�;
A0;1=2
0 ¼ 1

4½�T0
2;se

i� þ C0
1;se

i� � 2P̂0
uce

i� þ 2P̂0
tc

þ 1
3P

0
EW1;s � 2

3P
0
EW1 � 1

3P
0C
EW2;s þ 2

3P
0C
EW1�;

A0;1=2
1 ¼ 1

4½�T0
2;se

i� þ C0
1;se

i� þ P0
EW1;s � P0C

EW2;s�:

(49)

(Recall that, despite their having the same name, the dia-

grams which contribute to the A1;f1=2;3=2g
f0;1g and A0;1=2

f0;1g isospin

amplitudes are not the same—they can have different

sizes.) In the limit of penguin dominance, A1;3=2
1 and A1;1=2

0

vanish. This is consistent with what is found in the previous
section.

C. Weak-phase information

As was the case for B ! K�� decays, the amplitudes
contain the weak phase �, and so one wonders if it can
be measured in B ! KK �K decays. Here the answer is
‘‘perhaps.’’
When the isospin state of the KK pair is symmetric,

there are four decays. However, due to the equality rela-
tions in Eq. (39), two of these have the same amplitudes as
the other two. There are therefore 6 observables: the
momentum-dependent branching ratios, direct CP asym-
metries and indirect CP asymmetries of B0

d ! KþK0K�
and B0

d ! K0K0 �K0. In the antisymmetric scenario, there

are 5 observables: the momentum-dependent branching
ratios and direct CP asymmetries of Bþ ! KþK0 �K0 and
B0
d ! KþK0K�, and the momentum-dependent indirect

CP asymmetry of B0
d ! KþK0K�. [Note: CP inter-

changes K $ �K. Thus, unlike B ! K��, the separation
of symmetric and antisymmetric KK states does not fix the
CP of the finalKK �K state for the indirectCP asymmetries.
This can be achieved by constructing states of the three
final mesons which are totally symmetric or antisymmet-
ric. (These states are discussed in more detail in Sec. VII
and Ref. [22].) These have the same diagrammatic decom-
position as the ðKKÞsym and ðKKÞantisym states [Eqs. (38)

and (42)].]
However, in either case, the amplitudes [Eqs. (38) and (42)]

are written in terms of 4 effective diagrams, corresponding
to 8 theoretical parameters: 4 magnitudes of diagrams, 3
relative (strong) phases, and �. This is larger than the
number of observables, and so the weak phase � cannot
be extracted from B ! KK �K decays.
The best that one can do is to assume the hierarchy of

Eq. (36) and neglect all C0, P̂0
uc, and P0C

EW diagrams. This
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reduces the number of effective diagrams to 3, which
corresponds to 6 theoretical parameters. This is equal to
the number of observables in the symmetric case, so that �
can be extracted here, albeit with discrete ambiguities.
And, as described above, the theoretical error is uncertain.

VI. B ! K �K� DECAYS

We now consider B ! K �K� decays, which are
�b ! �d transitions. Here there are seven processes:

Bþ!KþK��þ, Bþ!Kþ �K0�0, Bþ!K0 �K0�þ, B0
d!

KþK��0, B0
d ! Kþ �K0��, B0

d ! K0 �K0�0, and B0
d !

K0K��þ. There are no identical particles in the final state,
so here we do not have to distinguish symmetric and anti-
symmetric isospin states.
In B ! K �K�, the final state has I ¼ 0, I ¼ 1 (twice) or

I ¼ 2. The weak Hamiltonian has �I ¼ 1
2 or

3
2 , so there are

six paths to the final state. This implies that there is one
relation among the seven decay amplitudes. It is

ffiffiffi
2

p
AðB0

d ! KþK��0Þ þ AðB0
d ! K0K��þÞ � AðBþ ! KþK��þÞ þ ffiffiffi

2
p

AðB0
d ! K0 �K0�0Þ

þ AðB0
d ! Kþ �K0��Þ � AðBþ ! K0 �K0�þÞ � ffiffiffi

2
p

AðBþ ! Kþ �K0�0Þ ¼ 0: (50)

In terms of diagrams, the amplitudes are given by

AðBþ !KþK��þÞ ¼ ½T2;sþC1;sþPa;uc�e�i��Pa;tcþ 1
3PEW1� 2

3PEW1;sþ 1
3P

C
EW1� 2

3P
C
EW2;s;ffiffiffi

2
p

AðBþ !Kþ �K0�0Þ ¼ ½T1;sþC2;s�Pa;ucþPb;uc�e�i�þPa;tc�Pb;tc�PEW2;s� 1
3P

C
EW1� 2

3P
C
EW1;sþ 1

3P
C
EW2� 1

3P
C
EW2;s;

AðBþ !K0 �K0�þÞ ¼�Pb;uce
�i�þPb;tc� 1

3PEW1� 1
3PEW1;s� 1

3P
C
EW1;s� 1

3P
C
EW2;ffiffiffi

2
p

AðB0
d !KþK��0Þ ¼C1;se

�i�þ 1
3PEW1� 2

3PEW1;s;

AðB0
d !Kþ �K0��Þ ¼ ½T1;sþPb;uc�e�i��Pb;tc� 2

3P
C
EW1;sþ 1

3P
C
EW2;ffiffiffi

2
p

AðB0
d !K0 �K0�0Þ ¼ ½C2;s�Pa;uc�Pb;uc�e�i�þPa;tcþPb;tc� 1

3PEW1� 1
3PEW1;s�PEW2;s� 1

3P
C
EW1� 1

3P
C
EW1;s

� 1
3P

C
EW2� 1

3P
C
EW2;s;

AðB0
d !K0K��þÞ ¼ ½T2;sþPa;uc�e�i��Pa;tcþ 1

3P
C
EW1� 2

3P
C
EW2;s; (51)

where Pa � P1 þ P2;s, Pb � P1;s þ P2, and all ampli-
tudes have been multiplied by ei�. With these expressions,
the relation of Eq. (50) is reproduced.

However, there are, in fact, two relations:ffiffiffi
2

p
AðB0

d ! KþK��0Þ þ AðB0
d ! K0K��þÞ

¼ AðBþ ! KþK��þÞ;ffiffiffi
2

p
AðB0

d ! K0 �K0�0Þ þ AðB0
d ! Kþ �K0��Þ

¼ AðBþ ! K0 �K0�þÞ þ ffiffiffi
2

p
AðBþ ! Kþ �K0�0Þ: (52)

As was the case in B ! KK �K decays, the (justified) ne-
glect of certain annihilation/exchange-type diagrams
breaks the relation in Eq. (50) into two.

A. T Dominance

In two-body B decays, T is the dominant diagram in
�b ! �d transitions. Assuming this also holds in three-body
B decays, we have the following predictions:

AðBþ ! KþK��þÞ ¼ AðB0
d ! K0K��þÞ;ffiffiffi

2
p

AðBþ ! Kþ �K0�0Þ ¼ AðB0
d ! Kþ �K0��Þ;

AðBþ ! K0 �K0�þÞ ¼ AðB0
d ! KþK��0Þ

¼ AðB0
d ! K0 �K0�0Þ ’ 0: (53)

These are tests of the SM which can be carried out once
these decays are measured.

B. Weak-phase information

There are seven B ! K �K� decays, which yield 16 ob-
servables: the branching ratios and direct CP asymmetries
of Bþ ! KþK��þ, Bþ ! Kþ �K0�0, Bþ ! K0 �K0�þ,
B0
d ! KþK��0, B0

d ! Kþ �K0��, B0
d ! K0 �K0�0, and

B0
d ! K0K��þ, and the indirect CP asymmetries

of B0
d ! KþK��0, B0

d ! K0 �K0�0.

The B ! K �K� amplitudes in Eq. (51) can be written in
terms of 10 effective diagrams:
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AðBþ ! KþK��þÞ ¼ ½D1 þD3�e�i� þD2 þD4;ffiffiffi
2

p
AðBþ ! Kþ �K0�0Þ ¼ D9e

�i� þD10;

AðBþ ! K0 �K0�þÞ ¼ D7e
�i� þD8;ffiffiffi

2
p

AðB0
d ! KþK��0Þ ¼ D1e

�i� þD2;

AðB0
d ! Kþ �K0��Þ ¼ D5e

�i� þD6;ffiffiffi
2

p
AðB0

d ! K0 �K0�0Þ ¼ ½�D5 þD7 þD9�e�i�

�D6 þD8 þD10;

AðB0
d ! K0K��þÞ ¼ D3e

�i� þD4; (54)

where

D1 � C1;s;

D2 � 1
3PEW1 � 2

3PEW1;s;

D3 � T2;s þ Pa;uc;

D4 � �Pa;tc þ 1
3P

C
EW1 � 2

3P
C
EW2;s;

D5 � T1;s þ Pb;uc;

D6 � �Pb;tc þ 1
3P

C
EW2 � 2

3P
C
EW1;s;

D7 � �Pb;uc;

D8 � Pb;tc � 1
3PEW1 � 1

3PEW1;s � 1
3P

C
EW2 � 1

3P
C
EW1;s;

D9 � T1;s þ C2;s � Pa;uc þ Pb;uc;

D10 � Pa;tc � Pb;tc � PEW2;s � 1
3P

C
EW1 � 2

3P
C
EW1;s

þ 1
3P

C
EW2 � 1

3P
C
EW2;s: (55)

This corresponds to 20 theoretical parameters: 10 magni-
tudes of diagrams, 9 relative (strong) phases, and �. With
only 16 observables, � cannot be extracted.

We therefore need additional input. Fortunately, we
have some, similar to that in Secs. IVC and VC. In two-
body �b ! �d B decays, the diagrams obey the approximate
hierarchy [6]

1: T; ��: C;Ptc;Puc; ��2: PEW; ��3: PC
EW: (56)

If the three-body decay diagrams obey a similar hierarchy,
all EWP diagrams can be neglected, leading to an error
of only �5%. In this limit, we have D2 ¼ 0, D8 ¼ �D6,
and D10 ¼ �D4 þD6. So the number of independent
diagrams is reduced to 7, i.e. 14 theoretical parameters.6

Thus, by measuring the observables in B ! K �K� decays,
weak-phase information can be obtained. In fact, not all 16
observables are necessary. Experimentally, this is not easy,
but it is at least theoretically possible. Of course, as in
Secs. IVC and VC, the theoretical error is uncertain, since
it is difficult to test the hierarchy of diagrams.

VII. B ! ��� DECAYS

Finally, we examine B ! ��� decays, also a �b ! �d
transition. There are four processes: B0

d ! �0�0�0, Bþ !
�þ�0�0, Bþ ! ���þ�þ, and B0

d ! �þ�0��. In con-

trast to the other decays, here the final state includes three
identical particles under isospin, so that the six permutations
of these particles (the group S3) must be considered.
Numbering the particles 1, 2, and 3, the six possible orders
are 123, 132, 312, 321, 231, and 213. Under S3, there are six
possibilities for the isospin state of the three �’s: a totally
symmetric state jSi, a totally antisymmetric state jAi, or one
of four mixed states jMii (i ¼ 1–4). These can be defined as

jSi� 1ffiffiffi
6

p ðj123iþj132iþj312iþj321iþj231iþj213iÞ;

jM1i� 1ffiffiffiffiffiffi
12

p ð2j123iþ2j132i�j312i�j321i

�j231i�j213iÞ;
jM2i� 1ffiffiffi

4
p ðj312i�j321i�j231iþj213iÞ;

jM3i� 1ffiffiffi
4

p ð�j312i�j321iþj231iþj213iÞ;

jM4i� 1ffiffiffiffiffiffi
12

p ð2j123i�2j132i�j312iþj321i

�j231iþj213iÞ;
jAi� 1ffiffiffi

6
p ðj123i�j132iþj312i�j321iþj231i�j213iÞ:

(57)

This choice of mixed states implies that two truly identical
particles go in positions 2 and 3. Under the exchange
2 $ 3, jM1i and jM2i are symmetric, while jM3i and jM4i
are antisymmetric.
For the four B ! ��� decays, we have
(1) B0

d ! �0�0�0: all final-state particles are the

same, which means j123i ¼ j132i ¼ j312i ¼
j321i ¼ j231i ¼ j213i. In this case, only the state
jSi is allowed.

(2) Bþ ! �þ�0�0: particle 1 is �þ, particles 2 and 3
are �0. Thus, j123i ¼ j132i, j312i ¼ j213i, and
j231i ¼ j321i. This implies that each of jM3i,
jM4i, and jAi is not allowed.

(3) Bþ ! ���þ�þ: particle 1 is ��, particles 2 and 3
are �þ. Thus, j123i ¼ j132i, j312i ¼ j213i, and
j231i ¼ j321i. This implies that each of jM3i,
jM4i, and jAi is not allowed.

(4) B0
d ! �þ�0��: we choose the order such that par-

ticle 1 is �þ, particle 2 is �0, and particle 3 is ��.
All six states are allowed.

The amplitude for a decay with two truly identical particles

has an extra factor of 1=
ffiffiffi
2

p
; with three truly identical

particles, the factor is 1=
ffiffiffi
6

p
.

6We assume that, for the indirect CP asymmetries, the CP of
the final state can be fixed as for the decays in previous sections.
Otherwise there are 2 additional theoretical parameters.
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The six elements of S3 are I (identity), P12 (exchanges
particles 1 and 2), P13 (exchanges particles 1 and 3), P23

(exchanges particles 2 and 3), Pcyclic (cyclic permutation of

particle numbers, i.e. 1 ! 2, 2 ! 3, and 3 ! 1), Panticyclic

(anticyclic permutation of particle numbers, i.e. 1 ! 3,
2 ! 1, and 3 ! 2). Under the group transformations,
jSi ! jSi and jAi ! �jAi. It is easy to see that jM1i and
jM3i transform among themselves. Writing

jM1i � 1
0

� �
; jM3i � 0

1

� �
; (58)

we can represent each group element by a 2� 2 matrix:

I¼ 1 0

0 1

 !
; P12 ¼

�1
2

ffiffi
3

p
2ffiffi

3
p
2

1
2

0
@

1
A;

P13¼
�1

2 �
ffiffi
3

p
2

�
ffiffi
3

p
2

1
2

0
@

1
A; P23 ¼

1 0

0 �1

 !
;

Pcyclic ¼
�1

2 �
ffiffi
3

p
2ffiffi

3
p
2 �1

2

0
@

1
A; Panticyclic ¼

�1
2

ffiffi
3

p
2

�
ffiffi
3

p
2 �1

2

0
@

1
A: (59)

Similarly, if we write

jM2i � 1
0

� �
; jM4i � 0

1

� �
; (60)

the S3 matrices take the same form, showing that jM2i and
jM4i also transform among themselves.

The above allows us to express the amplitudes for all
B ! ��� decays in terms of diagrams. We begin with
some general comments about diagrams. As an example,

consider T1. In principle, there are six possibilities, T
ijk
1 , in

which the final-state pions i, j, and k run from top to
bottom of the diagram in all permutations. Suppose that
we want the expression for the amplitude of B ! �1�2�3

in a particular jS3i state, and suppose that the diagram Tijk
1

contributes to the decay. For jS3i ¼ jSi, we define TS
1 :

TS
1 �

1ffiffiffi
6

p ðT123
1 þT132

1 þT312
1 þT321

1 þT231
1 þT213

1 Þ: (61)

Each Tijk
1 leads to TS

1 in the amplitude. For jS3i ¼ jAi,
we have

TA
1 � 1ffiffiffi

6
p ðT123

1 � T132
1 þ T312

1 � T321
1 þ T231

1 � T213
1 Þ:
(62)

Again, each Tijk
1 leads to TA

1 in the amplitude, with a
coefficient of 1 (� 1) if ijk is in cyclic (anticyclic) order.
For the mixed states, one has to take into account the

fact that, under group transformations, there is jM1i-jM3i
and jM2i-jM4i mixing. In order to illustrate how this is
done, we focus first on the M1=M3 sector. We define

TM1

1 � 1ffiffiffiffiffiffi
12

p ð2T123
1 þ 2T132

1 � T312
1 � T321

1 � T231
1 � T213

1 Þ;

T
M3

1 � 1ffiffiffi
4

p ð�T312
1 � T321

1 þ T231
1 þ T213

1 Þ: (63)

Suppose jS3i ¼ jM1i. The contribution to the amplitude

of B ! �1�2�3 is ½M� ðTM1

1 ; TM3

1 ÞT�upper component, where

M is the matrix representing the S3 group element which
transforms ijk to 123 [Eq. (59)]. In general, this is a

combination of TM1

1 and TM3

1 (though the TM3

1 component

can be zero if M ¼ I or P23). Factors of �1 for each �u

and 1=
ffiffiffi
2

p
for each �0 must also be included. If

jS3i ¼ jM3i, the contribution to the amplitude is

½M� ðTM1

1 ; T
M3

1 ÞT�lower component. This can be applied anal-

ogously to the M2=M4 sector, where we define

TM2

1 � 1ffiffiffi
4

p ðT312
1 � T321

1 � T231
1 þ T213

1 Þ;

TM4

1 � 1ffiffiffiffiffiffi
12

p ð2T123
1 � 2T132

1 � T312
1 þ T321

1 � T231
1 þ T213

1 Þ:

(64)

The entire procedure holds for all diagrams.7

With these rules, we can now work out the amplitudes
for all decays. We begin first with jS3i ¼ jSi. The ampli-
tudes are

2ffiffiffi
3

p AðB0
d ! �0�0�0ÞjSi ¼ �½CS

1 � CS
2 þ PS

uc�e�i� þ
�
PS
tc þ 1

3
PS
EW1 � PS

EW2 �
1

3
PC;S
EW1 �

1

3
PC;S
EW2

�
;

ffiffiffi
2

p
AðBþ ! �þ�0�0ÞjSi ¼ �½TS

2 þ CS
1 þ PS

uc�e�i� þ
�
PS
tc þ 1

3
PS
EW1 �

1

3
PC;S
EW1 þ

2

3
PC;S
EW2

�
;

1ffiffiffi
2

p AðBþ ! ���þ�þÞjSi ¼ ½TS
2 þ CS

1 þ PS
uc�e�i� �

�
PS
tc þ 1

3
PS
EW1 �

1

3
PC;S
EW1 þ

2

3
PC;S
EW2

�
;

ffiffiffi
2

p
AðB0

d ! �þ�0��ÞjSi ¼ ½CS
1 � CS

2 þ PS
uc�e�i� �

�
PS
tc þ 1

3
PS
EW1 � PS

EW2 �
1

3
PC;S
EW1 �

1

3
PC;S
EW2

�
; (65)

7When applied to the decays in the previous sections, this method produces the same amplitude decomposition as when we used the
simple rule of adding a minus sign to diagrams in which the identical particles are exchanged (e.g. in B ! K�� or KK �K).
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where P � P1 þ P2 and all amplitudes have been multiplied by ei�.
For the M1=M3 sector, the amplitudes are

ffiffiffi
2

p
AðBþ ! �þ�0�0ÞjM1i ¼

�
3

2
TM1

1 �
ffiffiffi
3

p
2
T
M3

1 � TM1

2 �CM1

1 þ 3

2
CM1

2 �
ffiffiffi
3

p
2
C
M3

2 �PM1
uc þ ffiffiffi

3
p

P
M3
uc

�
e�i� þ

�
PM1
tc � ffiffiffi

3
p

P
M3
tc

� 1

6
PM1

EW1 �
1

2
ffiffiffi
3

p PM3

EW1 þ
ffiffiffi
3

p
PM3

EW2 �
1

3
PC;M1

EW1 �
2ffiffiffi
3

p PC;M3

EW1 �
5

6
PC;M1

EW2 �
1

2
ffiffiffi
3

p PC;M3

EW2

�
;

ffiffiffi
2

p
AðBþ ! ���þ�þÞjM1i ¼ ½�TM1

2 þ ffiffiffi
3

p
TM3

2 �CM1

1 � ffiffiffi
3

p
CM3

1 �PM1
uc þ ffiffiffi

3
p

PM3
uc �e�i�

þ
�
PM1
tc � ffiffiffi

3
p

P
M3
tc þ 4

3
PM1

EW1 �
2ffiffiffi
3

p P
M3

EW1 �
1

3
PC;M1

EW1 þ
1ffiffiffi
3

p P
C;M3

EW1 þ
2

3
PC;M1

EW2 �
2ffiffiffi
3

p P
C;M3

EW2

�
;

6
ffiffiffi
2

p
AðB0

d ! �þ�0��ÞjM1i ¼ ½9TM1

1 � 3
ffiffiffi
3

p
TM3

1 � 3CM1

1 þ 3
ffiffiffi
3

p
CM3

1 þ 3CM1

2 � 3
ffiffiffi
3

p
CM3

2 � 3PM1
uc þ 3

ffiffiffi
3

p
PM3
uc �e�i�

þ ½3PM1
tc � 3

ffiffiffi
3

p
P
M3
tc � 5PM1

EW1 þ
ffiffiffi
3

p
P
M3

EW1 � 3PM1

EW2 þ 3
ffiffiffi
3

p
P
M3

EW2 �PC;M1

EW1 � 5
ffiffiffi
3

p
P
C;M3

EW1

�PC;M1

EW2 þ
ffiffiffi
3

p
PC;M3

EW2 �;
2
ffiffiffi
6

p
AðB0

d ! �þ�0��ÞjM3i ¼ ½�3TM1

1 þ ffiffiffi
3

p
TM3

1 � 4
ffiffiffi
3

p
TM3

2 þ 3CM1

1 þ ffiffiffi
3

p
CM3

1 þ 3CM1

2 þ ffiffiffi
3

p
CM3

2 þ 3PM1
uc � 3

ffiffiffi
3

p
PM3
uc �e�i�

þ ½�3PM1
tc þ 3

ffiffiffi
3

p
P
M3
tc �PM1

EW1 þ
ffiffiffi
3

p
P
M3

EW1 þ 3PM1

EW2 þ
ffiffiffi
3

p
P
M3

EW2 þPC;M1

EW1 þ
ffiffiffi
3

p
P
C;M3

EW1

� 5PC;M1

EW2 þ
ffiffiffi
3

p
PC;M3

EW2 �: (66)

For the M2=M4 sector, the amplitudes are

ffiffiffi
2

p
AðBþ ! �þ�0�0ÞjM2i ¼

�
3

2
TM2

1 �
ffiffiffi
3

p
2
TM4

1 � TM2

2 �CM2

1 þ 3

2
CM2

2 �
ffiffiffi
3

p
2
CM4

2 �PM2
uc þ ffiffiffi

3
p

PM4
uc

�
e�i� þ

�
PM2
tc � ffiffiffi

3
p

PM4
tc

� 1

6
PM2

EW1 �
1

2
ffiffiffi
3

p PM4

EW1 þ
ffiffiffi
3

p
PM4

EW2 �
1

3
PC;M2

EW1 �
2ffiffiffi
3

p PC;M4

EW1 �
5

6
PC;M2

EW2 �
1

2
ffiffiffi
3

p PC;M4

EW2

�
;

ffiffiffi
2

p
AðBþ ! ���þ�þÞjM2i ¼ ½�TM2

2 þ ffiffiffi
3

p
TM4

2 �CM2

1 � ffiffiffi
3

p
CM4

1 �PM2
uc þ ffiffiffi

3
p

PM4
uc �e�i� þ

�
PM2
tc � ffiffiffi

3
p

PM4
tc

þ 4

3
PM2

EW1 �
2ffiffiffi
3

p PM4

EW1 �
1

3
PC;M2

EW1 þ
1ffiffiffi
3

p PC;M4

EW1 þ
2

3
PC;M2

EW2 �
2ffiffiffi
3

p PC;M4

EW2

�
;

6
ffiffiffi
2

p
AðB0

d ! �þ�0��ÞjM2i ¼ ½9TM2

1 � 3
ffiffiffi
3

p
TM4

1 � 3CM2

1 þ 3
ffiffiffi
3

p
CM4

1 þ 3CM2

2 � 3
ffiffiffi
3

p
CM4

2 � 3PM2
uc þ 3

ffiffiffi
3

p
PM4
uc �e�i�

þ ½3PM2
tc � 3

ffiffiffi
3

p
PM4
tc � 5PM2

EW1 þ
ffiffiffi
3

p
PM4

EW1 � 3PM2

EW2 þ 3
ffiffiffi
3

p
PM4

EW2 �PC;M2

EW1

� 5
ffiffiffi
3

p
PC;M4

EW1 �PC;M2

EW2 þ
ffiffiffi
3

p
PC;M4

EW2 �;
2
ffiffiffi
6

p
AðB0

d ! �þ�0��ÞjM4i ¼ ½�3TM2

1 þ ffiffiffi
3

p
TM4

1 � 4
ffiffiffi
3

p
TM4

2 þ 3CM2

1 þ ffiffiffi
3

p
CM4

1 þ 3CM2

2 þ ffiffiffi
3

p
CM4

2 þ 3PM2
uc � 3

ffiffiffi
3

p
PM4
uc �e�i�

þ ½�3PM2
tc þ 3

ffiffiffi
3

p
PM4
tc �PM2

EW1 þ
ffiffiffi
3

p
PM4

EW1 þ 3PM2

EW2 þ
ffiffiffi
3

p
PM4

EW2 þPC;M2

EW1

þ ffiffiffi
3

p
PC;M4

EW1 � 5PC;M2

EW2 þ
ffiffiffi
3

p
PC;M4

EW2 �: (67)

Finally, for jS3i ¼ jAi, we have

ffiffiffi
2

p
AðB0

d ! �þ�0��ÞjAi ¼ ½2TA
1 � 2TA

2 � CA
1 � CA

2 � 3PA
uc�e�i� þ ½3PA

tc þ PA
EW1 � PA

EW2 � PC;A
EW1 � PC;A

EW2�: (68)

Now, the final state has isospin 1 	 1 	 1 ¼ 0 
 1 
 1 
 1 
 2 
 2 
 3. Given that the B meson has I ¼ 1
2 and the weak

Hamiltonian has �I ¼ 1
2 or

3
2 , there are 9 paths to the final state. We therefore expect four relations among the 13 decay

amplitudes. This is indeed what is found:
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ffiffiffi
2

p
AðB0

d ! �0�0�0ÞjSi ¼ � ffiffiffi
3

p
AðB0

d ! �þ�0��ÞjSi;
2AðBþ ! �þ�0�0ÞjSi ¼ �AðBþ ! ���þ�þÞjSi;

3

2
AðB0

d ! �þ�0��ÞjM1i þ
ffiffiffi
3

p
2

AðB0
d ! �þ�0��ÞjM3i ¼ AðBþ ! �þ�0�0ÞjM1i � AðBþ ! ���þ�þÞjM1i;

3

2
AðB0

d ! �þ�0��ÞjM2i þ
ffiffiffi
3

p
2

AðB0
d ! �þ�0��ÞjM4i ¼ AðBþ ! �þ�0�0ÞjM2i � AðBþ ! ���þ�þÞjM2i: (69)

These relations can also be found using the Wigner-Eckart
theorem.

In passing, we note that, within the SM, the final state
with I ¼ 3 is unreachable. This then provides a test of the
SM. Applying the method of Ref. [25] to B ! ���, one
can distinguish the various isospin final states. One can
then look for a state with I ¼ 3. If one is observed, this will
be a smoking-gun signal of new physics.

A. Dalitz plots

Above, we presented the amplitudes for each of the six
S3 states of B ! ���. The obvious question is then
whether these states can be distinguished experimentally.
Below we show that this can indeed be done.

Consider the decay B0
d ! �þ�0��. The Dalitz-plot

events can be described by sþ ¼ ðp�0 þ p�þÞ2 and s� ¼
ðp�0 þ p��Þ2, so that the decay amplitude,Mðsþ; s�Þ, can
be extracted. We introduce the third Mandelstam variable,
s0 ¼ ðp�þ þ p��Þ2. It is related to sþ and s� as follows:

sþ þ s� þ s0 ¼ m2
B þ 3m2

�: (70)

The totally symmetric SU(3) decay amplitude is then given
by

jSi ¼ 1ffiffiffi
6

p ½Mðsþ; s�Þ þMðs�; sþÞ þMðsþ; s0Þ

þMðs0; sþÞ þMðs0; s�Þ þMðs�; s0Þ�: (71)

Also,

jM1i ¼ 1ffiffiffiffiffiffi
12

p ½2Mðsþ; s�Þ þ 2Mðs�; sþÞ �Mðsþ; s0Þ

�Mðs0; sþÞ �Mðs0; s�Þ �Mðs�; s0Þ�: (72)

The remaining S3 states can be found similarly. The
method is similar for the other B ! ��� decays.

B. Weak-phase information

In the previous section we showed how all six
B ! ��� S3 states can be experimentally separated. It
may then be possible to extract clean information about
weak phases. (Note: by measuring the S3 states, one fixes
the CP of the final states, which makes the indirect CP
asymmetries well defined.)

Consider jS3i ¼ jAi. Here there is one decay, which
yields three observables: the branching ratio, the direct

CP asymmetry, and the indirect CP asymmetry of
B0
d ! �þ�0��jjAi. The amplitude is expressed in terms

of two effective diagrams: AðB0
d ! �þ�0��ÞjAi ¼

D1e
�i� þD2, which has four theoretical parameters—

the magnitudes of D1;2, the relative strong phase, and �.
Since the number of theoretical unknowns is greater than
the number of observables, one cannot obtain�. Things are
similar for jS3i ¼ jSi. Because of the first two relations in
Eq. (69), there are only two independent decays, yielding 5
observables. However, there are 8 theoretical parameters,
so that, once again, � cannot be extracted.
Things are different for the case of mixed states.

Consider the M1=M3 sector. There are four decays:
(1) Bþ ! �þ�0�0jjM1i, (2) Bþ ! ���þ�þjjM1i,
(3) B0

d ! �þ�0��jjM1i, and (4) B0
d ! �þ�0��jjM3i.

These yield 10 observables: 4 branching ratios, 4 direct
CP asymmetries, and 2 indirect CP asymmetries (of B0

d !
�þ�0��jjS3i, S3 ¼ M1, and M3). The four decay ampli-

tudes all have the form D1;ie
�i� þD2;i, i ¼ 1–4. The D1;i

are related to one another by the third relation in Eq. (69),
as are the D2;i. The amplitudes are thus a function of 6

effective diagrams, resulting in 12 theoretical parame-
ters: 6 magnitudes, 5 relative strong phases, and �. Since
the number of theoretical unknowns exceeds the number
of observables, � cannot be extracted. However, if one
assumes that the hierarchy of Eq. (56) holds for three-
body decays, all EWP diagrams can be neglected, to a
good approximation. In this case, all the D2;i are pro-

portional to PM1
tc � ffiffiffi

3
p

P
M3
tc . There are thus only 4 effec-

tive diagrams, which yield 8 theoretical parameters. Now
the number of theoretical unknowns is smaller than the
number of observables, so that � can be obtained from a
fit to the data. (It is not even necessary to measure all
10 observables. A difficult-to-obtain quantity, such as the
direct CP asymmetry in Bþ ! �þ�0�0jjM1i, can be

omitted.) A similar method holds for the M2=M4 sector.
The error on � can be reduced by comparing the two
values found.
Now, it must be conceded that the above analysis is quite

theoretical—it is far from certain that this can be carried
out experimentally [and there is an uncertain theoretical
error due to the assumption of Eq. (56)]. Still, it is interest-
ing to see that, in principle, clean weak-phase information
can be obtained from B ! ���, or, more generally, from
B ! M1M2M3 decays.
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VIII. CONCLUSIONS

In this paper, we have expressed the amplitudes for
B ! M1M2M3 decays (Mi is a pseudoscalar meson) in
terms of diagrams, concentrating on the charmless final
states K��, KK �K, K �K�, and ���. The diagrams are
similar to those used in two-body decays: the color-favored
and color-suppressed tree amplitudes T and C, the gluonic-
penguin amplitudes Ptc and Puc, and the color-favored and
color-suppressed EWP amplitudes PEW and PC

EW. Here,

because the final state has three particles, there are two
types of each diagram, which we call T1, T2, C1, C2, etc.

We have also demonstrated how to use the Dalitz plots
of three-body decays to separate the decay amplitudes into
pieces which are symmetric or antisymmetric under the
exchange of two of the final-state particles. This is useful
for any decay whose final state contains identical particles
under isospin. If the relative angular momentum of the two
particles is even (odd), the isospin state must be symmetric
(antisymmetric). These two possibilities can be distin-
guished experimentally.

The main advantage of a diagrammatic analysis is
that the approximate relative sizes of the diagrams can
be estimated. For example, there are annihilation- and
exchange-type diagrams which contribute to these decays.
However, these are expected to be much smaller than the
dominant diagrams (relative size & 10%), and are not
included in our analysis. Previous studies of three-body
decays were carried out using isospin amplitudes and gave
exact results for the symmetric or antisymmetric states. On
the other hand, the neglect of annihilation/exchange-type
diagrams can modify these results and can lead to interest-
ing new effects.

As an example, consider B ! KK �K, which consists of
four decays. For the case where the two K’s are in a
symmetric isospin state, the Wigner-Eckart theorem gives
a single relation among the four amplitudes. However,
when annihilation/exchange-type diagrams are excluded

from the amplitudes, it is found that this relation actually
consists of two equalities, and this leads to new predictions
of the SM. Present data allow us to test one of these
equalities, and we find agreement with the SM. In the
same vein, B ! KK �K decays can be written in terms of
five isospin amplitudes. The diagrammatic analysis shows
that, in fact, only four of these are independent—two of the
isospin amplitudes are proportional to one another.
Another consequence of the diagrammatic analysis has

to do with weak phases. The CP of a three-particle final
state is not fixed, because the relative angular momenta are
unknown (i.e. they can be even or odd). For this reason, in
the past it was thought that it is not possible to cleanly
extract weak-phase information from three-body B decays.
In this paper, we demonstrate that this is not true. Using the
diagrams, we show that it is possible to cleanly measure
the weak phases in some decays, given that it is experi-
mentally possible to distinguish different symmetry com-
binations of the final-state particles. We explicitly give
methods for K �K� and ���, and note that the procedure
for K�� is presented separately. Ways of cleanly extract-
ing the CP phases from other three-body decays will surely
be suggested.
There are thus a number of interesting measurements

that can be carried out with B ! M1M2M3. LHCb is
running at present, and the super-B factories will run in
the future. Hopefully, these machines will provide interest-
ing data on three-body B decays.
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