1⁺⁺ nonet singlet-octet mixing angle, strange quark mass, and strange quark condensate

Kwei-Chou Yang*

Department of Physics, Chung Yuan Christian University, Chung-Li 320, Taiwan (Received 30 June 2011; published 22 August 2011)

Two strategies are taken into account to determine the $f_1(1420)-f_1(1285)$ mixing angle θ . (i) First, using the Gell-Mann-Okubo mass formula together with the $K_1(1270)-K_1(1400)$ mixing angle $\theta_{K_1} = (-34 \pm 13)^\circ$ extracted from the data for $\mathcal{B}(B \to K_1(1270)\gamma)$, $\mathcal{B}(B \to K_1(1400)\gamma)$, $\mathcal{B}(\tau \to K_1(1270)\nu_{\tau})$, and $\mathcal{B}(\tau \to K_1(1420)\nu_{\tau})$, gave $\theta = (23^{+17}_{-23})^\circ$. (ii) Second, from the study of the ratio for $f_1(1285) \to \phi\gamma$ and $f_1(1285) \to \rho^0\gamma$ branching fractions, we have a twofold solution $\theta = (19.4^{+4.5}_{-4.6})^\circ$ or $(51.1^{+4.5}_{-4.6})^\circ$. Combining these two analyses, we thus obtain $\theta = (19.4^{+4.5}_{-4.6})^\circ$. We further compute the strange quark mass and strange quark condensate from the analysis of the $f_1(1420)-f_1(1285)$ mass difference QCD sum rule, where the operator-product-expansion series is up to dimension six and to $\mathcal{O}(\alpha_s^3, m_s^2 \alpha_s^2)$ accuracy. Using the average of the recent lattice results and the θ value that we have obtained as inputs, we get $\langle \bar{ss} \rangle / \langle \bar{uu} \rangle = 0.41 \pm 0.09$.

DOI: 10.1103/PhysRevD.84.034035

PACS numbers: 12.38.Lg, 12.38.Aw, 14.40.Be

I. INTRODUCTION

The $f_1(1285)$ and $f_1(1420)$ mesons with quantum number $J^{PC} = 1^{++}$ are the members of the $1^{3}P_{1}$ states in the quark model language and are mixtures of the pure octet f_8 and singlet f_1 , where the mixing is characterized by the mixing angle θ . The BABAR results for the upper bounds of $B^- \rightarrow f_1(1285)K^-, f_1(1420)K^-$ were available recently [1]. The relative ratio of these two modes is highly sensitive to θ [2]. On the other hand, in the two-body B decay involving the K meson in the final state, the amplitude receives large corrections from the chiral enhancement a_6 term which is inversely proportional to the strange quark mass. The quark mass term mixes left- and right-handed quarks in the QCD Lagrangian. The spontaneous breaking of chiral symmetry from $SU(3)_L \times SU(3)_R$ to $SU(3)_V$ is further broken by the quark masses $m_{u,d,s}$ when the baryon number is added to the three commuting conserved quantities Q_u , Q_d , and Q_s , respectively, the numbers of $q - \bar{q}$ quarks for q = u, d, and s. The nonzero quark condensate which signals dynamical symmetry breaking is the important parameter in QCD sum rules [3], while the magnitude of the strange quark mass can result in the flavor symmetry breaking in the quark condensate. In an earlier study $\langle \bar{s}s \rangle / \langle \bar{u}u \rangle \sim 0.8 < 1$ was usually taken. However, very recently the Jamin-Lange approach [4] together with the lattice result for f_{B_s}/f_B [5] and also the Schwinger-Dyson equation approach [6] can give a central value larger than 1.

In this paper, we shall embark on the study of the $f_1(1420)$ and $f_1(1285)$ mesons to determine the mixing angle θ , strange quark mass, and strange quark condensate. In Sec. II, we shall present detailed discussions on the determination of the mixing angle θ . Substituting the $K_1(1270)-K_1(1400)$ mixing angle, which was extracted from the $B \rightarrow K_1 \gamma$ and $\tau \rightarrow K_1 \nu_{\tau}$ data, to the GellMann-Okubo mass formula, we can derive the value of θ . Alternatively, from the analysis of the decay ratio for $f_1(1285) \rightarrow \phi \gamma$ and $f_1(1285) \rightarrow \rho^0 \gamma$, we have a more accurate estimation for θ . In Sec. III we shall obtain the mass difference QCD sum rules for the $f_1(1420)$ and $f_1(1285)$ to determine the magnitude of the strange quark mass. From the sum rule analysis, we obtain the constraint ranges for m_s and θ as well as for $\langle \bar{s}s \rangle$. Many attempts have been made to compute m_s using QCD sum rules and finite energy sum rules [7–13]. The running strange quark mass in the $\overline{\text{MS}}$ scheme at a scale of $\mu \approx 2 \text{ GeV}$ is $m_s =$ 101^{+29}_{-21} MeV given in the particle data group (PDG) average [14]. More precise lattice estimates have been recently obtained as $m_s(2 \text{ GeV}) = 92.2(1.3) \text{ MeV}$ in [15], $m_s(2 \text{ GeV}) = 96.2(2.7) \text{ MeV}$ in [16], and $m_s(2 \text{ GeV}) =$ 95.1(1.1)(1.5) MeV in [17]. These lattice results agree with strange scalar/pseudoscalar sum rule results which are $m_s \simeq 95(15)$ MeV. In the present study, we study the m_s from a new frame, the $f_1(1420)$ - $f_1(1285)$ mass difference sum rule, which may result in larger uncertainties due to the input parameters. Nevertheless, it can be a cross-check compared with the previous studies. Further using the very recent lattice result for $m_s(2 \text{ GeV}) = 93.6 \pm 1.0 \text{ MeV}$ as the input, we obtain an estimate for the strange quark condensate.

II. SINGLET-OCTET MIXING ANGLE θ OF THE 1⁺⁺ NONET

A. Definition

In the quark model, $a_1(1260)$, $f_1(1285)$, $f_1(1420)$, and K_{1A} are classified in 1⁺⁺ multiplets, which, in terms of spectroscopic notation $n^{2S+1}L_J$, are 1^3P_1 *p*-wave mesons. Analogous to η and η' , because of SU(3) breaking effects, $f_1(1285)$ and $f_1(1420)$ are the mixing states of the pure octet f_8 and singlet f_1 ,

^{*}kcyang@cycu.edu.tw

$$|f_1(1285)\rangle = |f_1\rangle\cos\theta + |f_8\rangle\sin\theta,$$

$$|f_1(1420)\rangle = -|f_1\rangle\sin\theta + |f_8\rangle\cos\theta.$$
(1)

In the present paper, we adopt

$$f_1 = \frac{1}{\sqrt{3}} (\bar{u}u + \bar{d}d + \bar{s}s),$$
(2)

$$f_8 = \frac{1}{\sqrt{6}} (\bar{u}u + \bar{d}d - 2\bar{s}s), \tag{3}$$

where there is a relative sign difference between the $\bar{s}s$ contents of f_1 and f_8 in our convention. From the Gell-Mann-Okubo mass formula, the mixing angle θ satisfies

$$\cos^2\theta = \frac{3m_{f_1(1285)}^2 - (4m_{K_{1A}}^2 - m_{a_1}^2)}{3(m_{f_1(1285)}^2 - m_{f_1(1420)}^2)},$$
(4)

where

$$m_{K_{1A}}^2 = \langle K_{1A} | \mathcal{H} | K_{1A} \rangle$$

= $m_{K_1(1400)}^2 \cos^2 \theta_{K_1} + m_{K_1(1270)}^2 \sin^2 \theta_{K_1}$, (5)

with \mathcal{H} being the Hamiltonian. Here θ_{K_1} is the $K_1(1400)$ - $K_1(1270)$ mixing angle. The sign of the mixing angle θ can be determined from the mass relation [14]

$$\tan\theta = \frac{4m_{K_{1A}}^2 - m_{a_1}^2 - 3m_{f_1(1420)}^2}{3m_{18}^2},\tag{6}$$

where $m_{18}^2 = \langle f_1 | \mathcal{H} | f_8 \rangle \simeq (m_{a_1}^2 - m_{K_{1A}}^2) 2\sqrt{2}/3 < 0$, we find $\theta > 0$. Because of the strange and nonstrange light quark mass differences, K_{1A} is not the mass eigenstate and it can mix with K_{1B} , which is one of the members in the 1^1P_1 multiplets. From the convention in [18] (see also discussions in [19,20]), we write the two physical states $K_1(1270)$ and $K_1(1400)$ in the following relations:

$$|K_1(1270)\rangle = |K_{1A}\rangle\sin\theta_K + |K_{1B}\rangle\cos\theta_K,$$

$$|K_1(1400)\rangle = |K_{1A}\rangle\cos\theta_K - |K_{1B}\rangle\sin\theta_K.$$
(7)

The mixing angle was found to be $|\theta_{K_1}| \approx 33^\circ, 57^\circ$ in [18] and $\approx \pm 37^\circ, \pm 58^\circ$ in [21]. A similar range $35^\circ \leq |\theta_{K_1}| \leq 55^\circ$ was obtained in [22]. The sign ambiguity for θ_{K_1} is due to the fact that one can add arbitrary phases to $|\bar{K}_{1A}\rangle$ and $|\bar{K}_{1B}\rangle$. This sign ambiguity can be removed by fixing the signs of decay constants $f_{K_{1A}}$ and $f_{K_{1B}}^{\perp}$, which are defined by

$$\langle 0|\bar{\psi}\gamma_{\mu}\gamma_{5}s|\bar{K}_{1A}(P,\lambda)\rangle = -if_{K_{1A}}m_{K_{1A}}\epsilon_{\mu}^{(\lambda)},\qquad(8)$$

$$\langle 0|\bar{\psi}\sigma_{\mu\nu}s|\bar{K}_{1B}(P,\lambda)\rangle = if_{K_{1B}}^{\perp}\epsilon_{\mu\nu\alpha\beta}\epsilon^{\alpha}_{(\lambda)}P^{\beta},\qquad(9)$$

where $\epsilon^{0123} = -1$ and $\psi \equiv u$ or *d*. Following the convention in [20], we adopt $f_{K_{1A}} > 0$, $f_{K_{1B}}^{\perp} > 0$, so that θ_{K_1} should be negative to account for the observable $\mathcal{B}(B \to K_1(1270)\gamma) \gg \mathcal{B}(B \to K_1(1400)\gamma)$ [23,24]. Furthermore, from the data of $\tau \to K_1(1270)\nu_{\tau}$ and $K_1(1400)\nu_{\tau}$ decays together with the sum rule results for the K_{1A} and K_{1B} decay constants, the mixing angle $\theta_{K_1} = (-34 \pm 13)^\circ$ was obtained in [24]. Substituting this value into (4), we then obtain $\theta^{quad} = (23^{+17}_{-23})^\circ$ [25], i.e., $\theta^{quad} = 0^\circ - 40^\circ$.¹

B. The determination of θ

Experimentally, since $K^*\bar{K}$ and $K\bar{K}\pi$ are the dominant modes of $f_1(1420)$, whereas $f_0(1285)$ decays mainly to the 4π states, this suggests that the quark content is primarily $s\bar{s}$ for $f_1(1420)$ and $n\bar{n} = (u\bar{u} + d\bar{d})/\sqrt{2}$ for $f_1(1285)$. Therefore, the mixing relations can be rewritten to exhibit the $n\bar{n}$ and $s\bar{s}$ components which decouple for the ideal mixing angle $\theta_i = \tan^{-1}(1/\sqrt{2}) \approx 35.3^\circ$. Let $\bar{\alpha} = \theta_i - \theta$, we rewrite these two states in the flavor basis,²

$$f_1(1285) = \frac{1}{\sqrt{2}}(\bar{u}u + \bar{d}d)\cos\bar{\alpha} + \bar{s}s\sin\bar{\alpha},$$

$$f_1(1420) = \frac{1}{\sqrt{2}}(\bar{u}u + \bar{d}d)\sin\bar{\alpha} - \bar{s}s\cos\bar{\alpha}.$$
(10)

Since the $f_1(1285)$ can decay into $\phi\gamma$, we know that $f_1(1285)$ has the $s\bar{s}$ content and θ deviates from its ideal mixing value. To have a more precise estimate for θ , we study the ratio of $f_1(1285) \rightarrow \phi\gamma$ and $f_1(1285) \rightarrow \rho^0\gamma$ branching fractions. Because the electromagnetic (EM) interaction Lagrangian is given by

$$\mathcal{L}_{I} = -A_{\rm EM}^{\mu} (e_{u} \bar{u} \gamma_{\mu} u + e_{d} \bar{d} \gamma_{\mu} d + e_{s} \bar{s} \gamma_{\mu} s)$$

$$= -A_{\rm EM}^{\mu} \left((e_{u} + e_{d}) \frac{\bar{u} \gamma_{\mu} u + \bar{d} \gamma_{\mu} d}{2} + (e_{u} - e_{d}) \frac{\bar{u} \gamma_{\mu} u - \bar{d} \gamma_{\mu} d}{2} + e_{s} \bar{s} \gamma_{\mu} s \right), \quad (11)$$

with $e_u = 2/3e$, $e_d = -1/3e$, and $e_s = -1/3e$ being the electric charges of u, d, and s quarks, respectively, we obtain

¹Replacing the meson mass squared m^2 by *m* throughout (4), we obtain $\theta^{\text{lin}} = (23^{+17}_{-23})^\circ$. The difference is negligible. Our result can be compared with that using $\theta_{K_1} = -57^\circ$ into (4); one has $\theta^{\text{quad}} = 52^\circ$.

²In PDG [14], the mixing angle is defined as $\alpha = \theta - \theta_i + \pi/2$. Comparing it with our definition, we have $\alpha = \pi/2 - \bar{\alpha}$.

1⁺⁺ NONET SINGLET-OCTET MIXING ANGLE, ...

PHYSICAL REVIEW D 84, 034035 (2011)

$$\frac{\mathcal{B}(f_{1}(1285) \to \phi^{\gamma})}{\mathcal{B}(f_{1}(1285) \to \rho^{0}\gamma)} = \left(\frac{\langle \phi | e_{s}\bar{s}\gamma_{\mu}s | f_{1}(1285) \rangle}{\langle \rho | (e_{u} - e_{d})(\bar{u}\gamma_{\mu}u - \bar{d}\gamma_{\mu}d)/2 | f_{1}(1285) \rangle}\right)^{2} = \underbrace{\binom{m_{f_{1}}^{2} - m_{\phi}^{2}}{m_{f_{1}}^{2} - m_{\rho}^{2}}}_{\text{phase factor}}^{3}$$

$$= \underbrace{\binom{-e/3}{2e/3 + e/3}}_{\text{EM factor}}^{2} \underbrace{\binom{\langle \phi | \bar{s}\gamma_{\mu}s | f_{1}(1285) \rangle}{\langle \rho | (\bar{u}\gamma_{\mu}u - \bar{d}\gamma_{\mu}d)/2 | f_{1}(1285) \rangle}}_{\text{phase factor}}^{2} \underbrace{\binom{m_{f_{1}}^{2} - m_{\phi}^{2}}{m_{f_{1}}^{2} - m_{\rho}^{2}}}_{\text{phase factor}}^{3}$$

$$\approx \frac{4}{9} \Big(\frac{m_{\phi}f_{\phi}}{m_{\rho}f_{\rho}}\Big)^{2} \tan^{2}\bar{\alpha} \Big(\frac{m_{f_{1}}^{2} - m_{\phi}^{2}}{m_{f_{1}}^{2} - m_{\rho}^{2}}\Big)^{3},$$
(12)

where $f_1 \equiv f_1(1285)$, and f_{ϕ} and f_{ρ} are the decay constants of ϕ and ρ , respectively. Here we have taken the single-pole approximation³:

$$\frac{\langle \phi | \bar{s} \gamma_{\mu} s | f_{1}(1285) \rangle}{\langle \rho | (\bar{u} \gamma_{\mu} u - \bar{d} \gamma_{\mu} d) / 2 | f_{1}(1285) \rangle} \approx \frac{m_{\phi} f_{\phi} g_{f_{1} \phi \phi}}{m_{\rho} f_{\rho} g_{f_{1} \rho \rho} / \sqrt{2}} \frac{\sin \bar{\alpha}}{\cos \bar{\alpha} / \sqrt{2}} \approx \frac{m_{\phi} f_{\phi}}{m_{\rho} f_{\rho}} \times 2 \tan \bar{\alpha}.$$
(13)

Using $f_{\rho} = 209 \pm 1$ MeV, $f_{\phi} = 221 \pm 3$ MeV [27], and the current data $\mathcal{B}(f_1(1285) \rightarrow \phi \gamma) = (7.4 \pm 2.6) \times 10^{-4}$ and $\mathcal{B}(f_1(1285) \rightarrow \rho^0 \gamma) = (5.5 \pm 1.3)\%$ [14] as inputs, we obtain $\bar{\alpha} = \pm (15.8^{+4.5}_{-4.6})^\circ$, i.e., the twofold solution $\theta = (19.4^{+4.5}_{-4.6})^\circ$ or $(51.1^{+4.5}_{-4.6})^\circ$. Combining with the analysis $\theta = (0-40)^\circ$ given in Sec. II A, we thus find that $\theta = (19.4^{+4.5}_{-4.6})^\circ$ is much preferred and can explain experimental observables well.

III. MASS OF THE STRANGE QUARK

We proceed to evaluate the strange quark mass from the mass difference sum rules of the $f_1(1285)$ and $f_1(1420)$ mesons. We consider the following two-point correlation functions:

$$\Pi_{\mu\nu}(q^2) = i \int d^4x e^{iqx} \langle 0|T(j_{\mu}(x)j_{\nu}^{\dagger}(0))|0\rangle$$

= $-\Pi_1(q^2)g_{\mu\nu} + \Pi_2(q^2)q_{\mu}q_{\nu},$ (14)

$$\Pi'_{\mu\nu}(q^2) = i \int d^4x e^{iqx} \langle 0|T(j'_{\mu}(x)j'^{\dagger}(0))|0\rangle$$

= $-\Pi'_1(q^2)g_{\mu\nu} + \Pi'_2(q^2)q_{\mu}q_{\nu}.$ (15)

The interpolating currents satisfying the relations,

$$\langle 0|j_{\mu}^{(l)}(0)|f_{1}^{(l)}(P,\lambda)\rangle = -if_{f_{1}^{(l)}}m_{f_{1}^{(l)}}\epsilon_{\mu}^{(\lambda)},\qquad(16)$$

are

³The following approximation was used in [26]:

$$\frac{\langle \phi | \bar{s} \gamma_{\mu} s | f_1(1285) \rangle}{\langle \rho | (\bar{u} \gamma_{\mu} u - \bar{d} \gamma_{\mu} d) / 2 | f_1(1285) \rangle} \approx 2 \tan \bar{\alpha}.$$

$$j_{\mu} = \cos\theta j_{\mu}^{(1)} + \sin\theta j_{\mu}^{(8)},$$
 (17)

$$j'_{\mu} = -\sin\theta j^{(1)}_{\mu} + \cos\theta j^{(8)}_{\mu}, \qquad (18)$$

where

$$j_{\mu}^{(1)} = \frac{1}{\sqrt{3}} (\bar{u} \gamma_{\mu} \gamma_{5} u + \bar{d} \gamma_{\mu} \gamma_{5} d + \bar{s} \gamma_{\mu} \gamma_{5} s), \qquad (19)$$

$$j^{(8)}_{\mu} = \frac{1}{\sqrt{6}} (\bar{u}\gamma_{\mu}\gamma_{5}u + \bar{d}\gamma_{\mu}\gamma_{5}d - 2\bar{s}\gamma_{\mu}\gamma_{5}s), \qquad (20)$$

and we have used the shorthand notations for $f_1 \equiv f_1(1285)$ and $f'_1 \equiv f_1(1420)$. In the massless quark limit, we have $\Pi_1 = q^2 \Pi_2$ and $\Pi'_1 = q^2 \Pi'_2$ if one neglects the axial-vector anomaly.⁴ Here we focus on $\Pi_1^{(l)}$ since it receives contributions only from axial-vector $({}^3P_1)$ mesons, whereas $\Pi_2^{(l)}$ contains effects from pseudoscalar mesons. The lowest-lying $f_1^{(l)}$ meson contribution can be approximated via the dispersion relation as

$$\frac{m_{f_1^{(\prime)}}^2 f_{f_1^{(\prime)}}^2}{m_{f_1^{(\prime)}}^2 - q^2} = \frac{1}{\pi} \int_0^{s_0^{f^{(\prime)}}} ds \frac{\mathrm{Im}\Pi_1^{(\prime)\mathrm{OPE}}(s)}{s - q^2}, \qquad (21)$$

where $\Pi_1^{(l)OPE}$ is the QCD operator-product-expansion (OPE) result of $\Pi_1^{(l)}$ at the quark-gluon level [20], and $s_0^{f_1^{(l)}}$ is the threshold of the higher resonant states. Note that the subtraction terms on the right-hand side of (21), which are polynomials in q^2 , are neglected since they have no contributions after performing the Borel transformation. The four-quark condensates are expressed as

$$\langle 0|\bar{q}\Gamma_{i}\lambda^{a}q\bar{q}\Gamma_{i}\lambda^{a}q|0\rangle = -a_{2}\frac{1}{16N_{c}^{2}}\operatorname{Tr}(\Gamma_{i}\Gamma_{i})$$
$$\times \operatorname{Tr}(\lambda^{a}\lambda^{a})\langle\bar{q}q\rangle^{2}, \qquad (22)$$

⁴Considering the anomaly, the singlet axial-vector current is satisfied with

$$\partial^{\mu}j^{(1)}_{\mu} = \frac{1}{\sqrt{3}}(m_u\bar{u}u + m_d\bar{d}d + m_s\bar{s}s) + \frac{3\alpha_s}{4\pi}G\tilde{G}.$$

where $a_2 = 1$ corresponds to the vacuum saturation approximation. In the present work, we have $\Gamma = \gamma_{\mu}$ and $\gamma_{\mu}\gamma_5$, for which we allow the variation $a_2 = -2.9-3.1$ [9,28,29]. For $\Pi_1^{(\prime)OPE}$, we take into account the terms with dimension ≤ 6 , where the term with dimension = 0 (D = 0) is up to $\mathcal{O}(\alpha_s^3)$, with D = 2 (which is proportional to m_s^2) up to $\mathcal{O}(\alpha_s^2)$ and with D = 4 up to $\mathcal{O}(\alpha_s^2)$. Note that such radiative corrections for terms can read from [30–32]. We do not include the radiative correction to the D = 6 terms since all the uncertainties can be lumped into a_2 . Note that such radiative corrections for terms with

dimensions = 0 and 4 are the same as the vector meson case and can read from [30,31].

Further applying the Borel (inverse-Laplace) transformation,

$$\mathbf{B}[f(q^2)] = \lim_{\substack{n \to \infty \\ -q^2/n^2 = M^2 \text{ fixed}}} \frac{1}{n!} (-q^2)^{n+1} \left[\frac{d}{dq^2}\right]^n f(q^2), \quad (23)$$

to both sides of (21) to improve the convergence of the OPE series and further suppress the contributions from higher resonances, the sum rules thus read

$$f_{f_{1}}^{2}m_{f_{1}}^{2}e^{-m_{f_{1}}^{2}/M^{2}} = \int_{0}^{s_{0}^{f_{1}}} \frac{sdse^{-s/M^{2}}}{4\pi^{2}} \Big[1 + \frac{\alpha_{s}(\sqrt{s})}{\pi} + F_{3}\frac{\alpha_{s}^{2}(\sqrt{s})}{\pi^{2}} + (F_{4} + F_{4}'\cos^{2}\theta)\frac{\alpha_{s}^{3}(\sqrt{s})}{\pi^{3}} \Big] - (\cos\theta - \sqrt{2}\sin\theta)^{2}[\bar{m}_{s}(\mu_{\circ})]^{2} \\ \times \int_{0}^{s_{0}^{f_{1}}} ds\frac{1}{2\pi^{2}}e^{-s/M^{2}} \Big[1 + \Big(H_{1}\ln\frac{s}{\mu_{\circ}^{2}} + H_{2}\Big)\frac{\alpha_{s}(\mu_{\circ})}{\pi} + \Big(H_{3a}\ln^{2}\frac{s}{\mu_{\circ}^{2}} + H_{3b}\ln\frac{s}{\mu_{\circ}^{2}} + H_{3c} - \frac{H_{3a}\pi^{2}}{3}\Big) \\ \times \Big(\frac{\alpha_{s}(\mu_{\circ})}{\pi}\Big)^{2}\Big] - \frac{1}{12}\Big(1 - \frac{11}{18}\frac{\alpha_{s}(M)}{\pi}\Big)\Big\langle\frac{\alpha_{s}}{\pi}G^{2}\Big\rangle - \Big[\frac{4}{27}\frac{\alpha_{s}(M)}{\pi} + \Big(-\frac{257}{486} + \frac{4}{3}\zeta(3) - \frac{2}{27}\beta_{1}\gamma_{E}\Big)\frac{\alpha_{s}^{2}(M)}{\pi^{2}}\Big] \\ \times \sum_{q_{i}=u,d,s} \langle \bar{m}_{i}\bar{q}_{i}q_{i}\rangle + \frac{1}{3}(\sqrt{2}\cos\theta + \sin\theta)^{2}\Big[2a_{1}\bar{m}_{q}\langle\bar{q}q\rangle - \frac{352\pi\alpha_{s}}{81M^{2}}a_{2}\langle\bar{q}q\rangle^{2}\Big] + \frac{1}{3}(\cos\theta - \sqrt{2}\sin\theta)^{2} \\ \times \Big[2a_{1}\bar{m}_{s}\langle\bar{s}s\rangle - \frac{352\pi\alpha_{s}}{81M^{2}}a_{2}\langle\bar{s}s\rangle^{2}\Big],$$

$$(24)$$

$$f_{f_{1}^{2}}^{2} m_{f_{1}^{\prime}}^{2} e^{-m_{f_{1}^{\prime}}^{2}/M^{2}} = \int_{0}^{s_{0}^{f_{1}^{\prime}}} \frac{sdse^{-s/M^{2}}}{4\pi^{2}} \Big[1 + \frac{\alpha_{s}(\sqrt{s})}{\pi} + F_{3} \frac{\alpha_{s}^{2}(\sqrt{s})}{\pi^{2}} + (F_{4} + F_{4}^{\prime}\sin^{2}\theta) \frac{\alpha_{s}^{3}(\sqrt{s})}{\pi^{3}} \Big] + (\sin\theta + \sqrt{2}\cos\theta)^{2} [\bar{m}_{s}(\mu_{\circ})]^{2} \\ \times \int_{0}^{s_{0}^{\prime}} ds \frac{1}{2\pi^{2}} e^{-s/M^{2}} \Big[1 + \Big(H_{1} \ln \frac{s}{\mu_{\circ}^{2}} + H_{2} \Big) \frac{\alpha_{s}(\mu_{\circ})}{\pi} + \Big(H_{3a} \ln^{2} \frac{s}{\mu_{\circ}^{2}} + H_{3b} \ln \frac{s}{\mu_{\circ}^{2}} + H_{3c} - \frac{H_{3a}\pi^{2}}{3} \Big) \\ \times \Big(\frac{\alpha_{s}(\mu_{\circ})}{\pi} \Big)^{2} \Big] - \frac{1}{12} \Big(1 - \frac{11}{18} \frac{\alpha_{s}(M)}{\pi} \Big) \Big\langle \frac{\alpha_{s}}{\pi} G^{2} \Big\rangle - \Big[\frac{4}{27} \frac{\alpha_{s}(M)}{\pi} + \Big(-\frac{257}{486} + \frac{4}{3}\zeta(3) - \frac{2}{27}\beta_{1}\gamma_{E} \Big) \frac{\alpha_{s}^{2}(M)}{\pi^{2}} \Big] \\ \times \sum_{q_{i} \equiv u,d,s} \langle \bar{m}_{i}\bar{q}_{i}q_{i} \rangle + \frac{1}{3} (\sqrt{2}\sin\theta - \cos\theta)^{2} \Big[2a_{1}\bar{m}_{q}\langle \bar{q}q \rangle - \frac{352\pi\alpha_{s}}{81M^{2}}a_{2}\langle \bar{q}q \rangle^{2} \Big] + \frac{1}{3}(\sin\theta + \sqrt{2}\cos\theta)^{2} \\ \times \Big[2a_{1}\bar{m}_{s}\langle \bar{s}s \rangle - \frac{352\pi\alpha_{s}}{81M^{2}}a_{2}\langle \bar{s}s \rangle^{2} \Big],$$
(25)

where

$$F_{3} = 1.9857 - 0.1153n_{f} \approx 1.6398 \text{ for } n_{f} = 3, \quad F_{4} = -6.6368 - 1.2001n_{f} - 0.0052n_{f}^{2} \approx -10.2839 \text{ for } n_{f} = 3,$$

$$F_{4}' = -1.2395\Delta, \quad H_{1} = -\frac{8}{81}\beta_{1}^{2} = -2, \quad H_{2} = \frac{2}{9}\beta_{2} + 4\beta_{2}\left(\frac{\gamma_{1}}{\beta_{1}} - \frac{\gamma_{2}}{\beta_{2}}\right) - \frac{8}{9}\beta_{1}^{2} - 4\beta_{1} \approx 3.6667,$$

$$H_{3a} = 4.2499, \quad H_{3b} = -23.1667, \quad H_{3c} = 29.7624,$$

$$\bar{m}_{q}\langle\bar{q}q\rangle = \frac{1}{2}(\bar{m}_{u}\langle\bar{u}u\rangle + \bar{m}_{d}\langle\bar{d}d\rangle), \quad \langle\bar{q}q\rangle^{2} = \frac{1}{2}(\langle\bar{u}u\rangle^{2} + \langle\bar{d}d\rangle^{2}), \quad a_{1} = 1 + \frac{7}{3}\frac{\alpha_{s}(M)}{\pi} + \left(\frac{85}{6} - \frac{7}{6}\beta_{1}\gamma_{E}\right)\frac{\alpha_{s}^{2}(M)}{\pi^{2}}, \quad (26)$$

with $\beta_1 = (2n_f - 33)/6$, $\beta_2 = (19n_f - 153)/12$, $\gamma_1 = 2$, $\gamma_2 = 101/12 - 5n_f/18$, and $n_f = 3$ being the number of flavors and $\Delta = 1$, and 0 for f_1 (singlet) and f_8 (octet), respectively [32]. In the calculation the coupling constant $\alpha_s(\sqrt{s})$ in Eqs. (24) and (25) can be expanded in powers of $\alpha_s(M)$:

$$\frac{\alpha_{s}(\sqrt{s})}{\pi} = \frac{\alpha_{s}(M)}{\pi} + \frac{1}{2}\beta_{1}\ln\frac{s}{M^{2}}\left(\frac{\alpha_{s}(M)}{\pi}\right)^{2} + \left(\frac{1}{2}\beta_{2}\ln\frac{s}{M^{2}} + \frac{1}{4}\beta_{1}^{2}\ln^{2}\frac{s}{M^{2}}\right)\left(\frac{\alpha_{s}(M)}{\pi}\right)^{3} + \left(\frac{\beta_{3}}{2}\ln\frac{s}{M^{2}} + \frac{5}{8}\beta_{1}\beta_{2}\ln^{2}\frac{s}{M^{2}} + \frac{1}{8}\beta_{1}^{3}\ln^{3}\frac{s}{M^{2}}\right) \times \left(\frac{\alpha_{s}(M)}{\pi}\right)^{4} + \cdots,$$
(27)

where $\beta_3 \simeq -20.1198$. Using the renormalization-group result for the m_s^2 term given in [31], we have expanded the contribution to the order $\mathcal{O}(\alpha_s^2 m_s^2)$ at the subtraction scale $\mu_{\circ}^2 = 2 \text{ GeV}^2$ for which the series has better convergence than at the scale 1 GeV^2 ; however, the convergence of the series has no obvious change if using a higher reference scale. As in the case of flavor-breaking τ decay, the D = 2series converges slowly; nevertheless, we have checked that this term, which intends to make the output m_s to be smaller in the fit, is suppressed due to the fact that the mass sum rules for $f_1(1285)$ and $f_1(1420)$ are obtained by applying the differential operator $M^4 \partial \ln/\partial M^2$ to both sides of (24) and (25), respectively. Nevertheless, the differential operator will instead make the D = 4 term containing $m_s \langle \bar{s}s \rangle$ become much more important than the m_s^2 term in determining the $f_1(1285)-f_1(1420)$ mass difference although they are the same order in magnitude.

In the numerical analysis, we use $\Lambda_{\rm QCD}^{(3)\rm NLO} = 0.360$ GeV, corresponding to $\alpha_s(1 \text{ GeV}) = 0.495$, $\Lambda_{\rm QCD}^{(4)\rm NLO} = 0.313$ GeV, and the following values (at the scale $\mu = 1$ GeV) [9,28,29,33]:

$$\left\langle \frac{\alpha_s}{\pi} G^a_{\mu\nu} G^{a\mu\nu} \right\rangle = (0.009 \pm 0.007) \text{ GeV}^4, \left\langle \bar{m}_q \bar{q} q \right\rangle = -f_{\pi^+}^2 m_{\pi^+}^2 / 4, \left\langle \bar{q} q \right\rangle^2 \simeq (-0.247)^6 \text{ GeV}^6, \left\langle \bar{s} s \right\rangle = (0.30 - 1.3) \langle \bar{q} q \rangle, a_2 = -2.9 - 3.1,$$

$$(28)$$

where the value of $\langle \bar{q}q \rangle^2$ corresponds to $(m_u + m_d) \times$ $(1 \text{ GeV}) \simeq 11 \text{ MeV}$, and we have cast the uncertainty of $\langle \bar{q}q \rangle^2$ to a_2 in the D = 6 term. We do not consider the isospin breaking effect between $\langle \bar{u}u \rangle$ and $\langle \bar{d}d \rangle$ since $\langle dd \rangle / \langle \bar{u}u \rangle - 1 \approx -0.007$ [34] is negligible in the present analysis. The threshold is allowed by $s_0^{f_1} = 2.70 \pm$ 0.15 GeV^2 and determined by the maximum stability of the mass sum rule. For an estimate on the threshold difference, we parametrize in the form $(\sqrt{s_0^{f_1'}} - \sqrt{s_0^{f_1}})/\sqrt{s_0^{f_1}} =$ $\delta \times (m_{f_1'} - m_{f_1})/m_{f_1}$, with $\delta = 1.0 \pm 0.3$. In other words, we assign a 30% uncertainty to the default value. We search for the allowed solutions for strange quark mass and the singlet-octet mixing angle θ under the following constraints: (i) Comparing with the observables, the errors for the mass sum rule results of the $f_1(1285)$ and $f_1(1420)$ in the Borel window 0.9 GeV² $\leq M^2 \leq 1.3$ GeV² are constrained to be less than 3% on average. In this Borel window, the contribution originating from higher resonances (and the continuum), modeled by

$$\frac{1}{\pi} \int_{s_0^{f^{(l)}}}^{\infty} ds e^{-s/M^2} \operatorname{Im}\Pi_1^{(l)\text{OPE}}(s), \tag{29}$$

is about less than 40% and the highest OPE term (with dimension six) at the quark level is no more than 10%. (ii) The deviation between the $f_1(1420)$ - $f_1(1285)$ mass difference sum rule result and the central value of the data [14] is within 1σ error: $|(m_{f'_1} - m_{f_1})_{\text{sum rule}} - 144.6 \text{ MeV}| \leq 1.5 \text{ MeV}$. The detailed results are shown in Table I. We also check that if by further enlarging the uncertainties of $s_0^{f_1}$ and δ , e.g. 25%, the changes of results can be negligible. We obtain the strange quark mass with large uncertainty: $m_s(1 \text{ GeV}) = 106.3 \pm 35.1 \text{ MeV}$ [i.e. $m_s(2 \text{ GeV}) = 89.5 \pm 29.5 \text{ MeV}$] and $\langle \bar{s}s \rangle / \langle \bar{u}u \rangle = 0.56 \pm 0.25$ corresponding to $\theta = (19.4^{+4.5}_{-4.6})^\circ$, where the values and m_s and $\langle \bar{s}s \rangle$ are strongly correlated.

Further accounting for the average of the recent lattice results [15–17]: $m_s(2 \text{ GeV}) = 93.6 \pm 1.0 \text{ MeV}$ and using the θ value that we have obtained as the inputs, we get $\langle \bar{s}s \rangle / \langle \bar{u}u \rangle = 0.41 \pm 0.09$ which is less than 1 and in contrast to the Schwinger-Dyson equation approach in [6] where the ratio was obtained as $(1.0 \pm 0.2)^3$. Our prediction is consistent with the QCD sum rule result of studying the scalar/pseudoscalar two-point function in [35] where the authors obtained $\langle \bar{s}s \rangle / \langle \bar{u}u \rangle = 0.4$ –0.7, depending on the value of the strange quark mass.

TABLE I. The fitting results in the $f_1(1284)-f_1(1420)$ mass difference sum rules. In fit II, we have taken the average of the recent lattice results for m_s , which is rescaled to 1 GeV as the input.

	$m_s(1 \text{ GeV})$	$\langle \bar{s}s \rangle / \langle \bar{u}u \rangle$	$\langle (lpha_s/\pi)G^2 angle$	<i>a</i> ₂
Fit I	106.3 ± 35.1	0.56 ± 0.25	$\begin{array}{c} 0.0106 \pm 0.0042 \\ 0.0108 \pm 0.0037 \end{array}$	0.89 ± 0.62
Fit II	[124.7 ± 1.3]	0.41 ± 0.09		0.95 ± 0.45

IV. SUMMARY

We have adopted two different strategies for determining the mixing angle θ : (i) Using the Gell-Mann-Okubo mass formula and the $K_1(1270)-K_1(1400)$ mixing angle $\theta_{K_1} = (-34 \pm 13)^\circ$ which was extracted from the data for $\mathcal{B}(B \to K_1(1270)\gamma)$, $\mathcal{B}(B \to K_1(1400)\gamma)$, $\mathcal{B}(\tau \to K_1(1270)\nu_{\tau})$, and $\mathcal{B}(\tau \to K_1(1420)\nu_{\tau})$, the result is $\theta = (23^{+17}_{-23})^\circ$. (ii) On the other hand, from the analysis of the ratio of $\mathcal{B}(f_1(1285) \to \phi\gamma)$ and $\mathcal{B}(f_1(1285) \to \rho^0\gamma)$, we have $\bar{\alpha} = \theta_i - \theta = \pm (15.8^{+4.5}_{-4.6})^\circ$, i.e., $\theta = (19.4^{+4.5}_{-4.6})^\circ$ or $(51.1^{+4.5}_{-4.6})^\circ$. Combining these two analyses, we deduce the mixing angle $\theta = (19.4^{+4.5}_{-4.6})^\circ$.

We have estimated the strange quark mass and strange quark condensate from the analysis of the $f_1(1420)$ -

 $f_1(1285)$ mass difference QCD sum rule. We have expanded the OPE series up to dimension six, where the term with dimension zero is up to $\mathcal{O}(\alpha_s^3)$, with dimension = 2 up to $\mathcal{O}(m_s^2 \alpha_s^2)$ and with dimension = 4 terms up to $\mathcal{O}(\alpha_s^2)$. Further using the average of the recent lattice results and the θ value that we have obtained as the inputs, we get $\langle \bar{s}s \rangle / \langle \bar{u}u \rangle = 0.41 \pm 0.09$.

ACKNOWLEDGMENTS

This research was supported in part by the National Center for Theoretical Sciences and the National Science Council of R.O.C. under Grant No. NSC99-2112-M-003-005-MY3.

- [1] J. P. Burke, International Europhysics Conference on High Energy Physics, Manchester, England, 2007 (2007).
- [2] H. Y. Cheng and K. C. Yang, Phys. Rev. D 76, 114020 (2007).
- [3] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B147, 385 (1979).
- [4] M. Jamin and B.O. Lange, Phys. Rev. D 65, 056005 (2002).
- [5] Y. Aoki, Proc. Sci., LAT2009 (2009) 012.
- [6] R. Williams, C. S. Fischer, and M. R. Pennington, Acta Phys. Pol. B 38, 2803 (2007).
- [7] C.A. Dominguez, N.F. Nasrallah, R. Rontsch, and K. Schilcher, J. High Energy Phys. 05 (2008) 020.
- [8] K. G. Chetyrkin and A. Khodjamirian, Eur. Phys. J. C 46, 721 (2006).
- [9] S. Narison, Phys. Rev. D 74, 034013 (2006).
- [10] J. Kambor and K. Maltman, Phys. Rev. D 62, 093023 (2000).
- [11] A. Pich and J. Prades, J. High Energy Phys. 10 (1999) 004.
- [12] P. Colangelo, F. De Fazio, G. Nardulli, and N. Paver, Phys. Lett. B 408, 340 (1997).
- [13] M. Jamin and M. Munz, Z. Phys. C 66, 633 (1995).
- [14] K. Nakamura *et al.* (Particle Data Group), J. Phys. G 37, 075021 (2010).
- [15] C. McNeile, C. T. H. Davies, E. Follana, K. Hornbostel, and G. P. Lepage, Phys. Rev. D 82, 034512 (2010); C. T. H. Davies *et al.*, Phys. Rev. Lett. 104, 132003 (2010).
- [16] Y. Aoki *et al.* (RBC Collaboration and UKQCD Collaboration), Phys. Rev. D 83, 074508 (2011).
- [17] S. Durr et al., arXiv:1011.2711.

- [18] M. Suzuki, Phys. Rev. D 47, 1252 (1993).
- [19] K.C. Yang, J. High Energy Phys. 10 (2005) 108.
- [20] K. C. Yang, Nucl. Phys. **B776**, 187 (2007).
- [21] H. Y. Cheng, Phys. Rev. D 67, 094007 (2003).
- [22] L. Burakovsky and T. Goldman, Phys. Rev. D 56, R1368 (1997).
- [23] H. Y. Cheng and C. K. Chua, Phys. Rev. D 69, 094007 (2004).
- [24] H. Hatanaka and K.C. Yang, Phys. Rev. D 77, 094023 (2008); 78, 059902(E) (2008).
- [25] K.C. Yang, Phys. Rev. D 78, 034018 (2008).
- [26] F.E. Close and A. Kirk, Z. Phys. C 76, 469 (1997).
- [27] M. Beneke and M. Neubert, Nucl. Phys. B675, 333 (2003).
- [28] K. Ackerstaff *et al.* (OPAL Collaboration), Eur. Phys. J. C 7, 571 (1999).
- [29] K. Maltman and T. Yavin, Phys. Rev. D 78, 094020 (2008).
- [30] E. Braaten, S. Narison, and A. Pich, Nucl. Phys. B373, 581 (1992).
- [31] K.G. Chetyrkin and A. Kwiatkowski, Z. Phys. C 59, 525 (1993); arXiv:hep-ph/9805232.
- [32] S.G. Gorishnii, A.L. Kataev, and S.A. Larin, Phys. Lett. B 259, 144 (1991).
- [33] B.L. Ioffe and K.N. Zyablyuk, Eur. Phys. J. C 27, 229 (2003).
- [34] J. Gasser and H. Leutwyler, Phys. Rep. 87, 77 (1982).
- [35] C. A. Dominguez, N. F. Nasrallah, and K. Schilcher, J. High Energy Phys. 02 (2008) 072.