
Antenna splitting functions for massive particles

Andrew J. Larkoski and Michael E. Peskin

SLAC, Stanford University, Menlo Park, California 94025 USA
(Received 10 June 2011; published 19 August 2011)

An antenna shower is a parton shower in which the basic move is a color-coherent 2 ! 3 parton

splitting process. In this paper, we give compact forms for the spin-dependent antenna splitting functions

involving massive partons of spin 0 and spin 1=2.
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I. INTRODUCTION

The modeling of physics at high-energy colliders relies
heavily on our understanding of QCD. Quarks and glu-
ons—collectively, partons—that are produced in high-
energy reactions are observed as jets of hadrons. The
structure of each jet is determined by the pattern of radia-
tion of additional partons from the original one produced in
the central hard scattering reaction. For this reason, much
attention has been given the past few years to the develop-
ment of methods for creating parton showers, systems of
partons created with the distributions predicted by QCD.

The traditional approach to the generation of parton
showers is based on splitting off partons through a 1 ! 2
branching process. This philosophy is incorporated in the
widely used event generator programs PYTHIA [1] and
HERWIG [2]. The construct of building a shower from

1 ! 2 branching, often called a ‘‘dipole shower,’’ omits
an important aspect of the physics. The longitudinal mo-
mentum distribution in the 1 ! 2 splitting is given by the
Altarelli-Parisi splitting functions [3]. In QCD, partons are
emitted coherently from the two legs of a color dipole. The
emission amplitude is then enhanced inside the dipole and,
more importantly, cancels outside the dipole. In the 1980s,
Marchesini and Webber argued that this effect could be
incorporated into dipole showers by imposing angular
ordering of emissions [4]. Thus, HERWIG is built around
an angular-ordered parton shower, and PYTHIA, though it
uses a different ordering scheme to choose its branchings,
vetoes emissions that are out of angular ordering.

Alternatively, one might build up a parton shower di-
rectly from the color dipoles, using the 2 ! 3 process of
emission of a parton by a dipole as the basic branching
process. This construct is called an ‘‘antenna shower.’’ The
scheme was realized in the program ARIADNE, by
Andersson, Gustafson, Lönnblad, and Pettersson [5] and,
more recently, by the program VINCIA, by Giele, Kosower,
and Skands [6]. The approach is of interest both in creating
new parton shower codes for the purpose of matrix
element-parton shower matching and because of its prom-
ise to yield a more accurate treatment of color dynamics in
parton showers.

Recently, there has been much interest in the tagging of
boosted heavy particles such as the top and Higgs observed

as exotic jets [7]. Since tagging methods rely heavily on
color flow, it is interesting to have a variety of approaches
to the simulation of color flow in parton showers in order to
test the robustness of these algorithms.
We have been engaged in providing a well-defined

foundation for antenna showers, giving explicit calcula-
tions of the splitting functions that generate these showers
and generalizing previous work to spin-dependent formu-
las. In a previous paper, we presented the complete set of
spin-dependent antenna splitting functions needed to de-
scribe quark and gluon parton showers [8]. In this paper,
we continue our study of this approach by presenting the
spin-dependent antenna splitting functions for showers
with massive particles. In constructing a shower for mass-
less particles, spin dependence is a convenience, especially
for matching with full QCD amplitudes. For massive par-
ticles, it is more important to preserve spin information,
because the decays of heavy particles such as the top quark
are spin-dependent and so the experimental acceptance for
the heavy particles varies significantly with their longitu-
dinal polarization.
The formalism presented here has the same strengths

and weaknesses as our previous work. We will calculate in
the kinematics of final-state showers, using effective op-
erators of definite spin to represent the 2-particle color
dipole state before the splitting. We will work in the limit
of a large number of colors in QCD for which the concept
of a color dipole is strictly defined. Within this approxi-
mation, we will derive formulas for splitting functions with
any ratio m=Q between the mass of the particle and the
mass of the 2-particle system. These formulas will neces-
sarily be less simple than those found in [8] for the mass-
less case. We will see, though, that we can make use of
spinor product formalism [9] to write these splitting func-
tions relatively compactly. The simplicity of these expres-
sions is connected to their relation to the maximally
helicity violating amplitudes of QCD. This point was
originally made for the massless case in [10] and is dis-
cussed in some detail in [8].
The formalism of QCD antennas was originally devel-

oped as a tool for the subtraction of infrared divergences
in higher-order QCD calculations. This approach to
QCD calculation was pioneered by Kosower [11,12].
Gehrmann–De Ridder, Gehrmann, Glover, and their
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students have developed this approach into a sophisticated
method applicable to next-to-leading order (NLO) and
even next-to-next-to-leading order computations [13,14].
Using this formalism, Gehrmann–De Ridder, Gehrmann,
and Glover have proposed forms for the spin-summed
antenna splitting functions of massless quarks and gluons
[15,16]. Our previous paper reviews this latter work and
compares the results from our method to theirs. There is no
universal form for antenna splitting functions. The behav-
ior of the splitting functions is prescribed in the soft and
collinear limits but, away from those limits, different ex-
pressions are possible, depending on the framework used in
the derivation. The systematic differences between the
different proposals are explored in [8].

Following the methods of [15,16], splitting functions for
massive, spin-summed antennas were constructed in
[17–19]. Again, our expressions agree with these in having
the correct soft and quasicollinear behavior but differ away
from these limits. The addition of mass greatly complicates
both the expressions for the splitting functions and the
precise specification of the boundaries of phase space.
Because of this, we do not present a detailed comparison
to other massive splitting functions here.

The outline of this paper is as follows: In Sec. II, we will
analyze the case of gluon radiation from an antenna com-
posed of a massive spin 1=2 fermion (Q) and a massless
spin 1=2 fermion (q) in a configuration of zero helicity. All
of the new complications that arise when we deal with
massive particles can be illustrated in this context. We will
write expressions for the splitting functions in terms of
spinor products of lightlike vectors associated with the
massive vectors of the particles before and after the split-
ting. In Sec. III, we will discuss the kinematics of these
massive splittings and the evaluation of the spinor product
expressions.

With this introduction, we can go systematically through
the various cases of antennas composed of massive and
massless particles. In Secs. IV and V we will analyze in
turn the cases of antennas with spin 0 and spin 1=2massive
particles recoiling against quarks and gluons in which the
antenna emits another quark or gluon. In Sec. VI, we
discuss the analysis of the general case of a pair of massive
particles, spin 0 or spin 1=2, radiating gluons. In Sec. VII,
we discuss antennas that create a pair of massive particles.
Section VIII gives some conclusions. We collect the com-
plete set of massive antenna splitting functions derived in
this paper in Appendix A.

II. THE SPIN 0 FERMION-QUARK ANTENNA

The simplest case of a splitting function with massive
particles arises in the system of a massive and a massless
fermion created by a spin 0 operator. In this section, we
will work out the spin-dependent splitting functions for this
case following the prescriptions in [8]. Wewill then discuss
the interpretation of these formulas and their comparison to

the standard Altarelli-Parisi splitting functions for a mas-
sive quark [20].
In [8], each case of a spin-dependent splitting is asso-

ciated with a gauge-invariant operator that creates the
antenna. For this case, the required operator is

O ¼ �QLqR; (1)

where q is an ordinary quark whose mass can be ignored
andQ is a massive quark. This operator creates a 2-particle
state

QL �qL; (2)

with total spin 0 about the production axis. Antennas with
overall opposite helicity or with antiquarks have the same
splitting functions, by the P and C invariance of QCD.
In [8], we wrote the basic formula for final-state antenna

splitting of massless particles in the following way: Notate
the splitting as AB ! acb, with

ðAþ BÞ2 ¼ sAB ¼ Q2: (3)

Throughout this paper, for any 4-vectors i, j, we will define

sij ¼ ðiþ jÞ2 ¼ m2
i þ 2i � jþm2

j : (4)

Let za, zb, zc be the momentum fractions of a, b, and c
relative to their maximum value,

za ¼ 2Q � q
Q2

; etc za þ zb þ zc ¼ 2: (5)

Then the probability of a splitting is given by

Z
d Prob ¼ Nc

�s

4�

�
Q

2K

�Z
dzadzbSðza; zb; zcÞ; (6)

where Nc ¼ 3 is the number of colors in QCD and K is the
momentum of the partons in the center of mass system of
the original 2-particle antenna. In the massless case,
Q=2K ¼ 1. The distribution S is the splitting function. In
[8], we computed this function as the ratio of 3- to 2-body
amplitudes of an appropriate local operator,

S ¼ Q2

��������
MðO ! acbÞ
MðO ! ABÞ

��������
2

: (7)

This formula is still correct for the massive particle anten-
nas discussed in this paper. We will discuss the kinematics
of these antennas in more detail in Sec. III.
In the limit in which c becomes collinear with a or b, the

antenna splitting functions reduce to the Altarelli-Parisi
functions PðzÞ that describe 1 ! 2 splittings. For this limit,
the formulas are not as simple in the massive case as they
are in the all-massless case. We will present the explicit
formulas and check them for the spin 0 antenna later in this
section.
To compute the amplitudes in (7), we use the spinor

product formalism for massive particles of Schwinn and
Weinzierl [21]. For a massless particle, the states of
definite helicity are well-defined and Lorentz invariant.
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For a massive particle, the spin states depend on the frame
chosen to evaluate them. In the Schwinn-Weinzierl formal-
ism, a massless reference vector q is used to define that
frame. The spinors for an outgoing massive fermion of
mass m are written

�u LðpÞ ¼ ½qðpþmÞ
½qp[� �uRðpÞ ¼ hqðpþmÞ

hqp[i ; (8)

where the flatted vector p[ is defined by

p[ ¼ p� m2

2q � pq: (9)

A particularly useful choice for q is the lightlike vector in
the opposite direction from p. Rotating coordinates so that

p ¼ ðE; 0; 0; pÞ with E2 ¼ p2 þm2; (10)

let

p] ¼ 1

2
ðEþ pÞð1; 0; 0;�1Þ: (11)

Then if we set q ¼ p], the flatted vector is

p[ ¼ 1

2
ðEþ pÞð1; 0; 0; 1Þ: (12)

This is very convenient. With this choice of q, the spinors
defined in (8) are just the usual spinors of definite helicity.
Using the basis of Dirac matrices where �5 is diagonal, it is
easy to see that (8) reduces to

�uL ¼
ffiffiffiffiffiffiffiffi
E�p
2

q ffiffiffiffiffiffiffiffi
Eþp
2

q� �
� 0 1
� �

�uR ¼
ffiffiffiffiffiffiffiffi
Eþp
2

q ffiffiffiffiffiffiffiffi
E�p
2

q� �
� 1 0
� �

: (13)

Using these conventions, we can easily compute the
2-particle matrix elements of the operator (1). Denote the
momenta of the initial-state heavy quark and light anti-
quark as A and B, respectively. Then

MðQL �qLÞ¼ ½qABi
½qA[� ¼hA[Bi MðQR �qLÞ¼mhqBi

hqA[i : (14)

The helicity of the �qmust be L, but the heavy quark created
by (1) could be in either spin state. However, with the usual
definition of helicity, the production ofQR �qL from a spin 0
operator would be forbidden by angular momentum.
Indeed, when we set q ¼ A],

M ðQR �qLÞ � hA]Bi ¼ 0; (15)

because A] is a lightlike vector parallel to B. The only
nonzero matrix element is then

M ðQL �qLÞ ¼ hA]Bi; (16)

this gives the denominator in (6). It is convenient that

jhA[Bij2 ¼ Q2 �m2 ¼ 2QK; (17)

with K as in (6).

It is straightforward to work out the numerator of (6) for
the four possible spin states of the 3-particle systemQgqL.
As in [8], we label the three final-state momenta as
ða; c; bÞ, with the emitted particle as c. The results, using
a general reference vector q in (8), are

MðQLgL �qLÞ ¼ � 1

½qc�
	hca[i½qQbi
sac �m2

þ ½qQa[i
½bc�




MðQLgR �qLÞ ¼ � ha[bi½cQbi
hbciðsac �m2Þ

MðQRgL �qLÞ ¼ � m

½a[c�hqa[i
	hcqi½a[Qbi
sac �m2

þ ½a[Qqi
½bc�




MðQRgR �qLÞ ¼ � mhqbi½cQbi
hbcihqa[iðsac �m2Þ : (18)

We have omitted the overall factor of ðgTaÞ. When we put
q ¼ a], we can recognize the simplification

½a]Qa[i ¼ ½a[Qa]i ¼ 0: (19)

This follows from the fact that the 4-vector Q is a linear
combination of the two lightlike vectors a[ and a]. Now
square these expressions and combine with (17) to evaluate
(7). This gives

SðQLgL �qLÞ ¼ Q

2K

��������
ha[ci½a]Qbi
½a]c�½caci

��������
2

SðQLgR �qLÞ ¼ Q

2K

��������
ha[bi½cQbi
hbci½caci

��������
2

SðQRgL �qLÞ ¼ m2Q

2K

��������
ha]ci½a[Qbi

ha]a[i½a[c�½caci
��������

2

SðQRgR �qLÞ ¼ m2Q

2K

��������
ha]bi½cQbi

ha]a[ihbci½caci
��������

2

: (20)

In the all-massless case, we managed to produce antenna
splitting functions that were simple rational functions of
the za [8]. Here, the antenna splitting functions are more
complicated, but not excessively so. The main complica-
tions come from the denominators ðsac �m2Þ ¼ ½caci,
which do not factorize simply, and from the multiple light-
like vectors needed to characterize the state of the massive
quark. In this case, it is not so difficult to write the splitting
functions in terms of 4-vector products,

SðQLgL �qLÞ ¼ Q

K

sa[cð2a] �Qb �Q� a] � bQ2Þ
sa]cðsac �m2Þ2

SðQLgR �qLÞ ¼ Q

K

sa[bð2b �Qc �Q� b � cQ2Þ
sbcðsac �m2Þ2

SðQRgL �qLÞ ¼ m2Q

K

sa]cð2a[ �Qb �Q� a[ � bQ2Þ
sa]a[sa[cðsac �m2Þ2

SðQRgR �qLÞ ¼ m2Q

K

sa]bð2b �Qc �Q� b � cQ2Þ
sa]a[sbcðsac �m2Þ2 : (21)
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However, the structure of the expressions is more clearly
visible in the form (20).

The expressions (20) contain exact tree-level matrix
elements for the transition of the operatorO to a 3-particle
state. They are correctly used in a parton shower for any
values ofm=Q and pT=Q among the final-state particles, as
long as the virtuality at the previous and successive branch-
ings of the shower are well separated from Q. In the all-
massless case discussed in [8], we made approximations to
the splitting functions valid in the soft and collinear limits.
It is less obvious here which approximations are appropri-
ate and, in any case, we did not see how to achieve much
further simplification. So we will stop at this point for this
set of splitting functions and for all of the massive particle
splitting functions quoted in this paper.

To evaluate expressions of the type of (20), we find it
easiest not to convert the expressions in (20) into 4-vector
products or dimensionless scalars built from these but,
rather, to directly evaluate the spinor brackets. We will
discuss a strategy to evaluate these brackets in the next
section.

Finally, we must discuss the collinear limits and the
connection to the Altarelli-Parisi splitting functions. For
the spin 0 antennas, this connection is easiest to discuss for
the limit c k b, where only massless particles are involved.
We must still take account of the fact that, because b and c
recoil against a massive particle, their maximum momen-
tum is limited. To account for this, let

~z b;c ¼ zb;c
ð1�m2=Q2Þ ; (22)

so that ~zb and ~zc run from 0 to 1 and, in the limit c k b,
~zb þ ~zc ¼ 1. Then, in this collider limit, S has the singu-
larity

S � �a;A

Q2

sbc
PB!cð~zcÞ: (23)

The expressions in (20) satisfy this relation. The splitting
functions to QRgL;R must have no collinear singularity.

This follows from the fact that ½a[Qbi and ha]bi vanish
when b becomes opposite to a. The cases of QLgL;R do

have singularities proportional to s�1
a]c

and s�1
bc , with the

correct coefficients to match (22).
In the limit c k a, where the 1 ! 2 splitting involves a

massive particle, the limit is slightly more complicated. For
the splitting of a massive particle, the usual Altarelli-Parisi
formula for the collinear splitting is conventionally rewrit-
ten as

Z
dProb ¼ Nc

�s

2�

Z
dz

Z dp2
T

ðp2
T þ z2m2ÞPðz; pTÞ: (24)

We divide the usual expressions for Pðz; pTÞ by 2 so that
these functions give the contribution from one of the two
antennas that contribute to a collinear singularity.
Mass-suppressed terms can contain an additional factor

of (p2
T þ z2m2) in the denominator; this is why we have

allowed the Altarelli-Parisi function to depend on pT . With
this formalism, for c becoming parallel to a,

S ðza; zb; zcÞ ! Q2

sac �m2
A

Pð~zc; pTÞ; (25)

where sac ¼ ðaþ cÞ2. Here again, the parameter ~zc must
be scaled to equal 1 at its maximum value, as in (22). For
the present case in which the ðacÞ system recoils against a
massless parton, ~zc ¼ zc.
To discuss the limits c k a, we first need to recall the

Altarelli-Parisi functions for splitting of a gluon from a
massive fermion. The Altarelli-Parisi functions are defined
in the limit of not only collinear but also high-energy
emission. For a particle of energy E splitting to particles
with transverse momentum pT and finite masses mi, these
functions describe the regime pT �mi � E. For a split-
ting Q ! gQ, as we have in this case, the spin-summed
splitting function is [20]

PðzÞ ¼ 1þ ð1� zÞ2
z

� m2

a � c : (26)

This expression becomes clearer when it is written as a set
of spin-dependent Altarelli-Parisi functions. In the conven-
tion defined by (24),

PðQL ! QLgLÞ ¼ p2
T

p2
T þ z2m2

1

z

PðQL ! QLgRÞ ¼ p2
T

p2
T þ z2m2

ð1� zÞ2
z

PðQL ! QRgLÞ ¼ m2

p2
T þ z2m2

z4

z

PðQL ! QRgRÞ ¼ 0:

(27)

The sum of these terms does reproduce (26). The place-
ment of the factors of z implements the dead cone in which
soft radiation from a massive particle is suppressed within
a cone of size 1=�, where � is the boost of the heavy
particle [22,23].
We can now compare the c k a limits of our antenna

splitting functions to (27). In the collinear limit,

sac �m2 ¼ p2
T þ z2m2

zð1� zÞ : (28)

Using this formula and the collinear limits of the spinor
products, we find that (20) does satisfy (25) with (27), up to
corrections of relative order m2=Q2. In particular, in the
limit c k a, a] becomes collinear with b. Then the vanish-
ing of ha]bi with no compensatory vanishing in the de-
nominator gives the zero in the last line of (27).
The spin-dependent splitting functions in the remaining

sections of this paper also satisfy these checks on the
collinear limits. For convenience, we list the complete
set of mass-dependent, spin-dependent Altarelli-Parisi
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splitting functions that are needed for these checks in
Appendix B.

III. KINEMATICS OF MASSIVE ANTENNAS

The splitting functions computed in the previous section
were written in terms of spinor products of massless vec-
tors associated with the massive 4-vectors of the antenna.
One should ask: How are these massless vectors com-
puted? A similar question arises in the context of the
formula (6) for the antenna splitting probability. This
equation is easily written down as the ratio of a cross
section to produce a 3-body final state, integrated over
3-body phase space, to the cross section to produce a
2-body final state, without a radiated parton, integrated
over 2-body phase space. In particular, the integralR
dzadzb is an integral over 3-body phase space. One

should ask: What is the boundary of the region of integra-
tion for these variables, and how does one sample points in
the interior of this region?

For massless antennas, the answers to these questions
are straightforward. For an antenna with both radiators in
the final state (an FF antenna in the notation of [8]), the
complete phase space region is the triangle

0< za; zb < 1 za þ zb > 1 (29)

and the region well described by the radiation process
AB ! acb, with c soft, is the smaller region, where

0< zc < za < 1 and 0< zc < zb < 1: (30)

To create an additional radiated particle in a state with N
massless particles, we choose a color-connected pair of
particles AB, boost so that A and B are of equal length and
back-to-back, choose ðza; zbÞ as a random point in the
region (30), replace the 2-particle system AB by the chosen
3-particle system acb, and, finally, reverse the boost to
bring acb back into the original frame. The corresponding
phase space regions and algorithms for antennas including
initial-state particles are described in [8]. In this paper,
however, we will only discuss final-state showers.

We believe that these 4-vector configurations for mass-
less particles provide a good starting point for constructing
4-vector configurations that include massive particles.
Given a point f‘ig in the phase space of N massless
particles, one can obtain a point fkig in the phase space
of N massive particles by rescaling

~k i ¼ � ~‘i; (31)

where � obeysX
i

Êi ¼ ECM; with Êi ¼ ðj� ~‘ij2 þm2
i Þ1=2: (32)

Conversely, every point of the massive phase space can be
constructed uniquely in this way. The scale factor � is close
to unity unless one of the massive particles is nonrelativ-

istic. The relation of the phase space measures for the
massive and massless variables is [24]

d�NðkÞ ¼ d�Nð‘Þ � �2N�4
Y
i

j� ~‘ij
Ei

P
i
j� ~‘ij

P
i
j� ~‘ij2=Ei

: (33)

We will refer to the massless vectors f‘ig as the backbone
of the massive configuration.
We now have a strategy for the constructing the N

particle phase space of a parton shower that involves
massive particles. Starting with a system of 2 massless
particles, construct a shower of massless vectors according
to the procedure described above. In each antenna, let the
momentum fractions of the (massless) final particles a, b
be wa, wb. Rescale within the antenna by � and use the
massless vectors and this value of � to compute the split-
ting probabilities. For example, for the splitting described
in the previous section with particle a massive, the equa-
tion for � is

Ea þ �ðj ~‘bj þ j ~‘cjÞ ¼ Q: (34)

The splitting probability is given by

Z
dProb ¼ Nc

�s

4�

�
Q

2K

�Z
dwadwb � �2 �

�
�wa

Ea

�

� �

j�waj2Q=2Ea þ �ðwb þ wcÞ
S: (35)

To evaluate the splitting function S we need the flatted and
sharped vectors a[ and a]. The first of these is given by

a[ ¼ 1

2
ðEa=�j ~‘aj þ 1Þ�‘a; (36)

and a] is the massless vector of the same length pointing in
the opposite direction. Once the configuration is chosen,
the three new massless vectors are boosted back to the
frame of the shower, and we are ready to generate the next
antenna. When the shower is completed, the entire back-
bone must be rescaled to put the final massive particles on
shell. In this prescription, the recoil due to emissions is
done locally in each antenna to the extent that the particles
are relativistic, but the recoil for nonrelativistic massive
particles is distributed over the whole shower.
There is one more complication that should be dis-

cussed. For a massless particle, the spin state is determined
by the helicity in a way that is independent of frame. For a
massive particle, a change of frame can rotate the spin. The
helicity is preserved by rotations and by boosts along the
direction of motion. Other boosts, at an angle to the direc-
tion of motion, change the spin orientation. In the massive
particle shower described here, we ignore this effect. In any
event, it is unimportant when the massive particles are
relativistic, and this accounts for most of the radiation
from these particles.
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IV. ANTENNAS WITH A
MASSIVE SPIN 0 PARTICLE

We are now ready to put together a catalog of the
antenna splitting functions that describe the emission of
quarks and gluons in the showering of massive particles.
We begin with the case of a spin 0 massive particle S
recoiling against a quark or a gluon.

In the quark case, the antenna is described by an operator

O ¼ Syh2jqR; (37)

where h2j is a spin 1=2 spurion that controls the quark
polarization. Here and in the rest of the paper, we will
analyze a subset of the various discrete choices from which
the rest can be derived using the P and C symmetries of
QCD. Here, for example, the two cases

S �qL ! SgL �qL and S �qL ! SgR �qL (38)

considered below suffice to provide all of the possible
spin-dependent splitting functions for S �q ! Sg �q and
Sq ! Sgq.

The 2-particle matrix element of the operator (37) is

M ðO ! S �qLÞ ¼ h2Bi: (39)

Then, for the 2-particle antenna S �qL with S moving the 3̂
direction, 2 should be a massless fermion moving parallel
to S. In the following, we will set 2 ¼ A[. This choice
follows the methods used in [8]. In that paper, the polar-
ization vectors associated with operators O with nonzero
spin are built from massless vectors 1 and 2, chosen in the
directions of B and A, respectively. With this choice, the
denominator of the expression (7) for the splitting function
is again evaluated as (17).

The 3-particle matrix elements of (37) are

MðO ! SgL �qLÞ ¼ hA[ðbþ cÞaci
½caci½bc�

MðO ! SgR �qLÞ ¼ � hA[bihbac�
½cacihbci : (40)

Here again, we strip off the factors of g and color matrices.
The final results are surprisingly compact.

For an antenna containing a massive scalar and gluon,
we need to find an operator that defines an antenna whose
initial state includes a gluon of a definite polarization. For
the antenna with a left-handed gluon, we may choose [8]

O ¼ iffiffiffi
2

p Syh2j �� � Fj2i; (41)

where

�� � F ¼ 1

2
��m�nFmn: (42)

This operator projects onto anti-self-dual gauge fields or
left-handed physical gluons. The corresponding operator
� � F can be used to define the antenna with an initial right-
handed gluon. The 2-particle matrix elements of (41) are

M ðO ! SgLÞ ¼ h2Bi2 MðO ! SgRÞ ¼ 0: (43)

The zero for a gR is just as one should have expected. As
above, we set 2 ¼ A[.
There are two types of 3-particle matrix elements of (41)

. First, the antenna can radiate a gluon. The corresponding
matrix elements are

MðO ! SgLgLÞ ¼ 1

½bc�
�hA[bi2½baci

½caci þ 2hA[cihA[bi

þ hA[ci2½cabi
½babi

�

MðO ! SgRgLÞ ¼ � hA[bi2hbac�
½cacihbci

MðO ! SgLgRÞ ¼ � hA[ci2hcab�
½babihbci

MðO ! SgRgRÞ ¼ 0; (44)

following the pattern established in (40). Second, the gluon
may split into a quark-antiquark pair. For this, we need the
matrix elements

MðO ! S �qRqLÞ ¼ � hA[bi2
hbci

MðO ! S �qLqRÞ ¼ hA[ci2
hbci : (45)

The splitting functions derived from these matrix elements
using (7) are listed systematically in Appendix A.

V. ANTENNAS WITH A MASSIVE
SPIN 1=2 PARTICLE

In the same way, we can construct operators that corre-
spond to the initial states of antennas involving a massive
Dirac fermion Q with a quark or gluon. The massive
fermion can have helicity�1=2. Because theQ is massive,
an initial left-handed Q can flip over after radiation to a
right-handedQ, or vice versa. We have seen this already in
the special case considered in Sec. II. In this section, we
will recall the results from Sec. II and compare them to
those of the other three possible antennas of this type.
The antennas with an initial state containing F and a

quark can be arranged in a state with total spin about the
axis of motion jJ3j equal to 0 or 1. The spin 0 case was
considered in Sec. II. The appropriate operator O is

O ¼ �QqR: (46)

Using A] as the reference vector for Q, according to the
convention established in Sec. II, the matrix elements of
this operator between 2-particle F �q states are

MðO ! QL �qLÞ ¼ hA[Bi MðO ! QL �qRÞ ¼ 0: (47)

The 3-particle matrix elements are then readily computed.
If we use a] from the beginning as the reference vector for
Q, (18) gives
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MðQLgL �qLÞ ¼ � hca[i½a]Qbi
½a]c�½caci

MðQLgR �qLÞ ¼ � ha[bi½cQbi
hbci½caci

MðQRgL �qLÞ ¼ �m
hca]i½a[Qbi

½a[c�ha]a[i½caci
MðQRgR �qLÞ ¼ �m

ha]bi½cQbi
hbciha]a[i½caci : (48)

The antenna splitting function can be constructed from
these elements in the manner described in Sec. II.

The spin 1 case can be treated in the same way. As
described in [8] and at the beginning of Sec. IV, we
introduce lightlike vectors 1 and 2 in the direction of B

and A, respectively. Then an appropriate operator to define
this antenna is

O ¼ �Q1i½2qL: (49)

The 2-particle matrix elements of this operator are

MðO ! QL �qRÞ ¼ hA[1ih2Bi;
MðO ! QR �qRÞ ¼ 0:

(50)

Thus, this operator does correctly represent the initial
situation. We will set 2 ¼ A[ and 1 ¼ B in the following
expressions.
The splitting function for the antenna to radiate a gluon

is computed from the 3-particle matrix elements of this
operator to Fg �q final states. These are

MðQLgR �qRÞ ¼ � ha[Bi½A[ðbþ cÞac�
hcac�hbci MðQLgL �qRÞ ¼ � ½A[b�

hcac�½bc�½a]a[� f½a
]aci½bQBi þm2hcBi½a]b�g

MðQRgR �qRÞ ¼ mha]Bi½A[ðbþ cÞac�
ha]a[ihcac�hbci MðQRgL �qRÞ ¼ m½A[b�

ha]a[ihcac�hbci fha
]Bihcab� þ ha]cihBcb�g: (51)

The splitting functions derived from these formulas and
those in (48) are cataloged in Appendix A.

For the antennas with Q and a gluon, we again use the
operator �� � F to define the initial state as containing a
gluon of definite left-handed polarization. There are two
cases, with total spin 1=2 and 3=2. For the spin 1=2 case,
the appropriate operator is

O ¼ � iffiffiffi
2

p �Q �� �Fj2i: (52)

The dominant 2-particle matrix element of this operator is

M ðO ! QL �gLÞ ¼ hA[Bih2Bi: (53)

If we recall that vector 2 is identified with A[, we see that
this puts the initialQ and g into just the correct orientation.

The matrix elements to QLgR, QRgL, and QRgR all vanish
if 1 is taken parallel to B.
The splitting functions for the radiation of a gluon from

this antenna are given by the matrix elements of (53) to
Qgg final states. As in [16] and in [8], these matrix
elements are given by the computation of the set of dia-
grams shown in Fig. 1. The last diagram in the figure comes
from the two-gluon vertex of the operator �� � F. The third
diagram is required to make the computation gauge-
invariant. Its origin is most easily seen by thinking of the
Q as a color octet. Then this diagram is obviously an
essential contribution to the radiation from the Qg
dipole.
With this observation, we find for the 3-particle matrix

elements of (53)

MðQLgLgLÞ ¼ 1

½bc�½a]a[�
	hA[bi
hcac� ðQ

2½a]aci �m2½a]QciÞ þ hA[ci
hbab� ðQ

2½a]abi �m2½a]QbiÞ



MðQLgRgLÞ ¼ ha[bihA[bihbac�
hcac�hbci MðQLgLgRÞ ¼ ha[cihA[cihcab�

hbab�hbci MðQLgRgRÞ ¼ 0

MðQRgLgLÞ ¼ m

ha]a[i½bc�
	hA[bi
hcac� ðha

]aQci �Q2ha]ciÞ þ hA[ci
hbab� ðha

]aQbi �Q2ha]biÞ



MðQRgRgLÞ ¼ mha]bihA[bihbac�
ha]a[ihcac�hbci MðQRgLgRÞ ¼ mha]cihA[cihcab�

ha]a[ihbab�hbci MðQRgRgRÞ ¼ 0: (54)

The case of a Qg antennas in the spin 3=2 state is treated similarly. The operator that defines the initial state is

O ¼ � iffiffiffi
2

p �Q1�h2j �� � Fj2i: (55)

The 2-particle matrix elements of this operator are
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M ðO ! QR �gLÞ ¼ h1Aih2Bi2 (56)

and all other matrix elements are equal to zero for the choice of 1 parallel to B. We will set 2 ¼ A[ and 1 ¼ B in the
expressions that follow.

The 3-particle matrix elements of (55) to Qgg final states are

MðQRgL �gLÞ ¼ � ½a[B�
½bc�

	hA[bihA[ðbþ cÞaci
hcac� þ hA[cihA[ðbþ cÞabi

hbab�



MðQRgR �gLÞ ¼ � hA[bi2
hcac�hbci

	
½a[c�hbQB� þm2 ha]bi

ha]ai ½cB�



MðQRgL �gRÞ ¼ � hA[ci2
hbab�hbci

	
½a[b�hcQB� þm2 ha]ci

ha]a[i ½bB�



MðQRgR �gRÞ ¼ 0

MðQLgL �gLÞ ¼ � m½a]B�
ha]a[i½bc�

	hA[bihA[ðbþ cÞaci
hcac� þ hA[cihA[ðbþ cÞabi

hbab�



MðQLgR �gLÞ ¼ �mhA[bi2
½a]a[�

ð½a]B�hbac� þ ½a]c�hbcB�Þ
hcac�hbci MðQLgL �gRÞ ¼ �mhA[ci2

½a]a[�
ð½a]B�hcab� þ ½a]b�hcbB�Þ

hbab�hbci
MðQLgR �gRÞ ¼ 0: (57)

The splitting functions for Qg ! Qgg that are derived
from these expressions and those in (54) are cataloged in
Appendix A.

The Qg antennas can also radiate by gluon splitting to a
pair of quarks. For the spin 1=2 case, the relevant matrix
elements are

MðQL �qRqLÞ¼ha[bihA[bi
hbci MðQL �qLqRÞ¼�ha[cihA[ci

hbci
MðQR �qRqLÞ¼mha]bihA[bi

ha]a[ihbci
MðQR �qLqRÞ¼�mha]cihA[ci

ha]a[ihbci : (58)

For the spin 3=2 case, the matrix elements are

MðQR �qRqLÞ ¼ ½a[B�hA[bi2
hbci

MðQR �qLqRÞ ¼ � ½a[B�hA[ci2
hbci

MðQL �qRqLÞ ¼ m½a]B�hA[bi2
½a]a[�hbci

MðQL �qLqRÞ ¼ �m½a]B�hA[ci2
½a]a[�hbci : (59)

The splitting functions for Qg ! Qgg that are derived
from these expressions are catalogued in Appendix A.

VI. ANTENNAS OFA PAIR
OF MASSIVE PARTICLES

After a pair of massive scalars or fermions are produced,
their first emission of a gluon is described by an antenna in
which the two massive particles both appear. For a com-
plete description, we need the splitting functions for these
antenna as well. These formulas are somewhat more com-
plicated than those derived above, since some of the sim-
plifications that are possible when the particle b is massless
no longer apply. There is little additional complexity in the
cases in which the two massive particles have different
masses, so we will write the formulas for that more general
situation.
The case of a pair of scalars is relatively straightforward.

The scalar particles themselves are spinless, so there is
only one case, described by the spin 0 operator

O ¼ Sy1S2: (60)

The matrix element of this operator to create the state S1 �S2
is simply 1. The matrix elements for gluon emission are

FIG. 1. Feynman diagrams for the computation of the Fg ! Fgg splitting functions [8].
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MðS1gL �S2Þ ¼ 1

½a[c�
	½a[aci
½caci � ha[bc�

hcbc�



MðS1gR �S2Þ ¼ � 1

ha[ci
	ha[ac�
hcac� � ha[bc�

hcbc�


: (61)

Each expression can be brought down to one term using the
Schouten identity,

hcaf�hdbg� � hdaf�hcbg� ¼ �hcdi½fabg�: (62)

This identity is valid when a and b are massive vectors,
possibly with different masses; c, d, f, and g must be
massless. To prove the identity, write a as a linear combi-
nation of a[ and a]. Using (62),

MðS1gL �S2Þ¼� hcabci
hcac�½cbci MðS1gL �S2Þ¼ ½cabc�

½cacihcbc� :
(63)

The splitting functions are readily assembled from these
expressions.

For the antenna of a massive fermion and a massive
scalar, the general case is described by the spin 1=2
operator

O ¼ �Q11iS2: (64)

The 2-body matrix elements of this operator are

M ðQ1L
�S2Þ ¼ hA[1i (65)

and zero for Q1R. If we take 1 ¼ B[ following the
prescriptions above,

jhA[1ij2 ¼ ðE1 þ KÞðE2 þ KÞ; (66)

where E1, E2, and K are the two energies and the momen-
tum in the antenna center of mass frame.

The matrix elements for the operator (64) to create Qg �S
states are given by the expression

M¼�gTaffiffiffi
2

p �uðaÞ
�6�ðcÞðaþcþmÞ

½caci 1i�1i2b ��ðcÞ½cbci
�
; (67)

where �ðcÞ is the polarization vector of the gluon. A
convenient way to treat this is to manipulate

6�ðcÞðaþ cþmÞ ¼ 2a � �ðcÞ þ 6�ðcÞc; (68)

plus a term proportional to ða�mÞ that gives zero when
applied to �uðaÞ. The first term in (68) combines with the
last term in (67) to give an amplitude proportional that of
the scalar-scalar case, (61) or (63) above. The term with
6�ðcÞ vanishes for gR and gives a simple but nonzero term
for gL. The final results for the two amplitudes, after
dropping the factor of ðgTaÞ, are

MðQLgR �SÞ ¼ ha[1ihcabci
hcac�½cbci

MðQRgR �SÞ ¼ m1ha]1ihcabci
ha]a[ihcac�½cbci

MðQLgL �SÞ ¼ � ha[1i½cabc�
½cacihcbc� þ ha[cihc1i

½caci
MðQRgL �SÞ ¼ � m1

ha]a[i
�ha]1i½cabc�
½cacihcbc� � ha]cihc1i

½caci
�
:

(69)

Herem1 is the mass of the fermionQ1. The formulas apply
for any values of the masses of the fermion and scalar, as
long as the 4-vectors a and b are properly on mass shell.
The decomposition of the gluon coupling to a massive

fermion given in (68) is equivalent the representation of
this coupling by the second-order Dirac equation, in which
the fermion is replaced by a field with a scalar-type cou-
pling and a magnetic moment coupling. The single-gluon
magnetic moment coupling has a chiral structure and van-
ishes for specific combinations of the fermion and gluon
spin. This second-order Dirac formalism is discussed in
more detail in [25].
For massive fermions, there are two cases, correspond-

ing to total spin 0 and 1 along the antenna axis. For the
spin 0 case, we could use the operator �QLQL to create the
antenna, similarly to the choices in Secs. II and V.
However, in the case in which both fermions are massive,
that operator creates both QL

�QL and QR
�QR states. We will

avoid that problem here by taking the operator that creates
an initial state of QL

�QL to be

O ¼ �Q11ih2Q2: (70)

The 2-body matrix elements of this operator are

M ðQ1L
�Q2LÞ ¼ hA[1ih2B[i; (71)

and zero for the other three helicity states. Similarly, for the
spin 1 case, we will use the operator

O ¼ �Q11i½2Q2; (72)

to create an initial state of QL
�QR. The 2-body matrix

elements of this operator are

M ðQ1L
�Q2RÞ ¼ hA[1i½2B[�; (73)

and zero for the other three helicity states. TheQg �Qmatrix
elements of these operators are easily computed using the
methods presented earlier in this section. The results for
the splitting functions are tabulated in Appendix A.

VII. ANTENNAS WITH MASSIVE PARTICLE
PRODUCTION

There is one more situation that we must consider. At
very high energies, massive particles can be produced by
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gluon splitting. At the LHC, for example, parton-parton
scattering can give quark-gluon and gluon-gluon collisions
with center of mass energies well above 1 TeV. Final-state
gluon antennas in these collisions can produce pairs of top
quarks. The pair production amplitudes are relatively sim-
ple, since each requires only one Feynman diagram, as
shown in Fig. 2 for the gg ! g�tt case. The final pair of
heavy particles must have equal mass and equal spin.
However, there are a large number of cases to enumerate.
The massive scalar or fermion pair can be formed from a
spin 1=2 or a spin 3=2 qg antenna or from a spin 0 or spin 2
gg antenna.

For scalar pair production, the formalism is actually
quite simple. The spin 1=2 and spin 3=2 qg antennas can
be represented by the operators

O1=2¼� iffiffiffi
2

p �q ���Fj2i O3=2¼� iffiffiffi
2

p �q1�h2j �� �Fj2i: (74)

If the gluon splits to a pair of scalars, both cases involve the
operator �� � F dotted with the gS �S vertex. This product is

1

2
½ðbþ cÞ�� � ��ðbþ cÞ�ðb� cÞ� 	 ½b; c�; (75)

so that the relevant 3-particle matrix elements are

M ðqL �SSÞ ¼ � ha½b; c�2i
sbc

(76)

for the spin 1=2 case and

M ðqR �SSÞ ¼ ½a1�h2½b; c�2i
sbc

(77)

for the spin 3=2 case.
Similarly, the spin 0 and spin 2 gg antennas, correspond-

ing to the gLgL and gRgL initial states, can be represented
by the operators

O 0 ¼ 1

2
tr½ð �� � FÞ2� O2 ¼ ½1j� � Fj1�h2j �� � Fj2i:

(78)

The manipulation (75) again gives a simple form for the
3-particle matrix elements. The corresponding splitting
functions are given in Appendix A.

For the case of massive fermion pair production, this
formalism is necessarily more complex. With the choice of
helicity states that we have used throughout this paper, the
vertex to create a pair of massive fermions is a Dirac

matrix. For the case of a final-state �QRQL, for example,
this matrix has the form

V ¼ c[�hb[ � m2

hc]c[i½b[b]� b
]�hc]: (79)

Then the matrix element of �� � F contains the structure

hR1½ðbþ cÞ; V�R2i; (80)

with a commutator bracketed between reference vectors R1

and R2. However, the frame-dependent choice of the vec-
tors b], c] makes it difficult to simplify this expression
further. It is true that ðbþ cÞ ¼ Q� a, where a is now
massless. In some cases, we have R1 ¼ a, in which case
the a term cancels. In other cases, we have R1 ¼ 2 ¼ A[,
so that the a term vanishes if a is collinear with A. We list
the full expressions for these splitting functions in
Appendix A.

VIII. CONCLUSION

In this paper, we have provided new materials for the
construction of parton showers that include massive spin 0
and spin 1=2 particles. We hope that this formalism we
have presented will be useful in describing the QCD dy-
namics of the top quark and other heavy particles at LHC.
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APPENDIX A: CATALOG OF MASSIVE
ANTENNA SPLITTING FUNCTIONS

In this appendix, we catalog the various antenna splitting
functions for massless particles derived in this paper.
Antenna splitting functions not listed are equal to cases
listed below that are related by the P and C symmetries of
QCD.

1. Splitting functions with one massive scalar

a. Spin 1=2 antenna: initial dipole S �qL

SðSgL �qLÞ ¼ Q

2K

��������
hA[ðbþ cÞaci
½caci½bc�

��������
2

SðSgR �qLÞ ¼ Q

2K

��������
hA[bihbac�
½cacihbci

��������
2

: (A1)
FIG. 2. The single Feynman diagram for the computation of
the gg ! gF �F splitting function [8].
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b. Spin 1 antenna: initial dipole SgL

SðSgLgLÞ¼ 1

ð2KÞ2
��������

1

½bc�
�hA[bi2½baci

½caci
þ2hA[cihA[biþhA[ci2½cabi

½babi
���������

2

SðSgRgLÞ¼ 1

ð2KÞ2
��������
hA[bi2hbac�
½cacihbci

��������
2

SðSgLgRÞ¼ 1

ð2KÞ2
��������
hA[ci2hcab�
½babihbci

��������
2

SðSgRgRÞ¼0

SðS �qRqLÞ¼ 1

ð2KÞ2
½bA[bi2
½bcbi

SðS �qLqRÞ¼ 1

ð2KÞ2
½cA[ci2
½bcbi : (A2)

Note that the last two expressions are already squared
and evaluate to values that are real and positive for the case
of a final-state antenna. For example,

S ðS �qRqLÞ ¼ 1

ð2KÞ2
ð2b � A[Þ2
2b � c :

2. Splitting functions with one massive fermion

a. Spin 0 antenna: initial dipole QL �qL

SðQLgL �qLÞ ¼ Q

2K

��������
ha[ci½a]Qbi
½a]c�½caci

��������
2

SðQLgR �qLÞ ¼ Q

2K

��������
ha[bi½cQbi
hbci½caci

��������
2

SðQRgL �qLÞ ¼ m2Q

2K

��������
ha]ci½a[Qbi

ha]a[i½a[c�½caci
��������

2

SðQRgR �qLÞ ¼ m2Q

2K

��������
ha]bi½cQbi

ha]a[ihbci½caci
��������

2

: (A3)

b. Spin 1=2 antenna: initial dipole QLgL

SðQLgLgLÞ ¼ 1

ð2KÞ2
��������
hA[biðQ2½a]aci �m2½a]QciÞ

½a]a[�hcac�½bc� þ hA[ciðQ2½a]abi �m2½a]QbiÞ
½a]a[�hbab�½bc�

��������
2

SðQLgRgLÞ ¼ 1

ð2KÞ2
��������
ha[bihA[bihbac�

hcac�hbci
��������

2

SðQLgLgRÞ ¼ 1

ð2KÞ2
��������
ha[cihA[cihcab�

hbab�hbci
��������

2

SðQLgRgRÞ ¼ 0

SðQRgLgLÞ ¼ m2

ð2KÞ2
��������
hA[biðha]aQci �Q2ha]ciÞ

ha]a[ihcac�½bc� þ hA[ciðha]aQbi �Q2ha]biÞ
ha]a[ihbab�½bc�

��������
2

SðQRgRgLÞ ¼ m2

ð2KÞ2
��������
ha]bihA[bihbac�
ha]a[ihcac�hbci

��������
2

SðQRgLgRÞ ¼ m2

ð2KÞ2
��������
ha]cihA[cihcab�
ha]a[ihbab�hbci

��������
2

SðQRgRgRÞ ¼ 0

SðQL �qRqLÞ ¼ 1

ð2KÞ2
½ba[bi½bA[bi

½bcbi SðQL �qLqRÞ ¼ 1

ð2KÞ2
½ca[ci½cA[ci

½bcbi
SðQR �qRqLÞ ¼ m2

ð2KÞ2
½ba]bi½bA[bi
½a]aa]i½bcbi SðQR �qLqRÞ ¼ m2

ð2KÞ2
½ca]ci½cA[ci
½a]aa]i½bcbi : (A4)

As in A 1 b, the last four expressions here are already squared and evaluate to real, positive values.

c. Spin 1 antenna: initial dipole QL �qR

SðQLgR �qRÞ ¼ 1

ð2KÞ2
��������
ha[Bi½A[ðbþ cÞac�

hcac�hbci
��������

2

SðQLgL �qRÞ ¼ 1

ð2KÞ2
��������
½A[b�ð½a]aci½bQBi þm2hcBi½a]b�Þ

½a]a[�hcac�½bc�
��������

2

SðQRgR �qRÞ ¼ m2

ð2KÞ2
��������
ha]Bi½A[ðbþ cÞac�
ha]a[ihcac�hbci

��������
2

SðQRgL �qRÞ ¼ m2

ð2KÞ2
��������
½A[b�ðha]Bihcab� þ ha]cihBcb�Þ

ha]a[ihcac�hbci
��������

2

: (A5)

ANTENNA SPLITTING FUNCTIONS FOR MASSIVE PARTICLES PHYSICAL REVIEW D 84, 034034 (2011)

034034-11



d. Spin 3=2 antenna: initial dipole QRgL

SðQLgLgLÞ ¼ m2Q2

ð2QKÞ3
��������

½a]B�
½a]a[�½bc�

	hA[bihA[ðbþ cÞaci
hcac� þ hA[cihA[ðbþ cÞabi

hbab�

��������

2

SðQLgRgLÞ ¼ m2Q2

ð2QKÞ3
��������
hA[bi2ð½a]B�hbac� þ ½a]c�hbcB�Þ

½a]a[�hcac�hbci
��������

2

SðQLgLgRÞ ¼ m2Q2

ð2QKÞ3
��������
hA[ci2ð½a]B�hcab� þ ½a]b�hcbB�Þ

½a]a[�hbab�hbci
��������

2

SðQLgRgRÞ ¼ 0

SðQRgLgLÞ ¼ Q2

ð2QKÞ3
��������
½a[B�
½bc�

	hA[bihA[ðbþ cÞaci
hcac� þ hA[cihA[ðbþ cÞabi

hbab�

��������

2

SðQRgRgLÞ ¼ Q2

ð2QKÞ3
��������

hA[bi2
hcac�hbci

	
½a[c�hbQB� þm2 ha[bi

haai ½cB�

��������

2

SðQRgLgRÞ ¼ Q2

ð2QKÞ3
��������

hA[ci2
hbab�hbci

	
½a[b�hcQB� þm2 ha]ci

ha]a[i ½bB�

��������

2

SðQRgRgRÞ ¼ 0

SðQL �qRqLÞ ¼ m2Q2

ð2QKÞ3
½Ba]Bi½bA[bi2
½a]aa]i½bcbi

SðQL �qLqRÞ ¼ m2Q2

ð2QKÞ3
½Ba]Bi½cA[ci2
½a]aa]i½bcbi

SðQR �qRqLÞ ¼ Q2

ð2QKÞ3
½Ba[Bi½bA[bi2

½bcbi
SðQR �qLqRÞ ¼ Q2

ð2QKÞ3
½Ba[Bi½cA[ci2

½bcbi : (A6)

As in A 1 b, the last four expressions here are already squared and evaluate to real, positive values.

3. Splitting functions with two massive scalars

Spin 0 antenna: initial dipole S1
�S2

S ðS1gL �S2Þ ¼ Q2

��������
hcabci

hcac�½cbci
��������

2

SðS1gR �S2Þ ¼ Q2

��������
½cabc�

½cacihcbc�
��������

2

: (A7)

4. Splitting functions with a massive fermion and a massive scalar

Spin 1=2 antenna: initial dipole Q1
�S2

SðQ1LgL �S2Þ ¼ Q2

ðE1 þ KÞðE2 þ KÞ
��������
ha[B[ihcabci
hcac�½cbci � ha[cihcB[i

hcac�
��������

2

SðQ1RgL �S2Þ ¼ m2
1Q

2

ðE1 þ KÞðE2 þ KÞ
��������

1

ha]a[i
	ha]B[ihcabci

hcac�½cbci � ha]cihcB[i
hcac�


��������
2

SðQ1LgR �S2Þ ¼ Q2

ðE1 þ KÞðE2 þ KÞ
��������
ha[B[i½cabc�
½cacihcbc�

��������
2

:

SðQ1LgR �S2Þ ¼ m2
1Q

2

ðE1 þ KÞðE2 þ KÞ
��������

1

ha]a[i
ha]B[i½cabc�
½cacihcbc�

��������
2

: (A8)
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5. Splitting functions with two massive fermions

a. Spin 0 antenna: initial dipole Q1L
�Q2L

SðQ1LgL �Q2LÞ ¼ Q2

ððE1 þ KÞðE2 þ KÞÞ2
��������
ha[B[ihcabcihA[b[i

hcac�½cbci � ha[cihcB[ihA[b[i
hcac� � ha[B[ihA[cihcb[i

½cbci
��������

2

SðQ1LgL �Q2RÞ ¼ m2
2Q

2

ððE1 þ KÞðE2 þ KÞÞ2
��������

1

hb[b]i
	ha[Bi[hcabcihA[b]i

hcac�½cbci � ha[cihcB[ihA[b]i
hcac� � ha[B[ihA[cihcb]i

½cbci

��������

2

SðQ1RgL �Q2LÞ ¼ m2
1Q

2

ððE1 þ KÞðE2 þ KÞÞ2
��������

1

ha]a[i
	ha]Bi[hcabcihA[b[i

hcac�½cbci � ha]cihcB[ihA[b[i
hcac� � ha]B[ihA[cihcb[i

½cbci

��������

2

SðQ1RgL �Q2RÞ ¼ m2
1m

2
2Q

2

ððE1 þ KÞðE2 þ KÞÞ2
��������

1

ha]a[ihb]b[i
	ha]B[ihcabcihA[b]i

hcac�½cbci

� ha]cihcB[ihA[b]i
hcac� � ha]B[ihA[cihcb]i

½cbci

��������

2

SðQ1LgR �Q2LÞ ¼ Q2

ððE1 þ KÞðE2 þ KÞÞ2
��������
ha[B[i½cabc�hA[b[i

hcac�½cbci

��������

2

SðQ1LgR �Q2RÞ ¼ m2
2Q

2

ððE1 þ KÞðE2 þ KÞÞ2
��������

1

hb[b]i
ha]B[i½cabc�hA[b[i

hcac�½cbci
��������

2

SðQ1RgR �Q2LÞ ¼ m2
1Q

2

ððE1 þ KÞðE2 þ KÞÞ2
��������

1

ha]a[i
ha]B[i½cabc�hA[b[i

hcac�½cbci
��������

2

SðQ1RgR �Q2RÞ ¼ m2
1m

2
2Q

2

ððE1 þ KÞðE2 þ KÞÞ2
��������

1

ha]a[ihb]b[i
ha]B[i½cabc�hA[b]i

hcac�½cbci
��������

2

: (A9)

b. Spin 1 antenna: initial dipole Q1L
�Q2R

SðQ1LgL �Q2LÞ ¼ m2
2Q

2

ððE1 þ KÞðE2 þ KÞÞ2
��������

1

hb[b]i
	ha[B[ihcabci½A[b]�

hcac�½cbci � ha[cihcB[i½A[b]�
hcac�


��������
2

SðQ1LgL �Q2RÞ ¼ Q2

ððE1 þ KÞðE2 þ KÞÞ2
��������
ha[B[ihcabci½A[b[�

hcac�½cbci � ha[cihcB[i½A[b[�
hcac�


��������
2

SðQ1RgL �Q2LÞ ¼ m2
1m

2
2Q

2

ððE1 þ KÞðE2 þ KÞÞ2
��������

1

ha]a[i½b[b]�
	ha]B[ihcabci½A[b]�

hcac�½cbci � ha]cihcB[i½A[b]�
hcac�


��������
2

SðQ1RgL �Q2RÞ ¼ m2
1Q

2

ððE1 þ KÞðE2 þ KÞÞ2
��������

1

ha]a[i
	ha]B[ihcabci½A[b[�

hcac�½cbci � ha]cihcB[ihA[b[i
hcac�


��������
2

SðQ1LgR �Q2LÞ ¼ m2
2Q

2

ððE1 þ KÞðE2 þ KÞÞ2
��������

1

½b[b]�
	ha[B[i½cabc�½A[b]�

hcac�½cbci � ha[B[i½A[c�½cb]�
½cbci


��������
2

SðQ1LgR �Q2RÞ ¼ Q2

ððE1 þ KÞðE2 þ KÞÞ2
��������
ha[B[i½cabc�½A[b[�

hcac�½cbci � ha[B[i½A[c�½cb[�
½cbci

��������
2

SðQ1RgR �Q2LÞ ¼ m2
1m

2
2Q

2

ððE1 þ KÞðE2 þ KÞÞ2
��������

1

ha]a[i½b[b]�
	ha]B[i½cabc�½A[b[�

hcac�½cbci � ha[B[i½A[c�½cb]�
½cbci


��������
2

SðQ1RgR �Q2RÞ ¼ m2
1Q

2

ððE1 þ KÞðE2 þ KÞÞ2
��������

1

ha]a[i
	ha]B[i½cabc�½A[b[�

hcac�½cbci � ha[B[i½A[c�½cb[�
½cbci


��������
2

: (A10)
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6. Splitting functions with pair production of scalars

a. Spin 0 antenna: initial dipole gLgL

S ðgL �SSÞ ¼ 1

Q2

��������
ha½b; c�ai

sbc

��������
2

: (A11)

b. Spin 1=2 antenna: initial dipole qLgL

S ðqL �SSÞ ¼ 1

Q2

��������
ha½b; c�Ai

sbc

��������
2

: (A12)

c. Spin 3=2 antenna: initial dipole qRgL

S ðqR �SSÞ ¼ 1

Q4

��������
½aB�hA½b; c�Ai

sbc

��������
2

: (A13)

d. Spin 2 antenna: initial dipole gRgL

S ðgR �SSÞ ¼ 1

Q6

��������
½aB�2hA½b; c�Ai

sbc

��������
2

: (A14)

7. Splitting functions with pair production of fermions

a. Spin 0 antenna: initial dipole gLgL

SðgL �QLQLÞ ¼ m2

Q2s2bc

��������
haQb]�hc[ai

½b[b]� þ haQc]�hb[ai
½c[c]�

��������
2

SðgL �QLQRÞ ¼ 1

Q2s2bc

��������haQc[�hb[ai þ m2

½b[b]�hc[c]i haQb]�hc]ai
��������

2

SðgL �QRQLÞ ¼ 1

Q2s2bc

��������haQb[�hc[ai þ m2

hb[b]i½c[c]� haQc]�hb]ai
��������

2

SðgL �QRQRÞ ¼ m2

Q2s2bc

��������
haQc[�hb]ai

½b[b]� þ haQb[�hc]ai
½c[c]�

��������
2

: (A15)

b. Spin 1=2 antenna: initial dipole qLgL

SðqL �QLQLÞ ¼ m2

4Q2s2bc

��������
haQb]�hc[Ai

½b[b]� þ haQc]�hb[Ai
½c[c]� þ hA[ðQ� aÞb]�hc[ai

½b[b]� þ hA[ðQ� aÞc]�hb[ai
½c[c]�

��������
2

SðqL �QLQRÞ ¼ 1

4Q2s2bc

��������haQc[�hb[Ai þ m2

½b[b]�hc[c]i haQb]�hc]Ai þ hAðQ� aÞc[�hb[ai

þ m2

½b[b]�hc[c]i hAðQ� aÞb]�hc]ai
��������

2

SðqL �QRQLÞ ¼ 1

4Q2s2bc
jhaQb[�hc[Ai þ m2

hb[b]i½c[c]� haQc]�hb]Ai þ hAðQ� aÞb[�hc[ai

þ m2

hb[b]i½c[c]� hAðQ� aÞc]�hb]ai
��������

2

SðqL �QRQRÞ ¼ m2

4Q2s2bc

��������
haQc[�hb]Ai

½b[b]� þ haQb[�hc]Ai
½c[c]� þ hAðQ� aÞc[�hb]ai

½b[b]� þ hAðQ� aÞb[�hc]ai
½c[c]�

��������
2

: (A16)
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c. Spin 3=2 antenna: initial dipole qRgL

SðqR �QLQLÞ ¼ m2

Q4s2bc

��������½aB�
	hAðQ� aÞb]�hc[Ai

½b[b]� þ hAðQ� aÞc]�hb[Ai
½c[c]�


��������
2

SðqR �QLQRÞ ¼ 1

Q4s2bc

��������½aB�
	
hAðQ� aÞc[�hb[Ai þ m2

½b[b]�hc[c]i hA
[ðQ� aÞb]�hc]Ai


��������
2

SðqR �QRQLÞ ¼ 1

Q4s2bc

��������½aB�
	
hAðQ� aÞb[�hc[Ai þ m2

hb[b]i½c[c]� hAðQ� aÞc]�hb]Ai

��������

2

SðqR �QRQRÞ ¼ m2

Q4s2bc

��������½aB�
	hAðQ� aÞc[�hb]Ai

½b[b]� þ hAðQ� aÞb[�hc]Ai
½c[c]�


��������
2

: (A17)

d. Spin 2 antenna: initial dipole gRgL

SðgR �QLQLÞ ¼ m2

Q6s2bc

��������½aB�2
	hAðQ� aÞb]�hc[Ai

½b[b]� þ hAðQ� aÞc]�hb[Ai
½c[c]�


��������
2

SðgR �QLQRÞ ¼ 1

Q6s2bc
j½aB�2

	
hAðQ� aÞc[�hb[Ai þ m2

½b[b]�hc[c]i hAðQ� aÞb]�hc]Ai

��������

2

SðgR �QRQLÞ ¼ 1

Q6s2bc
j½aB�2

	
hAðQ� aÞb[�hc[Ai þ m2

hb[b]i½c[c]� hAðQ� aÞc]�hb]Ai

��������

2

SðgR �QRQRÞ ¼ m2

Q6s2bc

��������½aB�2
	hAðQ� aÞc[�hb]Ai

½b[b]� þ hAðQ� aÞb[�hc]Ai
½c[c]�


��������
2

: (A18)

APPENDIX B: SPIN-DEPENDENT ALTARELLI-
PARISI FUNCTIONS FOR MASSIVE PARTICLES

In this appendix, we present the spin-dependent
Altarelli-Parisi splitting functions for massless and mas-
sive particles. The massless cases were derived in the
original paper of Altarelli and Parisi [3]. Spin-summed
Altarelli-Parisi functions for the cases with massive parti-
cles arise in NLO QCD calculations for supersymmetric
particle production. They have been cataloged by Catani,
Dittmaier, and Trócsányi in [20]. The spin-dependent func-
tions can be worked out by textbook methods. Here we
present these functions in a representation convenient for
comparison to the antenna splitting functions derived in
this paper. We omit the overall color factor of Nc and
divide by 2 so that each splitting function accounts the
contents of an individual antenna.

Note that, since we work at the leading order in Nc and
normalize to a single antenna, there is no difference be-
tween the splitting function for a heavy quark or a gluino to
radiate a gluon. Thus, there are only two cases, the cases of
a heavy scalar S or a heavy quark Q radiating a gluon. The

cases of a heavy particle splitting to a heavy particle by
radiating a gluon are given by the same expressions with
z ! ð1� zÞ.
For S ! gS,

PðS ! SgLSÞ ¼ p2
T

p2
T þ z2m2

1� z

z

PðS ! SgRSÞ ¼ p2
T

p2
T þ z2m2

1� z

z
:

(B1)

For Q ! gQ,

PðQL ! QLgLÞ ¼ p2
T

p2
T þ z2m2

1

z

PðQL ! QLgRÞ ¼ p2
T

p2
T þ z2m2

ð1� zÞ2
z

PðQL ! QRgLÞ ¼ m2

p2
T þ z2m2

z4

z

PðQL ! QRgRÞ ¼ 0:

(B2)
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