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Two strategies are taken into account to determine the f1ð1420Þ-f1ð1285Þ mixing angle �. (i) First,

using the Gell-Mann-Okubo mass formula together with the K1ð1270Þ-K1ð1400Þ mixing angle �K1
¼

ð�34� 13Þ� extracted from the data for BðB ! K1ð1270Þ�Þ, BðB ! K1ð1400Þ�Þ, Bð� ! K1ð1270Þ��Þ,
and Bð� ! K1ð1420Þ��Þ, gave � ¼ ð23þ17�23Þ�. (ii) Second, from the study of the ratio for f1ð1285Þ ! ��

and f1ð1285Þ ! �0� branching fractions, we have a twofold solution � ¼ ð19:4þ4:5
�4:6Þ� or ð51:1þ4:5

�4:6Þ�.
Combining these two analyses, we thus obtain � ¼ ð19:4þ4:5

�4:6Þ�. We further compute the strange quark

mass and strange quark condensate from the analysis of the f1ð1420Þ-f1ð1285Þ mass difference QCD sum

rule, where the operator-product-expansion series is up to dimension six and to Oð�3
s ; m

2
s�

2
sÞ accuracy.

Using the average of the recent lattice results and the � value that we have obtained as inputs, we get

h�ssi=h �uui ¼ 0:41� 0:09.
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I. INTRODUCTION

The f1ð1285Þ and f1ð1420Þ mesons with quantum num-
ber JPC ¼ 1þþ are the members of the 13P1 states in the
quark model language and are mixtures of the pure octet f8
and singlet f1, where the mixing is characterized by the
mixing angle �. The BABAR results for the upper bounds of
B� ! f1ð1285ÞK�, f1ð1420ÞK� were available recently
[1]. The relative ratio of these twomodes is highly sensitive
to � [2]. On the other hand, in the two-body B decay
involving the K meson in the final state, the amplitude
receives large corrections from the chiral enhancement a6
term which is inversely proportional to the strange quark
mass. The quark mass term mixes left- and right-handed
quarks in the QCD Lagrangian. The spontaneous breaking
of chiral symmetry from SUð3ÞL � SUð3ÞR to SUð3ÞV is
further broken by the quark masses mu;d;s when the baryon

number is added to the three commuting conserved quanti-
ties Qu, Qd, and Qs, respectively, the numbers of q� �q
quarks for q ¼ u, d, and s. The nonzero quark condensate
which signals dynamical symmetry breaking is the impor-
tant parameter in QCD sum rules [3], while the magnitude
of the strange quark mass can result in the flavor symmetry
breaking in the quark condensate. In an earlier study
h �ssi=h �uui � 0:8< 1 was usually taken. However, very re-
cently the Jamin-Lange approach [4] together with the
lattice result for fBs

=fB [5] and also the Schwinger-Dyson

equation approach [6] can give a central value larger than 1.
In this paper, we shall embark on the study of the

f1ð1420Þ and f1ð1285Þ mesons to determine the mixing
angle �, strange quark mass, and strange quark condensate.
In Sec. II, we shall present detailed discussions on the
determination of the mixing angle �. Substituting the
K1ð1270Þ-K1ð1400Þ mixing angle, which was extracted
from the B ! K1� and � ! K1�� data, to the Gell-

Mann-Okubo mass formula, we can derive the value of
�. Alternatively, from the analysis of the decay ratio for
f1ð1285Þ ! �� and f1ð1285Þ ! �0�, we have a more
accurate estimation for �. In Sec. III we shall obtain the
mass difference QCD sum rules for the f1ð1420Þ and
f1ð1285Þ to determine the magnitude of the strange quark
mass. From the sum rule analysis, we obtain the constraint
ranges forms and � as well as for h �ssi. Many attempts have
been made to compute ms using QCD sum rules and finite
energy sum rules [7–13]. The running strange quark mass

in the MS scheme at a scale of � � 2 GeV is ms ¼
101þ29

�21 MeV given in the particle data group (PDG) aver-

age [14]. More precise lattice estimates have been recently
obtained as msð2 GeVÞ ¼ 92:2ð1:3Þ MeV in [15],
msð2 GeVÞ ¼ 96:2ð2:7Þ MeV in [16], and msð2 GeVÞ ¼
95:1ð1:1Þð1:5Þ MeV in [17]. These lattice results agree with
strange scalar/pseudoscalar sum rule results which are
ms ’ 95ð15Þ MeV. In the present study, we study the ms

from a new frame, the f1ð1420Þ-f1ð1285Þ mass difference
sum rule, which may result in larger uncertainties due to
the input parameters. Nevertheless, it can be a cross-check
compared with the previous studies. Further using the very
recent lattice result for msð2 GeVÞ ¼ 93:6� 1:0 MeV as
the input, we obtain an estimate for the strange quark
condensate.

II. SINGLET-OCTET MIXING ANGLE �
OF THE 1þþ NONET

A. Definition

In the quark model, a1ð1260Þ, f1ð1285Þ, f1ð1420Þ, and
K1A are classified in 1þþ multiplets, which, in terms of
spectroscopic notation n2Sþ1LJ, are 1

3P1 p-wave mesons.

Analogous to 	 and 	0, because of SUð3Þ breaking effects,
f1ð1285Þ and f1ð1420Þ are the mixing states of the pure
octet f8 and singlet f1,*kcyang@cycu.edu.tw
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jf1ð1285Þi ¼ jf1i cos�þ jf8i sin�;
jf1ð1420Þi ¼ �jf1i sin�þ jf8i cos�:

(1)

In the present paper, we adopt

f1 ¼ 1ffiffiffi
3

p ð �uuþ �ddþ �ssÞ; (2)

f8 ¼ 1ffiffiffi
6

p ð �uuþ �dd� 2�ssÞ; (3)

where there is a relative sign difference between the �ss
contents of f1 and f8 in our convention. From the Gell-
Mann-Okubo mass formula, the mixing angle � satisfies

cos 2� ¼ 3m2
f1ð1285Þ � ð4m2

K1A
�m2

a1Þ
3ðm2

f1ð1285Þ �m2
f1ð1420ÞÞ

; (4)

where

m2
K1A

¼ hK1AjH jK1Ai
¼ m2

K1ð1400Þcos
2�K1

þm2
K1ð1270Þsin

2�K1
; (5)

with H being the Hamiltonian. Here �K1
is the

K1ð1400Þ-K1ð1270Þ mixing angle. The sign of the mixing
angle � can be determined from the mass relation [14]

tan� ¼ 4m2
K1A

�m2
a1 � 3m2

f1ð1420Þ
3m2

18

; (6)

where m2
18 ¼ hf1jH jf8i ’ ðm2

a1 �m2
K1A

Þ2 ffiffiffi
2

p
=3< 0, we

find � > 0. Because of the strange and nonstrange light
quark mass differences, K1A is not the mass eigenstate and
it can mix with K1B, which is one of the members in the
11P1 multiplets. From the convention in [18] (see also
discussions in [19,20]), we write the two physical states
K1ð1270Þ and K1ð1400Þ in the following relations:

jK1ð1270Þi ¼ jK1Ai sin�K þ jK1Bi cos�K;
jK1ð1400Þi ¼ jK1Ai cos�K � jK1Bi sin�K:

(7)

The mixing angle was found to be j�K1
j � 33�, 57� in [18]

and� �37�,�58� in [21]. A similar range 35� & j�K1
j &

55� was obtained in [22]. The sign ambiguity for �K1
is due

to the fact that one can add arbitrary phases to j �K1Ai and
j �K1Bi. This sign ambiguity can be removed by fixing the
signs of decay constants fK1A

and f?K1B
, which are defined

by

h0j �c���5sj �K1AðP; 
Þi ¼ �ifK1A
mK1A

�ð
Þ� ; (8)

h0j �c���sj �K1BðP; 
Þi ¼ if?K1B
�����

�
ð
ÞP

; (9)

where �0123 ¼ �1 and c � u or d. Following the con-
vention in [20], we adopt fK1A

> 0, f?K1B
> 0, so that �K1

should be negative to account for the observable BðB !
K1ð1270Þ�Þ � BðB ! K1ð1400Þ�Þ [23,24]. Furthermore,
from the data of � ! K1ð1270Þ�� and K1ð1400Þ�� decays
together with the sum rule results for the K1A and K1B

decay constants, the mixing angle �K1
¼ ð�34� 13Þ� was

obtained in [24]. Substituting this value into (4), we then
obtain �quad ¼ ð23þ17�23Þ� [25], i.e., �quad ¼ 0� � 40�.1

B. The determination of �

Experimentally, since K	 �K and K �K� are the dominant
modes of f1ð1420Þ, whereas f0ð1285Þ decays mainly to the
4� states, this suggests that the quark content is primarily

s�s for f1ð1420Þ and n �n ¼ ðu �uþ d �dÞ= ffiffiffi
2

p
for f1ð1285Þ.

Therefore, the mixing relations can be rewritten to exhibit
the n �n and s�s components which decouple for the ideal

mixing angle �i ¼ tan�1ð1= ffiffiffi
2

p Þ ’ 35:3�. Let �� ¼ �i � �,
we rewrite these two states in the flavor basis,2

f1ð1285Þ ¼ 1ffiffiffi
2

p ð �uuþ �ddÞ cos ��þ �ss sin ��;

f1ð1420Þ ¼ 1ffiffiffi
2

p ð �uuþ �ddÞ sin ��� �ss cos ��:

(10)

Since the f1ð1285Þ can decay into ��, we know that
f1ð1285Þ has the s�s content and � deviates from its ideal
mixing value. To have a more precise estimate for �, we
study the ratio of f1ð1285Þ ! �� and f1ð1285Þ ! �0�
branching fractions. Because the electromagnetic (EM)
interaction Lagrangian is given by

LI ¼ �A
�
EMðeu �u��uþ ed �d��dþ es �s��sÞ

¼ �A�
EM

�
ðeu þ edÞ

�u��uþ �d��d

2

þ ðeu � edÞ
�u��u� �d��d

2
þ es �s��s

�
; (11)

with eu ¼ 2=3e, ed ¼ �1=3e, and es ¼ �1=3e being the
electric charges of u, d, and s quarks, respectively, we
obtain

1Replacing the meson mass squared m2 by m throughout (4),
we obtain �lin ¼ ð23þ17�23Þ�. The difference is negligible. Our
result can be compared with that using �K1

¼ �57� into (4);
one has �quad ¼ 52�.

2In PDG [14], the mixing angle is defined as � ¼ �� �i þ
�=2. Comparing it with our definition, we have � ¼ �=2� ��.
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Bðf1ð1285Þ ! ��Þ
Bðf1ð1285Þ ! �0�Þ ¼

� h�jes �s��sjf1ð1285Þi
h�jðeu � edÞð �u��u� �d��dÞ=2jf1ð1285Þi

�
2 ¼

�m2
f1
�m2

�

m2
f1
�m2

�

�
3

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
phase factor

¼
� �e=3

2e=3þ e=3

�
2

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
EM factor

� h�j�s��sjf1ð1285Þi
h�jð �u��u� �d��dÞ=2jf1ð1285Þi

�
2
�m2

f1
�m2

�

m2
f1
�m2

�

�
3

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
phase factor

� 4

9

�
m�f�
m�f�

�
2
tan2 ��

�m2
f1
�m2

�

m2
f1
�m2

�

�
3
; (12)

where f1 � f1ð1285Þ, and f� and f� are the decay con-
stants of � and �, respectively. Here we have taken the
single-pole approximation3:

h�j�s��sjf1ð1285Þi
h�jð �u��u� �d��dÞ=2jf1ð1285Þi

� m�f�gf1��

m�f�gf1��=
ffiffiffi
2

p sin ��

cos ��=
ffiffiffi
2

p �m�f�
m�f�

�2tan ��: (13)

Using f� ¼ 209� 1 MeV, f� ¼ 221� 3 MeV [27], and
the current dataBðf1ð1285Þ ! ��Þ ¼ ð7:4� 2:6Þ � 10�4

and Bðf1ð1285Þ ! �0�Þ ¼ ð5:5� 1:3Þ% [14] as inputs,
we obtain �� ¼ �ð15:8þ4:5

�4:6Þ�, i.e., the twofold solution � ¼
ð19:4þ4:5

�4:6Þ� or ð51:1þ4:5
�4:6Þ�. Combining with the analysis

� ¼ ð0–40Þ� given in Sec. II A, we thus find that � ¼
ð19:4þ4:5

�4:6Þ� is much preferred and can explain experimental
observables well.

III. MASS OF THE STRANGE QUARK

We proceed to evaluate the strange quark mass from the
mass difference sum rules of the f1ð1285Þ and f1ð1420Þ
mesons. We consider the following two-point correlation
functions:

���ðq2Þ ¼ i
Z

d4xeiqxh0jTðj�ðxÞjy�ð0ÞÞj0i
¼ ��1ðq2Þg�� þ�2ðq2Þq�q�; (14)

�0
��ðq2Þ ¼ i

Z
d4xeiqxh0jTðj0�ðxÞj0y� ð0ÞÞj0i

¼ ��0
1ðq2Þg�� þ�0

2ðq2Þq�q�: (15)

The interpolating currents satisfying the relations,

h0jjð0Þ� ð0Þjfð0Þ1 ðP; 
Þi ¼ �if
fð0Þ
1
m

fð0Þ
1
�ð
Þ� ; (16)

are

j� ¼ cos�jð1Þ� þ sin�jð8Þ� ; (17)

j0� ¼ � sin�jð1Þ� þ cos�jð8Þ� ; (18)

where

jð1Þ� ¼ 1ffiffiffi
3

p ð �u���5uþ �d���5dþ �s���5sÞ; (19)

jð8Þ� ¼ 1ffiffiffi
6

p ð �u���5uþ �d���5d� 2�s���5sÞ; (20)

and we have used the shorthand notations for f1 �
f1ð1285Þ and f01 � f1ð1420Þ. In the massless quark limit,
we have �1 ¼ q2�2 and �0

1 ¼ q2�0
2 if one neglects the

axial-vector anomaly.4 Here we focus on �ð0Þ
1 since it

receives contributions only from axial-vector (3P1) mesons,

whereas �ð0Þ
2 contains effects from pseudoscalar mesons.

The lowest-lying fð0Þ1 meson contribution can be approxi-

mated via the dispersion relation as

m2

fð0Þ
1

f2
fð0Þ
1

m2

fð0Þ
1

� q2
¼ 1

�

Z sf
ð0Þ

0

0
ds

Im�ð0ÞOPE
1 ðsÞ

s� q2
; (21)

where �ð0ÞOPE
1 is the QCD operator-product-expansion

(OPE) result of �ð0Þ
1 at the quark-gluon level [20], and s

fð0Þ
1

0

is the threshold of the higher resonant states. Note that the
subtraction terms on the right-hand side of (21), which are
polynomials in q2, are neglected since they have no con-
tributions after performing the Borel transformation. The
four-quark condensates are expressed as

h0j �q�i

aq �q�i


aqj0i ¼ �a2
1

16N2
c

Trð�i�iÞ

� Trð
a
aÞh �qqi2; (22)

3The following approximation was used in [26]:

h�j�s��sjf1ð1285Þi
h�jð �u��u� �d��dÞ=2jf1ð1285Þi � 2 tan ��:

4Considering the anomaly, the singlet axial-vector current is
satisfied with

@�jð1Þ� ¼ 1ffiffiffi
3

p ðmu �uuþmd
�ddþms �ssÞ þ 3�s

4�
G ~G:
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where a2 ¼ 1 corresponds to the vacuum saturation ap-
proximation. In the present work, we have � ¼ �� and

���5, for which we allow the variation a2 ¼ �2:9–3:1

[9,28,29]. For �ð0ÞOPE
1 , we take into account the terms

with dimension 
 6, where the term with dimension ¼ 0
(D ¼ 0) is up toOð�3

sÞ, withD ¼ 2 (which is proportional
to m2

s) up to Oð�2
sÞ and with D ¼ 4 up to Oð�2

sÞ. Note
that such radiative corrections for terms can read from
[30–32]. We do not include the radiative correction to the
D ¼ 6 terms since all the uncertainties can be lumped into
a2. Note that such radiative corrections for terms with

dimensions ¼ 0 and 4 are the same as the vector meson
case and can read from [30,31].
Further applying the Borel (inverse-Laplace) transfor-

mation,

B ½fðq2Þ� ¼ lim
n!1

�q2!1
�q2=n2¼M2fixed

1

n!
ð�q2Þnþ1

�
d

dq2

�
n
fðq2Þ; (23)

to both sides of (21) to improve the convergence of the
OPE series and further suppress the contributions from
higher resonances, the sum rules thus read

f2f1m
2
f1
e
�m2

f1
=M2 ¼

Z s
f1
0

0

sdse�s=M2

4�2

�
1þ �sð

ffiffiffi
s

p Þ
�

þ F3

�2
sð

ffiffiffi
s

p Þ
�2

þ ðF4 þ F0
4cos

2�Þ�
3
sð

ffiffiffi
s

p Þ
�3

�
� ðcos�� ffiffiffi

2
p

sin�Þ2½ �msð��Þ�2

�
Z s

f1
0

0
ds

1

2�2
e�s=M2

�
1þ

�
H1 ln

s

�2�
þH2

�
�sð��Þ

�
þ

�
H3aln

2 s

�2�
þH3b ln

s

�2�
þH3c �H3a�

2

3

�

�
�
�sð��Þ

�

�
2
�
� 1

12

�
1� 11

18

�sðMÞ
�

��
�s

�
G2

�
�

�
4

27

�sðMÞ
�

þ
�
� 257

486
þ 4

3
�ð3Þ � 2

27
1�E

�
�2
sðMÞ
�2

�

� X
qi�u;d;s

h �mi �qiqii þ 1

3
ð ffiffiffi

2
p

cos�þ sin�Þ2
�
2a1 �mqh �qqi � 352��s

81M2
a2h �qqi2

�
þ 1

3
ðcos�� ffiffiffi

2
p

sin�Þ2

�
�
2a1 �msh�ssi � 352��s

81M2
a2h �ssi2

�
; (24)

f2f0
1
m2

f0
1
e
�m2

f0
1

=M2

¼
Z s

f0
1

0

0

sdse�s=M2

4�2

�
1þ �sð

ffiffiffi
s

p Þ
�

þ F3

�2
sð

ffiffiffi
s

p Þ
�2

þ ðF4 þ F0
4sin

2�Þ�
3
sð

ffiffiffi
s

p Þ
�3

�
þ ðsin�þ ffiffiffi

2
p

cos�Þ2½ �msð��Þ�2

�
Z s

f0
1

0

0
ds

1

2�2
e�s=M2

�
1þ

�
H1 ln

s

�2�
þH2

�
�sð��Þ

�
þ

�
H3aln

2 s

�2�
þH3b ln

s

�2�
þH3c �H3a�

2

3

�

�
�
�sð��Þ

�

�
2
�
� 1

12

�
1� 11

18

�sðMÞ
�

��
�s

�
G2

�
�

�
4

27

�sðMÞ
�

þ
�
� 257

486
þ 4

3
�ð3Þ � 2

27
1�E

�
�2
sðMÞ
�2

�

� X
qi�u;d;s

h �mi �qiqii þ 1

3
ð ffiffiffi

2
p

sin�� cos�Þ2
�
2a1 �mqh �qqi � 352��s

81M2
a2h �qqi2

�
þ 1

3
ðsin�þ ffiffiffi

2
p

cos�Þ2

�
�
2a1 �msh�ssi � 352��s

81M2
a2h �ssi2

�
; (25)

where

F3¼1:9857�0:1153nf ’1:6398 fornf¼3; F4¼�6:6368�1:2001nf�0:0052n2f ’�10:2839 for nf¼3;

F0
4¼�1:2395�; H1¼� 8

81
2

1¼�2; H2¼2

9
2þ42

�
�1

1

��2

2

�
�8

9
2

1�41’3:6667;

H3a¼4:2499; H3b¼�23:1667; H3c¼29:7624;

�mqh �qqi�1

2
ð �muh �uuiþ �mdh �ddiÞ; h �qqi2�1

2
ðh �uui2þh �ddi2Þ; a1¼1þ7

3

�sðMÞ
�

þ
�
85

6
�7

6
1�E

�
�2
sðMÞ
�2

; (26)
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with 1 ¼ ð2nf � 33Þ=6, 2 ¼ ð19nf � 153Þ=12, �1 ¼ 2,
�2 ¼ 101=12� 5nf=18, and nf ¼ 3 being the number of
flavors and � ¼ 1, and 0 for f1 (singlet) and f8 (octet),
respectively [32]. In the calculation the coupling constant
�sð

ffiffiffi
s

p Þ in Eqs. (24) and (25) can be expanded in powers of
�sðMÞ:
�sð

ffiffiffi
s

p Þ
�

¼ �sðMÞ
�

þ 1

2
1 ln

s

M2

�
�sðMÞ
�

�
2

þ
�
1

2
2 ln

s

M2
þ 1

4
2

1ln
2 s

M2

��
�sðMÞ
�

�
3

þ
�
3

2
ln

s

M2
þ 5

8
12ln

2 s

M2
þ 1

8
3

1ln
3 s

M2

�

�
�
�sðMÞ
�

�
4 þ � � � ; (27)

where 3 ’ �20:1198. Using the renormalization-group
result for the m2

s term given in [31], we have expanded the
contribution to the order Oð�2

sm
2
sÞ at the subtraction scale

�2� ¼ 2 GeV2 for which the series has better convergence
than at the scale 1 GeV2; however, the convergence of the
series has no obvious change if using a higher reference
scale. As in the case of flavor-breaking � decay, the D ¼ 2
series converges slowly; nevertheless, we have checked
that this term, which intends to make the output ms to be
smaller in the fit, is suppressed due to the fact that the mass
sum rules for f1ð1285Þ and f1ð1420Þ are obtained by
applying the differential operator M4@ ln=@M2 to both
sides of (24) and (25), respectively. Nevertheless, the dif-
ferential operator will instead make the D ¼ 4 term con-
taining msh �ssi become much more important than the m2

s

term in determining the f1ð1285Þ-f1ð1420Þ mass differ-
ence although they are the same order in magnitude.

In the numerical analysis, we use�ð3ÞNLO
QCD ¼ 0:360 GeV,

corresponding to �sð1 GeVÞ ¼ 0:495, �ð4ÞNLO
QCD ¼

0:313 GeV, and the following values (at the scale � ¼
1 GeV) [9,28,29,33]:

�
�s

�
Ga

��G
a��

�
¼ ð0:009� 0:007Þ GeV4;

h �mq �qqi ¼ �f2
�þm2

�þ=4;

h �qqi2 ’ ð�0:247Þ6 GeV6;

h�ssi ¼ ð0:30–1:3Þh �qqi;
a2 ¼ �2:9–3:1;

(28)

where the value of h �qqi2 corresponds to ðmu þmdÞ�
ð1 GeVÞ ’ 11 MeV, and we have cast the uncertainty of
h �qqi2 to a2 in the D ¼ 6 term. We do not consider the
isospin breaking effect between h �uui and h �ddi since
h �ddi=h �uui � 1 � �0:007 [34] is negligible in the present

analysis. The threshold is allowed by sf10 ¼ 2:70�
0:15 GeV2 and determined by the maximum stability of
the mass sum rule. For an estimate on the threshold differ-

ence, we parametrize in the form ð
ffiffiffiffiffiffi
s
f0
1

0

q
�

ffiffiffiffiffiffi
sf10

q
Þ=

ffiffiffiffiffiffi
sf10

q
¼

�� ðmf0
1
�mf1Þ=mf1 , with � ¼ 1:0� 0:3. In other words,

we assign a 30% uncertainty to the default value. We
search for the allowed solutions for strange quark mass
and the singlet-octet mixing angle � under the following
constraints: (i) Comparing with the observables, the errors
for the mass sum rule results of the f1ð1285Þ and f1ð1420Þ
in the Borel window 0:9 GeV2 
 M2 
 1:3 GeV2 are con-
strained to be less than 3% on average. In this Borel
window, the contribution originating from higher reso-
nances (and the continuum), modeled by

1

�

Z 1

sf
ð0Þ

0

dse�s=M2
Im�ð0ÞOPE

1 ðsÞ; (29)

is about less than 40% and the highest OPE term (with
dimension six) at the quark level is no more than 10%.
(ii) The deviation between the f1ð1420Þ-f1ð1285Þ mass
difference sum rule result and the central value of the
data [14] is within 1� error: jðmf0

1
�mf1Þsum rule �

144:6 MeVj 
 1:5 MeV. The detailed results are shown
in Table I. We also check that if by further enlarging the

uncertainties of sf10 and �, e.g. 25%, the changes of results

can be negligible. We obtain the strange quark mass with
large uncertainty: msð1 GeVÞ ¼ 106:3� 35:1 MeV
[i.e. msð2 GeVÞ ¼ 89:5� 29:5 MeV] and h �ssi=h �uui ¼
0:56� 0:25 corresponding to � ¼ ð19:4þ4:5

�4:6Þ�, where the

values and ms and h�ssi are strongly correlated.
Further accounting for the average of the recent lattice

results [15–17]: msð2 GeVÞ ¼ 93:6� 1:0 MeV and using
the � value that we have obtained as the inputs, we get
h�ssi=h �uui ¼ 0:41� 0:09 which is less than 1 and in
contrast to the Schwinger-Dyson equation approach in
[6] where the ratio was obtained as ð1:0� 0:2Þ3. Our
prediction is consistent with the QCD sum rule result of
studying the scalar/pseudoscalar two-point function in [35]
where the authors obtained h �ssi=h �uui ¼ 0:4–0:7, depend-
ing on the value of the strange quark mass.

TABLE I. The fitting results in the f1ð1284Þ-f1ð1420Þ mass difference sum rules. In fit II, we
have taken the average of the recent lattice results forms, which is rescaled to 1 GeVas the input.

msð1 GeVÞ h�ssi=h �uui hð�s=�ÞG2i a2

Fit I 106:3� 35:1 0:56� 0:25 0:0106� 0:0042 0:89� 0:62
Fit II [124:7� 1:3] 0:41� 0:09 0:0108� 0:0037 0:95� 0:45
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IV. SUMMARY

We have adopted two different strategies for determin-
ing the mixing angle �: (i) Using the Gell-Mann-Okubo
mass formula and the K1ð1270Þ-K1ð1400Þ mixing
angle �K1

¼ ð�34� 13Þ� which was extracted from the

data for BðB ! K1ð1270Þ�Þ, BðB ! K1ð1400Þ�Þ, Bð� !
K1ð1270Þ��Þ, and Bð� ! K1ð1420Þ��Þ, the result is � ¼
ð23þ17�23Þ�. (ii) On the other hand, from the analysis of the

ratio of Bðf1ð1285Þ ! ��Þ and Bðf1ð1285Þ ! �0�Þ, we
have �� ¼ �i � � ¼ �ð15:8þ4:5

�4:6Þ�, i.e., � ¼ ð19:4þ4:5
�4:6Þ� or

ð51:1þ4:5
�4:6Þ�. Combining these two analyses, we deduce the

mixing angle � ¼ ð19:4þ4:5
�4:6Þ�.

We have estimated the strange quark mass and strange
quark condensate from the analysis of the f1ð1420Þ-

f1ð1285Þ mass difference QCD sum rule. We have ex-
panded the OPE series up to dimension six, where the
term with dimension zero is up to Oð�3

sÞ, with
dimension ¼ 2 up to Oðm2

s�
2
sÞ and with dimension ¼ 4

terms up to Oð�2
sÞ. Further using the average of the recent

lattice results and the � value that we have obtained as the
inputs, we get h �ssi=h �uui ¼ 0:41� 0:09.
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