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We show that the long-range rapidity correlations between the produced charged-hadron pairs from two

Balitsky-Fadin-Kuraev-Lipatov parton showers generate considerable azimuthal angle correlations. These

correlations have no 1=Nc suppression. The effect of gluon saturation on these correlations are discussed and

we show that it is important. We show that a pronounced ridgelike structure emerges by going from the

Balitsky-Fadin-Kuraev-Lipatov to the saturation region. We show that the ridge structure at high-energy

proton-proton and nucleus-nucleus collisions has the same origin and its main feature can be understood due

to initial-state effects. Although the effects of final-state interactions in the latter case can be non-negligible.
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I. INTRODUCTION

The main objective of this paper is to understand the
long-range rapidity correlations of charged-particle pairs
in the azimuthal angle separation between the two par-
ticles around the nearside �’ � 0, the so-called ridge
which has been recently observed at the LHC in

ffiffiffi
s

p ¼
2:76 TeV Pbþ Pb collisions [1] and also in

ffiffiffi
s

p ¼ 7 TeV
proton-proton (pp) collisions [2]. The CMS collabora-
tion [2] recently reported that the ridge-type structure
exists in pp collisions at

ffiffiffi
s

p ¼ 7 TeV for high multi-
plicity N � 90 event selections. The origin of the ridge
in pp collisions at the LHC is not still well understood
and it has been a subject of growing interest, see, for
example, Refs. [3–5]. The ridge was previously seen at
the Relativistic Heavy Ion Collider in central Cuþ Cu
collisions at

ffiffiffi
s

p ¼ 62:4 GeV and in Auþ Au collisions
at

ffiffiffi
s

p ¼ 200 GeV [6]. The description of nucleus-
nucleus (AA) collisions is generally more complicated
compared to the case of pp collisions. However, given
the relative similarity of the observed ridge structure in
both pp and AA collisions in terms of multiplicity,
transverse momenta and rapidity separations of pairs, it
is natural to ask whether the ridge phenomenon has a
unique origin and can be understood only by initial-state
effects. We recall that the highest multiplicity events per
unit rapidity in pp collisions at

ffiffiffi
s

p ¼ 7 TeV is compat-
ible to the one in central Cuþ Cu collisions at the
Relativistic Heavy Ion Collider.

In high-density QCD, we expect large rapidity correla-
tions for produced hadron pairs with the value of their
transverse momenta about the gluon saturation scale Qs

[3,7,8], see also Ref. [9]. At first sight, these correlations
should be small at fixed impact parameters. It has been
argued [8] that in the color-glass-condensate (CGC) ap-
proach [10] there is a source of the long-range rapidity
correlations which transforms into the azimuthal angle
correlations due to the collective flow in the final state.

In Ref. [3] it is argued that such mechanism can qualita-
tively explain the azimuthal angle correlations in proton-
proton collisions without a significant flow effect. The
issue of the importance of final-state and collective flow
effects in the observed ridge structure in pp collisions [2]
is still debatable [4], see also Refs. [11,12].
In this paper we will introduce a new source of long-

range azimuthal correlations for the produced charged-
hadron pairs. We show that the intrinsic long-range rapidity
correlations between the produced hadron pairs from two
parton showers generate considerable azimuthal angle cor-
relations which do not depend on the interaction in the final
state, and because of this, these correlations have the same
origin both in pp and AA interactions at high energy. These
correlations have no 1=Nc suppression in contrast to the
prescription suggested in Refs. [3,8]. Recently, Kovner and
Lublinsky, in a very nice paper, [13] put forward a general
discussion toward understanding the ridge. We have an
additional goal here, like Ref. [13], we shall try, in this
paper, to understand the general feature of the ridge based
on very general grounds and will show that the main
features of these correlations both in rapidity and emission
angle can be simply understood within the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) Pomeron calculus [14–19]. The
extension beyond this framework inside the saturation
regime will be also discussed.
The paper is organized as follows: In Sec. II, we intro-

duce our mechanism for the azimuthal correlations and
illustrate the main idea within the perturbative framework.
In Sec. III, we consider double inclusive gluon production
and its correlations within the BFKL Pomeron approach.
We show that the azimuthal correlations between produced
hadron pairs from two BFKL parton showers have a long-
range nature and will survive the BFKL leading log-s
resummation. In Sec. IV, we provide estimates of azimu-
thal correlations in both pp and AA collisions in the BFKL
and the saturation regions. As a conclusion, in Sec. V we
highlight our main results.
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II. THE AZIMUTHAL
CORRELATIONS: THE ORIGIN

In this section, we show that the long-range rapidity
correlations in azimuthal angle separation between the
hadron pairs can be simply understood in the perturbative
QCD approach. In the partonlike language, the Mueller
diagram [20] shown in Fig. 1 (right panel) describes the
emission of two particles (partons) from two parton show-
ers. One can write the contribution of this diagram to the
cross section of double inclusive gluon production in the
following generic form:

d�

dy1d
2 ~p1dy2d

2 ~p2

¼ 1

2

Z
d2 ~QTN

2
IPhðQ2

TÞ
d�

dy1d
2 ~p1

ð ~QTÞ

� d�

dy2d
2 ~p2

ð� ~QTÞ; (1)

where NIPh is the scattering amplitudes for Pomeron
(ladder)-hadron productions along which the transverse

momentum ~QT is transferred and d�=dyid
2 ~piT denotes

the corresponding cross section of the gluon production
with rapidity yi and ~piT in each of the BFKL Pomeron
ladders. This factorization is based on the leading log-s
approximation ignoring enhanced Pomeron diagrams.
Equation (1) can be motivated [21–25] using three main
ingredients: Gribov Reggeon [21,22] and Pomeron [14–18]
calculus, Abramovsky-Gribov-Kanchelli (AGK) cutting
rules [26], and the Mueller generalized optical theorem
[20]. In the Pomeron calculus the amplitude NIPh is a new
ingredient which can be written in the following form:

NIPhðQTÞ ¼
XMmax

n¼1

g2IPnðQTÞ þ
Z 1

Mmax

dM2

M2
gIPp

� ðQT ¼ 0ÞG3IPðQTÞðM2=s0Þ��IP þ . . . ; (2)

where n denotes the number of produced state with mass
Mn in the diffractive dissociation with Mmax as its maxi-
mum value (about 2 GeV) by which one can still express
NIP as a sum of resonances, gIPn denotes the vertex of the
Pomeron with this state (gIPn ¼ gIPp for n ¼ 1), and G3IP

denotes the triple-Pomeron vertex. The first term in Eq. (2)
describes the contribution of the state with finite mass and
this sum can be approximated by the sum of produced
resonances. The second term is responsible for high mass
contribution and can be described by the Pomeron contri-
bution which leads to the factor ðM2=s0Þ��IP where �IP

is the Pomeron intercept and s0 is the energy scale
(s0 � 1 GeV) [25], see Fig. 2. In the framework of the
high-energy Pomeron phenomenology, it turns out that QT

dependence of the resonance contribution is much steeper
than the one in the triple-Pomeron term. In the BFKL
Pomeron calculus this fact has a natural explanation: the
resonance contributions are determined by the nonpertur-
bative soft scale which is about 1 fm, while the triple BFKL
Pomeron vertex has a natural scale of the order of the
saturation scale which increases with energy. It should be
stressed that NIPh has a very simple physical meaning,
namely N2

IPh is the probability to produce two parton

showers in hadron-hadron collisions.
At first sight, one may expect that Fig. 1 describes two

independent parton showers, and therefore there should not
be any correlation between two produced gluons from these
two parton showers. However, angular correlations stem

2
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2,T2y , p

2,T2

y , p
1,T1

N(Q )T

N(Q )T

FIG. 1. Mueller diagrams for two parton-showers production. The wave lines denote the BFKL Pomerons. This is the typical
diagram which gives an angular collimation of about �’ � 0.
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FIG. 2. Diagrams representing the Pomeron-hadron scattering amplitude NIPhðQTÞ as a sum of resonance contributions, a triple-
Pomeron diagram with the vertex denoted by G3IP and etc., see the text for the details. The wave lines denote the Pomeron, while
straight lines represent hadrons.
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from the ~QT integration in Eq. (1). Because of this integra-
tion the contribution of the diagram in Fig. 1 is not equal to
the product of two single inclusive cross sections leading to
nonzero two-particle correlation R � 0. In order to illus-
trate this simple fact, let us for the sake of argument assume
that the gluon production cross section in one parton shower

is proportional to ~QT � ~pi;T , or in other words,

d�

dyid
2 ~pi

ðQTÞ / ~QT � ~pi;T

d~�

d2yid
2 ~pi

: (3)

In this case, Eq. (1) simply becomes

d�

dy1d
2 ~p1;Tdy2d

2 ~p2;T

/
Z

d2 ~QTN
2
IPhðQ2

TÞ
d~�

dy1d
2 ~p1;T

ðQ2
TÞ

d~�

dy2d
2 ~p2;T

ðQ2
TÞ

� ð ~QT � ~p1;TÞð ~QT � ~p2;TÞ;
¼ � ~p1;T � ~p2;Tð�=2Þ

Z
dQ2

TN
2
IPhðQ2

TÞ
d~�

dy1d
2 ~p1;T

ðQ2
TÞ

� d~�

dy2d
2 ~p2;T

ðQ2
TÞ: (4)

The above equation explicitly shows an angular correlation
between two produced gluons in two parton showers.
Having this equation in mind, in the next section we will
explicitly show that the vertex emission of gluon from the
BFKL Pomeron with QT � 0 (see Fig. 3) has a structure
similar to Eq. (4).

For simplicity and clarity of the presentation, let us first
work in the Born approximation, see Fig. 3(a). In this
approximation, up to �3 strong-coupling corrections, the
inclusive singlet gluon production at very high energy,
assuming that all components of the exchanged momentum
are much smaller than the projectile and target momentum
(for s �j t j ) is given by

d2�

dyd2 ~pT

¼2�3CF

�2

Z
d2 ~qT

��ð ~qT; ~q0TÞ~��ð�ð ~q� ~QÞT;�ð ~q0 � ~QÞTÞ
q2Tð ~Q� ~qÞ2Tq02T ð ~Q� ~q0Þ2T

;

(5)

whereCF ¼ ðN2
c � 1Þ=2Nc is the SUðNcÞCasimir operator

in the fundamental representation with the number of color
equals Nc. We used a notation ~pT ¼ ~qT � ~q0T . The effec-

tive vertex �� and ~�� for the emission of gluons [see

Fig. 3(a)] is related to the Lipatov vertex ��
�� [14,15] in

the following way:

~� �ð ~qT; ~q0TÞ ¼
2

s
p1�p2��

�
��ð ~qT; ~q0TÞ; (6)

where p1 and p2 represent the momenta of the incoming
projectile and target gluon, and the center of mass energy is
s ¼ 2 ~p1: ~p2. The product of the two vertices appeared in
Eq. (5) can be simplified to

Kð ~QT; ~qT; ~q
0
TÞ�

1

2
��ð ~q0T; ~qTÞ~��ð�ð ~q� ~QÞT;�ð ~q0 � ~QÞTÞ;

¼ 1

p2
T

ðq02T ð ~Q� ~qÞ2Tþq2Tð ~Q� ~q0Þ2T�p2
TQ

2
TÞ:

(7)

Substituting the above expression into the cross section
given in Eq. (5), one immediately obtains

d2�

dyd2 ~pT

/ �3
Z d2 ~qT

p2
T

�
1

q02T ð ~Q� ~qÞ2T
þ 1

q2Tð ~Q� ~q0Þ2T
� Q2

Tp
2
T

q2Tq
02
T ð ~Q� ~qÞ2Tð ~Q� ~q0Þ2T

�
; (8)

~
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pi−1T pi−1T
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FIG. 3 (color online). The ladder-type diagram that describes the production of gluon with transverse momentum piT in the Born
approximation [Fig. 3(a)] and BFKL Pomeron [Fig. 3(b)]. The blobs represent Lipatov vertices and the spiral in the left panel denotes
reggeized gluons. The produced gluon in the i-th rung is shown within a box.

RIDGE FROM THE BFKL EVOLUTION AND BEYOND PHYSICAL REVIEW D 84, 034031 (2011)

034031-3



!pT�qT ;QT�qT
�3

Z d2 ~qT
p2
Tq

4
T

�
2þ 4

~QT � ~pT

q2T
þ 32

ð ~pT � ~QTÞ2
q4T

�
;

(9)

!pT�qT ;QT�qT
�3

Z d2 ~qT
q2Tp

4
T

�
2þ 2

~QT � ~pT

p2
T

þ 4
ð ~pT � ~QTÞ2

p4
T

�
:

(10)

Notice that in the Born approximation we do not consider
the kinematic region qT � QT since we will show later
that this region is not important for the azimuthal correla-
tions from the BFKL Pomeron. Moreover, we should stress
that the expansion here is only for the purpose of illustra-
tion to trace back the origin of the azimuthal angle corre-
lations in our approach while for the practical estimates,
one has to perform the integrals without resorting to any
approximation.

First notice that Eq. (5) is symmetric1 under ~qT ! ~q0T
and ~pT !� ~pT . In the expansion given in Eqs. (9) and (10),
we changed the variable to ~q0T ¼ ~qT � ~pT . Changing the
variable in Eq. (8) to ~qT ¼ ~q0T þ ~pT and then in the same
fashion by expanding the equation we get the same ex-
pression as in the above equations but the second term in
Eqs. (9) and (10) will be with the opposite sign. Actually,
these two expansions correspond to different regions of the
integrand in Eq. (8). Summing these two contributions2 we
obtain the following form for the double inclusive cross

section from Eq. (1) in the case of ~pT � ~qT , ~q
0
T ,

~QT � ~q0T ,
~qT :

d�

dy1dy2d
2 ~p1;Td

2 ~p2;T

¼
Z
d2 ~QTN

2
IPhðQTÞ d�

dy1d
2 ~p1;T

ðQT ¼0Þ d�

dy2d
2 ~p2;T

ðQT ¼0Þ

þ32p2
1;Tp

2
2;Tð2þcosð2�’ÞÞ

�
Z
d2 ~QTQ

4
TN

2
IPhðQTÞ d~�

dy1d
2 ~p1;T

ðQT ¼0Þ

� d~�

dy2d
2 ~p2;T

ðQT ¼0Þ; (11)

where �’ denotes the angle between ~p1;T and ~p2;T and we

defined

d�

dyd2 ~pT

¼4
2�s

CF

1

p2
T

Z
d2 ~qT�ð ~qT;� ~qTÞ�ð ~qT� ~pT; ~pT� ~qTÞ;

(12)

and

d~�

dyd2 ~pT

¼4
2�s

CF

1

p2
T

Z d2 ~qT
q4T

�ð ~qT;� ~qTÞ�ð ~qT� ~pT; ~pT� ~qTÞ

¼
�
1

q4T

�
d�

dyd2 ~pT

: (13)

In the above, we used the following notation:

�
1

q4T

�
¼

R d2 ~qT
q4T

�ð ~qT;� ~qTÞ�ð ~qT � ~pT; ~pT � ~qTÞR
d2 ~qT�ð ~qT;� ~qTÞ�ð ~qT � ~pT; ~pT � ~qTÞ

; (14)

where � denotes the unintegrated gluon density of the
projectiles [27] for QT ¼ 0,

�ð ~qT;� ~qTÞ ¼ �sCF

�

1

q2T
: (15)

Notice that at Q ¼ 0 the inclusive cross section given in
Eq. (5) is identical to Eq. (12).
This simple example indicates that we have a natural

mechanism for the azimuthal correlations in the framework
of perturbative QCD which does not depend on the final-
state interactions and leads to the correlations inside of
initial wave function of the incoming hadrons. In the next
section, we will show that this azimuthal correlation has
long-range nature and will survive the BFKL leading log-s
resummation.

III. LONG-RANGE AZIMUTHAL CORRELATIONS
FOR TWO BFKL PARTON SHOWERS

The generalization of the Born approximation to the
case of gluon emissions from the BFKL Pomeron cannot
be simply obtained via Eq. (11) by replacing the uninte-
grated gluon density � to the one obtained from the BFKL
equation. Indeed, the unintegrated gluon density � de-

pends also on ~QT and we have to be very careful with
putting QT ¼ 0. The inclusive gluon product can be
generally written as

d�ðQTÞ
dyd2 ~pT

¼ 4
2�s

CF

Z
d2 ~qTKð ~QT ; ~qT; ~q

0
TÞ

1

q02T ð ~Q� ~qÞ2T
��ðY � y; ~qT; ~QT � ~qTÞ
��ðy; ~qT � ~pT; ~QT � ~qT þ ~pTÞ; (16)

1We thank our referee for drawing our attention to this point.
2These two expansions can be also envisaged as two different

processes: in Eqs. (9) and (10) the transverse momentum of the
produced gluon is compensated by the gluon with the value of
the rapidity smaller than the rapidity of the produced gluon with
the transverse momentum pT [gluon with rapidity 0 in Fig. 3(a)],
while with the expansion in q0T we consider the process where pT

is balanced by the gluon with the rapidity larger than the rapidity
of the produced gluon with the transverse momentum pT [gluon
with rapidity Y in Fig. 3(a)].
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where Kð ~QT ; ~qT; ~q
0
TÞ is the BFKL kernel given in Eq. (7)

and we defined ~q0T ¼ ~qT � ~pT . In the above, the variable
Y ¼ lnðs=m2Þ denotes the total rapidity in the lab frame
where m is the nucleon mass and y and ~pT are the trans-
verse momentum and rapidity of the produced gluon,

respectively. Notice that at QT ¼ 0, the above expression
has the same functional form as the kT factorization [27].

The only dependence on ~pT comes from the term �ð ~qT�
~pT; ~QT� ~qTþ ~pTÞ for which we have the color-singlet
BFKL equation [14,28]:

�ðy; ~q0T; ~QT � ~q0TÞ ¼
��s

�

Z y
dyiþ1

�Z
d2 ~q00Kð ~QT; ~q

0
T; ~q

00
TÞ

1

q002T ð ~Q� ~q0Þ2T
�ðyiþ1; ~q

00
T;

~QT � ~q00TÞ

�
�

q02T
ðq00Þ2Tð ~q0 � ~q00Þ2T

þ ð ~Q� ~q0Þ2T
ðq00Þ2Tð ~Q� ~q0 � ~q00Þ2T

�
�ðyiþ1; ~q

0
T;

~QT � ~q0TÞ
�
; (17)

where we defined ��s ¼ �Nc=�. We first substitute �ðy; ~q0T; ~QT � ~q0TÞ given in Eq. (17) into Eq. (16) and expand the
kernels of both equations up to the terms of the order ofQ2

T . Then we again use Eq. (17) but atQT ¼ 0 and collect all terms
into �ðy; ~q0T; ~q0TÞ. Therefore, we obtain the following equation:

d~�ðQTÞ
dyd2 ~pT

¼ 4
��s

CF

Z
dq2TKð0; ~qT; ~q0TÞ

1

q02T q2T
�ðY; ~qT;� ~qTÞ�ðy; ~q0T;� ~q0TÞ

�
1þ ~pT � ~QT

q02T
þ 2

ð ~pT � ~QTÞ2
q04T

þ . . .þ terms of the order ofQT that do not lead to azimuthal angle correlations

�
: (18)

In order to understand better if the above approximation can be justified, let us examine the ladder summations
which lead to the BFKL equation. At leading log-s approximation, the imaginary amplitudeA of the quark-quark elastic
scattering with the exchange of a color-singlet gluon ladder whose vertical lines are reggeized gluons [14,15,28] can be
written as

ImA � X
n

Að2 ! nÞOA	ð2 ! nÞ ¼ s2CFg
4
s

X
n

Z Y
i¼0

g2sKð ~QT; ~qi;T; ~qiþ1;TÞ
~q2iþ1;Tð ~qiþ1;T � ~QTÞ2

�
�i

�iþ1

�
	Gð ~qiþ1;T Þþ	Gð ~qiþ1;T� ~QT Þ

; (19)

where Kð ~QT; ~q; ~q
0Þ is again the BFKL kernel given in

Eq. (17). The right-hand side of the above equation shows
that the BFKL Pomeron can be written as a sum of
production cross sections as it follows from the optical
theorem. The symbol

N
denotes the integrations over

nþ 2-body phase space and the parameters �i (with
�0 ¼ 1) are the standard Sudakov variables for the mo-
mentum of the t-channel gluons which obeys strong order-
ing of the longitudinal momenta [14,15,28]. The
expression in Eq. (19) takes into account the reggeization
of gluons in the t channel, which means that the spin of the

gluon is not equal to 1 as in perturbative calculations but it
is given by the reggeized gluon trajectory

�Gð ~qi;TÞ¼1þ	Gð ~qi;TÞ¼1þ ��s

�

Z d2 ~q0Tq2i;T
q02T ð ~qi;T� ~q0TÞ2

: (20)

We recall that the produced gluon in the i-th rung ladder is
on-shell with ~pi;T ¼ ~qiþ1;T � ~qi;T . Then, in order to find
~QT and ~pi;T correlations, one needs only to keepQT � 0 in
the i-th rung of the ladder [see Fig. 3(b)] and to putQT ¼ 0
in all other rungs. The contribution of this particular sell to
the amplitude has the following structure:

Kð ~QT; ~qi;T; ~qiþ1;TÞ
ð ~qiþ1;T � ~piÞ2ð ~qiþ1;T � ~pi � ~QTÞ2q2iþ1;Tð ~qiþ1;T � ~QTÞ2

�
�i

�iþ1

�
	Gð ~qiþ1;T Þþ	Gð ~qiþ1;T� ~QT Þ��i�1

�i

�
	Gð ~qiþ1;T� ~piÞþ	Gð ~qiþ1;T� ~pi� ~QT Þ

:

(21)

Although the above equation includes the virtual radiative
corrections, it has a very similar structure to the case of the
Born approximation given in Eq. (5) and consequently, in
the same fashion discussed in the previous section, it also
gives rise to the azimuthal correlations. Therefore, in order

to extract the correlations between two produced gluons, it
is sufficient to use Eq. (17) in which we can put QT ¼ 0 in
�ð ~q00T; ~QT � ~q00TÞ and �ðq0T; ~QT � ~q0TÞ. Using Eq. (18) and
adding the contribution of the integration region in qT
where j ~qT � ~pTj � j ~pTj, we obtain from Eq. (1),
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d�

dy1dy2d
2 ~p1;Td

2 ~p2;T

¼�
Z
dQ2

TN
2
IPhðQ2

TÞ
d�

dy1d
2p1;T

ðQT¼0Þ d�

dy2d
2p2;T

ðQT¼0Þ

�
�
1þ1

2
p2
1;Tp

2
2;TQ

4
T

�
1

q4

�
2ð2þcosð2�’ÞÞ

�
; (22)

¼N
�
1þ1

2
p2
1;Tp

2
2;T

��
Q4

T

���
1

q4

�
2ð2þcosð2�’ÞÞ

�
; (23)

where �’ is the angle between ~p1;T and ~p2;T and we
defined the following notations:

�
1

q2nT

�
¼

Rd2 ~qT
q2nT

�ðY�y; ~qT;� ~qTÞ�ðy; ~qT� ~pT; ~pT� ~qTÞR
d2 ~qT�ðY�y; ~qT;� ~qTÞ�ðy; ~qT� ~pT; ~pT� ~qTÞ

;

(24)

hhQ2n
T ii ¼

R
d2 ~QTQ

2n
T N2

IPhðQ2
TÞR

d2 ~QTN
2
IPhðQ2

TÞ
; (25)

with n ¼ 1, 2. The normalization factor N in Eq. (23) is
given by

N � �
Z

dQ2
TN

2
IPhðQ2

TÞ
d�

dy1d
2 ~p1;T

ðQT ¼ 0Þ

� d�

dy2d
2 ~p2;T

ðQT ¼ 0Þ: (26)

From the above, it is obvious that the production of two
parton showers with a transverse momentum ~QT along the
Pomeron ladder, naturally leads to the long-range rapidity
correlation in the azimuthal angle while the emissions from
one parton shower given by the BFKL Pomeron contribu-
tion do not lead to such correlations, see also Ref. [7].

IV. ESTIMATES OF AZIMUTHAL ANGLE
CORRELATIONS IN pp AND AA COLLISIONS

We recall that the long-range azimuthal angle correla-
tions obtained by Eq. (23) are valid in the leading log-s
approximation at high energy. The azimuthal angle corre-
lations in Eq. (23) are uniquely determined by only know-
ing the average values h1=q2nT i and hhQ2n

T ii. This equation
was truncated at n ¼ 2 assuming that the transverse mo-
mentum QT in the Pomeron ladder is small. Let us explore
the idea that Eq. (23) is also valid in the saturation region
(or at least on the boundary between the BFKL and the
saturation regime) by choosing the corresponding average
values h1=q2nT i and hhQ2n

T ii in that region.
In the kinematic regime of the BFKL (ignoring the

saturation effect) from Eq. (24) we obtain h1=q2nT i �
1=maxf�2n; Q2n

T g where � is the nonperturbative soft
scale. At the LHC energies, the inclusive production stems
from the kinematic region in which saturation effects are
important [29–31]. In this region, the interaction between
Pomerons leads to more complicated diagrams, the so-
called enhanced diagrams shown in Fig. 4. It has been
shown (see Ref. [19] and references therein) that the
enhanced diagram leads to the value of the characteristic
momentum of the order of Qs, namely, we have QT / Qs.
We do not need to follow the complete calculations of this
paper to understand why it happens so. Indeed, assuming
that QT � typicalq � Qs we can replace the BFKL
Pomerons in the loop by the Pomerons at QT ¼ 0.
Therefore, in this case, we have

R
Qs d2QT ¼ Q2

s . For

QT � q the Pomeron exchange falls down with QT mak-
ing the integral being concentrated at QT ¼ qT ¼ Qs. In
order words, if densities of partons in one parton shower is
so large that we have already reached the saturation region
of the gluon density, we can assume that the average
h1=q2nT i � 1=Q2n

s where Qs is the saturation scale. This
also follows from the high-density QCD within the
CGC approach [10] which describes the LHC data for

y , p
2,T2

y , p
1,T1

2

y , p
1,T1

y , p
2,T2

FIG. 4. Parton-shower production with the typical enhanced diagram and the corresponding Mueller diagram for two gluon
correlations. The wave lines denote the BFKL Pomerons.
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the inclusive hadron production both in pp and AA colli-
sions [29,30], see also Ref. [31]. We also assume that the
density of partons in both parton showers is very large and
consequently Pomeron enhanced diagrams are important,
and therefore we can have hhQ2n

T ii � Q2n
s . Therefore, we

assume that in the saturation region we have only one
relevant scale, the saturation scale, and the average trans-
verse momenta are related to this scale.

Notice that the maximum of the double inclusive pro-
duction is reached at p1;T � p2;T � Qs. Admittedly, we do

not have a rigorous proof of this at our disposal without
invoking any approximation, but this may be immediately
understood within the CGC approach since Qs is the only
dimensional parameter of the approach. This can be also
seen in the simple case of the Born approximation by
comparing Eqs. (9) and (10). Note that Eq. (9) gives the
contribution at small values of pT and the correlations
vanish at pt ! 0 and increase with pT while Eq. (10)
shows that the correlations fall down at large values of
pT . Therefore, the correlation function has a maximum at
pT � hqTi, where hqTi is the typical transverse momentum
of the system. The same argument is valid for the general
case of the gluon pairs production from the BFKL
Pomeron. This can be seen by comparing Eq. (23) and its
corresponding equation in the limit of pT � qT � QT . It
should be stressed that the experimental data from the
CMS Collaboration indicates that the maximum of corre-
lations occurs at the kinematic region that the saturation
effects is important [2].

The probability for the events with multiplicity equals
N ¼ 2hNi, where hNi is the multiplicity in one parton
shower, can be obtained by Eq. (26) and the corresponding
cross section of such events is �ðN ¼ 2hNiÞ / N . Using
Eq. (23), we obtain the two-particle correlation functionR
for the event selections with multiplicity N as

R ð�’; y1; y2Þ ¼
dN

dy1d
2 ~p1;Tdy2d

2 ~p2;T

d2N
dy1d

2 ~p1;T

d2N
dy2d

2 ~p2;T

� 1

¼ �nð �n� 1Þ
2 �n2

�
1þ 1

2
ð2þ cosð2�’ÞÞ

�
� 1;

(27)

where the parameter �n ¼ EðN=hNiÞ is the relative average
number of Pomeron parton showers in the event selections
with multiplicity N, the average multiplicity hNi denotes
the multiplicity in the mini-bias and function E gives the
integer value of its argument. The prefactor in Eq. (27)
comes from counting the various possible ways to have two
gluons production out of �n Pomeron parton showers. In
other words, for simplicity we assumed that �n showers
are produced and two correlated gluons come from only
two different parton showers. The number of these
pairs is equal to �nð �n� 1Þ=2 and, moreover, we have

d2N
dyid

2pi;T
¼ �n d2Nðone parton showerÞ

dyid
2pi;T

; therefore, the prefactor in

Eq. (27) can be readily obtained.
Notice that the main background for the double inclusive

gluons production is due to two jets production from one
parton shower. However, this production is suppressed by
making a selection in the events. From AGK cutting rules
[26], it follows that the multiplicity in one parton shower is
equal to the average multiplicity measured by the experi-
ment in the mini-bias events. It should be stressed that the
AGK cutting rules also work for two parton-showers pro-
duction in QCD [32]. It is well-known that the gluon
distribution in the BFKL Pomeron is close to the Poisson
distribution, see Ref. [33] and references therein. The
production from two parton showers starts to be signi-
ficant only for the events with multiplicity larger than
2hNi where hNi is the mean multiplicity, see Fig. 1. On
the other hand, the probability to have events with
multiplicity 2hNi in one parton shower is approximately
suppressed as expð�ð2hNi � hNiÞ2==2hNiÞ � 1 for the
Poisson distribution.
One can observe in Eq. (27) that except the overall

prefactor, the coefficients do not depend on multiplicity
and rapidity of pairs. Of course, this feature may be altered
due to the possible contamination of two gluons production
from one parton shower, which may lead to short-range
rapidity correlations in the azimuthal angle �’. However,
in particular, an experimental setup with high multiplicity
events where our underlying saturation assumption,
namely, hhQ2n

T ii � hq2nT i � Q2n
s is at work, these correla-

tions could be ignored and can only create a background
that will fall off at large multiplicity events.
In order to understand how much the azimuthal asym-

metry depends on the value of hhQ2n
T ii, we next estimate

hhQ2n
T ii in the BFKL kinematic region ignoring the so-

called enhanced diagrams (shown in Fig. 4). In order to
calculate hhQ2n

T ii defined in Eq. (25), we should know the
nonperturbative amplitudeNIPpðQTÞ defined in Eq. (2). For
NIPpðQTÞ, we use the quasieikonal approximation [24]. In

this approximation we restrict ourselves to the first term in
Eq. (2) and the contribution of the other terms is taken into
account by introducing an extra factor N0,

NIPpðQTÞ ¼ N0g
2
IPpðQTÞ; (28)

where gIPp is the vertex of Pomeron-proton interaction.

This approximation has been widely employed in Pomeron
phenomenology and works quite well in the description of
the experimental data [34]. The dependence of the BFKL
Pomeron on the transverse momentum QT is given by
gIPpðQTÞ ¼ 1=ð1þQ2

T=m
2Þ2 with the typical mass m de-

termined from the experimental data. The dipole form of
gIPp is inspired by the QT dependence of the electromag-

netic form factor of the proton. Using this distribution we
obtain hQ2

Ti ¼ m2=6 and hQ4
Ti ¼ m2=15. The experimen-

tal data for diffractive production of the vector meson in
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the deep-inelastic scattering [35] indicates that m2 ¼
0:8 GeV2. However, the CDF data on double jet production
[36] shows that the typical value of QT could be larger
leading to a bigger value for m2 ¼ 1:6 GeV2. Again, as-
suming that hq2nT i ¼ Q2n

s the corresponding two-particle
correlation function R for p1T ¼ p2T ¼ Qs and �n � 2
becomes

R ð�’;y1;y2Þ¼ �nð �n�1Þ
2 �n2

�
1þ m4

30Q4
s

ð2þcosð2�’ÞÞ
�
�1:

(29)

It is seen from above that the coefficients in R now
depend on the rapidity via the saturation scale Qs in con-
trast to Eq. (27). However, one should note that deep inside
the saturation region the above equation is not reliable and
one should then use Eq. (27). It is instructive to notice that
the two BFKL parton-showers contribution leads to
Eq. (29) with the soft scale � instead of Qs. This scale is
a new phenomenological parameter which does not depend
on energy, and it is certainly � 
 Qs.

In Fig. 5 (right) we show the azimuthal correlation R
obtained from Eq. (29) when hhQ2n

T ii was calculated within

the BFKL region for two different masses m2 ¼ 0:8 GeV2

andm2 ¼ 1:6 GeV2. In this plot, we take a fixed saturation
scale Q2

s ¼ 0:6 GeV2. The chosen saturation scale is in
accordance with the estimates of Ref. [29] in pp collisions
at the LHC. In Fig. 5 (right) we also show the azimuthal
correlation R obtained from Eq. (27) in the saturation
region at a different multiplicity N ¼ �nhNi. It is observed
that deep inside the saturation region we have the ridge-
type structure, namely, a second local maximum near
�’ � 0 independent of rapidity when pT is near the
saturation scale. By comparing the results shown in
Fig. 5 from Eqs. (27) and (29), it is notably seen that by
going from the BFKL to the saturation region, a pro-
nounced ridge-type structure emerges. In Fig. 5 we show
the experimental data from the CMS Collaboration [2] for
projections of two dimensional correlation functions onto
�’ [denoted in Fig. 5 (left panel) by��] for the difference
in the pseudorapidity of pair 2<�
< 4:8 in different pT

and multiplicity bins at 7 TeV pp collisions and recon-
structed PYTHIA8 simulations [37]. It is important to note
that PYTHIA8 qualitatively fails to reproduce the local
maximum in the nearside correlation in any of the pT or
multiplicity bins [2], see Fig. 5. Notice that our definition

0 1 2 3

∆ϕ
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-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

R

Saturation: n = ∞

Saturation: n = 7

Semi-saturation:n = 7, m2=1.6 GeV2

Semi-saturation:n = 7, m2=0.8 GeV2

p
1T

 = p
2T

 = Q
s

FIG. 5 (color online). Right panel: The correlation function R at different multiplicity N ¼ �nhNi. The curves labeled by
‘‘Saturation’’ are the results from Eq. (27) when hhQ2n

T ii � Q2n
s with Qs being the saturation scale. The curves labeled by ‘‘Semi-

saturation’’ are the results from Eq. (29) when hhQ2n
T ii was calculated within the BFKL region for two different massesm2 ¼ 0:8 GeV2

and m2 ¼ 1:6 GeV2. In both cases we assumed h1=q2nT i � 1=Q2n
s . Left panel: Experimental data from the CMS Collaboration for the

projections of 2D correlation functions onto �� for 2<�
< 4:8 in different pT and multiplicity bins at 7 TeV pp collisions and
reconstructed PYTHIA8 simulations [37]. The error bars are smaller than the symbols. The plot in the left panel is taken from Ref. [2].
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of the two-particle correlation R defined in Eq. (27) is
different from the experimental definition R [2] shown in
Fig. 5 with an overall factor. Here, given the simplicity of
our approach we do not wish to compare directly our
results with the experimental data. A meaningful compari-
son requires the inclusion of the correlations effect within
one parton shower, fragmentation, and possible short-range
correlation effects. Nevertheless, it is seen that the general
feature of the nearside two-point correlations obtained by
Eqs. (27) and (29) is compatible with the CMS experimen-
tal data [2]. One should note that for a denser system, the
imposed condition of p1T ¼ p2T ¼ Qs in Eq. (27) shifts
the relevant kinematic windows of the angular correlations
to the higher pT since the saturation scale will be larger for
a denser system.

Next, we consider the long-range correlations in
nucleus-nucleus scatterings. It is straightforward to gener-
alize Eq. (22) for the case of nucleus-nucleus collisions in
the framework of the Glauber approach, namely, assuming
that multiple scatterings are only permitted on different
nucleons while the nucleon-nucleon scattering stems from
the BFKL Pomeron exchange. The double inclusive cross
section at a fixed impact parameter between two center of
nuclei b will then have the same form as Eq. (22) except
the extra dependence on the nuclear profile. Notice that the
impact parameter b is the conjugate variable to the trans-
verse momentum QT . In the Glauber approximation
for nuclei, the scattering amplitude of the Pomeron
nucleus NIPA in the region of small diffractive masses is
defined as

NIPAðQTÞ �
�Z

d2 ~bd2 ~b0ei ~QT � ~bSAð ~b� ~b0ÞgIPpð ~b0Þ
�
2
;

� g2IPpðqT ¼ 0ÞS2AðQTÞ; (30)

where gIPp denotes the Pomeron-proton vertex and SAðbÞ is
the nuclear density profile defined by the Wood-Saxon
parametrization. The second equation above is valid
when the nuclear radius is larger compared to the proton
size RA � Rp. Using Eq. (30) one can obtain the following

expression for the double inclusive cross section at fixed b
in the framework of the Glauber approach in which the
proton-proton scatterings are taken into account from the
BFKL Pomeron:

d�A

dy1dy2d
2p1;Td

2p2;Td
2b

¼ 1

2

d�N

dy1d
2p1;T

d�N

dy2d
2p2;T

�
�
T2
AAðbÞ þ

1

2
p2
1;Tp

2
2;Tðh1=q4iprotonÞ2

� ð52
b 52

b T
2
AAðbÞÞð2þ cosð2�’ÞÞ

�
; (31)

where d�N

dy1d
2p1;T

is the inclusive cross section for proton-

proton scatterings3 and TAA is the nuclear overlap function
for AA collisions. Using Eq. (31) one can calculate the
correlation function R defined in Eq. (27):

R ðb;�’; y1; y2Þ ¼ 1
2p

2
1;Tp

2
2;Tðh1=q4iprotonÞ2ð52

b

52
b T

2
AAðbÞÞð2þ cosð2�’ÞÞ: (32)

It is straightforward to show that in the Glauber approach,
the inclusive production in AA collisions is proportional to
the overlap function TAAðbÞ while in the case of the double
inclusive production instead it is proportional to T2

AAðbÞ. It
is seen from Eq. (32) that independent productions are
canceled in R at fixed b while in the integral over b the
first term in Eq. (31) gives the main contribution. It is worth
mentioning that we do not need the additional factor �n as in
Eq. (29) since in the Glauber formulation for nucleus-
nucleus scatterings, events with a fixed multiplicity corre-
spond to a definite value of the impact-parameter.
Deep inside the saturation region, the correlation func-

tion has the same form as for hadron-hadron collisions
given by Eq. (27) with the saturation momentum replaced
by that of the nucleus Q2

sðAA; xÞ � TAAðbÞQ2
sðpp; xÞ

[30,31]. This is in agreement with the main idea of the
CGC approach that the difference between different reac-
tions is only due to the different value of the saturation
scale Qs. Assuming that we have hq2niproton ¼ Q2n

s ðpp; xÞ
(n ¼ 1, 2) in the saturation region, it is seen from Eq. (32)
that the two-particle correlation R reduces by increasing
the saturation scale of the proton. However, the Glauber
approximation is not reliable deep inside the saturation
region, and one should instead use Eq. (27), consequently
the slope of the reduction of the azimuthal correlations will
then be different. One attractive feature of the nucleus-
nucleus collisions is that by using centrality cuts, one can
study the underlying dynamics of two-particle correlations.

V. CONCLUSIONS

In this paper, we suggested a new mechanism for the
long-range rapidity correlations in the azimuthal angle of
produced hadron pairs, namely, the long-range angle cor-
relations of the two parton-showers component of the
initial partonic (gluonic) wave function. This mechanism
can be conceived as a realization of the general ideas
proposed in Refs. [3,13]. Our approach predicts large and
of the same order long-range angular correlations both for
hadron-hadron and nucleus-nucleus collisions inside the
gluon saturation region. In our approach, the collimation in
�’ exists independently of the effects from flow in the

3It should be noted that the inclusive cross section of proton-
proton scatterings enters Eq. (31) since the integration over the
impact parameter of proton-proton scatterings has been per-
formed as usual in the Glauber approach.
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later stages of the collisions. We showed that for extremely
dense systems at the truncation level up to n ¼ 2 for
hhQ2n

T ii we have R ! 0:25 (R ! �0:5 without correla-

tion) at �’ � 0, and R still has a second local maximum
near �’ � 0 at pT � Qs. We showed that our mechanism
qualitatively describes the main features of the observed
ridge structure in proton-proton collisions at the LHC atffiffiffi
s

p ¼ 7 TeV. A detailed comparison with experimental
data and numerical analysis is left for future.

The main difference between our approach and the
description in the framework of the CGC [3,7–9] is that
in our approach the saturation region is explored from
outside on the boundary with the BFKL region.We showed
that a clear signal of the ridge-type structure emerges by
going from the BFKL to the saturation regime. This is fully

consistent with the fact that the saturation/CGC approach
provides an adequate description of other 7 TeV data in pp
collisions including the inclusive charged-hadron trans-
verse momentum and multiplicity distribution [29,30].
Finally, notice that the correlations obtained in our ap-
proach are not suppressed with 1=Nc in contrast to the
prescription of Refs. [3,8] and survive in the leading order
in 1=Nc expansion.
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