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We match the Higgs sector of the most general flavor-breaking and CP-violating minimal super-

symmetric standard model (MSSM) onto a generic two-Higgs-doublet model, paying special attention to

the definition of tan� in the effective theory. In particular, no tan�-enhanced loop corrections appear in

the relation to tan� defined in the DR scheme in the MSSM. The corrections to the Higgs-mediated flavor-

changing amplitudes, which result from this matching, are especially relevant for the Bd and Bs mass

differences �Md;s for minimal flavor violation, where the superficially leading contribution vanishes. We

give a symmetry argument to explain this cancellation and perform a systematic study of all Higgs-

mediated effects, including Higgs loops. The corrections to �Ms are at most 7% for �> 0 and MA <

600 GeV if constraints from other observables are taken into account. For �< 0 they can be larger, but

are always less than about 20%. Contrary to recent claims, we do not find numerically large contributions

here, nor do we find any tan�-enhanced contributions from loop corrections to the Higgs potential in

Bþ ! �þ� or B ! Xs�. We further update supersymmetric loop corrections to the Yukawa couplings,

where we include all possible CP-violating phases and correct errors in the literature. The possible

presence of CP-violating phases generated by Higgs exchange diagrams is briefly discussed as well.

Finally, we provide improved values for the bag factors PVLL
1 , PLR

2 , and PSLL
1 at the electroweak scale.
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I. INTRODUCTION

Supersymmetry constrains the structure of the Yukawa
couplings of the minimal supersymmetric standard-model
(MSSM) to those of a special two-Higgs-doublet model
(2HDM). In this 2HDM of type II one Higgs doublet, Hu,
only couples to up-type fermions, while the other one, Hd,
only couples to down-type fermions. As a consequence,
there are no dangerous tree-level flavor-changing neutral
current (FCNC) couplings of the neutral-Higgs bosons.
However, the presence of supersymmetry-breaking terms
destroys this pattern at the one-loop level, permitting cou-
plings of both Higgs doublets to all fermions. Thus the
resulting Higgs sector is that of a general 2HDM, often
called 2HDM of type III. As pointed out first by Hall,
Rattazzi and Sarid, the loop-induced Yukawa couplings
can compete with the tree-level ones in the limit of a large
tan� ¼ vu=vd, which is the ratio of the vacuum expecta-
tion values (vevs) of Hu and Hd [1]: in the relationship
between Hu;d-couplings and observed masses of the down-

type fermions the loop-suppression factor �0:02 is offset
by a factor of tan�, so that Oð1Þ corrections to the type II
2HDM are possible for tan�� 50. In such scenarios, also
Oð1Þ loop-induced FCNC couplings of neutral-Higgs bo-
sons appear [2], which allow the branching fractions of (yet
unobserved) leptonic B decays to exceed their standard
model values by more than 2 orders of magnitude [3]. This
observation has stimulated a large activity in flavor
physics and powerful constraints on the MSSM Higgs

sector in scenarios with large tan� have been derived
from B factory data [3–6]. These Higgs-induced effects
in flavor physics are very transparent in the limit

MSUSY � MA � v; (1)

where MSUSY denotes the generic mass scale of the super-
partners and the masses MA, MH, Mh, and MH� of the five
physical Higgs bosons are taken to be of the order of the

electroweak scale v �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
u þ v2

d

q
¼ 246 GeV. All low-

energy observables can be computed in the type III
2HDM, which emerges as the effective theory in the limit
of Eq. (1). The new couplings can be calculated from finite
one-loop diagrams with supersymmetric particles and thus
become functions of the MSSM parameters, so that the
desired constraints on the supersymmetric parameter space
can be derived. The effective 2HDMLagrangian efficiently
incorporates all large- tan� effects, equivalent to a pertur-
bative all-order resummation of those radiative corrections
which are enhanced by a factor of tan� [7].
Bq � �Bq mixing (with q ¼ d or s) plays a special role

among the FCNC transitions of Bmesons. Here the leading
new effect stems from effective tree-level diagrams with
neutral-Higgs bosons (see Fig. 1). A priori the dominant
contribution is expected from Yukawa couplings to right-
handed b quarks, generating the effective�B ¼ 2 operator

QSLL
1 � ð �bRqLÞð �bRqLÞ: (2)
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However, the corresponding coefficient CSLL
1 vanishes ex-

actly if one employs the tree-level relations between the
Higgs masses and mixing angles [2]. Nevertheless, size-
able effects in Bs � �Bs mixing are possible even in scenar-
ios with minimal flavor-violation (MFV) [8–16], in which
the Cabibbo-Kobayashi-Maskawa (CKM) matrix [17] is
the only source of flavor-violation: keeping the strange
Yukawa coupling nonzero one finds a nonvanishing con-
tribution to the coefficient of

QLR
2 � ð �bRqLÞð �bLqRÞ; (3)

which depletes the Bs � �Bs mass difference �Ms [5]. The
tree-level vanishing of CSLL

1 calls for a systematic analysis

of all subleading effects. In particular, the contribution that
stems fromQSLL

1 can a priori competewith the contribution

of the operatorQLR
2 above if the one-loop corrections to the

MSSM Higgs potential [18–24] are taken into account.
While a lot of work has been devoted to the analysis of
the Yukawa sector [2,3,5–7,25], little attention has been
given to effects from the Higgs potential. An exception is
Ref. [26], which finds large contributions. We revisit these
effects in the present paper and perform a systematic
matching of the MSSM Higgs sector onto the type III
2HDM. The result is not only relevant for the calculation
of CSLL

1 , it also clarifies the relationship between the defi-

nitions of tan� in the MSSM and the effective 2HDM. This
is important to link the constraints from flavor physics to
other fields of MSSM phenomenology, in particular, Higgs
physics. Our paper is organized as follows. We derive the
corrected B� �B mixing amplitude in Sec. II, including all
relevant subleading contributions. The renormalization of
tan� and some further technical issues are the subject of
Sec. III. In Sec. IV, we apply our new formulas to the
phenomenology of B� �B mixing, analyzing the mass dif-
ferences�Md and�Ms as well asCP violation. Our results
are summarized in Sec. V. We list our notation and our
technical results in four appendices. Parts of our results
were previously presented by one of us at a conference [27].

II. HIGGS-MEDIATED EFFECTS IN B� �BMIXING

The quantity governing the Bq � �Bq mass difference is

the off-diagonal element of the Bq � �Bq meson mass

matrix: �Mq ¼ 2jMq
21j, with

Mq
21 ¼

h �BqjH �B¼2
eff jBqi

2MBq

: (4)

The �B ¼ 2 effective weak Hamiltonian H �B¼2
eff consists

in general of eight dimension-six operators:

H �B¼2
eff ¼ G2

FM
2
W�

2
qb

16�2

X8
i¼1

Cið�hÞQið�hÞ; (5)

with �qb � VtqV
�
tb. The set of operators in Eq. (5)

comprises the standard-model operator,

QVLL
1 ¼ ð �bL��qLÞð �bL��qLÞ; (6)

the two scalar operators defined in Eqs. (2) and (3), the
operator

QSRR
1 � ð �bLqRÞð �bLqRÞ; (7)

and four other operators. The complete list of operators
plus the relevant evanescent operators is given in Eq. (C4)
and (C5) of Appendix C. We express our results in terms of
matrix elements at the high-scale �h, which we choose
equal to the top mass �mtð �mtÞ ¼ 164 GeV. In this way, the
other four operators do not appear in our formulas.
However, some of them are needed to connect Qið�hÞ
with Qið�bÞ at the low scale �b �mb, at which their
matrix elements are computed, because they mix with
QSLL

1 , QSRR
1 , or QLR

2 under renormalization. We follow
the conventions of Refs. [28,29] for operators and matrix
elements. In particular, we parametrize the hadronic matrix
elements as

h �BqjQið�hÞjBqi ¼ 2

3
M2

Bq
f2Bq

Pi: (8)

The Pi’s are obtained [29] by renormalization-group evo-
lution from the conventional bag factorsBi computed at the
low scale �b. We calculate the Pi’s from up-to-date lattice
QCD results in Appendix C, where we fully exploit con-
straints from heavy-quark relations. This is a new feature
of our analysis compared to previous studies of new-
physics effects in B� �B mixing.

A. Effective tree-level Higgs exchange

The Higgs sector of the MSSM contains two SUð2Þ
doublets Hu and Hd,

Hu ¼
hþu
h0u

 !
; Hd ¼ �

hþd
h0d

 !�
; �¼ 0 1

�1 0

 !
; (9)

of hypercharge þ1=2 and �1=2, respectively, with vac-

uum expectation values (vevs) hh0u;di ¼ vu;d=
ffiffiffi
2

p
of relative

size tan� ¼ vu=vd. Integrating out supersymmetric parti-
cles, the Lagrangian of the resulting effective 2HDM is no
longer restricted to be of type II, and is constrained only by
the electroweak symmetry. Neither will it be renormaliz-
able, with operators of dimension greater than four

FIG. 1. Leading contributions to Bq � �Bq mixing from super-
symmetric Higgs bosons. The FCNC couplings are induced by
supersymmetric loops. The coefficient of QSLL

1 ¼ ð �bRqLÞð �bRqLÞ
vanishes, if the tree-level relations between Higgs masses and
mixing angles are used.
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encoding effects that decouple at least as v=MSUSY for
heavy superpartners. We begin with a short review of
some pertinent aspects of the general 2HDM.

Defining

�

�0

 !
¼ cos� sin�

� sin� cos�

 ! ��H�
d

Hu

 !
; (10)

the most general fermion-Higgs interactions up to
dimension-four read

LY ¼�
ffiffiffi
2

p
v

�dRiMdij�
yQLj� �dRi	ij�

0yQLj

�
ffiffiffi
2

p
v

�uRiMuijQLj ��� �uRi~	ijQLj ��0 þh:c:; (11)

where we have employed the notation a � b � aT�b. By

construction, the vev of�0 vanishes, whereas� has h�i ¼
ð0; v= ffiffiffi

2
p ÞT and contains all three Goldstone bosons. Hence,

only � can contribute to the fermion masses and only �0
can have flavor-violating neutral couplings. The flavor
basis is defined such that the down-quark mass matrix Md

is diagonal. In this basis, the FCNC Higgs couplings to
b-quarks are governed by 	bq or 	qb (q ¼ d or s).

The renormalizable Higgs self-interactions are com-
prised in the most general gauge-invariant dimension-
four two-Higgs-doublet potential [30],

V ¼m2
11H

y
dHdþm2

22H
y
uHuþfm2

12Hu �HdþH:c:g
þ�1

2
ðHy

dHdÞ2þ�2

2
ðHy

uHuÞ2þ�3ðHy
uHuÞðHy

dHdÞ

þ�4ðHy
uHdÞðHy

dHuÞþ
�
�5

2
ðHu �HdÞ2

��6ðHy
dHdÞðHu �HdÞ��7ðHy

uHuÞðHu �HdÞþH:c:

�
:

(12)

The couplings m2
12, �5, �6, and �7 are in general complex,

yet the vevs vu;d can be made real by aUð1Þ transformation

on the Higgs fields. The definitions of m2
ij and �i in

Eq. (12) coincide with Ref. [30], except for �3 and �4:
we associate a different operator with �4 to eliminate it
from tree-level neutral-Higgs phenomenology and have

instead �3 ¼ �½30�
3 þ �½30�

4 and�4 ¼ ��½30�
4 .

Shifting the fields in Eq. (12) by their vevs, which
minimize V at tree-level,1

h0u;d ¼
1ffiffiffi
2

p ðvu;d þ
u;d þ i�u;dÞ; (13)

determines the physical Higgs-boson mass matrices and
interactions. We write the neutral-Higgs mass matrix in the
basis ð
d;
u; �d; �uÞ in terms of 2	 2 blocks,

M2
0 ¼

M2
R M2

RI

M2T
RI M2

I

 !
; (14)

with M2
R, M

2
RI, and M2

I given in Eqs. (23)–(26) below. In
the CP-conserving case, M2

RI ¼ 0, and M2
R and M2

I are
diagonalized by rotating the CP-even and CP-odd Higgs
fields through angles � and �, respectively:


d


u

 !
¼ cos� � sin�

sin� cos�

 !
H0

h0

 !
;

�d

�u

 !
¼ cos� � sin�

sin� cos�

 !
G0

A0

 !
: (15)

The same angle � ¼ arctanvu=vd as defined above ap-
pears because (and only when) vu, vd minimize V. If CP
violation is present, four physical mixing angles �1;2;3 and

� are required to diagonalizeM2
0. The charged-Higgs mass

matrix M2þ is always diagonalized by �,

hþd
hþu

 !
¼ cos� � sin�

sin� cos�

 !
Gþ

Hþ

 !
: (16)

The nonstandard�B ¼ 2 effective operatorsQLR
2 ,QSLL

1 ,

and QSRR
1 are generated at tree-level via the exchange of

neutral-Higgs bosons (see Fig. 1) with the Wilson coeffi-
cients

CLR
2 ¼ � 8�2

G2
FM

2
W�

2
qb

ð	�
qb	bqÞFþ;

CSLL
1 ¼ � 4�2

G2
FM

2
W�

2
qb

ð	bqÞ2F�; (17)

and CSRR
1 obtained from CSLL

1 through the replacement

ð	bqÞ2F� ! ð	�
qbÞ2F��. We find that, in the general

case, the Higgs propagation factors can be expressed as
follows:

Fþ ¼ detðM2
R þM2

I þ iM2
RI � iM2T

RI Þ
m2

1m
2
2m

2
3

� detB

m2
1m

2
2m

2
3

; (18)

F�¼�detðM2
R�M2

I �iM2
RI�iM2T

RI Þ
m2

1m
2
2m

2
3

�� detA

m2
1m

2
2m

2
3

; (19)

where the denominators contain the product of the three
nonzero eigenvalues of M2

0. In the CP-conserving case,

Eqs. (18) and (19) reduce to the well-known expressions

F � ¼ sin2ð�� �Þ
M2

H

þ cos2ð�� �Þ
M2

h

� 1

M2
A

; (20)

where MH;h and MA denote the CP-even and CP-odd
Higgs-boson masses, respectively.
The discussion so far has been completely general.

Particularizing to the MSSM, a perturbative matching
calculation relates the two theories. At tree-level, this
trivially results in

1‘‘Tree-level’’ here refers to the 2HDM. We defer a discussion
of quantum corrections to vu and vd to Sec. III.
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Mð0Þ
d ¼ vffiffiffi

2
p cos�Yd; Mð0Þ

u ¼ vffiffiffi
2

p sin�Yu; 	ð0Þ ¼�sin�Yd; ~	ð0Þ ¼ cos�Yu; m2ð0Þ
11 ¼j�j2þm2

Hd
�m2

1;

�ð0Þ
1 ¼�ð0Þ

2 ¼��ð0Þ
3 ¼ðg2þg02Þ=4� ~g2=4; m2ð0Þ

22 ¼j�j2þm2
Hu

�m2
2; �ð0Þ

4 ¼g2=2; m2ð0Þ
12 ¼B�; �ð0Þ

5 ¼�ð0Þ
6 ¼�ð0Þ

7 ¼0:

(21)

At this order, 	ð0Þ and ~	ð0Þ are aligned with Mð0Þ
d and Mð0Þ

u ,
respectively, so that no FCNC are induced, as it must be in
a model II. At one-loop, all couplings in Eq. (12) are
generated. Moreover, the corrections to the Yukawa cou-
plings have the more general form

Mð1Þ
d ¼ vffiffiffi

2
p cos�½�Yd þ tan��K�;

	ð1Þ ¼ � sin�½�Yd � cot��K�;
(22)

where �Ydij and �Kij parametrize the one-loop vertices
�dRiHd �QLj and �dRiH

y
uQLj, respectively. Diagonalizing

Md rotates 	ð0Þ, giving rise to a flavor-violating coupling
/ Yd tan�=ð16�2Þ, which can be of Oð1Þ for tan�� 50.

The origin of this explicit tan� enhancement (in addi-
tion to the mere presence of large down-type Yukawa
couplings), which can compensate the loop factor
1=ð16�2Þ, is the replacement of vd by vu � vd in the
contribution of �K to Md [1].2 This removal of a vd

suppression can happen only in dimensionful quantities.
In the fermion mass terms, only one power of tan� can
appear because there was only one power of vd to begin
with. This is in agreement with the findings in [7]. Our
approach using unshifted Higgs fields (‘‘unbroken-
theory’’) makes particularly evident that this result holds
to all orders, as the Yukawa Lagrangian only involves
dimensionless couplings and there are no hidden factors
of tan�. Although we have integrated out only the

sparticles—as we assume a hierarchy v, MA 
 MSUSY—
the argument continues to hold if we also integrate over the
Higgs fields, keeping only constant background values of
�, �0 (spurions). The reason is that for determining the
mass matrices, the relevant external four-momenta are of
OðmqÞ, providing an expansion parameter mq=v or

mq=MA. Hence, the Higgs contributions to the effective

potential (which on general grounds respects the electro-
weak symmetry) can be organized into a (local) effective
Lagrangian, with mq-suppressed corrections to the form

Eq. (11) encoded in higher-dimensional operators with
additional derivatives acting on dRi or QLj. The contribu-

tion from both Higgs and sparticle loops to Md is then
simply obtained upon substituting for �, �0 their vacuum
expectation values. This mass matrix is to be identified

with a short-distance (such as MS) mass in the effective
QCD	 QED at low energies, where the dependence on the
chosen scheme cancels against the explicit form of the
matching (of the 2HDM onto QCD	 QED).
There is only one other place where a similar tan�

enhancement can occur, namely, in the dimensionful self-
couplings of the (shifted) Higgs fields, that is, their masses
and trilinear couplings. Indeed, at dimension two it is
exhibited in the neutral-Higgs mass matrix Eq. (14).
Explicitly, one has (with s� � sin�, c� � cos�, and �r

k �
Re�k)

M2
R ¼ v2

�r
5s

2
� þ 2�r

6s�c� þ �1c
2
� �r

7s
2
� þ �3s�c� þ �r

6c
2
�

�r
7s

2
� þ �3s�c� þ �r

6c
2
� �2s

2
� þ 2�r

7s�c� þ �r
5c

2
�

0
@

1
AþM2

I ; (23)

M2
I ¼ M2

A

s2� �s�c�
�s�c� c2�

 !
; (24)

where ðm2
12Þr has been traded for M2

A, with

s�c�M
2
A ¼ ðm2

12Þr �
v2

2
ð�r

7s
2
� þ 2�r

5s�c� þ �r
6c

2
�Þ: (25)

If CP is conserved, in the limit of infinite tan� (c� ! 0)
the leading mass splitting M2

H �M2
A ¼ �5v

2, and the
leading correction to the tree-level result � ¼ 0 is deter-

mined by �7. In the former case, an enhancement by two
powers of tan� occurs (M2

H �M2
A ¼ Oðcos2�Þ at tree-

level), while the loop correction to � is enhanced by a
single power of tan� with respect to its tree-level value.
Either effect is sufficient to remove the cancellation in
F� in Eq. (20) observed at tree-level. Moreover, a
1= tan�-unsuppressed CP-violating contribution propor-
tional to �i

5 and �i
7 appears to occur:

M2
RI ¼

v2

2

�i
5s

2
� þ 2�i

6s�c� ��i
5s�c� � 2�i

6c
2
�

2�i
7s

2
� þ �i

5s�c� �2�i
7s�c� � �i

5c
2
�

0
@

1
A;

(26)

where �i
k � Im�k. However, as we show in Sec. IIc

below, the individual phases of �5 and �7 become
unphysical in the limit tan� ! 1, and mixing between
the CP-even and CP-odd sectors is described by a single

2We tacitly assume that the fermion kinetic terms in the
effective 2HDM have been made canonical. Such a field renor-
malization does not contribute factors of tan� because it is
determined by dimensionless couplings. Cf. Sec. III for a dis-
cussion of field renormalization. Our �K and �Yd correspond to
�uYd and ��dYd, respectively, in the first paper of Ref. [5].
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angle �0, determined by the relative phase of �5 and �2
7.

Finally, the charged-Higgs mass matrix is given by

M2þ ¼
�
1þ v2ð�4 þ �r

5Þ
2M2

A

�
M2

I : (27)

Here, no tan� enhancement due to loop-induced cou-
plings occurs.

Unlike the case of the fermion mass matrix, the typical
momentum flowing through the effective Lagrangian
Eq. (12) for an on-shell Higgs is itself of OðvÞ or
OðMAÞ. Hence Higgs-loop contributions to the Higgs
masses cannot be included in Eq. (12), but rather the full
effective action would be needed. Higgs-loop effects in 	bq

and 	qb multiplying F� could, however, be included via

Eq. (11), since again the momenta flowing through the
vertices are much smaller than v, MA. This is not possible
in Higgs boxes, where large momenta flow through the
FCNC vertices. We will present a systematic method to
include all Higgs-loop contributions in Sec. IIc.

It is instructive to consider the explicit form of the
numerator in Eq. (19), which is

detA¼v4½ð�2�
�
5���2

7 Þs4�þ2ð�2�
�
6��3�

�
7þ��

5�7Þs3�c�
þð�1�2��2

3þj�5j2�2�6�
�
7þ4��

6�7Þs2�c2�
þ2ð�5�

�
6��3�6þ�1�7Þs�c3�þð�1�5��2

6Þc4��: (28)

With Eq. (21), detA ¼ v4ð�1�2 � �2
3Þs2�c2� ¼ 0, reproduc-

ing the known vanishing of F� employing the tree-level
MSSM Higgs sector. The cancellation is removed already
at the leading-logarithmic level. For instance, �2 alone
receives a large additive correction / y4t due to top-quark
loops, which is also responsible for the most important
correction to the tree-level mass of h. The corresponding
corrections could be computed by RG-evolving the tree-
level couplings in the effective 2HDM. However, as we are
considering large tan�, we expect (and find below) the
most important effect to be due to �5 and �7, which remove
the Oðc2�Þ suppression of the leading-log result, as antici-

pated above.

B. The case of minimal flavor-violation

From the discussion so far, it follows that jFþj ¼
Oð1=M2

AÞ � jF�j ¼ Oð1=ð16�2M2
AÞÞ, implying jCLR

2 j �
jCSLL

1 j for generic 	ij,
3 such that the motivation to consider

F� at all is not very strong. The situation is fundamentally
different for MFV because then the contribution propor-

tional to Fþ turns out to be suppressed by a light quark
mass, introducing a further small parameter mq=mb com-

parable to 1=ð16�2Þ or 1= tan� for q ¼ s (and negligible
for q ¼ d). For simplicity, in this paper we consider the
simplest version of MFV, assuming flavor-universal soft-
breaking terms ~m2

Q, ~m2
u, and ~m2

d and trilinear SUSY-

breaking terms Tuij , Tdij which are proportional to the

Yukawa matrices and therefore diagonal in the super-

CKM basis (denoted with a hat): T̂uij ¼ atyui
ij and

T̂dij ¼ abydi
ij, see Appendix A for details of our notation.

The structure of our results, however, does not depend on
these additional assumptions. The tan�-enhanced loop-
induced FCNC couplings of the neutral-Higgs bosons in
Eq. (11) can be expressed as:

	bq ¼ �Yy
2
t �qb

ffiffiffi
2

p
mb

vcos2�

1

1þ ~�3 tan�

1

1þ �0 tan�
; (29)

	qb ¼ �Yy
2
t �

�
qb

ffiffiffi
2

p
mq

vcos2�

1

1þ ~�3 tan�

1

1þ �0 tan�
; (30)

with yt ¼
ffiffiffi
2

p
mt=ðv sin�Þ and �qb ¼ VtqV

�
tb. The effective

couplings �Y , �0, and ~�3, which depend on the MSSM
parameters, have been analyzed in the decoupling limit
MSUSY � v in the limit g ¼ g0 ¼ 0 in Refs. [2–4] for the
case that �Y , �0 and ~�3 are real and in Ref. [25] for
the maximally CP-violating MFV scenario. We consider
the CP-violating case allowing �, the universal trilinear
term at and the gaugino mass parameters to be complex.
Effects from nonzero g, g0 have been taken into account in
Ref. [5], where also effects beyond the decoupling limit
were considered. The corresponding expressions for
MSUSY � v, suited for our analysis, were derived in
Ref. [26]. We have recalculated the FCNC couplings of
neutral-Higgs bosons for g, g0 � 0 including all
CP-violating phases and found agreement with the results
for the FCNC self-energies given in Ref. [5], but encoun-
tered a significant discrepancy with Ref. [26]. In our re-
sults, the phase conventions of �, at, and M2 can be
inferred from Eqs. (A1) and (A3) of Appendix A. The
phase convention for M1;3 complies with that of M2 and

the gluino mass equals M~g ¼ jM3j. Of course, one can

choose one of these parameters (e.g. M3) real. Now the
effective couplings of Eqs. (29) and (30) read:

�0 ¼ �2�s

3�

��

M3

H2

�M2
~bL

jM3j2
;
M2

~bR

jM3j2
�
þ g02

96�2

��

M1

	
�
H2

�M2
~bL

jM1j2
;
j�j2
jM1j2

�
þ 2H2

�M2
~bR

jM1j2
;
j�j2
jM1j2

��

þ g02

144�2

��

M1

H2

�M2
~bL

jM1j2
;
M2

~bR

jM1j2
�

þ 3g2

32�2

��

M2

H2

�M2
~bL

jM2j2
;
j�j2
jM2j2

�
; (31)

3In Ref. [13], an argument based on SUð2Þ 	Uð1Þ gauge
invariance was used to infer that (in the present notation) F� ¼
Oðv2=M4

AÞ. This statement, which clearly is respected by our
Eq. (19) in conjunction with Eq. (28) (recall M2

h ¼ Oðv2Þ), is
about the asymptotic behavior as v=MA ! 0. The latter is not
necessarily a small number in practice. Indeed, many of the
analyses in the literature have dealt with the case MA �
200 GeV.
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�Y ¼ �1

16�2

a�t
�

H2

�
M2

~tL

j�j2 ;
M2

~tR

j�j2
�
þ �Y;v=M; (32)

~� 3 ¼ �0 þ y2t �Y: (33)

Here

H2ðx; yÞ ¼ x logx

ð1� xÞðx� yÞ þ
y logy

ð1� yÞðy� xÞ : (34)

Numerically, the electroweak contributions in �0 can be of
Oð10%Þ. They improve the comparison with the results
computed with full chargino and squark mass matrices (see
Eq. (5.1) in the second paper in Ref. [5]).

Ref. [5] also discusses threshold corrections to the fer-
mion kinetic operators (wave-function renormalizations).
While these terms are not tan�-enhanced, the flavor-
diagonal quark wave-function-renormalization constants
receive sizable contributions from squark-gluino loops.
One can parametrize these loops in terms of a new quantity
�0jkin which will add to �0 in the relation between the
MSSM Yukawa coupling ydi and the physical quark mass

mdi (see Eq. (A6) for the case of the bottom Yukawa

coupling). �0jkin will likewise appear in the relation be-
tween 	ij and ydi , but it drops out once 	ij is expressed in

terms ofmdi , so that it does not appear in Eqs. (29) and (30).

This cancellation of the flavor-diagonal quark wave-func-
tion-renormalization can be verified by inserting Eq. (2.29)
into Eq. (2.26) of the second paper in Ref. [5]. This feature
can be traced back to the fact that the wave-function-
renormalization affects both the tree-level and the loop-
induced Yukawa couplings with the same multiplicative
factor.

Comparing our result with Ref. [26], we find different
results for �0 and �Y: In Ref. [26], the chargino-stop con-
tribution proportional to g2 is erroneously assigned to �Y
rather than �0. Since this piece does not contain any up-
type Yukawa couplings, all three generations contribute in
the same way and the resulting overall CKM structure
combines to V�

ubVuq þ V�
cbVcq þ V�

tbVtq, which is zero

for q � b and equal to one for q ¼ b. This GIM cancella-
tion eliminates the wino-stop loop from �Y , while this loop
contributes to �0 twice as much as the corresponding loop
with a neutral winolike neutralino and a sbottom. The two
terms are combined into the last term in Eq. (31). Omitting
the chargino loop here would violate SUð2Þ gauge symme-
try, which also enforcesM~tL ¼ M~bL in the limitMSUSY �
v. Since �Y normalizes all Higgs-induced FCNC cou-
plings, one should verify the accuracy of this limit: It is
easy to include the tan�-enhanced contributions to �Y to all
orders in v=MSUSY. To this end, one merely has to calculate
the FCNC �bRqL self-energy using the exact chargino and
up-squark mass eigenstates. This self-energy renormalizes
the off-diagonal pieces of the quark mass matrix and
causes the mismatch between the flavor structures of the
latter with the Yukawa couplings leading to �Y � 0. In

higher loop-orders, tan�-enhanced contributions are sup-
pressed by products of small CKM elements (and are
negligible) or are flavor-conserving and therefore contrib-
ute to �0 rather than to �Y . Using the �bRqL self-energy
ð�d

mLÞ3i (with q ¼ di) from Ref. [5], one finds

�Y;v=M¼ 1

16�2

a�t
�
H2

�
M2

~tL

j�j2 ;
M2

~tR

j�j2
�
þ

ffiffiffi
2

p
vy2t �bdi

ð�d
mLÞ3i
yb

(35)

(Note that ð�d
mLÞ3i / yb and be aware of the different sign

conventions for yb in Eq. (A6) and Ref. [5].) We stress that
Eq. (35) must be evaluated for i � 3, so that the GIM
cancellation of the above-mentioned wino-stop loop takes
place. Numerically, one finds a marginal impact of �Y;v=M:
Setting all supersymmetric massive parameters equal to a
common value MSUSY, one finds that �Y;v=M amounts to a

mere 1.4% correction to �Y for MSUSY ¼ 400 GeV. Even
for MSUSY ¼ 150 GeV, for which the expansion in
v=MSUSY formally breaks down, �Y;v=M depletes �Y by as

little as 8%. �Y;v=M also enters ~�3 through Eq. (33). It can

be inferred from Ref. [7] that this procedure indeed leads to
the correct all-order resummation of the tan�-enhanced
corrections involving yt. Corrections to ~�3 beyond the
MSUSY � v limit from �s, g, g

0, and yb are considered
in Refs. [5,7]. We remark that no terms proportional to y2b
occur in Eqs. (31)–(33), because the corresponding loops
violate hypercharge and involve a suppression factor of
v2=M2

SUSY.

We verify from Eqs. (29) and (30) that 	�
qb	bq multi-

plying Fþ in Eq. (17) is suppressed by a factor mq=mb

relative to 	2
bq, which multiplies F�. Hence, CSLL

1 is

naively leading (over CLR
2 ) from the point of view of

MFValone, and a meaningful analysis of Bq � �Bq mixing

requires a systematic investigation of all leading correc-
tions to its vanishing ‘‘tree’’ value. (The coefficient CSRR

1

both undergoes a strong m2
q=m

2
b suppression and involves

F��, and can thus be disregarded.) It is then useful to think
of the �B ¼ 2 amplitude as being a function of the four
small parameters identified so far:

l� 1

ð4�Þ2 ; !�mq

mb

;
1

tan�
; �¼ v

MSUSY

: (36)

The vanishing 2HDM tree diagram for F� is (superfi-
cially) Oððcot�Þ�2l2�0!0Þ, i.e. Oð1Þ when treating all
expansion parameters on the same footing. Conversely,
Fþ is nonzero at the tree-level but is suppressed by one
power of !, which is non-negligible only for q ¼ s. We
have already seen that F� vanishes exactly for tree-level
matching (or up to Oð1=tan2�Þ when including leading
logs), so there are no Oð1= tan�Þ corrections at first sub-
leading order. This leaves loop corrections (via sparticle
corrections to the �i as well as loops in the effective
2HDM) and possible corrections due to higher-
dimensional operators, not written in Eqs. (11) and (12).
We now discuss these contributions in turn.
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Sparticle loops One-loop contributions from higgsinos, gauginos, and sfermions correct the values of �1;2;3:4 in Eq. (12)

and induce nonzero couplings �5;6;7. As a technical result of our paper, we have computed the �i for general sparticle

masses and flavor structure. These results are reported in Appendix B. At tree-level in the effective theory and in the
leading-order of 1= tan� the quantitiy F� receives only contributions from �2, �5, and �7, cf. Equation (28). The general
results of Eqs. (71), (B1), (B5), (B6), (B8), (B10), (B11), and (B13), for the MFV case read

�7 ¼ ��7

¼ 1

16�2

�
1

4
�abjybj2ðð3g2 þ g02ÞC0ð ~md; ~mQ; ~mQÞ þ 2g02C0ð ~mQ; ~md; ~mdÞÞ þ�atjytj4ð3jatj2D0ð ~mQ; ~mQ; ~mu; ~muÞ

þ 3C0ð ~mQ; ~mQ; ~muÞ þ 3C0ð ~mQ; ~mu; ~muÞÞ þ 3�abj�j2jybj4D0ð ~md; ~md; ~mQ; ~mQÞ
� 1

4
�atjytj2ðð3g2 � g02ÞC0ð ~mQ; ~mQ; ~muÞ þ 4g02C0ð ~mQ; ~mu; ~muÞÞ þ 1

4
�a�jy�j2ð2g02C0ð ~ml; ~me; ~meÞ

þ ðg2 � g02ÞC0ð ~me; ~ml; ~mlÞÞ þ�a�j�j2jy�j4D0ð ~me; ~me; ~ml; ~mlÞ � 1

4
~g2�ð3abjybj2B0

0ð ~md; ~mQÞ

þ 3atjytj2B0
0ð ~mu; ~mQÞ þ a�jy�j2B0

0ð ~me; ~mlÞÞ þ g4
�
3�M2

~D2ðjM2j; jM2j; j�j; j�jÞ � 3

4
�M2B

0
0ðjM2j; j�jÞ

�

� 1

4
g2g02�ðM1B

0
0ðjM1j; j�jÞ þ 3M2B

0
0ðjM2j; j�jÞ � 4ðM1 þM2Þ ~D2ðjM1j; jM2j; j�j; j�jÞÞ

þ g04ð�M1
~D2ðjM1j; jM1j; j�j; j�jÞ � 1

4
�M1B

0
0ðjM1j; j�jÞÞ

�
; (37)

�5 ¼ ��5

¼ � 1

16�2
�2f3a2bjybj4D0ð ~md; ~md; ~mQ; ~mQÞ þ 3a2t jytj4D0ð ~mQ; ~mQ; ~mu; ~muÞ þ a2�jy�j4D0ð ~me; ~me; ~ml; ~mlÞ

� 3g4M2
2D0ðjM2j; jM2j; j�j; j�jÞ � 2g2g02M1M2D0ðjM1j; jM2j; j�j; j�jÞ � g04M2

1D0ðjM1j; jM1j; j�j; j�jÞg; (38)

and

�2¼ ��2

¼ ~g2

4
þ 1

16�2

�
�3

4
g04B0ð ~me; ~meÞ�3

8
ðg4þg04ÞB0ð ~ml; ~mlÞþ1

2
ðg02 �g2Þj�y�j2C0ð ~me; ~ml; ~mlÞ�g02 j�y�j2C0ð ~ml; ~me; ~meÞ

�j�y�j4D0ð ~me; ~me; ~ml; ~mlÞ�1

4
g04B0ð ~md; ~mdÞþð�3jytj4þ2g02 jytj2�g04ÞB0ð ~mu; ~muÞþ1

8
ð�9g4�24jytj4�g04

�4jytj2ðg02 �3g2ÞÞB0ð ~mQ; ~mQÞþ1

2
ð3g2�12jytj2�g02Þjatytj2C0ð ~mQ; ~mQ; ~muÞþ2ðg02 �3jytj2Þjatytj2C0ð ~mQ; ~mu; ~muÞ

�g02 j�ybj2C0ð ~mQ; ~md; ~mdÞ�1

2
ð3g2þg02Þj�ybj2C0ð ~md; ~mQ; ~mQÞ�3jatytj4D0ð ~mQ; ~mQ; ~mu; ~muÞ

�3j�ybj4D0ð ~md; ~md; ~mQ; ~mQÞþ1

2
~g2ð3j�ybj2B0

0ð ~md; ~mQÞþj�y�j2B0
0ð ~me; ~mlÞþ3jatytj2B0

0ð ~mu; ~mQÞÞ

þ 1

24

�
�2log

~m2
d

�2
0

g04 �6log
~m2
e

�2
0

g04 �8log
~m2
u

�2
0

g04 �3log
~m2
l

�2
0

ðg4þg04Þ� log
~m2
Q

�2
0

ð9g4þg04Þ
�

� 1

24
g4
�
�12 ~D2ðjM2j;jM2j;j�j;j�jÞjM2j2�60 ~D4ðjM2j;jM2j;j�j;j�jÞþ9WðjM2j;j�jÞ

þ4log
j�j2
�2

0

þ8log
M2

2

�2
0

þ14

�
�1

8
g2g02½�8ReðM1M

�
2Þ ~D2ðjM1j;jM2j;j�j;j�jÞ�8 ~D4ðjM1j;jM2j;j�j;j�jÞ

þWðjM1j;j�jÞþ3WðjM2j;j�jÞþ4�� 1

24
g04
�
�12 ~D2ðjM1j;jM1j;j�j;j�jÞjM1j2�12 ~D4ðj�j;j�j;jM1j;jM1jÞ

þ3WðjM1j;j�jÞþ4log

�j�j2
�2

0

�
þ6

��
; (39)
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where the loop functions B0,C0,D0, B
0
0,

~D2, ~D4, andW are
defined in Appendix Bd, and the notation ��i refers to the
matching scheme as explained in Sec. III. Inspecting
Eq. (28), �7 enters quadratically, which formally is of
higher loop order. Nevertheless, it can be seen that �2

7 /
y8t , as opposed to �2�

�
5 / ~g2y4t , which can partly offset the

additional loop-suppression. Indeed we find that, numeri-
cally, neglecting �7 is not always a good approximation
(Sec. IV).

The form of the matching result depends on the renor-
malization schemes of both the full theory, i.e., the MSSM,
and the effective theory, i.e., the 2HDM. The latter cancels
in physical quantities, while explicit MSSM scheme de-
pendence cancels against the one implicit in the MSSM
parameters, to ensure that the couplings in the effective
theory are independent of the renormalization of the
MSSM at any given order of perturbation theory. The
residual scheme dependence in both cases may, however,
be important as we are considering a leading effect. We
will discuss scheme issues in Sec. IIIa, paying special
attention to the definitions of tan�.

Higgs loops There is a considerable number of one-loop
diagrams in the effective 2HDM that can contribute to
B� �B mixing amplitudes (Fig. 2, upper row). These give
the following contributions to the Wilson coefficients mul-
tiplying QVLL

1 and QVRR
1 :

CVLL
1 jHiggsloops ¼ � 1

4

m2
b

v2cos2�ð1þ ~��3 tan�Þ2

	 	2
bq

G2
FM

2
W�

2
qb

C0ðM2
A;M

2
A; 0Þ; (40)

CVRR
1 jHiggsloops ¼ � 1

4

m2
b

v2cos2�ð1þ ~�3 tan�Þ2

	 	�2
qb

G2
FM

2
W�

2
qb

C0ðM2
A;M

2
A; 0Þ: (41)

In these expressions, we have neglected the small Yukawa
coupling yq and employed tree-level MSSM mass rela-

tions, in agreement with our approximation of working to
leading-order in small parameters (in the present case, the
loop factor 1=ð16�2Þ). CVRR

1 is suppressed by two powers
of mq=mb inside 	�2

qb in the MFV case, hence beyond our

accuracy. The results Eqs. (40) and (41) involve a great
deal of cancellations, which can be understood in terms of
symmetry arguments, as explained in Sec. IIc below. We
note the absence of charged-Higgs contributions in the
approximation considered here.
v=M-suppressed effects All of the couplings given in

Eq. (11) correspond to the zeroth order in the v=MSUSY

expansion, or equivalently to the level of dimension-four
operators. Gauge invariance forbids dimension-five opera-
tors built from quark and Higgs fields, so the leading
higher-dimensional operators have dimension six. This
can lead to more general Higgs-fermion couplings than
those deriving from Eq. (11) and, in consequence, the
cancellation leading to CSLL

1 ¼ 0 might be broken. To see

that this is indeed the case, consider the operator

Qð6Þ ¼ 1

M2
SUSY

ðHy
uHuÞð �bRHy

uQLÞ; (42)

which gives rise, inter alia, to effective dimension-three
and -four couplings

FIG. 2. Upper row: A subset of one-loop diagrams for Bq � �Bq mixing in the effective two-Higgs-doublet model. Lower row: Tree
and one-loop diagrams contributing at large tan� when employing the Lagrangian Lltb and tree-level couplings. The crosses denote
the flavor-changing neutral-Higgs couplings and [in diagrams (f) and (g)] loop-suppressed Higgs mass terms. On the lower row, arrows
designate the flow of the conserved Uð1Þ charge discussed in Sec. IIc.
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2
ffiffiffi
2

p
v3
u

M2
SUSY

�bRsL þ 2v2
u

M2
SUSY

ð �bRsLh0u þ 2 �bRsLh
0�
u Þ: (43)

The first term is removed by a rediagonalization of the
quark mass matrices, but the two remaining terms, in
general, are not. The appearance of h0u in addition to h0�u
leads to a contribution to CSLL

1 proportional to 	bqC
ð6Þ.

However, because of R-parity, SUSY particles do not
contribute to tree graphs with external standard particles

only, such that Qð6Þ (or any other higher-dimension opera-
tor) is only induced at the loop level, and this loop-
suppression factor is not compensated by factors of tan�.
(Recall that the Oð1Þ FCNC couplings at dimension-four
are nothing but rotated tree-level Yukawa couplings.)
Hence any v=MSUSY corrections that break the cancella-
tion inF� involve an additional loop-suppression, and can
be neglected for the present analysis. On the other hand, as
Eq. (43) shows, the higher-dimensional operators do have
an impact on the rediagonalization of the quark mass
matrices and, consequently, on the size of the FCNC
couplings 	bq. These effects preserve the cancellations in

F� discussed above but have a mild impact on the FCNC
couplings multiplying Fþ in CLR

2 (cf. Eq. (35) and the
discussion around it).

C. Uð1ÞPQ and effective Lagrangian for large tan�

To better understand the various types of cancellations in
F� and in the Higgs-loop contributions to CVLL

1 , as well as
the suppression of the Fþ contribution, we now introduce
an effective 2HDM Lagrangian at large tan�. This will
allow us, on the basis of simple symmetry arguments, to
clarify the role of the parameters �5 and �7, the structure of
Eqs. (18), (19), and (28), as well as the vanishing ofF� for
tree-level Higgs couplings at leading-order in 1= tan�. It
also provides a tool for computing loop diagrams involving
Higgs bosons efficiently and consistently, which may be
useful in other contexts such as collider processes with
Higgses in the initial or final state.

As before, we eliminate m2
11, m

2
22, and ðm2

12Þi by the
minimization conditions and trade ðm2

12Þr for M2
A via

Eq. (25). We then take the limit

vd ! 0; vu ! v; M2
A fixed; �i fixed; (44)

of the Lagrangian (12) in the broken phase.4 We also keep
the Yukawa couplings fixed when considering the cou-
plings to fermions. In this limit, we have � ¼ Hu, �

0 ¼
�H�

d, and

h0u ¼ 1ffiffiffi
2

p ðvþ
u þ iG0Þ; h0d ¼ 1ffiffiffi
2

p ð
d � iA0Þ;

hþu ¼ Gþ; hþd ¼ Hþ: (45)

If there were no mixing among neutral Higgses, we would
have 
u ¼ h0 and 
d ¼ H0, and A0 would be a mass
eigenstate. The mass matrices are compactly expressed
by the quadratic potential

Vð2Þ
ltb ¼

�
m2

A þ
�r
5

2
v2

�
Hy

dHd þ �4

2
v2jhþd j2 þ

�2

2
v2
2

u

þ
�
�5

4
ðh0�d Þ2 þ �7ffiffiffi

2
p 
uh

0�
d þ H:c:

�
v2; (46)

valid up to corrections of order cos�� 1= tan� 
 1. The
trilinear terms are given in Appendix D; the quartic terms
follow trivially from those in the symmetric Lagrangian
Eq. (12). Note that the first line of Eq. (46) is symmetric
under the Uð1Þ Peccei-Quinn (PQ) transformation

h0d ! e�i
h0d; hþd ! e�i
hþd ;

or equivalently; Hd ! ei
Hd; (47)

while the second line is not. In the MSSM, the noninvariant
terms appear only at the loop level. We note that the Uð1Þ
symmetry is not spontaneously broken in the large- tan�
limit, so there is no massless boson, in agreement with our
keepingM2

A fixed.
5 Next, a PQ transformationmakes�5 real,

such that the first term on the second line of Eq. (46) con-
tributeswith opposite sign to themass terms for
d and�d ¼
�A0 þOðcos�Þ, splitting the two. There are only two inde-
pendent mixing angles that do not vanish: they can be iden-
tified with the CP-conserving angle � ¼ Oð�r

7Þ and a
CP-violating �0 ¼ Oð�i

7Þ; a third angle present in the gen-
eral 2HDM is suppressed byOðcot�;v=MÞ. All of these are
symmetry-breaking effects. To lowest order in the PQ-
breaking couplings, the mass matrices are diagonalized by

H1

H2

H3

0
BB@

1
CCA¼

1 � �r
7v

2

M2
A��2v

2

�i
7v

2

M2
A��2v

2

�r
7v

2

M2
A
��2v

2 1 0

� �i
7v

2

M2
A��2v

2 0 1

0
BBBBBB@

1
CCCCCCA


u


d

A0

0
BB@

1
CCA; (48)

m2
1 ¼ �2v

2; m2
2 ¼ M2

A þ j�5jv2; m2
3 ¼ M2

A: (49)

In a general basis, CP-violating Higgs mixing is present if
and only if�2

7=�5 is complex. Note that there is nomixing for
the charged scalars according to Eq. (46), i.e. no mixing
between charged-Higgs and Goldstone bosons due to spar-
ticles in the large- tan� limit.
These considerations can be extended to the Higgs-

fermion interactions. The operators up to dimension-four
follow from (11), which, in the limit of infinite tan�,
becomes

4This procedure will be justified in Sec. IIIb

5Also at finite (but large) tan�, there is no (pseudo-) Goldstone
boson, as m2

11 �M2
A > 0 contributes to the mass terms of both


d and A0 (see also Sec. IIIb).
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LY
ltb¼�

ffiffiffi
2

p
v

�dRiMdijH
y
uQLj� �dRi	ijQLj �Hd

�
ffiffiffi
2

p
v

�uRiMuijQLj �Huþ �uRi~	ijH
y
dQLjþH:c:: (50)

This can be made approximately invariant by extending the
symmetry transformation (47) to fermions. One judicious
PQ charge assignment is

dRi ! ei
dRi; QLj ! QLj; uRk ! uRk; (51)

which commutes with the SM gauge group, implying that
neutral and charged gauge-boson couplings respect the
symmetry. It has been previously used in [13] to classify
the Higgs-fermion couplings in MFV. However, since for
MFVone has one more small parameter 	qb=	bq / mq=mb

for q ¼ s or d, it is useful to consider the following variant
of Eq. (51):

bR!ei
bR; qR!qR; QLj!QLj; uRk!uRk: (52)

Now 	ij
�dRiQLj �Hd in Eq. (50) breaks the symmetry un-

less dRi ¼ dR3 ¼ bR. However, all Uð1ÞPQ breaking is still

proportional to one of the small parameters of Eq. (36):

	qj ¼ Oð!Þ and ~	ij ¼ OðlÞ. The modified symmetry

Eq. (52) forbids all operators in the weak Hamiltonian
Eq. (4) (Table I), including the would-be leading one,
QSLL

1 , except for the standard-model operator QVLL
1 and

for QSRR
1;2 . The last two are, however, forbidden by the

original charge assignment in Eq. (51). Hence, the
Wilson coefficients of these operators are suppressed by
! ¼ mq=mb or by factors of loop-induced effective cou-

plings, respectively.
At the tree-level (in the 2HDM), Fþ, which induces

QLR
2 , is multiplied by a factor 	�

qb, which is a PQ-breaking

coupling. On the other hand, F�, which induces QSLL
1 , is

multiplied by the unsuppressed factor 	2
qb. Hence, F

�

must be proportional to PQ-breaking couplings in the
Higgs potential (up to 1= tan�-suppressed terms). This is
also seen from the fact that in the infinite tan� limit, it is
given by Z

d4xhTðh0dðxÞh0dð0ÞÞi;

which vanishes if the PQ symmetry is unbroken. Explicitly,
in the large tan� limit one has:

Fþ ¼ 2�2M
2
A þ ð�2�

r
5 � j�7j2Þv2

�2M
4
A þ ð�2�

r
5 � j�7j2Þv2M2

A � ð�i
7Imð��

5�7Þ þ 1
4�2�

i2
5 Þv4

’ 2

M2
A

; (53)

F� ¼ �ð�2�
�
5 � ��2

7 Þv2

�2M
4
A þ ð�2�

r
5 � j�7j2Þv2M2

A � ð�i
7Imð��

5�7Þ þ 1
4�2�

i2
5 Þv4

’ �ð�2�
�
5 � ��2

7 Þv2

�2M
4
A

; (54)

where the rightmost expressions hold up to higher orders of
small couplings. For F�, this is identical to the sum of the
two leading diagrams in a ‘‘mass-insertion approx-
imation,’’ where the PQ-breaking contributions to the
Higgs mass terms are treated as interactions [Fig. 2(f)
and 2(g).

At the loop level (in the 2HDM), up to doubly sup-
pressed contributions one can employ the PQ-conserving
parts of Eqs. (50) and (46), i.e. set �5 ¼ �6 ¼ �7 ¼ 0, as
well as ignore 	qb and ~	ij. The matching onto the weak

Hamiltonian can be organized according to one-light-par-
ticle-irreducible chirality amplitudes. There are three
amplitudes:

A RR ¼ hTðbRðx1ÞbRðx2Þ �sLðx3Þ �sLðx4ÞÞi; (55)

A RL ¼ hTðbRðx1ÞbLðx2Þ �sLðx3Þ �sRðx4ÞÞi; (56)

A VLL ¼ hTðbLðx1ÞbLðx2Þ�sLðx3Þ�sLðx4ÞÞi; (57)

plus the parity conjugates of ARR and AVLL. (We have
omitted amplitudes that cannot match onto Lorentz-
invariant local dimension-six operators.) Only AVLL

is invariant under Uð1ÞPQ (both versions) and can be

generated from a symmetric Lagrangian. It matches onto

the standard-model operator QVLL
1 . There is a single

diagram contributing, see Fig. 2(h). (Diagram (i) matches
onto QVRR

1 and would be allowed for the unmodified PQ
assignment of Eq. (51).)
The present discussion could be extended to other pro-

cesses, and to higher loop-orders, by systematically treat-
ing the PQ-breaking couplings as interactions and working
to a fixed total order in the small parameters; in practice, at
such higher precision, one might want to extend the effec-
tive 2HDM by higher-dimensional operators to account for
v=MSUSY corrections.
Finally, let us remark that because our choice of shift

parameters vu and vd minimize the potential V in the
potential of our effective theory and not necessarily
the full effective potential, the one-point functions for
the (shifted) Higgs fields h0jhij0i (hi ¼ 
u, 
d, A

0) will,
in general, not vanish. Hence, also ‘‘tadpole’’ diagrams
involving quark or Higgs loops would have to be
considered at the outset [Fig. 2(e)]. That they cancel in
B� �B mixing in our approximation follows from the
fact that no such diagrams are present when working
with a complex h0d field and the Lagrangian Vltb.

Tadpoles may, however, be relevant in other contexts.
We discuss our renormalization of vu, vd, and tan� in
detail in the following section.

GORBAHN et al. PHYSICAL REVIEW D 84, 034030 (2011)

034030-10



III. SYSTEMATICS OF THE LARGE- tan� MSSM

The present section is devoted to certain technical as-
pects of the large tan� limit. The first concerns the defini-
tion (i.e. renormalization) of tan� in the MSSM and in the
effective two-Higgs-doublet-model description of low-
energy (i.e., Higgs, electroweak, and flavor) phenomenol-
ogy, and the matching between the two. This is of
phenomenological importance, as tan� definitions used
in the literature on the MSSM are known to differ by
parametrically large expressions Oðtan�	 loop factorÞ.
This can lead to ambiguities in the value of tan� of 10–
15 in certain regions of the MSSM parameter space be-
tween schemes that have been extensively used in the study
of radiative corrections to the MSSM Higgs sector [31].
Having clarified the connection between our ‘‘full’’ and
‘‘effective’’ tan�, we justify the systematic expansion in
1= tan� at the Lagrangian level employed in Sec. IIc.

A. Renormalization of tan�

In the MSSM, tan� ¼ vu=vd is defined as a ratio of
vacuum expectation values. This is an unambiguous no-
tion at tree-level, because a preferred basis is provided by
the chiral Higgs supermultiplets of definite hypercharges
�1=2. Beyond tree-level, a scheme dependence arises as
the bare parameters p0

i (pi ¼ m2
1, m

2
2, B�, g, g0, etc.)

are renormalized, p0
i ¼ pi þ 
pi, as well as in the

normalization of the fields and in defining renormalized
shift parameters vd, vu. To formalize the renormalization
program, we first define bare shifts that minimize the bare
effective potential including radiative corrections, which
is equivalent to requiring vanishing one-point functions
for the shifted fields, i.e.,�

h0;barei � 1ffiffiffi
2

p v0
i

	
¼! 0; (58)

such that the v0
i are indeed vacuum expectation values.

Identifying (for any definition of renormalized shift pa-
rameters)

v0
i ¼ Z1=2

i ðvi � 
viÞ; i ¼ d; u; (59)

scheme dependence arises through, and only through, field
renormalization and the counterterms 
vi. Reference [32]
argued that for a stable perturbation expansion, it is
desirable to define the renormalized vi such as to mini-

mize the renormalized effective potential, i.e. 
vi ¼ 0,
and implemented this proposal for DR field renormaliza-
tion and Landau gauge. The same condition and gauge
fixing was imposed in the computation of one-loop cor-
rections to the MSSM Higgs masses in [18–21].
References [22,23] chose to work with on-shell fields
and in R� gauge instead, and their shifts do not strictly

minimize the one-loop effective potential. In fact, in gen-
eral gauges, for 
vi ¼ 0 the effective action is not finite
and the vi are both divergent [22,33] and gauge-dependent
[33,34] (as are the bare vevs v0

i ).
6 Hence, to have finite

renormalized vi and tan�, 
vi � 0, containing a gauge-
dependent divergence, is required. For tan�, we have

tan�0 � v0
u

v0
d

¼1-loop tan�
�
1þ 1

2

Zu � 1

2

Zd � 
vu

vu

þ 
vd

vd

�
� tan�þ 
 tan�: (60)

Minimal subtraction for Zu, Zd, 
vu=vu, 
vd=vd defines

tan�DR [21]. It also follows from Eq. (60) that a change
between two schemes R and R0 can be calculated from

tan�R � tan�R0 ¼ 
 tan�R0 � 
 tan�R;

hence any scheme where 
 tan� is a pure divergence has

tan� ¼ tan�DR regardless of any nonminimal field
renormalizations as those employed in [31]. In the latter
case, however, 
vu, 
vd are nonminimal and the counter-
term for tan� has no simple relation to the field renormal-
ization constants.

tan�DR is gauge-dependent [36], but to one-loop order,
the gauge-dependence drops out for the R� gauges. In spite

of its gauge-dependence, the DR scheme for tan� has been
shown to lead to a well-behaved perturbation expansion
[31] and is also used in the most recent version of the

TABLE I. Charges of the operators in the weak Hamiltonian under the approximate Uð1Þ symmetry discussed in the text, see
Eq. (52). The number in brackets denotes the charge under the ‘‘unmodified’’ charge assignment of Eq. (51).

Operator [field content] Uð1Þ charge Suppression of leading Higgs-mediated contribution Remark

QSLL
1;2 ½ �bRqL �bRqL� 2 �5 (sparticle loop) new

QLR
1;2½ �bRqL �bLqR� 1 [0] ! known

QVLL
1 ½ �bLqL �bLqL� 0 2HDM loop SM operator

QVRR
1 ½ �bRqR �bRqR� 2 [0] !2	 2HDM loop tiny

QSRR
1;2 ½ �bLqR �bLqR� 0 ½�2� !2	 sparticle loop tiny

6This is, in particular, true in R� gauges if � � 0. The apparent
contradiction to the results in [35], whose authors are able to
renormalize the effective action with purely ‘‘symmetric’’ coun-
terterms, is resolved by noticing that in the Lorenz gauge
employed in [35] the gauge-fixed Lagrangian still respects an
invariance under constant (‘‘global’’) gauge transformations.
This is sufficient to forbid divergences that cannot be removed
by symmetric counterterms. Conversely, the R� gauges break
also this global invariance, for instance through Goldstone and
ghost mass terms, which are indeed responsible for the ‘‘non-
symmetric’’ divergences at one-loop [33]. The exception is the
Landau gauge � ¼ 0, which has the invariance.
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publicly available computer programs FeynHiggs [37] and
CPsuperH [38].

A second issue is that a fully minimal subtraction
scheme, where in particular 
vfinite

i ¼ 0, generally entails
vi that do not minimize the (renormalized) tree potential,
such that the renormalized Lagrangian contains linear terms

L � td
d þ tu
u (61)

for the shifted (real parts of the) Higgs fields. On the other
hand, from Eq. (58) and (59) it follows that

�ren
i ¼ ti þ �ð1Þ

i þ 
ti ¼ 0 (62)

always holds, if only 
vu and 
vd are included in 
ti. The
presence of tu, td is perfectly fine, but tadpole diagrams then
have to be retained in the calculation. (In particular, they
appear in the expressions relating Higgs and gauge-boson
mass parameters to the Lagrangian parameters. If all renor-
malization constants are minimal, Eq. (62) determines ti in

terms of the bare proper one-point functions�ð1Þ [21].) Yet it
may be more convenient to perform additional finite re-
normalizations to work in a scheme where ti ¼ 0. This can
be achieved either by suitable finite terms in 
vi or by finite
renormalizations of the mass and coupling parameters. The
former shifts tan� from its DR value according to

tan�tad ¼ tan�DR

�
1� 
vtad

d

vd

þ 
vtad
u

vu

�
: (63)

The latter option does not modify tan�.
Going from the MSSM to a general 2HDM, tan� be-

comes—strictly speaking—an ill-defined notion, as there
is no preferred basis. Identifying H1 ¼ ��H�

d and H2 ¼
Hu, an SUð2Þ rotation Hi ! UijHj removes the vacuum

expectation value of one doublet; this corresponds to the
ð�;�0Þ basis introduced in Sec. II. Only � receives a vev,
provides for the Higgs mechanism, and has flavor-
conserving couplings, while �0 is an ordinary scalar with
FCNC couplings. To make contact with MSSM phenome-
nology, however, it is useful to keep the notion of tan� in
the effective theory. In principle, we could fix a basis to

enforce tan�EFT � tan�DR, but find it technically simpler
to allow for a parametrically small (i.e. not tan�-enhanced)
shift, as we discuss in the following.

In complete analogy with the MSSM case discussed

above, if we employ a general gauge and MS everywhere
in the effective theory, v1 and v2 will not minimize the
tree-level (nor the effective) potential.7 This would require
a modification of the formalism in Sec. II. In particular, in
writing the mass matrices Eqs. (23)–(25) and the flavor
structure of the scalar-fermion couplings in Eq. (11) we
assumed the minimization conditions t1 ¼ t2 ¼ 0. To

avoid such modifications, as well as changed expressions
for neutral meson mixing, we can either perform renorm-
alizations on the parameters m2

11 and m2
22 such that v1 and

v2 minimize the 2HDM potential, or achieve this through
nonminimal 
v1;2. We pursue the latter option, keeping the

symmetric parameters of the 2HDM minimally subtracted.
This has the added virtue that the tan� such defined is
gauge-independent at the order considered, as it is fully

determined by MS mass and coupling parameters. These
are gauge-invariant at one-loop, which is clear from our
explicit matching calculation. We presume this to hold also
at higher orders, at least if the appropriate wave-function
renormalization is employed. The 
vi are determined en-
tirely in terms of ‘‘light’’-particle loops and, at least at
one-loop, do not lead to parametrically large shifts
/ tan2� 1

16�2 , as can be verified from the explicit expres-

sions for the tadpoles in [23] or by considering tadpole
diagrams in the large- tan� effective Lagrangian.

To find the precise connection between tan�DR and our
effective tan�, consider the total tree plus one-loop con-
tribution of the superpartners to the (MSSM) effective
action for the gauge and Higgs fields,

Sgh ¼
Z

d4x

�
ð1þ�ZWÞ

�
� 1

4

�
WA

��W
��A þ ð1þ�ZBÞ

	
�
� 1

4

�
B��B

�� þ ð
ij þ �ZijÞðD�HiÞyðD�HjÞ

� m̂2
ijH

y
i Hj �

X7
k¼1

�̂kOk þ . . .

�
: (64)

Here, Oi are the quartic terms constructed from the Higgs
fields appearing in Eq. (12), and the dots denote higher-
dimensional local terms, andH1,H2 are related toHd,Hu as
above. The precise values for the coefficients depend on the
MSSM renormalization scheme.We assume theMSSMhas
been regularized by dimensional reduction while the cou-
plings, Higgs fields and tan� are minimally subtracted

(DR). The corresponding expressions �̂k are reported in
Eq. (21) (tree-level) and in Appendix B2 and 3 (one-loop).
Equation (64) can be identified with the classical action

(ignoring 2HDM loops) for an effective two-Higgs-doublet
model with noncanonically normalized fields. To obtain

from this theMS-renormalized Lagrangian in the presence
of light-particle loops, one simply has to add the contribu-
tions (which are local) due to loops of 2� scalars present in
DRED8 and subsequently rescale the fields,

��HDR�
d

HDR
u

 !
¼ Zdd Zdu

Zud Zuu

� �
Heff

1

Heff
2

 !
; (65)

7In this section, the renormalized 2HDM vevs are denoted by
v1;2 instead of vd;u in Sec. II in order to avoid confusion with the
renormalized MSSM vevs. Correspondingly, the 2HDM tadpoles
are denoted by t1;2.

8Integrating over the 2� scalars leaves a path integral over light
fields that is identical to that in the DREG-regularized effective
theory, including the 1=� divergence structure. We recall that the
2� scalars should be thought of as having a nonzero mass of
OðMSUSYÞ [39].
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subject to the condition Zyð1þ�ZÞZ ¼ 1. This provides
the relation between theDR fields of theMSSMand one out

of an infinite choice of MS fields in the effective theory,

labeled ‘‘eff’’.We fix the freedom to choose the Higgs basis
in the effective theory by setting Zdu ¼ 0 and Zi

uu ¼
Zi
dd ¼ 0.9 The relation between the shifts and tan� of the

MSSM and of the 2HDM are now determined according to

�v2ð�Þ�v2ð�Þeff ¼vDR
u �
Zudvd�
Zuuvuþ
vtad

2

�v1ð�Þ�v1ð�Þeff ¼vDR
d �
Zddvdþ
vtad

1

tan�ð�Þeff ¼ tan�DRð1�
vtad
1

v1

þ
vtad
2

v2

þ
Zdd

�
Zuu�
Zudcot�Þ: (66)

Here, we have expanded Zuu=dd ¼ 1þ 
Zuu=dd and Zud ¼

Zud, and the 
Zij are related to the �Zij via �Z11=22 ¼
�2
Zuu=dd and �Z12 ¼ �
Z�

ud, with the explicit expres-

sions given in Appendix B1. The shifts 
vtad
1;2 are defined

implicitly as discussed above. In summary, we have con-
structed a tan� which is appropriate for effective weak
interactions, gauge-independent and, up to an ordinary
(i.e., not tan�-enhanced) loop correction, coincides with

the widely used tan�DR. It means that the tan�measured in
flavor physics, for instance through BðBs ! �þ��Þ, and
employed in our analysis, can be identified with the corre-
spondingDR parameter at large tan�, up to small corrections.

We note that our framework leads to a transparent ex-
pression for the relation between the DR scheme and the
so-called DCPR scheme employed in [22,23] in the limit
v 
 MSUSY. In the latter scheme, finite but, unlike in our
effective 2HDM, ‘‘diagonal’’ wave-function renormaliza-
tions ofHu,Hd are performed, i.e., in our notation, 
Zud ¼

Zdu ¼ 0, as well as 
Zuu=dd ¼ 2
Zfinite

u=d . Moreover, the

renormalization conditions include


vu

vu

¼ 
vd

vd

; Re�A0Z0ðM2
AÞ ¼ 0; (67)

where�A0Z0ðk2Þ parameterizes the A0-Z0 mixing according
to�

�

A0Z0ðkÞ ¼ k��A0Z0ðk2Þ. Now, the sparticle contribution
to �A0Z0ðk2Þ reads

�A0Z0ðk2Þ ¼ MZsin
2�Re�Z12

þMZ sin� cos�ð
Zfinite
d � 
Zfinite

u Þ þ . . . ; (68)

where the dots denote terms proportional to cos� but not
involving the wave-function renormalization constants, or
terms suppressed in the limit where v and k 
 MSUSY.
This follows either by considering the mixed gauge-boson-
Higgs-boson bilinear terms resulting from the
covariant kinetic operator for the Higgs fields in Eq. (64),
or via the Ward identity

k��
�

A0Z0ðk2Þ þMZ�G0A0ðk2Þ ¼ Oðk2 �M2
AÞ (69)

(which is trivially satisfied in our SUð2Þ-invariant formal-
ism) from the terms bilinear in the gauge fields in the same
term. The two conditions in Eq. (67) then determine

ð
 tan�DCPRÞfinite ¼ tan�

2
ð
Zfinite

u � 
Zfinite
d Þ

¼ tan2�

2
Re�Z12 þ . . . ; (70)

where the omitted terms are not tan�-enhanced. This ex-

plains the large numerical differences between tan�DR and
tan�DCPR found in [31] as a parametrically large effect.
Hence, tan� measured in flavor physics should not be
identified with the corresponding DCPR parameter at large
tan�.10

As with the Higgs fields, we explicitly decouple the
contributions of heavy particles to the gauge field wave

9As before, superscripts ‘‘r’’ and ‘‘i’’ denote real and imagi-
nary parts.

10The renormalization of tan� in the MSUSY � v limit was
recently discussed in [40], where a different conclusion was
reached, namely, that the shift between the DR and DCPR
schemes is not tan�-enhanced. As we do, they introduce sepa-
rate sets of renormalized Higgs fields in the MSSM and in an
effective 2HDM and proceed to assert that the 2HDM field
renormalization does not contribute tan�-enhanced terms in
Higgs-mediated processes. Next, within their effective 2HDM,
the authors write (with left-hand sides corresponding to our
notation)

1ffiffiffi
2

p v0
i ¼ vi þ�vi;

h0;bared ¼ vd þ�vd þ
�
1� z11

2

�
H0

d þ
1þ a

2
z12H

0�
u ;

h0;bareu ¼ vu þ�vu þ
�
1� z22

2

�
H0

u þ 1� a

2
z12H

0�
d ;

tan�0 ¼ tan�þ�vu

vu

��vd

vd

:

the fields H0
u, H

0
d have vanishing vev. �vi can be identified with

1=
ffiffiffi
2

p ð
Ziivi � 
viÞ, while zij is equivalent to �Zij, in our
notation. Differently to our treatment, wave-function renormal-
izations are only performed on the shifted fields. For the latter,
they correspond to our 2HDM field basis if a ¼ �1. The above
field redefinitions then contribute a counterterm mixing A0 and
Z0, which is adjusted to remove the loop-induced A0-Z0 mixing.
(An A0Z0 counterterm could also be generated from �vi but
vanishes if vi minimize the renormalized tree-level potential, as
assumed both here and in [40].) However, off-diagonal renorm-
alizations are not present in a manifestly supersymmetric renor-
malization scheme such as DCPR, hence the renormalized A0

field in the 2HDM of [40] cannot be identified with the DCPR A0

field for any value of a or �vi, even in the large- tan� limit. If
MSSM wave-function renormalization is taken into account, its
effect on vi could be absorbed into �vi, with DCPR then
requiring �vu=vu ��vd=vd ¼ 1=2ð
Zu � 
ZdÞ. Our discus-
sion above shows that this expression is tan�-enhanced when
the other DCPR requirement – vanishing A0 � Z0 mixing – is
enforced. One should remark in this context that one can be
misled by an erroneous zero in Eq. (A.8) in [23], which also
disagrees with [22]. We acknowledge and enjoyed extensive
discussions with M. Beneke on this issue.
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functions (hence to gð0Þ) by a finite renormalization gð0ÞDR ¼
gð0Þeff þ gð0Þeff
gð0Þ, cancelling the terms �ZB and �ZW in

Eq. (64) of the gauge fields, BDR
� ¼ Z1=2

B Beff
� and WDR

� ¼
Z1=2
W Weff

� . For DR-subtracted MSSM couplings, this gives

MS-renormalized 2HDM gauge couplings.
We denote the quartic couplings in our 2HDM scheme

by ��i. The finite renormalizations leave �5 invariant, ��5 ¼
�̂5, while the other quartic coupling constants transform
like

��1 ¼ �̂1 þ ~g2
Zr
dd þ

1

2
ðg2
gþ g02
g0Þ;

��2 ¼ �̂2 þ ~g2
Zr
uu þ 1

2
ðg2
gþ g02
g0Þ;

��3 ¼ �̂3 � ~g2

2
ð
Zr

dd þ 
Zr
uuÞ � 1

2
ðg2
gþ g02
g0Þ;

��4 ¼ �̂4 þ g2ð
Zr
dd þ 
Zr

uuÞ þ g2
g;

��6 ¼ �̂6 � ~g2

4

Z�

ud;
��7 ¼ �̂7 þ ~g2

4

Z�

ud; (71)

where xr and xi denote the real and imaginary part of x,

respectively. The couplings ��i and gð0Þ ¼ gð0Þeff are MS
couplings from the viewpoint of the effective theory.

The modification of the dimensionless couplings by the
finite wave-function renormalizations affects the B� �B
mixing amplitudes as a formally higher-order effect, as
does the scheme dependence of tan�. Unlike the latter,
however, the former is never tan� enhanced unless the
wave-function-renormalization constants themselves are.

Invariance of B� �B mixing under field renormalization

The effects of an arbitrary linear field redefinition in the
2HDM such as Eq. (65) on the Higgs-mediated FCNC
Eq. (11) are twofold: (i) the values for cos� and sin� in
Eq. (10) are modified. This cancels the contributions toF�
from the redefinition of the mass matrices up to a global
factor:

Fþð�i; vu;d;MAÞ ! Fþð�0
i; v

0
u;d;M

0
AÞ

¼ v2

v02 j detZj2Fþð�i; vu;d;MAÞ; (72)

F�ð�i; vu;d;MAÞ ! F�ð�0
i; v

0
u;d;M

0
AÞ

¼ v2

v02 ðdetZ�Þ2F�ð�i; vu;d;MAÞ: (73)

(ii) the vu;d redefinition in (i) comes with a modification

of 	ij:

	ij ! 	0
ij ¼

v0

v
ðdetZ�Þ�1	ij: (74)

The above factors cancel each other out in the products 	2
bq

F� and 	�
qb	bq Fþ, as they should. In particular, our

choice of wave-function renormalization acting on the
leading FCNC coupling Eq. (29) produces an extra term:


	bq ¼ �	bqðs2�
Zr
dd � s�c�
Z

r
ud þ c2�
Z

r
uuÞ: (75)

Considering Eqs. (29), (30), (71), and (75), gives the same
Wilson coefficients CLR

2 and CSLL
1 as does considering

Eqs. (29), (30), and (71), with the finite parts of 
Zij set

to zero. While in practice, wave-function renormalization
has to be performed to relate the parameter MA to the

physical Higgs-boson masses and to take v ¼
ð ffiffiffi

2
p

GFÞ�1=2 ’ 246 GeV beyond leading-order precision,
such renormalizations are not the source of a nonvanishing
of the QSLL

1 amplitude, to be found instead in the correc-

tions to Higgs masses and mixings (via the self-couplings
�i, in particular �5); wave-function-renormalization ef-
fects enter that amplitude only at higher orders (as might
have been expected). In this regard our findings disagree
with the conclusions of [26].

B. Health of the large- tan� limit and fine-tuning

In Sec. IIc we took the limit tan� ! 1 (vd ! 0, M2
A ¼

const, v2
u þ v2

d ¼ const, �i ¼ const, vu and vd defined as

minima of the tree potential) at the Lagrangian level. One
might wonder whether this procedure is valid at the quan-
tum level. To justify it, we show that the vd ¼ 0 case and
the vd � 0 case are analytically connected, i.e. one can be
reached from the other without a phase transition. It then
follows that amplitudes are (in some neighborhood of a
parameter point with vd ¼ 0) analytic functions of the
parameters (either symmetric or broken). The renormaliz-
ability of the effective potential Vltb then follows by stan-
dard arguments from the fact that it is equivalent to the
symmetric potential Eq. (12) (for a certain choice of pa-
rameters), which is renormalizable.
We first note that the number of independent minimiza-

tion conditions is unchanged in the vd ¼ 0 limit. First, for
general values of the parameters, out of the four real (two
complex) minimization conditions, at most three are inde-
pendent. This follows from theUð1ÞY invariance but is easy
to verify explicitly. Fixing vu to be real and positive, three
polynomials of degree three determining three unknowns
vu, v

r
d, v

i
d remain. The system has a solution vd ¼ 0 if

�2m
2
12 þ �7m

2
22 ¼ 0; v2

u ¼ � 2m2
22

�2

: (76)

Here, the second equation determines vu ¼ v as a function
of m2

22 and �2 similarly to the case of a single doublet,
while the first equation can be viewed as a fine-tuning
condition between m2

12 and �7. The dimensionless, com-
plex parameter

� ¼ m2
12

m2
11

þ �7

�2

m2
22

m2
11

(77)

parameterizes the deviation from the fine-tuning limit; we
may trade m2

12 in favor of �. Clearly, at the limiting point
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� ¼ 0, we indeed have three independent equations. Now,
it is easy to verify that, writing the four real minimization
conditions in the form

fið�i;m
2
ij; vu; vdÞ ¼ 0; (78)

the Jacobian matrix

@ðf1; f2; f3; f4Þ
@ðvu; v

r
d; v

i
dÞ

(79)

has maximal rank (3) at any point with vd ¼ 0. (Physically,
this just means that the neutral-Higgs mass matrix has three
nonzero eigenvalues there.) Hence, by the implicit function
theorem, we may solve for ðvu; vdÞ in a neighborhood of it,
where the solutions will be (real-)analytic functions of �. In
particular, vu behaves analytically (and is strictly positive)
around � ¼ 0, i.e. no phase boundary is encountered.
Explicitly and to linear order, the real and imaginary parts
of vd are determined by

1þ �3þ�r
5

2
v2
u

m2
11

�i
5

2
v2
u

m2
11

�i
5

2
v2
u

m2
11

1þ �3��r
5

2
v2
u

m2
11

0
BB@

1
CCA vr

d

vi
d

 !

¼ vu

�r

�i

 !
þOð�2Þ; (80)

such that tan� ¼ Oð1=j�jÞ. The nonsingular linear term
allows us to change variables fromm2

12 to a complex vd. Of
course, we may always perform a field redefinition of Hd

such that vd is real. Then, the mass parameters besides
m2

11 are power series in 1= tan�, which read

m2;i
12¼

1

2
�i
6v

2
dþ

1

2
vu�

i
5vdþ1

2
v2
u�

i
7;

m2
22¼

vdm
2
11

vu

þ1

2
vuvdð�3þ�r

5Þþ
1

2
v2
u�

r
7þOðv2

d=v
2
uÞ;

M2
A¼m2

11þ
�3��r

5

2
v2
uþOðvd=vuÞ;

M2
h¼�2v

2þOð�2
7;�Þ; M2

H¼m2
11þ

�3þ�r
5

2
v2þOð�2

7;�Þ;

M2
Hþ¼m2

11þ
�3þ�4

2
v2þOðvd=vuÞ: (81)

We see explicitly that we can continuously change the
dimensionful parameters in the Higgs potential from a
situation where vd � 0 to one where vd ¼ 0, keeping
M2

A (and the dimensionless couplings) fixed, as was as-
sumed in Sec. IIc. The last three equations illustrate that
the large- tan� case is characterized by a ‘‘primary’’ dou-
blet Hu which receives a large vev vu and a ‘‘secondary’’
doublet Hd with a positive gauge-invariant mass m2

11 that
receives corrections of Oðv2Þ and Oð�Þ, respectively, due
to its dimensionless and dimensionful couplings to Hu.
Those corrections differ among the physical components
of the doublet, approximately to be identified with H0, A0,
H�, due to electroweak symmetry-breaking. In principle,
m2

11 could be negative, but in that case, vd � 0 will typi-
cally not be the global minimum of the potential.

We close this section by considering the fine-tuning
which is necessary to obtain a large tan� while keeping
the mass MA fixed.11 For vd real, Eq. (80) implies

m2;r
12 ¼ ��r

7

�2

m2
22 þ cot�

�
m2

11 þ
�3 þ �r

5

2
v2
u

�
; (82)

which illustrates the tuning that is known to be necessary to
have large tan� in the MSSM. For the generic situation
m2

11 �M2
SUSY � M2

Z, the right-hand side is dominated by

them2
11 term: �r

7 is down by a loop factor relative to �2, and
m2

22 � v2 
 M2
SUSY (the little hierarchy). Hence,

m2;r
12 =M

2
SUSY � 1= tan�; (83)

which implies an extra tuning beyond the one to achieve
the correct weak scale. For smaller m2

11 �M2
A �M2

Z,
which is interesting from the point of view of B-physics
phenomenology, the required tuning gets even worse—
unless, of course, the whole SUSY scale is lowered to the
weak scale, which is, however, problematic since then
M2

h � �2v
2 is generally below the experimental lower

limit. On the other hand, as we have seen, M2
A �m2

11,
such that no extra tuning is required to keep M2

A finite,
while one might have expected otherwise from the well-
known tree-level formula

M2
A ¼ ðtan�þ cot�Þm2

12; (84)

which is generalized by Eq. (25). Also, while a smallm2
12 is

indeed sensitive to radiative corrections, those are auto-
matically correlated with shifts of vd and in consequence
of tan� in such a way that M2

A receives only mild
corrections.

IV. PHENOMENOLOGY

In Sec. II, we performed a detailed study of the super-
symmetric contributions to �Md and �Ms in the generic
framework of an effective 2HDM. The corresponding
matching coefficients were computed at the one-loop level
in Sec. III and Appendix B. In this section, we assess the
maximal size of the various types of effects identified in the
MFV case taking into account the existing constraints on
the supersymmetric parameter space, in particular, from
the Bs ! �þ��, Bþ ! �þ�, and b ! s� branching frac-
tions. For convenience, we start with a compendium of the
formulas derived in Sec. II:

�Mq ¼ j�MSM
q þ �MLR

q þ �MLL
q þ�MHL

q j
� j1þ hqj�MSM

q ; (85)

where the standard-model, the left-right and left-left
Higgs-pole (cf. Equation (17)), and the neutral-Higgs-
loop (cf. Equation (40)) contributions read

11This aspect has been considered before, and recently in an
EFT framework in Ref. [40].
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�MSM
q ¼ jVtqV

�
tbj2f2Bq

MBq
PVLL
1

�
G2

FM
2
W

6�2
S0ðm2

t =M
2
WÞ
�
;

�MLR
q ¼ jVtqV

�
tbj2f2Bq

MBq
PLR
2

��1

3

mbmq

v2
j �	j2Fþ

�
;

�MLL
q ¼ jVtqV

�
tbj2f2Bq

MBq
PSLL
1

��1

6

m2
b

v2
�	2F�

�
;

�MHL
q ¼ jVtqV

�
tbj2f2Bq

MBq
PVLL
1

�
1

12

y�2b
16�2

m2
b

v2
�	2 1

M2
A

�
;

(86)

respectively. The Inami-Lim function S0 is given by
S0ðxÞ ¼ ðx� 11x2=4þ x3=4Þð1� xÞ�2 � ð3x3 logðxÞ=2Þ	
ð1� xÞ�3 and v ¼ ð ffiffiffi

2
p

GFÞ�1=2 ¼ 246 GeV. The flavor-
changing and flavor-conserving quark-Higgs couplings
were defined in Secs. II A and II B:

�	 � 	bqv

�qbmb

¼ 	qbv

��
qbmq

¼ y2t
ffiffiffi
2

p
c2�

�Y
ð1þ ~�3t�Þð1þ �0t�Þ ;

yb ¼
ffiffiffi
2

p
mb

vc�

1

1þ ~�3t�
; (87)

with �0;Y and ~�3 given in Eqs. (31)–(33) and yt in

Appendix A. The F� factors describing the propagation
of the neutral Higgses were defined in Eqs. (18) and (19),
with the effective couplings �i entering the neutral-Higgs
mass matrix computed in Sec. IIIa and Appendix B. For
large tan�, we have in very good approximation:

F þ ’ 2

M2
A

; F� ’ ð���
5 þ ��2

7 =�2Þv2

M4
A

(88)

(exact formulas were used in our numerical analysis
though). For simplicity, we have omitted the Higgs wave-
function-renormalization terms in Eqs. (87) and (88),
which drop out in physical observables, as discussed at
the end of Sec. IIIa. Explicit expressions for �5, �7, and �2

in the MFV case were given in Eqs. (39) and (37).
Altogether, counting �Y;F� � ð16�2Þ�1 and MA �
120 GeV to get an idea of the naive size of the various
effects in the absence of constraints, we obtain:

hs ¼
�
�2:40

�
ms=mb

0:053=2:75

��
PLR
2 =PVLL

1

3:2=0:71

�

þ 0:35
16�2ð���

5 þ ��2
7 =�2Þð120 GeVÞ2e2i
 �	

M2
A

	
�
PSLL
1 =PVLL

1

�1:36=0:71

�
þ 0:01

e2i
 �	

ð1þ ~�3t�Þ2
�
t�
40

�
2
�
mb

2:75

�
2
�

	 j16�2�Yj2ð120 GeVÞ2
j1þ ~�3t�j2j1þ �0t�j2M2

A

�
t�
40

�
4
�
mb

2:75

�
2
; (89)

where mb is in GeV and 
 �	 � argð �	Þ. hd is given by the
same expression with ms replaced by md, so that the first
term becomes subleading.
A first obvious remark is that �MHL

q cannot compete

with �MLR
s or �MLL

q unless yb becomes nonperturbative.

This is rather accidental (notice the small loop factor in
Eq. (86) as well as the smallness of PVLL

1 with respect to
PLR
2 and PSLL

1 ). Further, the contribution of �MLL
q seems

somewhat limited. However, the loop functions �5 and �7

could be enhanced for large � or at;b, see Eqs. (38) and

(37). A more quantitative analysis is thus desirable. In the
next two sections, we perform a random scan of the MFV-
MSSM parameter space to find the maximal �MLL

q and

�MLR
q values allowed by current experimental data.

Equations (85)–(89) do allow for new CP-violating
phases,12 yet these will be set to zero in the scan.
CP-violating effects within the MFV scenario will be
shortly discussed in Sec. IVc.

A. Scan of the parameter space

The values of the various input parameters used in the
scan are collected in Table II. Note that only the products
PLR
2 ms and P

LR
2 md, or alternatively P

LR
2 ms and md=ms, are

needed, see Eq. (86). We scan over PLR
2 ms but keepmd=ms

fixed as �MLR
d is doomed to be small anyway. The decay

constants fBq
and CKM factors jVtqV

�
tbj are not specified.

TABLE II. Input values. Here MSUSY stands for any of the supersymmetric parameters j�j,
M~tL , M~tR , M~bR

, M~�L , M~�R , jatj, jabj, ja�j, M1, M2, M3. The renormalized parameters MA and

tan� are identical in the MSSM and effective 2HDM for MSUSY � v, in the scheme introduced
in Sec. IIIa. The quark masses and �s are defined in the MS scheme at the scale mt. The bag
factors, defined at the scale mt as well, are discussed in Appendix C.

Quark masses and �s Bag factors SUSY parameters

mt ¼ 164 GeV PVLL
1 2 ½0:66; 0:76� tan� 2 ½10; 60�

mb ¼ 2:75 GeV PLR
2 ms 2 ½0:12; 0:22� GeV MA 2 ½120; 600 GeV�

md=ms ¼ 1=19 PSLL
1 2 ½�1:48;�1:24� MSUSY 2 ½600; 1800 GeV�

�s ¼ 0:108

12Let us recall that in that case M2
A, defined as the nonzero

eigenvalue of the CP-odd mass matrixM2
I in Eq. (14), is no more

an eigenvalue of the full Higgs mass matrix.
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Instead, outputs are formulated in terms of ratios free from
these rather poorly known parameters. Finally, we take
� ¼ 1=127:9, sin2�W ¼ 0:231, and MZ ¼ 91:1876 GeV.

For simplicity, the gaugino mass parameters are as-
sumed to have the same sign (which we can choose posi-
tive), as well as the trilinear terms (positive or negative).
Note that the absolute scale of MSUSY plays no role as
supersymmetric parameters enter �0;Y and �i by means of

ratios. Only the spread of the interval chosen for MSUSY

matters. Still, MSUSY should not be taken too large to help
satisfy the b ! s� constraint in the case �< 0. We will
come back to this point later. We allow for rather large
values of MA, close to the lower end of the interval chosen
for MSUSY. Still, the matching performed in Sec. III and
Appendix B remains valid as the corrections from higher-
dimension operators at the electroweak scale are ruled by
the ratio v=MSUSY and not MA=MSUSY. The formulas for
the various observables at the B mass scale are thus
unaffected.

The constraints imposed on the points generated inside
the above ranges are summarized in Table III. We now
discuss them in turn:

(i) The bottom Yukawa coupling yb is maintained small
enough, say, yb < 2, to guarantee the validity of
perturbation theory. This condition removes possible
fine-tuned points in parameter space for which the
denominators in Eq. (87) are close to zero.

(ii) The lightest Higgs-boson mass Mh has to come out
large enough to comply with the LEP II experimen-
tal lower bound. Mh is obtained from the CP-even
Higgs mass matrix in Eq. (23), with the effective
couplings �i computed at the one-loop level.
Higher-order corrections to �2 are known to be
important [18–20]. However, h0 comes up in the
FCNC vertices 	ij of Eq. (11), along with a cot�

suppression factor. The tan�-enhanced effects con-
sidered here are thus largely uncorrelated with Mh.
For this reason we do not correct the one-loop
formulas and simply impose Mh > 115 GeV.

(iii) The following bounds are imposed on at and ab to
avoid the occurrence of color symmetry-breaking
vacua at tree-level [41]:

jatj2 < 3ðM2
~tL
þM2

~tR
þm2

22Þ;
jabj2 < 3ðM2

~tL
þM2

~bR
þm2

11Þ:
(90)

The corresponding bound for a� is not imposed as
sleptonic parameters have very little impact on the
quark FCNC considered here anyway.

(iv) The most stringent constraint on the FCNC cou-
pling �	 comes from the Bs ! �þ�� branching
fraction [3–5,42], which we normalize to �Ms to
avoid the occurence of the parameters fBs

and

VtsV
�
tb. This time the Higgs-pole contribution over-

comes the standard-model and Higgs-loop pieces.

In addition, these last two interfere destructively, so
we will neglect them. The counterpart of Eq. (86)
then reads (with m2

�=M
2
Bq

¼ 0 for simplicity):

BðBq ! �þ��Þ

¼ �Bq
jVtqV

�
tbj2f2Bq

M5
Bq

m2
�

64�v4

j �	j2½jF Pj2 þ jF Sj2�
cos2�j1þ ��t�j2

� RqBðBq ! �þ��ÞSM; (91)

where F P and F S refer to the Wilson coefficients

of the effective operators QP ¼ ð �bRsLÞð �‘�5‘Þ and
QS ¼ ð �bRsLÞð �‘‘Þ arising from neutral-Higgs ex-
changes and

�� ¼ g02

16�2

��

M1

�
� 1

2
H2

�M2
~�L

jM1j2
;
j�j2
jM1j2

�

þH2

�M2
~�R

jM1j2
;
j�j2
jM1j2

��
� g02

16�2

��

M1

	H2

�M2
~�L

jM1j2
;
M2

~�R

jM1j2
�
þ 3g2

32�2

��

M2

	H2

�M2
~�L

jM2j2
;
j�j2
jM2j2

�
: (92)

This result agrees with [43] but disagrees with [44].
The loop function H2 was defined in Eq. (34) and
M ~�LðRÞ ¼ M~�LðRÞ in our MFV scenario. In the large

tan� limit and at tree-level in the Higgs potential,
we have: F P ¼ �F S ¼ Fþ=2 ¼ 1=M2

A, so that
BðBq ! �þ��Þ is tightly correlated with �MLR

q

[5]. Going beyond the tree-level and large tan�
approximations we obtain: F P ¼ s�ðFþ �
F�Þ=2, with F� given in Eqs. (18) and (19).
This formula is actually valid in any 2HDM, in-
cluding arbitrary CP-violating phases (in the
CP-conserving case it reduces to the usual identity
F P ¼ s�=M

2
A). We did not find such a general and

simple form for F S, yet it is straightforward to
write it in terms of MA, tan�, and the �i’s (alter-
natively one can of course express it in terms of the
neutral-Higgs masses and mixing angles). Note that
one still has F S ¼ �ðFþ þF�Þ=2 up to
cot�-suppressed terms. Sparticle loop corrections
to the Higgs self-energies turn out to be relevant in
the case of F S: they can be as large as 15% for
small MA after all constraints are taken into ac-
count, as we will see in Sec. IVb. Numerically,
Higgs-mediated effects can easily be very large:

Rs¼9930

�
1þð��r

5þj�7j2=�2Þv2

M2
A

�

	 j16�2�Yj2ð120GeVÞ4
j1þ ~�3t�j2j1þ�0t�j2j1þ��t�j2M4

A

�
t�
40

�
6

(93)
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and Rd ’ Rs. The first correction factor above cap-
tures the bulk of the effects from the Higgs self-
energies, yet the exact formula for F S should be
used for better precision. In practice, the looser
constraint BðBs!�þ��Þ=�Ms<5:7	10�9 ps,
obtained from BðBs ! �þ��Þexp < 10�7 [45]
and �Mexp

s ¼ 17:77� 0:1� 0:07 ps�1 [46], is
built-in in the scan procedure, then the current
95% C.L. bound BðBs ! �þ��Þ=�Ms < 3:3	
10�9 ps corresponding to BðBs ! �þ��Þexp <
5:8	 10�8 [47] is imposed.13 We also checked
the bound BðBd!�þ��Þ=�Md<3:6	10�8 ps,
corresponding to BðBd ! �þ��Þexp < 1:8	
10�8 [47] and �Mexp

d ¼0:507�0:005 ps�1 [49].

This provides no additional constraint. Neither do
BðBs;d ! �þ��Þ and �Ms;d taken separately due

to the large parametric uncertainties from fBq
.

(v) The b ! s� branching fraction with the energy cut
E� > 1:6 GeV is computed using the fortran code

SusyBSG [50]. Higgs-mediated effects now appear
at loop level with smaller powers of tan�, so that
purely supersymmetric loop corrections (scaling as
1=MSUSY) are comparatively more important. For
at� < 0 and relatively light MSUSY, chargino and
charged-Higgs loops can interfere destructively and
more room is left for New Physics. This interplay is
welcome when �< 0 as the charged-Higgs contri-
bution then tends to overshoot the experimental
branching fraction. On the other hand, in that case,
the discrepancy between the ðg� 2Þ� standard-

model prediction and its present measurement [51]
increases (for a recent discussion, see e.g. [43] and
references therein). The significance of this discrep-
ancy, however, is questioned by the new eþe� !
�þ��� BABAR data [52]. We, therefore, still in-
clude the situation �< 0 in our considerations. The
Bðb ! s�Þ experimental world average reads:
Bðb ! s�Þexp ¼ ð3:52� 0:23� 0:09Þ 	 10�4

[53]. The standard-model central value of the
SusyBSG program agrees well with the next-to-
next-to-leading-order prediction Bðb ! s�Þ ¼
ð3:15� 0:23Þ 	 10�4 [54]. We combine the experi-
mental error with the uncertainties discussed in
Ref. [50] and obtain the following two-sigma range:
2:71	 10�4 <Bðb ! s�Þ< 4:33	 10�4.

(vi) The Bþ ! �þ� branching fraction is given by

BðBþ ! �þ�Þ ¼ G2
F

8�
�BþjVubj2f2Bd

	MBþm2
�

�
1� m2

�

M2
Bþ

�
2j1� gPj2; (94)

where

gP ¼ M2
Bþt2�

ð1þ �0t�Þð1þ ���t�ÞM2
Hþ

(95)

parametrizes Higgs-mediated effects. �� is obtained
from �� in Eq. (92) by the replacement M ~�LðRÞ !
M~�LðRÞ. Corrections to the Higgs potential merely

change the value of MHþ , which becomes a func-
tion of MA, tan�, and the various supersymmetric
parameters. Again, we include these corrections in
our numerical analysis. Given the large theoretical
and experimental uncertainties, we impose: gP <
0:36 [ 1:64< gP < 2:73. The constraint from
BðB ! D��Þ allows to reduce the second interval,
and we end up with gP < 0:36 [ 1:64< gP < 1:79
[55].

B. Size of the new contributions

The various Higgs-mediated contributions �MLR
s ,

�MLL
q and �MHL

q normalized to the standard-model pre-

diction �MSM
q are displayed in Fig. 3(a)–3(c) as a function

of the FCNC coupling �	. As expected from Eq. (89),
Higgs-loop effects are very small (the bottom Yukawa
coupling actually does not reach its upper bound yb ¼ 2
in the presence of the other constraints, see Fig. 3(d). The
upper and lower branches correspond to �< 0 and �> 0,
respectively). Further, the contribution of�MLL

q appears to

be much smaller than that of �MLR
s despite the fact that

mbF� can compete with msFþ, see Fig. 3(e) and 3(f).
This suppression is a consequence of the Bs ! �þ��
constraint. Indeed, large values of F� are obtained for
small values of MA, to which BðBs ! �þ��Þ is particu-
larly sensitive. As a result, the recent CDF bound [47] only
leaves room for very small �	 couplings, killing practically
all effects in �MLL

q (and actually also in �MLR
s for such

smallMA values). In Fig. 3(g), we illustrate this decrease of
the maximal �	 value allowed by the Bs ! �þ�� con-
straint with MA. Blue/magenta/red (dark grey/light grey/
grey) points correspond to MA ¼ 550=350=150 GeV (the
constraints in the right column of Table III were not
imposed to keep the focus on Bs ! �þ��). As one can
see, forMA fixed, the largest possible �	 first increases with
tan�2, as expected from Eq. (87), saturates the BðBs !
�þ��Þ experimental upper bound for some tan� value,
and is then forced to decrease. For smaller MA, the Bs !
�þ�� constraint is more stringent and only a smaller �	max

can be achieved. This growth of �	max withMA is sufficient
to overcome the 1=M2

A suppression factor in �MLR
s but not

the 1=M4
A one in�M

LL
q . Overall, Higgs-mediated effects in

�Mq are of the LR type and the room for such effects

increases with MA. The correlation between �Ms and
BðBs ! �þ��Þ pointed out in Ref. [5] is thus preserved,
up to the relatively small Higgs self-energy corrections to
Bs ! �þ�� mentioned above Eq. (93). These are only

13A newer preliminary result is BðBs ! �þ��Þexp < 4:3	
10�8 at 95% C.L. [48].
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relevant for �> 0, tan� & 25, small MA, and large �5,
though (see Fig. 4). The mass difference in the Bd system,
on the other hand, remains unaffected. These results seem
to contradict those of Ref. [56], where large LL-type

effects were claimed. Without attempting a close numeri-
cal comparison (the sign of �MLL

s =�MLR
s in [56] is ac-

tually reversed with respect to ours), let us point out that, as
shown by Figs. 3(e) and 3(f), a large �MLL

s =�MLR
s ratio

FIG. 3 (color online). Study of Higgs-mediated contributions to �Mq (see text). Black dots denote the points in parameter space that
satisfy all constraints, while gray dots refer to those that only satisfy the initial constraints (see Table III). In plots (g) and (h), blue/
magenta/red (dark grey/light grey/grey) points correspond to MA ¼ 550=350=150 GeV, respectively. Plain lines indicate the BðBs !
�þ��Þ constraint. In plot (h), the dashed line corresponds to the more stringent BðBs ! �þ��Þ constraint in the right column of
Table III.
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does not automatically lead to large nonstandard effects in
�Ms due to the BðBs ! �þ��Þ constraint.

Being of the LR type, the maximal effect allowed in
�Ms is essentially determined by the current BðBs !
�þ��Þ experimental upper bound for a fixed (but large
enough) value of the ratio tan�=MA. This is illustrated in
Fig. 3(h) for a slightly larger bound (cf. left-hand side
column in Table III). The correlation itself is displayed in
Fig. 5, where each diagonal corresponds to a fixed value of
the ratio tan�=MA. We distinguish the cases �> 0 and
�< 0 as the latter leads to larger effects due to smaller
denominators in Eq. (87) but is disfavored by the measure-
ment of ðg� 2Þ�, as mentioned previously. The sign of the

various a-terms, on the other hand, has only little impact.
Still, in the case �< 0, at > 0 helps satisfy the b ! s�
constraint. Note that the effect of the Bþ ! �þ� constraint
is particularly transparent on Fig. 5: it removes the points
with large tan�=MA ratios, i.e., the steepest diagonals.
Altogether, for MA < 600GeV, Higgs-mediated effects in
�Ms can reach �7% (� 20%) for �> 0 (�< 0). These
findings agree with those of Ref. [57]. They merely follow
from the BðBs ! �þ��Þ constraint, as one can see from
Figs. 3(g), 3(h), and 5.

Finally, for completeness (or out of curiosity), we dis-
play in Fig. 6 the typical size of various quantities and their
dependence on effective couplings or supersymmetric pa-
rameters. In particular, in the last four plots, we illustrate
how the loop functions "0, "Y , "�, and �5 increase with the
range chosen forMSUSY (more precisely, they increase with
the trilinear and � terms and decrease with the squark and
slepton mass parameters M~fL

and M~fR
with f ¼ t, b, �).

C. CP-violating effects

The Higgs-mediated B� �B mixing amplitudes studied
here can in principle generate new contributions to the
CP-violating phases measured in the Bd ! J=cKS time-
dependent CP asymmetry and the Bs ! J=c
 time-
dependent angular distribution. The coefficients of the
sinð�MqtÞ terms are

SJ=cKS
¼ sinð2�þ
�

d Þ;
SJ=c
 ¼ � sinð�2�s þ
�

s Þ;
(96)

where � � arg½�ðV�
tdVtbÞ=ðV�

cdVcbÞ�, �s �
� arg½�ðV�

tsVtbÞ=ðV�
csVcbÞ�, and


�
q ¼ argðMq

12=M
q;SM
12 Þ � argð1þ hqÞ: (97)

In Bs ! J=c
, an angular analysis separates the different
CP components, the sign quoted for SJ=c
 in Eq. (96)

refers to the dominant CP-even component. These phases
have received a lot of attention recently. In particular, the
new measurements of �2�s þ
�

s by the CDF and D0
collaborations [58], both more than 1.5 sigma above its SM
prediction [59], have triggered speculations about the va-
lidity of the SM [60]. A possible tension between the value
of sin2� obtained from SJ=cKS

and the amount of CP

violation in the kaon system was also pointed out [61].
Looking back at (17)–(19), it is clear that the new phases


�
q , when associated with the Q

LR
2 effective operator, have

to be brought up by the quark-Higgs couplings 	ij as Fþ

cannot develop an imaginary part. When associated with
QSLL

1 or QSRR
1 , on the other hand, they can arise from both

TABLE III. Constraints built-in in the scan procedure (left) and imposed afterwards (right).

Built-in constraints Additional constraints

BðBs ! �þ��Þ=�Ms < 5:7	 10�9 ps BðBs ! �þ��Þ=�Ms < 3:3	 10�9 ps
yb < 2 2:71	 10�4 <Bðb ! s�Þ< 4:33	 10�4

Mh > 115 GeV gP < 0:36 or 1:64< gP < 1:79
Stability bounds, see Eq. (90)

FIG. 4. Correction factor toBðBq ! �þ��Þ arising from supersymmetric loop effects in the Higgs self-energies as a function of the
effective coupling �5 (left) and the total Higgs-mediated effects in Bs ! �þ�� (right), for �> 0. On the left-hand side, the upper
(lower) line corresponds to MA ¼ 120ð600Þ GeV, assuming the approximate formula of Eq. (93) for the correction factor.
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the Yukawa sector and the Higgs potential via F�. Within
MFV, 	�

qb	bq ¼ j �	j2�2
qbmqmb=v

2 and only CSLL
1 can pro-

duce a new phase (via �0;Y or �5;7). However, the Bs !
�þ�� branching fraction is barely affected by
CP-violating effects, so that its constraints on j �	j are still
very well approximated by the plain lines in Fig. 3(g) (for
some representativeMA values). As a result, just like in the
CP-conserving case, the net effect of the suppression of j �	j
and enhancement of F� for small MA is quite small. The
MSSM with large tan� and MFV is thus not able to
account for a large nonstandard phase in Bs � �Bs (or Bd �
�Bd) mixing, if the evidence for such a phase were con-
firmed. Let us emphasize, however, that the formulation of
MFV adopted here does not coincide exactly with the full
symmetry-based definition of Ref. [13]. In the formalism
of Ref. [13], it was shown recently that new phases could

appear in the 
13;23
LL sector, in addition to those in the

ð
d
LRÞ13;23 sector [16]. The possible impact of these MFV

phases via 	�
qb	bq in CLR

2 is a priori rather limited due to

the Bs ! �þ�� constraint, yet a more quantitative analy-
sis is desirable.

Beyond MFV, theQLR
2 contribution is expected to domi-

nate. As said before, supersymmetric loop corrections to
the Higgs propagator Fþ do not bring in any new phases.
These can only enter via the quark-Higgs couplings 	�

qb

and 	bq. The possible size of CP-violating effects gener-

ated in this way without violating the existing constraints
deserves a study on its own. We will not discuss this further
here.

V. CONCLUSIONS

We have studied supersymmetric loop corrections to the
MSSM Higgs sector. While the tree-level Higgs sector of
the MSSM is a 2HDM of type II, the soft supersymmetry-
breaking terms lead to new loop-induced couplings which
result in a generic 2HDMwith FCNC couplings of neutral-
Higgs bosons to quarks, even if the supersymmetry-
breaking sector is minimally flavor-violating. The strength
of these couplings to d-type quarks grows with tan� and
precision observables of flavor physics are known to se-
verely constrain large- tan� scenarios of the MSSM. The
appropriate tool for such studies is an effective Lagrangian,
which is derived by integrating out the heavy supersym-
metric particles. The abundant literature on the subject has
primarily focused on the flavor-changing Yukawa cou-
plings [1–7]. Among the FCNC quantities, B� �B mixing
plays a special role, because the apparently dominant con-
tribution of Fig. 1 vanishes. Therefore, B� �B mixing is
sensitive to subleading effects, whose systematic study was
the main motivation for this paper. Pursuing this goal we

FIG. 5. Correlation between �Mq and BðBq ! �þ��Þ: (a) q ¼ s, �< 0; (b) q ¼ s, �> 0; (c) q ¼ d, �< 0; (d) q ¼ d, �> 0.
The descending lines correspond to a fixed value of the ratio tan�=MA. From left to right: tan�=MA ¼
0:05; 0:075; 0:10; 0:13; 0:21 GeV�1. The ascending lines refer to the BðBs ! �þ��Þ=�Ms constraints, see Table III. These lines
do not take into account the uncertainties on the quark masses and bag factors, nor the effects from sparticle loop corrections to the
Higgs potential in �Ms, BðBs ! �þ��Þ, and to the lepton Yukawa couplings in BðBs ! �þ��Þ, so that the actual points do not
follow them exactly but are somewhat scattered.
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have derived several conceptual and analytic results which
can be applied well beyond this topic. They can be classi-
fied into three categories:

1. MSSM Higgs sector. We have matched the complete
MSSM Higgs sector, i.e. both the Yukawa interactions and
the Higgs potential, onto an effective 2HDM. Our results
for the effective Yukawa couplings are valid for arbitrary

CP phases of �, at, and the gaugino masses; and (31) and
(32) correct the gaugino contributions to �0 and �Y quoted
in Ref. [26]. The complete one-loop matching corrections
for the quartic Higgs couplings for the most general MSSM
are explicitly listed in one place for the first time. This
result goes beyond minimal flavor-violation and beyond
the large- tan� limit. It is well-known that improper

FIG. 6. Dependence of various quantities on effective couplings or supersymmetric parameters.
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choices of the MSSM renormalization scheme can lead to
radiative corrections which grow with tan� rendering per-
turbative results unreliable [31]. At the heart of this prob-
lem is the feature that tan� is an ill-defined parameter in
the general 2HDM, which permits arbitrary rotations
among the two Higgs doublets. In the matching of the
MSSM onto the 2HDM this feature enters through the

wave-function-renormalization, and we propose an MS
renormalization of tan� in the 2HDM which is stable in
the limit of large tan�. The relation to a DR-renormalized
tan� in the MSSM is discussed including electroweak
corrections. We identify the places in the effective Higgs
potential where physical tan�-enhanced effects occur. The
coefficients �2, �5 and �7, which are important for B� �B
mixing, are explicitly specified for the MFV case in (39),
(38), and (37). Certain loop corrections to the Higgs po-
tential (�5, �6, �7) and their impact on tan� and the Higgs-
fermion couplings have also been considered in an
effective-field-theory framework in Ref. [40], which ap-
peared during completion of this paper. Their results for
the �’s agree with ours for the parameter values consid-
ered. As far as the renormalization of tan� is concerned, in
Sec. III of the present paper we critically compared with
Ref. [40]. In particular, we do find a tan�-enhanced term in
the relation of the DR and DCPR tan� parameters. We
stress that, in general, only the former is numerically
close to the tan� parameter extracted from B-physics
observables.

2. Large tan� phenomenology. The prime application of
our results is B� �B mixing. We have identified a global
Uð1Þ symmetry of the �bRqL Higgs-mediated FCNC tran-
sitions and the tree-level Higgs potential in the
large- tan� limit which suppresses the superficially lead-
ing contribution of Fig. 1. A systematic study of B� �B
mixing has required the analyses of four subleading
contributions, which are governed by the small parame-
ters md;s=mb, 1= tan�, v=MSUSY and the loop factor

1=ð4�Þ2. These parameters either provide a breaking of
the Uð1Þ symmetry or allow for a contribution propor-
tional to the Uð1Þ-conserving standard-model effective
operator. Prior to this work, only corrections involving
md;s=mb had been studied [5] (with the exception of

Ref. [26]). The v=MSUSY corrections are found to be
suppressed. The new loop contributions include all non-
decoupling SUSY corrections to the quartic Higgs inter-
actions �1–�7 and the contribution of neutral-Higgs box
diagrams in the effective theory. In the complex MSSM
the results for F� comprising the neutral-Higgs propa-
gators become cumbersome. We have expressed F� in
terms of subdeterminants of the neutral-Higgs mass ma-
trix. These expressions are easy to implement and clearly
reveal the invariance of the Higgs-mediated amplitudes
under rotations of the basis ð��H�

d; HuÞ. The results for

the Higgs sector are also used to refine the MSSM
predictions for the Bþ ! �þ� and the Bs;d ! �þ��

branching ratios. In this context we stress that loop
corrections to the Higgs potential do not give rise to
additional tan�-enhanced contributions to the charged-
Higgs-fermion couplings beyond those known before
Ref. [26] appeared. Hence no parametrically large modi-
fication of the charged-Higgs contributions to Bþ ! �þ�
or B ! Xs� relative to Ref. [5] occurs.
While the MSSM corrections to B� �B mixing in the

large tan� scenario could be dominated by the contribution
of �5 and �7, the size of this piece is limited by the
experimental upper bound on BðBs ! �þ��Þ. After per-
forming an exhaustive analysis of this quantity, BðB !
Xs�Þ, BðBþ ! �þ�Þ and the mass of the lightest neutral-
Higgs bosonMh, we find that the impact of the corrections
to the Higgs potential on �Ms is always weaker than that
of the ms=mb correction identified in Ref. [5]. Assessing
the total Higgs-mediated MSSM corrections to �Ms we
find an upper limit of 7% of the SM contribution for�> 0
and MA < 600 GeV. If � is negative, the upper bound is
around 20%. This is in contrast with Refs. [26,56], which
claim large effects of the Higgs potential on B� �Bmixing.
The corrections toBðBq ! �þ��Þ from the Higgs poten-

tial are typically also small, but can reach 15% in some
corners of the parameter space. In summary, the correlation
between an enhancement of BðBq ! �þ��Þ and a (mod-

erate) depletion of �Ms found in Ref. [5] remains essen-
tially intact.
We finally note that our new contributions can alter the

CP phase of the B� �B mixing amplitude, while the pre-
viously known Higgs contribution proportional to
msmbFþ has the same phase as the SM term (in MFV
scenarios). While the maximal possibleCP phase is clearly
below the sensitivity of the current Tevatron experiments,
it is an open question whether future B� �Bmixing experi-
ments can help to unravel the CP structure of the MSSM
Higgs potential.
3. Heavy-quark relations and bag parameters. We have

transformed the NLO anomalous dimensions computed in
Ref. [28] to an operator basis and a renormalization
scheme typically used in lattice calculations. The accord-
ing anomalous dimensions are needed to evaluate the
‘‘bag’’ parameters, which parametrise the hadronic matrix
elements, at the electroweak scale. We further employed a
heavy-quark relation to improve the numerical prediction
of the bag parameter BSLL0

1 entering the SUSY contribu-

tions to B� �B mixing. The heavy-quark relation essen-
tially determines BSLL0

1 in terms of the bag parameter BVLL
1 ,

which is needed for the SM prediction [59]. We found
PSLL
1 ¼ � 5

8B
SLL0
1 ðmtÞ ¼ �1:36� 0:12.
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APPENDIX A: NOTATIONS AND CONVENTIONS

To state our phase conventions for � and M2 we quote
the chargino mass matrix:

M �þ ¼ M2
gv sin�ffiffi

2
p

gv cos�ffiffi
2

p �

0
@

1
A (A1)

with v ¼ 246 GeV and the chargino mass term in the
Lagrangian

L mass
�þ ¼ �ð��; ~h2dÞM�þð�þ; ~h1uÞT: (A2)

For the case of a general flavor structure of the squark

mass matrices we define the trilinear couplings T̂uij and

T̂dij (with flavor indices i, j) such that the squark mass

matrices read

M̂2
~u ¼

M̂2
~uL

vsin�ffiffi
2

p ½T̂y
u ��Ŷy

u cot��
v sin�ffiffi

2
p ½T̂u���Ŷu cot�� M̂2

~uR

0
@

1
A;

M̂2
~d ¼

M̂2
~dL

vcos�ffiffi
2

p ½T̂y
d ��Ŷy

d tan��
vcos�ffiffi

2
p ½T̂d���Ŷd tan�� M̂2

~dR

0
@

1
A;

(A3)

in the super-CKM basis, where the (DR-renormalized)

Yukawa matrices are diagonal: Ŷq ¼ diagðyq1 ; yq2 ; yq3Þ,
q ¼ u, d. The mass matrices in (A3) correspond to the
squark mass term

L mass
~q ¼ ��y

~uM̂
2
~u�~u ��y

~d
M̂2

~d�~d (A4)

with �~u ¼ ð~uL; ~cL;~tL; ~uR; ~cR;~tRÞT and �~d ¼ ð~dL; ~sL; ~bL;
~dR; ~sR; ~bRÞT .
Our sign convention for the MSSM Yukawa couplings

implies the following relations between 2HDM quark
masses and MSSM Yukawa couplings in the up sector:

yui ¼
ffiffiffi
2

p
v sin�

mui : (A5)

In general, the analogous relations in the down
sector involve complex phases associated with the
tan�-enhanced threshold corrections in (22). In particular,
Ref. [24], which discusses the complex MSSM for the case
without flavor mixing, relates the bYukawa coupling to the
b quark mass as

yb ¼
ffiffiffi
2

p
v cos�

mb

1þ ~�3 tan�
; (A6)

rendering yb complex for complex ~�3 in (33). Our ap-
proach of matching the MSSM to an effective 2HDM
permits different phase conventions, because the quark
fields in the MSSM and the 2HDM can be chosen to
differ by a phase factor. We can rephase the bR super-
field of the MSSM in such a way that yb is real and
positive and 1þ ~�3 tan� in (A6) is replaced by j1þ
~�3 tan�j. The (physical) phase of 1þ ~�3 tan� will then,
however, appear explicitly in the Higgs and higgsino
couplings to bottom (s)quarks. Introducing 3	 3 flavor

mixing, the relation between Ŷd and md, ms, mb is found
from (22). Now the quark fields in the 2HDM differ
from those in the MSSM by a complex rotation in flavor
space and a particular choice for the phases of MSSM
fields appears less obvious. In particular, one could
render all ydi real and positive by suitable rephasings

of the right-handed superfields. Note that within MFV yb
is still related to mb via (A6) in good approximation
without such rephasings. The analogous relation for the
first two generations reads

yd;s ¼
ffiffiffi
2

p
v cos�

md;s

1þ �0 tan�
; (A7)

while in the lepton sector, we have

y‘ ¼
ffiffiffi
2

p
v cos�

m‘

1þ �‘ tan�
with ‘ ¼ e;�; �: (A8)

In (most of) the paper we express our results in terms of
fermion masses (i.e. avoiding ydi;‘) to achieve formulas

which are independent of such phase conventions. Note
that the phases of �0 and �Y are physical and no phase
convention other than that of the CKM matrix matters
for 	ij in (29) and (30). While the phase convention of

yqi enters the phases in T̂q, it drops out from the MFV

parameters aq in (A12).

Finally, the quadratic squark soft-breaking terms are
defined as follows:
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ðM̂2
~uL
Þij ¼ ðV0

CKM ~m2
QV

0y
CKMÞij þ

v2sin2�

2

ijjyui j2 þ 
ijM

2
Z cos2�ð1=2� 2sin2�W=3Þ;

ðM̂2
~dL
Þij ¼ ð ~m2

QÞij þ
v2cos2�

2

ijjydi j2 þ 
ijM

2
Z cos2�ð�1=2þ sin2�W=3Þ;

ðM̂2
~uR
Þij ¼ ð ~m2

uÞij þ v2sin2�

2

ijjyui j2 þ 2
ijM

2
Z cos2�sin

2�W=3;

ðM̂2
~dR
Þij ¼ ð ~m2

dÞij þ
v2cos2�

2

ijjydi j2 � 
ijM

2
Z cos2�sin

2�W=3;

(A9)

where V0
CKM corresponds to the relative rotation of left-handed u-type and d-type quark fields performed when

diagonalizing the Yukawa matrices. It differs from the actual CKM matrix, defined by the rotations that diagonalize the
2HDM mass matrices rather than the MSSM Yukawa couplings, by loop-suppressed (but tan�-enhanced) corrections. In
particular, within MFV, we have:

VCKMij
¼

8>>><
>>>:








1þ�0 tan�

1þ~�3 tan�









V0
CKMij

for ði; jÞ ¼ ðu; bÞ; ðc; bÞ; ðt; dÞ; ðt; sÞ;
V0
CKMij

otherwise:

(A10)

The relations (A10) take a particularly compact form in the
(exact) Wolfenstein parametrization, where one has

A¼








1þ�0 tan�

1þ ~�3 tan�









A0; �¼ �0; ��¼ ��0; ��¼ ��0:

(A11)

Whenever we consider the case of MFV we write

T̂uij ¼ atyui
ij; T̂dij ¼ abydi
ij; ~m2
Qij

¼ ~m2
Q
ij;

~m2
uij ¼ ~m2

u
ij; ~m2
dij

¼ ~m2
d
ij: (A12)

The SUð2Þ relation between M̂2
~dL
and M̂2

~uL
then implies for

the third generation:

M2
~tL
¼M2

~bL
þm2

t � m2
b

j1þ ~�3 tan�j2
þM2

Zcos2�ð1�sin2�WÞ:

(A13)

In the strict SUð2Þ limit (i.e., v=MSUSY ! 0) one hasM2
~tL
¼

M2
~bL
, but for small M2

~bL
, the term involving m2

t can be

relevant. Also, FCNC ~W-~uLi loops vanish (for universal
M2

~uL
) by the GIM mechanism up to the m2

t term in (A13).

Finally, it is convenient to define the so-called super-
flavor basis, obtained from a generic electroweak interac-
tion eigenstate basis by rotating the supermultipletsQL, uR
and dR such that the quadratic squark soft-breaking terms
are diagonal. We denote the corresponding entries by ~m2

Qi
,

~m2
ui , and ~m2

di
. For MSUSY � v, these are just the squark

masses, and the computation of the effective couplings �i

induced by heavy squark loops for arbitrary flavor and CP
structure is greatly simplified. The Yukawa matrices and
trilinear terms in this basis are simply written Yu;d and Tu;d,

respectively. They are given in terms of Ŷu;d and T̂u;d as

follows:

YT
u ¼ UuŶuV

0
CKMV

y
d ; YT

d ¼ UdŶdV
y
d ;

TT
u ¼ UuT̂uV

0
CKMV

y
d ; TT

d ¼ UdT̂dV
y
d ;

(A14)

where the matrices Vd, Uu and Ud are defined such that

diagð ~m2
Qi
Þ ¼ Vd ~m

2
QV

y
d ; diagð ~m2

uiÞ ¼ Uu ~m
2
uU

y
u ;

diagð ~m2
di
Þ ¼ Ud ~m

2
dU

y
d : (A15)

Assuming MFV, one is allowed to choose Vd ¼ Uu ¼
Ud ¼ 1.
Our conventions comply with the Les Houches accord

[62]. In particular, our Yu;d and Tu;d matrices correspond to

a particular choice of the generic Yu;d and Tu;d matrices of

Ref. [62]. Our conventions also agree with those of

Ref. [63], except that the sign convention of our Ŷd in

(A6) is opposite. Besides, our T̂u equals �Au and our T̂d

equals Ad of Ref. [63], respectively.

APPENDIX B: MATCHING
OF THE MSSM ONTO A 2HDM

The notation of Sec. III distinguishes between the co-

efficients �̂i and ��i. The former quantities contain the
results from the supersymmetric loop corrections to the
quadrilinear Higgs couplings, whose tree-level values are
given in (21). The latter coefficients also include the effect
of the wave-function and gauge coupling renormalization
constants in Appendix B1.
In the following, we summarize the one-loop matching

corrections for the quartic Higgs-coupling constants in the
general MSSM. While the calculation of loop corrections
to the Higgs sector of the MSSM has a long history, see for
example [18–24], and a determined reader could extract
part of the matching coefficients below from these works,
the results collected in this appendix as a service to the
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reader are more complete than those in the literature,
capturing the effects of the full set of mass, flavor-
violation, and CP-violation parameters of the most general
MSSM. The effective potential V in (12) must be used with

�i ¼ ��i and the relation between ��i and �̂i is given in (71);
the renormalization constants needed in this relation are
given in Appendix. B1. In the following subsections, we

quote the results for �̂i in the general MSSM and decom-

pose �̂1�7 as

�̂ i ¼ �tree
i þ �ino

i þ �sferm
i

16�2
: (B1)

The tree-level values �tree
i are given in (21). �ino

i and �sferm
i ,

given in Appendices B2, and B3, contain the contributions
from higgsino and gaugino loops and from sfermion loops,
respectively. Finally we also list the relevant loop functions
in Appendix B4. All these results are given in the super-
flavor basis including the most general soft-breaking terms.

1. Renormalization constants

The renormalization of gð0Þ is related only to the field
renormalization of W and B, ZW;B ¼ 1þ 
ZW;B, if we

decouple the sfermionic, higgsino and gaugino contribu-
tions: 
g0 ¼ �
ZB=2 and 
g ¼ �
ZW=2. The finite part
of the one-loop wave-function renormalization constants
of the gauge bosons are


ZW ¼ g2

16�2

1

6

�
4log

j�j2
�2

0

þ8log
M2

2

�2
0

þX3
i¼1

�
log

~m2
li

�2
0

þNC log
~m2
Qi

�2
0

�
�4

�


ZB¼ g02

16�2

1

3

�
2log

j�j2
�2

0

þX3
i¼1

�
log

~m2
ei

�2
0

þ1

2
log

~m2
li

�2
0

þ4NC

9
log

~m2
ui

�2
0

þNC

9
log

~m2
di

�2
0

þNC

18
log

~m2
Qi

�2
0

��
; (B2)

where �0 is the renormalization scale and the soft-
breaking terms are written in the superflavor basis (see
Appendix A).
The sfermionic contributions to the wave-function re-

normalization constants of the Higgs bosons are


Zdd ¼ 1

32�2

X
ij

½3B0
0ð ~mdi ; ~mQj

ÞTdjiT
�
dji

þ 3j�j2B0
0ð ~mui ; ~mQj

ÞYujiY
�
uji þ B0

0ð ~mei ; ~mljÞTejiT
�
eji�


Zud ¼ � 1

16�2

X
ij

½3��B0
0ð ~mdi ; ~mQj

ÞT�
dji
Ydji þ 3��B0

0ð ~mui ; ~mQj
ÞT�

ujiYuji þ��B0
0ð ~mei ; ~mljÞT�

ejiYeji�


Zuu ¼ 1

32�2

X
ij

½3B0
0ð ~mui ; ~mQj

ÞTujiT
�
uji þ 3j�j2B0

0ð ~mdi ; ~mQj
ÞYdjiY

�
dji

þ j�j2B0
0ð ~mei ; ~mljÞY�

ejiYeji�;

(B3)

while the respective contributions of the gaugino and higgsino loops read:


Zdd ¼ � 1

16�2

1

8
ðg02WðjM1j; j�jÞ þ 3g2WðjM2j; j�jÞÞ


Zud ¼ � 1

16�2
��ðg02M�

1B
0
0ðjM1j; j�jÞ þ 3g2M�

2B
0
0ðjM2j; j�jÞÞ


Zuu ¼ � 1

16�2

1

8
ðg02WðjM1j; j�jÞ þ 3g2WðjM2j; j�jÞÞ:

(B4)

2. Higgsino-gaugino contributions to �1–�7

The situation of ��5 ¼ �̂5 is particularly simple: The matching correction only involves the box function and �ino
5 can be

written in a compact form:

�ino
5 ¼ 3g4�2M2

2D0ðjM2j; jM2j; j�j; j�jÞ þ 2g2g02�2M1M2D0ðjM1j; jM2j; j�j; j�jÞ þ g04�2M2
1D0ðjM1j; jM1j; j�j; j�jÞ;

(B5)

if we use the loop functions defined in Appendix B4.
We find for �ino ¼ �ino

1 ; . . .�ino
4 ; �ino

6 ; �ino
7 :

�ino ¼ g4ðas þ a2 ~D2ðjM2j; jM2j; j�j; j�jÞ þ a4 ~D4ðjM2j; jM2j; j�j; j�jÞÞ þ g2g02ða0s þ a02 ~D2ðjM1j; jM2j; j�j; j�jÞ
þ a04 ~D4ðjM1j; jM2j; j�j; j�jÞÞ þ g04ða00s þ a002 ~D2ðjM1j; jM1j; j�j; j�jÞ þ a004 ~D4ðjM1j; jM1j; j�j; j�jÞÞ; (B6)

where the coefficients as; . . . a
00
4 depend on the index i labeling �i in (B1), which we suppress throughout this appendix.

The coefficients að0ð0ÞÞ2;4 are given in Table IV, while
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as¼

8>>><
>>>:
�3

4

0

0

; a0s¼

8>>><
>>>:
�1

2

1

0

; a00s ¼

8>>><
>>>:
�1

4

0

0

for

8>>><
>>>:
�1 to�3

�4

�5 to�7

(B7)

3. Sfermion contributions to �1–�7

The sfermion contribution to �1–7 are products of loop
functions and flavor dependent coefficients if we sum over

the generation index of the internal sfermions. For �̂5,our
results then take the simple form

�sferm
5 ¼ dijkl1 D0ð ~mei ; ~mej ; ~mlk ; ~mllÞ

þ dijkl2 D0ð ~mdi ; ~mdj; ~mQk
; ~mQl

Þ
þ dijkl3 D0ð ~mQi

; ~mQj
; ~muk; ~mulÞ; (B8)

where the slepton contribution is contained in dijkl1 listed in

Table V and dijkl2–4 comprises the squark contribution

(Table VI). Only �4 receives a contribution from dijkl4 :

dijkl4 ¼ �3ðTdkiT
�
ukl � j�j2YdkiY

�
uklÞ

	 ðTujlT
�
dji

� j�j2YujlY
�
dji
Þ for �4; (B9)

while dijkl4 ¼ 0 for �i with i � 4. The contributions to the

matching coefficients depend on the Yukawa couplings
Ye;u;d of the charged leptons, the up-type quarks, and the

down-type quarks as well as on the trilinear soft-breaking
terms Te;u;d, defined in the superflavor basis (see

Appendix A).
We write �sferm

1–4 ¼ �sl
1–4 þ �sq

1–4, and find for the slepton

contribution

�sl
1–4¼ðb1
ijþb2Yeeii
ijþb3YeeijYeejiÞB0ð ~mei ; ~mejÞ
þðb4
ijþb5 �Yeeii
ijþb6 �Yeeij

�YeejiÞB0ð ~mli ; ~mljÞ
þðc1j�j2YekiY

�
eki
ijþc2TekiT

�
eki
ij

þc3j�j2YekiY
�
ekjYeeij þc4TekiT

�
ekjYeeijÞC0ð ~mei ; ~mej ; ~mlkÞ

þðc5j�j2YejiY
�
eji
jkþc6TejiT

�
eji
jkþc7j�j2YejiY

�
eki

�Yeekj

þc8TejiT
�
eki

�Yeekj ÞC0ð ~mei ; ~mlj ; ~mlkÞ
þdijkl1 D0ð ~mei ; ~mej ; ~mlk ; ~mllÞ; (B10)

while the squark contribution reads

TABLE IV. Coefficients entering �ino
1 –�ino

4 , �ino
6 , and �ino

7 in Eq. (B6).

� a2 a4 a02 a04 a002 a004
�1

1
2 jM2j2 5

2
1
2 ðM1M

�
2 þM�

1M2Þ 1 1
2 jM1j2 1

2

�2
1
2 jM2j2 5

2
1
2 ðM1M

�
2 þM�

1M2Þ 1 1
2 jM1j2 1

2

�3 3j�j2 þ 5
2 jM2j2 1

2 2j�j2 þ 1
2 ðM1M

�
2 þM�

1M2Þ 1 j�j2 þ 1
2 jM1j2 1

2

�4 �3j�j2 � 2jM2j2 2 2j�j2 �M1M
�
2 �M�

1M2 �2 �j�j2 0

�6 3�M2 0 �ðM1 þM2Þ 0 �M1 0

�7 3�M2 0 �ðM1 þM2Þ 0 �M1 0

TABLE VI. D0 squark contribution to �sferm
1 –�sferm

7 in Eqs. (B8) and (B13).

dijkl2 dijkl3

�1 �3TdkiTdljT
�
dkj
T�
dli

�3j�j4YuilYujkY
�
uikY

�
ujl

�2 �3j�j4YdkjYdliY
�
dki
Y�
dlj

�3TuikTujlT
�
uilT

�
ujk

�3 �3j�j2TdliYdkj ðT�
dlj
Y�
dki

þ T�
dki
Y�
dlj
Þ �3j�j2TujlYuik ðT�

ujkY
�
uil þ T�

uilY
�
ujk Þ

�4 3j�j2TdliT
�
dki
YdkjY

�
dlj

3j�j2TujlT
�
uilYuikY

�
ujk

�5 �3�2TdkjTdliY
�
dki
Y�
dlj

�3�2TuikTujlY
�
uilY

�
ujk

�6 3�TdkiTdljT
�
dli
Y�
dkj

3�j�j2TuilYujkY
�
uikY

�
ujl

�7 3�j�j2TdljYdkiY
�
dkj
Y�
dli

3�TuilTujkT
�
ujlY

�
uik

TABLE V. Slepton contribution to �sferm
1 –�sferm

7 in Eqs. (B8),
(B10), and (B13).

dijkl1

�1 �TekiTeljT
�
ekjT

�
eli

�2 �j�j4YekjYeliY
�
ekiY

�
elj

�3 �j�j2TeliYekj ðT�
eljY

�
eki þ T�

ekiY
�
elj Þ

�4 j�j2TeliT
�
ekiYekjY

�
elj

�5 ��2TekjTeliY
�
ekiY

�
elj

�6 �TekiTeljT
�
eliY

�
ekj

�7 �j�j2TeljYekiY
�
ekjY

�
eli
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�
sq
1�4 ¼ ðb7
ij þ b8Yddii
ij þ b9YddijYddjiÞB0ð ~mdi ; ~mdjÞ þ b10YduijYudjiB0ð ~mdi ; ~mujÞ

þ ðb11
ij þ b12Yuuii
ij þ b13YuuijYuujiÞB0ð ~mui ; ~mujÞ þ ðb14
ij þ b15 �Yddii
ij þ b16 �Yuuii
ij þ b17 �Yddij
�Yddji

þ b18 �Yuuij
�Yuuji þ b19 �Yddij

�YuujiÞB0ð ~mQi
; ~mQj

Þ þ ðc9j�j2YdkiY
�
dki

ij þ c10TdkiT

�
dki

ij þ c11j�j2YdkiY

�
dkj
Yddij

þ c12TdkiT
�
dkj
YddijÞC0ð ~mdi ; ~mdj; ~mQk

Þ þ ðc13j�j2YdjiY
�
dji

jk þ c14j�j2YdjiY

�
dki

�Yddkj þ c15TdjiT
�
dji

jk

þ c16TdjiT
�
dki

�Yddkj þ c17TdjiT
�
dki

�YuukjÞC0ð ~mdi ; ~mQj
; ~mQk

Þ þ ð�c18YdjiY
�
ujkYduik j�j2 � c18YujkY

�
dji
Yudki j�j2

þ c18TujkT
�
dji
Yudki þ c18TdjiT

�
ujkYduikÞC0ð ~mdi ; ~mQj

; ~mukÞ þ ðc19j�j2YuikY
�
uik
ij þ c20j�j2YujkY

�
uik

�Yuuij

þ c21TuikT
�
uik
ij þ c22TuikT

�
ujk

�Yuuji þ c23TuikT
�
ujk

�YddjiÞC0ð ~mQi
; ~mQj

; ~mukÞ þ ðc24j�j2YuijY
�
uij
jk

þ c25j�j2YuikY
�
uijYuukj þ c26TuijT

�
uij
jk þ c27TuijT

�
uikYuujkÞC0ð ~mQi

; ~muj; ~mukÞ þ dijkl2 D0ð ~mdi ; ~mdj; ~mQk
; ~mQl

Þ
þ dijkl3 D0ð ~mQi

; ~mQj
; ~muk; ~mulÞ þ dijkl4 D0ð ~mdi ; ~mQj

; ~mQk
; ~mulÞ: (B11)

Here, we introduced shorthand notations for the products of two Yukawa coupling matrices:

Yxyij � Yy
xilYylj ;

�Yxyij � YxilY
y
ylj ; (B12)

where x, y ¼ e, u, d and we sum over the internal index l. The coefficients bn, cn, and dijkln for each �1; . . .�4 are given
in Tables V, VI, VIII, and IX.

We finally give the slepton and squark contributions to �6;7:

�sferm
6;7 ¼ðc01�TekiY

�
eki
ijþc02�TekiY

�
ekjYeeijÞC0ð ~mei ; ~mej ; ~mlkÞþðc03�TejiY

�
eji
jkþc04�TejiY

�
eki

�YeekjÞC0ð ~mei ; ~mlj; ~mlkÞ
þðc05�TdkiY

�
dki

ijþc06�TdkiY

�
dkj
YddijÞC0ð ~mdi ; ~mdj; ~mQk

Þþðc07�TdjiY
�
dji

jkþc08�TdjiY

�
dki

�YddkjÞC0ð ~mdi ; ~mQj
; ~mQk

Þ
þðc09�TuikY

�
uik
ijþc010�TuikY

�
ujk

�YuujiÞC0ð ~mQi
; ~mQj

; ~mukÞþðc011�TuijY
�
uij
jkþc012�TuijY

�
uikYuujkÞC0ð ~mQi

; ~muj; ~mukÞ
þdijkl1 D0ð ~mei ; ~mej ; ~mlk ; ~mllÞþdijkl2 D0ð ~mdi ; ~mdj; ~mQk

; ~mQl
Þþdijkl3 D0ð ~mQi

; ~mQj
; ~muk; ~mulÞ (B13)

where the coefficients c0n and dijkln are given in Tables V, VI, and VII.

4. Loop functions

In the UV-divergent loop functions we set � ¼ ð4�DÞ=2. The loop functions are defined as

i

ð4�Þ2 A0ðm1Þ
�
4�

�2
0

e��E

�
� ¼

Z dDq

ð2�ÞD
1

q2 �m2
1

;

i

ð4�Þ2 B0ðk2;m1; m2Þ
�
4�

�2
0

e��E

�
� ¼

Z dDq

ð2�ÞD
1

ðqþ kÞ2 �m2
1

1

q2 �m2
2

;

i

ð4�Þ2 C0ðm1; m2; m3Þ
�
4�

�2
0

e��E

�
� ¼

Z dDq

ð2�ÞD
1

q2 �m2
1

1

q2 �m2
2

1

q2 �m2
3

;

i

ð4�Þ2 D0ðm1; m2; m3; m4Þ
�
4�

�2
0

e��E

�
� ¼

Z dDq

ð2�ÞD
1

q2 �m2
1

1

q2 �m2
2

1

q2 �m2
3

1

q2 �m2
4

;

i

ð4�Þ2 Wðm1; m2Þ
�
4�

�2
0

e��E

�
� ¼ � d

dk2









k2¼0

Z dDq

ð2�ÞD
Tr½ðq� kÞq�

ððq� kÞ2 �m2
1Þðq2 �m2

2Þ
; (B14)

and we also write

B0ðm2
1; m

2
2Þ � B0ð0;m2

1; m
2
2Þ; B0

0ðm2
1; m

2
2Þ � � d

dk2









k2¼0
B0ðk2;m2

1; m
2
2Þ: (B15)

These functions read:
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A0ðm1Þ ¼ m2
1

�
þm2

1 þm2
1 log

�
�2

0

m2
1

�
B0ðm1; m2Þ ¼ 1

�
þ 1þ

m2
1 logð�

2
0

m2
1

Þ �m2
2 logð�

2
0

m2
2

Þ
m2

1 �m2
2

B0
0ðm1; m2Þ ¼

m4
2 �m4

1 þ 2m2
1m

2
2 logðm

2
1

m2
2

Þ
2ðm2

1 �m2
2Þ3

C0ðm1; m2; m3Þ ¼
m2

1m
2
2 logðm

2
2

m2
1

Þ þm2
3m

2
2 logðm

2
3

m2
2

Þ þm2
1m

2
3 logðm

2
1

m2
3

Þ
ðm2

1 �m2
2Þðm2

1 �m2
3Þðm2

2 �m2
3Þ

D0ðm1; m2; m3; m4Þ ¼
Xfm2

1
;m2

2
;m2

3
;m2

4
gþcyclicpermutations

fa;b;c;dg

a2bc logðbcÞ þ ab2c logðcaÞ þ abc2 logðabÞ
ða� bÞða� cÞða� dÞðb� cÞðb� dÞðc� dÞ

Wðm1; m2Þ ¼ 2

�
þ 2 log

�
�2

0

m2
1

�
þ log

�
m2

2

m2
1

� ð2m6
2 � 6m2

1m
4
2Þ

ðm2
1 �m2

2Þ3
þm4

1 � 6m2
2m

2
1 þm4

2

ðm2
1 �m2

2Þ2
(B16)

~D2ðm1; m2; m3; m4Þ ¼ C0ðm2; m3; m4Þ þm2
1D0ðm1; m2; m3; m4Þ

~D4ðm1; m2; m3; m4Þ ¼ B0ðm3; m4Þ þ ðm2
1 þm2

2ÞC0ðm2; m3; m4Þ þm4
1D0ðm1; m2; m3; m4Þ (B17)

A further loop function, H2, is defined in (34).

APPENDIX C: RENORMALIZATION-GROUP
AND BAG PARAMETERS

The standard-model contribution to B� �B mixing in-
volves the operator QVLL

1 ¼ ð �bL��qLÞð �bL��qLÞ of (6).

The main new supersymmetric contribution to B� �B mix-
ing presented in this paper comes with the four-quark
operator QSLL

1 ¼ ð �bRqLÞð �bRqLÞ with q ¼ d or q ¼ s, see
(2). QSLL

1 mixes under renormalization with

~Q SLL
1 ¼ ð �biRqjLÞð �bjRqiLÞ (C1)

where i, j are color indices. The operators QSLL
1 and ~QSLL

1

are widely studied in the context of the width difference
�� among the two mass eigenstates in the B� �B mixing
system and the CP asymmetry afs in flavor-specific decays
[64,65].

Yet the next-to-leading-order (NLO) anomalous dimen-
sions have been calculated for an equivalent operator basis
in Ref. [28]. These operators,

�QVLL
1 ¼ð �bL��qLÞð �bL��qLÞ; �QLR

1 ¼ð �bL��qLÞð �bR��qRÞ;
�QLR
2 ¼ð �bRqLÞð �bLqRÞ; �QSLL

1 ¼ð �bRqLÞð �bRqLÞ;
�QSLL
2 ¼�ð �bR���qLÞð �bR���qLÞ;

�QVRR
1 ¼ð �bR��qRÞð �bR��qRÞ; �QSRR

1 ¼ð �bLqRÞð �bLqRÞ;
�QSRR
2 ¼�ð �bL���qRÞð �bL���qRÞ; (C2)

are split into five sectors (VLL, LR, SLL, VRR, SRR),
which separately mix under renormalization—note that we
define��� ¼ i

2 ½��; ���. The anomalous dimensions of the

VRR and SRR sectors are the same as those of the VLL and
SLL sectors, respectively. To define the renormalization

scheme for the NLO we first note that we use the MS
scheme with anticommuting �5 as in [28]. Then we must
specify the definition of the evanescent operators which

TABLE VII. Coefficients of �sferm
6 and �sferm

7 in Eq. (B13).

�6 �7

c01 � g02

2
g02

2

c02 1 0

c03
1
4 ðg0

2 � g2Þ 1
4 ðg2 � g02 Þ

c04 1 0

c05 � g02

2
g02

2

c06 3 0

c07
1
4 ð�g02 � 3g2Þ 1

4 ðg0
2 þ 3g2Þ

c08 3 0

c09
1
4 ð3g2 � g02 Þ 1

4 ðg0
2 � 3g2Þ

c010 0 3

c011 g02 �g02

c012 0 3

TABLE VIII. Slepton loop contributions to �sferm
1 . . .�sferm

4 in
Eq. (B10).

�1 �2 �3 �4

b1 � g04

4 � g04

4
g04

4 0

b2 g02 0 � g02

2 0

b3 �1 0 0 0

b4
1
8 ð�g4 � g04 Þ 1

8 ð�g4 � g04 Þ 1
8 ðg4 þ g04 Þ � g4

4

b5
1
2 ðg2 � g02 Þ 0 1

4 ðg0
2 � g2Þ g2

2

b6 �1 0 0 0

c1 0 �g02 g02

2 0

c2 g02 0 � g02

2 0

c3 0 0 �1 0

c4 �2 0 0 0

c5 0 1
2 ðg0

2 � g2Þ 1
4 ðg2 � g02 Þ � g2

2

c6
1
2 ðg2 � g02 Þ 0 1

4 ðg0
2 � g2Þ g2

2

c7 0 0 �1 1

c8 �2 0 0 0
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enter the NLO results as counterterms. In particular for the
SLL sector, the evanescent operators of Ref. [28] read:

�ESLL
1 ¼ ð �biRqjLÞð �bjRqiLÞ þ

1

2
�QSLL
1 � 1

8
�QSLL
2 ;

�ESLL
2 ¼ �ð �biR���q

j
LÞð �bjR���qiLÞ � 6 �QSLL

1 � 1

2
�QSLL
2 ;

�ESLL
3 ¼ ð �biR��������q

i
LÞð �bjR��������qjLÞ

þ ð�64þ 96�Þ �QSLL
1 þ ð�16þ 8�Þ �QSLL

2 ;

�ESLL
4 ¼ ð �biR��������q

j
LÞð �bjR��������qiLÞ

� 64 �QSLL
1 þ ð�16þ 16�Þ �QSLL

2 ; (C3)

where we use � � ð4�DÞ=2.

The operator basis

QVLL
1 ¼ �QVLL

1 ; QLR
1 ¼ �QLR

1 ; QLR
2 ¼ �QLR

2 ;

QSLL
1 ¼ �QSLL

1 ; QSLL
2 ¼ ~QSLL

1 ¼ ð �biRqjLÞð �bjRqiLÞ;
QVRR

1 ¼ �QVRR
1 ; QSRR

1 ¼ �QSRR
1 ;

QSRR
2 ¼ ~QSRR

1 ¼ ð �biLqjRÞð �bjLqiRÞ; (C4)

which we adopt in this work agrees with the one of (C2)
except for the SLL sector and the SRR sector. The eva-
nescent operators are defined as in Refs. [59,64]:

ESLL
1 ¼ ð �biR����q

i
LÞð �bjR����qjLÞ þ 8ð1� �Þ ~QSLL

1 ;

ESLL
2 ¼ ð �biR����q

j
LÞð �bjR����qiLÞ þ 8ð1� �ÞQSLL

1 :
(C5)

The hadronic matrix elements in this basis are parame-
trized in terms of ‘‘bag’’ parameters BVLL

1 , BSLL0
1 , and ~BSLL0

1

defined as

h �BqjQVLL
1 ð�ÞjBqi ¼ 2

3
M2

Bq
f2Bq

BVLL
1 ð�Þ;

h �BqjQSLL
1 ð�ÞjBqi ¼ � 5

12
M2

Bq
f2Bq

BSLL0
1 ð�Þ;

h �Bqj ~QSLL
1 ð�ÞjBqi ¼ 1

12
M2

Bq
f2Bq

~BSLL0
1 ð�Þ:

(C6)

Here, � is the renormalization scale at which the matrix
element is computed and fBq

is the Bq meson decay

constant. While fBs
exceeds fBd

by 10–30%, no nonper-

turbative calculation finds any dependence of a bag pa-
rameter on the flavor of the light valence quark. In the
vacuum insertion approximation the bag parameters equal
BVLL
1 ð�Þ ¼ 1 andBSLL0

1 ð�Þ ¼ ~BSLL0
1 ð�Þ ¼ M2

Bq
=½mbð�Þ þ

mqð�Þ�2. Lattice computations determine the matrix ele-

ments at a low scale around 1 GeV and results are quoted
for � ¼ �mbð �mbÞ. In order to use the lattice results in our
calculation, we need the renormalization-group (RG) evo-
lution of the bag parameters to the high-scale �h which is
set by the masses of the Higgs bosons exchanged in our
B� �Bmixing diagrams. The matrix elements computed on
a finite lattice are converted to continuum QCD by a
matching calculation. This lattice-continuum matching is
only meaningful beyond the leading-order of perturbative
QCD. Thus, the dependence of the bag parameters on the
chosen (continuum) renormalization scheme must be ad-
dressed: The NLO anomalous dimension matrices entering
the RG evolution must be defined in the same renormal-
ization scheme as the bag parameters, so that the scheme
dependence properly cancels from physical observables.
The NLO anomalous dimensions have been calculated for
QVLL

1 in Ref. [66]. As said previously, in the case of

ðQSLL
1 ; ~QSLL

1 Þ the NLO anomalous dimensions have been

calculated for the equivalent operator basis ð �QSLL
1 ; �QSLL

2 Þ
with the evanescent operators of (C3) [28].
The purpose of this section is twofold: First, we present

the transformation of the results of Ref. [28] to the

TABLE IX. Squark loop contributions to �sferm
1 . . .�sferm

4 in
Eq. (B11).

�1 �2 �3 �4

b7 � g04

12 � g04

12
g04

12 0

b8 g02 0 � g02

2 0

b9 �3 0 0 0

b10 0 0 0 �3

b11 � g04

3 � g04

3
g04

3 0

b12 0 2g02 �g02 0

b13 0 �3 0 0

b14
1
24 ð�9g4 � g04 Þ 1

24 ð�9g4 � g04 Þ 1
24 ð9g4 þ g04 Þ � 3

4g
4

b15
1
2 ð3g2 þ g02 Þ 0 1

4 ð�3g2 � g02 Þ 3
2 g

2

b16 0 1
2 ð3g2 � g02 Þ 1

4 ðg0
2 � 3g2Þ 3

2 g
2

b17 �3 0 0 0

b18 0 �3 0 0

b19 0 0 0 �3

c9 0 �g02 g02

2 0

c10 g02 0 � g02

2 0

c11 0 0 �3 0

c12 �6 0 0 0

c13 0 � 1
2 ð3g2 þ g02 Þ 1

4 ð3g2 þ g02 Þ � 3
2g

2

c14 0 0 �3 3

c15
1
2 ð3g2 þ g02 Þ 0 1

4 ð�3g2 � g02 Þ 3
2 g

2

c16 �6 0 0 0

c17 0 0 0 �3
c18 0 0 0 �3
c19

1
2 ðg0

2 � 3g2Þ 0 1
4 ð3g2 � g02 Þ � 3g2

2

c20 0 0 �3 3

c21 0 1
2 ð3g2 � g02 Þ 1

4 ðg0
2 � 3g2Þ 3

2 g
2

c22 0 �6 0 0

c23 0 0 0 �3
c24 �2g02 0 g02 0

c25 0 0 �3 0

c26 0 2g02 �g02 0

c27 0 �6 0 0
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ðQSLL
1 ; ~QSLL

1 Þ basis and the scheme corresponding to the

evanescent operators of Eq. (C5), for which lattice groups
quote their results. These formulas are useful beyond the
need to evolve the bag parameters given at � ¼ mb up to
� ¼ �h: In particular, lattice groups need to evolve
BSLL0
1 ð�Þ and ~BSLL0

1 ð�Þ from a scale around 1 GeV up to
� ¼ mb. Second, we exploit a heavy-quark relation among
the bag factors in Eq. (C6) to sharpen the numerical
prediction for BSLL0

1 ð�hÞ entering the SUSY contribution

to B� �B mixing. While constraints from the heavy-quark
limit of QCD have been used to improve the predictions for
�� and afs [59,64,65], they had escaped attention in stud-
ies of new-physics contributions to B physics observables
so far.

1. NLO scheme transformation formulas

We decompose the anomalous dimension matrix in the
usual way as

� ¼ �sð�Þ
4�

�ð0Þ þ
�
�sð�Þ
4�

�
2
�ð1Þ þOð�3

sÞ: (C7)

The NLO correction �ð1Þ has been computed for the basis
ð �QSLL

1 ; �QSLL
2 Þ in Ref. [28]. In four dimensions it is related to

the basis (C4) by a simple Fierz identity:

~Q ¼ QSLL
1

~QSLL
1

� �
¼D¼4

R̂
�QSLL
1
�QSLL
2

� �
¼ R̂ ~�Q; (C8)

where R̂ is given in Eq. (C10) below.
Yet in D dimensions our change of basis involves a

rotation of the operator basis—including the evanescent

operators ~�E ¼ ð �ESLL
1 ; �ESLL

2 ÞT—and a change of the renor-

malization scheme. We follow Ref. [67] and write the
rotation as14

~Q¼ R̂ð ~�QþŴ ~�EÞ; ~E¼ M̂ð�Û ~�Qþ½1̂þ�ÛŴ� ~�EÞ; (C9)

with

R̂ ¼ 1 0

� 1
2

1
8

 !
; Ŵ ¼ 0 0

8 0

 !
;

Û ¼
1
4 � 1

8

8 � 1
4

 !
; M̂ ¼ �8 0

�4 1

 !
: (C10)

The information on the definition of the evanescent opera-

tors in Eqs. (C3) and (C4) is contained in the matrices Û

and M̂. Now Eq. (C9) corresponds to a finite renormaliza-
tion with renormalization constants [67]

Ẑ ð1;0Þ
QQ ¼ R̂½Ŵ �̂Z

ð1;0Þ
EQ � ð �̂Zð1;1Þ

QE þ Ŵ �̂Z
ð1;1Þ
EE � 1

2
��ð0ÞŴÞÛ�R̂�1:

(C11)

While the one-loop anomalous dimension matrix is just
rotated, the two-loop anomalous dimension matrix under-
goes an additional scheme transformation:

�ð0Þ ¼ R̂ ��ð0ÞR̂�1;

�ð1Þ ¼ R̂ ��ð1ÞR̂�1 � ½Ẑð1;0Þ
QQ ; �ð0Þ� � 2�ð0ÞẐð1;0Þ

QQ ;
(C12)

with the one-loop operator renormalization constants

�̂Z
ð1;1Þ
QE ¼ 0 1

2

�8 �8

 !
; �̂Z

ð1;1Þ
EE ¼ 2 11

6

� 16
3 � 44

3

 !
;

�̂Z
ð1;0Þ
EQ ¼

37
12

29
48

� 73
3 � 1

12

 !
: (C13)

We can now calculate the new two-loop anomalous
dimension matrix � from the NLO anomalous dimension
matrix �� of Ref. [28],

�� ð0Þ ¼ �10 1
6

�40 34
3

 !
;

��ð1Þ
½27� ¼

� 1459
9 þ 74

9 f � 35
36 � 1

54 f

� 6332
9 þ 584

9 f 2065
9 � 394

27 f

 ! (C14)

We obtain

�ð0Þ ¼ � 28
3

4
3

16
3

32
3

 !
; �ð1Þ ¼ � 260

3 þ 88
27f � 44

3 þ 8
27f

242
3 � 76

27f 198� 332
27 f

 !
:

(C15)

Here, f denotes the number of active flavors and �ð0Þ
coincides with the result in [64]. As a check, we have
calculated the result of Eq. (C15) also in a different way:
It is possible to define evanescent operators such that the
Fierz identity holds for the one-loop matrix elements.
This choice fixes the definitions of both ESLL

1 and ESLL
2 in

Eq. (C5) and of the evanescent operators on the
ð �QSLL

1 ; �QSLL
2 Þ basis. (One of the latter operators equals �

times a physical operator. Its impact is equivalent to a finite
multiplicative renormalization of �QSLL

1 .) In this approach,

one can simply rotate �ð1Þ in the same way as �ð0Þ in
Eq. (C12). Finally, the result is transformed to the scheme
of Ref. [28] using the scheme transformation formula of
Ref. [68].
Next, we calculate the matrices governing the RG evo-

lution in the ðQSLL
1 ; ~QSLL

1 Þ basis. The bag factors at the

scale �h are obtained from those at the low scale �b ¼
OðmbÞ via
�5BSLL0

1 ð�hÞ
~BSLL0
1 ð�hÞ

 !
¼ Uð�b;�hÞT

�5BSLL0
1 ð�bÞ

~BSLL0
1 ð�bÞ

 !
(C16)

14Two more evanescent operators (called �ESLL
3 and �ESLL

4 in
Ref. [28]) must be specified to fully define the scheme of the
calculated ��ð1Þ. This information enters the matrix Û in
Eq. (C10). We choose to add �ESLL

3 and �ESLL
4 also to the eva-

nescent operators of Eq. (C3), so that we can in practice work
with the change of basis defined in Eqs. (C9) and (C10).
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In the spirit of [29],we write the evolution matrix as

Uð�b;�hÞ¼Uð0Þ
�
�sð�hÞ
�sð�bÞ

�
þ�sð�bÞ

4�
�U

�
�sð�hÞ
�sð�bÞ

�
; (C17)

where Uð0Þ is the LO evolution matrix and the NLO cor-
rection reads

�Uð�Þ ¼ JfU
ð0Þð�Þ � �Uð0Þð�ÞJf: (C18)

The 2	 2 matrix Jf is calculated from the anomalous

dimension matrix � [69]. We only need J5, since we run
with 5 active flavors to the scale �h. For applications in
kaon physics, one also involves J4 and J3. We quote all
three matrices here, so that the formulas of Ref. [29] can be

easily extended to the ðQSLL
1 ; ~QSLL

1 Þ basis:

J5 ¼
1:474 0:707

0:306 �5:350

 !
; J4 ¼

0:964 1:452

0:375 �4:982

 !
;

J3 ¼
0:652 2:597

0:421 �4:804

 !
: (C19)

We quote handy formulas for the five-flavor evolution
matrix, similarly to Ref. [29]:

Uð0Þ
f¼5ð�Þ ¼

0:9831 �0:2577

�0:0644 0:0169

 !
��0:6315

þ 0:0169 0:2577

0:0644 0:9831

 !
�0:7184: (C20)

The NLO correction reads:

�Uf¼5ð�Þ ¼
1:4040� 1:3707� �0:3680� 2:0731�

0:6454þ 0:0898� �0:1692þ 0:1358�

 !
��0:6315þ 0:0704� 0:1037� 1:0746þ 1:3665�

�0:3395� 0:3958� �5:1807þ 5:2141�

 !
�0:7184:

(C21)

In our numerical analysis we drop the terms which are
linear in � in the two matrices in Eq. (C21), because they
are scheme-dependent. The scheme dependence of these
terms cancels with that of the NLO QCD corrections to the
B� �B mixing diagrams with SUSY Higgs exchange. Yet
these QCD corrections are unknown.

2. Hadronic matrix elements and heavy-quark relations

The three bag factors BVLL
1 , BSLL0

1 ð�bÞ, and ~BSLL0
1 ð�bÞ

obey a heavy-quark relation [65]:

BSLL0
1 ð�bÞ ¼ 4

5
�2ð�bÞBVLL

1 þ 1

5
�1ð�bÞ ~BSLL0

1

þO
�
�QCD

mb

�
: (C22)

Here �1ð�Þ and �2ð�Þ comprise NLO QCD corrections
[59,64]:

�1ð�bÞ ¼ 1þ �sð�bÞ
4�

�
16 log

�b

mb

þ 8

�
;

�2ð�bÞ ¼ 1þ �sð�bÞ
4�

�
8 log

�b

mb

þ 26

3

�
:

(C23)

These values are specific to the definition of the evanescent
operators as in Eq. (C5). As mentioned in Appendix C1,
this definition allows to maintain the validity of Fierz
identities at the loop level. Such a definition is preferred,
if the bag factors are meant to parametrize the deviation of
matrix elements from the vacuum insertion approximation
(VIA), because the calculation of matrix elements in VIA
approximation involves a Fierz transformation. In particu-
lar the choice in Eq. (C5) is crucial for Eq. (C22) to hold in
the limit of a large number NC of colors [64].

The bag factor BVLL
1 is very well studied in lattice QCD,

so that it is worthwile to study the constraint on the other
bag factors when Eq. (C22) is combined with lattice results
for BVLL

1 . Indeed, one can use Eq. (C22) to pinpoint the
ratio

BSLL0
1 ðmbÞ

BVLL
1 ðmbÞ

¼0:93þ0:23
~BSLL0
1 ðmbÞ

BVLL
1 ðmbÞ

þð0:23�0:05Þ 1

BVLL
1 ðmbÞ
(C24)

quite precisely, even if ~BSLL0
1 is only poorly known, because

its coefficient in Eq. (C24) is small. The last term in
Eq. (C24) quantifies the �QCD=mb corrections, see [59]

for details. The lattice results of [70] have been combined
in Ref. [59] to

BVLL
1 ðmbÞ ¼ 0:85� 0:06 and ~BSLL0

1 ðmbÞ ¼ 1:41� 0:12:

(C25)

Inserting these values into Eq. (C24) yields

BSLL0
1 ðmbÞ

BVLL
1 ðmbÞ

¼ 1:57� 0:08; (C26)

which is consistent with the direct determination

BSLL0
1 ðmbÞ ¼ 1:34� 0:12 (C27)

from the lattice [70].
We are now in the position to accurately predict the bag

factors at the high-scale �h. Choosing �h ¼ �mtð �mtÞ ¼
164 GeV, �sðMZÞ ¼ 0:1189 and �mbð �mbÞ ¼ 4:2 GeV and
using Eqs. (C26) and (C27) we find
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BSLL0
1 ðmtÞ ¼ 1:62BSLL0

1 ðmbÞ þ 0:01 ~BSLL0
1 ðmbÞ

¼ ð2:54� 0:13ÞBVLL
1 ðmbÞ þ 0:01

~BSLL0
1 ðmtÞ ¼ 1:29BSLL0

1 ðmbÞ þ 0:54 ~BSLL0
1 ðmbÞ

¼ ð2:03� 0:10ÞBVLL
1 ðmbÞ þ 0:77� 0:07

(C28)

Here, we have omitted the scheme-dependent terms pro-
portional to � in Eq. (C21). The small (2, 1) element of

Uð0Þ
f¼5 in Eq. (C20) ensures that

~BSLL0
1 ðmbÞ is inessential for

BSLL0
1 ðmtÞ. One realises from Eq. (C28) that the uncertainty

of the high-scale bag factors stems almost completely from
the error of the lattice result for BVLL

1 ðmbÞ.
Switching finally to the Pi’s defined in Eq. (8) we get

PSLL
1 ¼ � 5

8
BSLL0
1 ðmtÞ

¼ �ð1:59� 0:08ÞBVLL
1 ðmbÞ � 0:01

¼ �1:36� 0:12

PVLL
1 ¼ BVLL

1 ðmtÞ ¼ 0:83BVLL
1 ðmbÞ ¼ 0:71� 0:05:

(C29)

In the last line, the full NLO result of [66] has been used.
We do not need ~PSLL

1 ¼ ~BSLL0
1 ðmtÞ=8 for our analysis.

Parity ensures that QSLL
1 and the chirality-flipped operator

QSRR
1 defined in Eq. (7) have the same matrix element, i.e.

PSRR
1 ¼ PSLL

1 .
Finally, we compute PLR

2 using the formulas of Ref. [29]
with the bag factors of Bećirević et al. [70]. This time the
conversion between the bases of Ref. [29,70] is straight-
forward, since the renormalization scheme used in

Refs. [28,29] respects the Fierz symmetry and lattice re-
sults are already quoted for this scheme. The result is

PLR
2 ¼ 3:2� 0:2: (C30)

The number in Eq. (C30) is significantly larger than PLR
2 ¼

2:46 quoted in Ref. [29], because our value for mb is
smaller and the lattice bag factors are larger than 1. The
error in Eq. (C30) does not include the systematic error
from the quenching approximation.

APPENDIX D: TRILINEAR HIGGS COUPLINGS

The trilinear terms of the effective Lagrangian at
tan� ¼ 1 introduced in Sec. IIc read

Vð3Þ
ltb ¼

vffiffiffi
2

p
�
�2ffiffiffi
2

p ruðr2uþðG0Þ2þ2jhþu j2Þþ
ffiffiffi
2

p
�3ruH

y
dHd

þ�4ð
ffiffiffi
2

p
rujh�d j2þ½h0dh�d hþu þH:c:�Þ

þ
�
�5h

0�
d

�
1ffiffiffi
2

p h0�d ðruþ iG0Þ�h�d h
þ
u

�
þ�6ðHy

dHdÞh0�d

þ�7

�
h0�d

�
3

2
r2uþ iruG

0þ1

2
ðG0Þ2þjhþu j2

�

� ffiffiffi
2

p
ruh

þ
u h

�
d

�
þH:c:

��
: (D1)

Again, the first two lines respect the Uð1Þ symmetry in-
troduced in Sec. IIc, while the last two lines break it, and
the breaking is proportional to loop-induced couplings.
Finally, the quartic Lagrangian is obtained from the quartic
terms in Eq. (12) by substituting Hu ! ðhþu ; 1ffiffi

2
p 
0

uÞ and

Hd ! ðh0�d ;�h�d Þ. Also there, only �5, �6 and �7 break the

symmetry.
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