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We set up a framework for the study of the power-suppressed three-parton contribution to the pion

electromagnetic form factor in the kT factorization theorem. It is first shown that the gauge dependence

proportional to parton transverse momenta from the two-parton Fock state and the gauge dependence

associated with the three-parton Fock state cancel each other. After verifying the gauge invariance, we

derive the three-parton-to-three-parton kT-dependent hard kernel at leading order of the coupling constant,

and find that it leads to about 5% correction to the pion electromagnetic form factor in the whole range of

experimentally accessible momentum transfer squared. This subleading contribution is much smaller than

the leading-order twist-2, next-to-leading-order twist-2, and leading-order two-parton twist-3 ones, which

have been calculated in the literature.
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I. INTRODUCTION

Aspects of the kT factorization theorem [1–6] in pertur-
bative QCD have been investigated intensively. One of the
important issues is about the derivation of a kT-dependent
hard kernel at subleading level, which is defined as the
difference between QCD diagrams and effective diagrams
for transverse-momentum-dependent (TMD) hadron wave
functions. We have explained that partons in both sets of
diagrams should remain off mass shell by k2T in the kT
factorization theorem [7]. The same statement has been
made in the application of the kT factorization theorem to
inclusive processes such as prompt photon production [8].
The off-shellness of partons may cause concern of the
gauge invariance [9,10].1 However, we have shown that
the gauge dependence cancels between the above two sets
of diagrams, and a kT-dependent hard kernel is gauge
invariant [11,13]. Following this prescription, the next-
to-leading-order (NLO) correction to the pion transition
(electromagnetic) form factor associated with the process
��� ! �ð�Þ has been calculated at leading twist, i.e.,
twist 2 [13,14]. Here we shall study the power-suppressed
three-parton contribution to the pion electromagnetic form
factor in the kT factorization theorem. The three-parton
contribution in the collinear factorization theorem [15] to a
simpler process, the � meson transition form factor, has
been evaluated recently [16].

We shall first demonstrate the gauge invariance of the
three-parton contribution to the pion electromagnetic form
factor in the kT factorization theorem. There are two
sources of gauge dependence for this power correction
[17]: the first source is proportional to parton transverse

momenta from the two-parton Fock state. The correspond-
ing hadronic matrix element is written as

h0j �qðzÞ�i@�qð0Þj�i; (1)

where z is the coordinate of the antiquark field �q, and �
represents a combination of gamma matrices. The second
source is associated with the three-parton Fock state with
an additional valence gluon. The corresponding matrix
element is given by

h0j �qðzÞ�gTaAa
�ðz0Þqð0Þj�i; (2)

with a color matrix Ta, and the gluon field Aa
� at the

coordinate z0. The gauge dependences from the above
two sources cancel each other, when Eqs. (1) and (2) are
combined to form the gauge-invariant matrix element

h0j �qðzÞ�iD�ðz0Þqð0Þj�i; (3)

with the covariant derivative iD� � i@� þ gTaAa
�. The

cancellation of the gauge dependences is similar to that
occurring in the collinear factorization theorem [17]. In
the kT factorization theorem we just keep the transverse
momentum dependence in denominators of particle propa-
gators [7]. Hence, it is natural that the gauge dependence
disappears at higher twists in the same way as in the
collinear factorization theorem.
Our formalism implies that contributions proportional to

transverse momenta in numerators of hard kernels must be
combined with contributions from three-parton Fock states
in order to guarantee gauge invariance. Therefore, there
is concern on the study of the pion transition form factor
in [18], where only the former was included. It has been
pointed out explicitly that the leading-order (LO) hard
kernel for the pion electromagnetic form factor becomes
gauge-dependent, if one simply considers parton trans-
verse momenta in numerators [10]. However, the contri-
bution from the three-parton Fock state was still missing
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in [10], such that the false postulation on the gauge depen-
dence of the kT factorization theorem was made.

Since both the initial- and final-state pions involve
higher-twist matrix elements like that in Eq. (3), the
three-parton contribution to the pion electromagnetic
form factor is suppressed at least by 1=Q2, Q2 being the
momentum transfer squared. After examining the gauge
invariance, we calculate the kT-dependent hard kernel for
the three-parton-to-three-parton scattering in the Feynman
gauge, and convolute it with the three-parton pion wave
functions. We observe that the diagrams with a four-gluon
vertex dominate this power correction. It will be shown
that the three-parton contribution is only about 5% of the
sum of those which have been investigated before, includ-
ing the LO twist-2, NLO twist-2, and LO two-parton
twist-3 ones [14]. That is, the three-parton contribution is
not crucial for accommodating experimental data of the
pion electromagnetic form factor. At the same power of
1=Q2, one should also take into account the scattering of
two (four) partons into four (two) partons in principle. This
piece has been analyzed in light-cone sum rules [19], and
found to be less important than other contributions. With
this work, we conclude that the chirally enhanced two-
parton twist-3 correction is the most important 1=Q2

correction to the pion electromagnetic form factor.
In Sec. II we verify the gauge invariance of the LO three-

parton contribution to the pion electromagnetic form factor
by combining the gauge-dependent hard kernels corre-
sponding to Eqs. (1) and (2). The kT-dependent hard kernel
is then derived from the three-parton-to-three-parton scat-
tering diagrams, and convoluted with the three-parton pion
wave functions numerically in Sec. III. Section IV is the
conclusion. Detailed calculations of the gauge-dependent
hard kernels corresponding to Eq. (2) are presented in
Appendix A, and the expressions of the three-parton-
to-three-parton hard kernels are collected in Appendix B.

II. GAUGE INVARIANCE

Consider the pion electromagnetic form factor involved
in the process �ðP1Þ�� ! �ðP2Þ, whose LO diagrams are
displayed in Fig. 1. The momentum P1 of the initial-state
pion and P2 of the final-state pion are parametrized as

P1 ¼ ðPþ
1 ; 0; 0TÞ ¼

Qffiffiffi
2

p ð1; 0; 0TÞ;

P2 ¼ ð0; P�
2 ; 0TÞ ¼

Qffiffiffi
2

p ð0; 1; 0TÞ;
(4)

with Q2 ¼ �q2, q ¼ P2 � P1 being the virtual photon
momentum. The gluon propagator of momentum l is
written as

�i

l2

�
g�� � �

l�l�

l2

�
; (5)

in the covariant gauge, where the parameter � will be used
to identify sources of gauge dependence. We assume that

the antiquarks in the initial- and final-state pions, repre-
sented by lower fermion line, carry the parton momenta

k1 ¼ ðx1Pþ
1 ; 0;k1TÞ; k2 ¼ ð0; x2P�

2 ;k2TÞ; (6)

respectively, x1 and x2 being the momentum fractions. It is
understood that the components k�1 and kþ2 have been
dropped in hard kernels, and integrated out of the TMD
pion wave functions.
We employ the Fierz identity

IijIlk¼1

4
IikIljþ1

4
ð�5Þikð�5Þljþ1

4
ð��Þikð��Þlj

þ1

4
ð�5�

�Þikð���5Þljþ1

8
ð����5Þikð����5Þlj; (7)

to factorize the fermion flow, where I denotes the 4� 4
identity matrix. The structure ���5 in the above identity
contributes at twist 2 and higher twists, and �5 and ����5

contribute at twist 3 and higher twists at two-parton level.
The matrix � in Eqs. (1) and (2) can pick up one of the
above structures, among which we focus on the first one
���5 as an example below. We also insert the identity

IijIlk ¼ 1

Nc

IljIik þ 2ðTcÞljðTcÞik; (8)

to factorize the color flow, where Nc ¼ 3 is the number of
colors, I denotes the 3� 3 identity matrix, and Tc is a color
matrix. The first (second) term in Eq. (8) will be associated
with a color-singlet (color-octet) state of the valence quark
and antiquark.
The first source of gauge dependence is extracted from

the diagrams in Fig. 1, where the quark and antiquark pair
forms a color-singlet state. Combining the decompositions
in Eqs. (7) and (8), we sandwich Fig. 1 with the structures

1

4Nc

���5;
1

4Nc

�5��; (9)

from the initial and final states, respectively, where the
subscripts � and � can take arbitrary components. The LO
hard kernel from Fig. 1(a) contains the gauge-dependent
piece

Ha� ¼ �ieg2�
CF

16Nc

tr½���5���	ðP1 � k2Þ�����5�
ðP1 � k2Þ2ðk1 � k2Þ2

� ðk1 � k2Þ�ðk1 � k2Þ�
ðk1 � k2Þ2

; (10)

FIG. 1. LO diagrams for the pion electromagnetic form factor,
where the symbol � represents the virtual photon vertex.
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with CF being a color factor. The above expression
diminishes with the substitution k1 ¼ x1P1, k2 ¼ x2P2,
�� ¼ �� (proportional to P1), and �� ¼ �þ (proportional

to P2) into the numerator, implying that Eq. (10) does not
contribute at leading power in the kT factorization theorem.

To obtain the gauge-dependent hard kernel from
Eq. (10) at 1=Q2, we insert the identity ðk1 � k2Þ� ¼
ðP1 � k2Þ� � ðP1 � k1Þ�. It can be shown that the contri-
bution from the ðP1 � k2Þ� term is canceled by the
corresponding one in Fig. 1(b). The second term, with
P1 � k1 being the momentum of the incoming valence
quark, corresponds to the matrix element with the deriva-
tive of the quark field in the initial-state pion. This term can
be picked up by differentiating Eq. (10) with respect to k1.
Once Eq. (1) for the initial-state pion is identified, we pick
up the k2� term in ðk1 � k2Þ� via differentiation, which
corresponds to the derivative of the valence antiquark field
in the final-state pion. Note that denominators of particle
propagators, depending on k1 and k2, will be differentiated
too. However, their differentiation gives rise to even
higher-twist matrix elements, and can be neglected. We
then extract

Ha�
TTðk1;k2Þ�

@2Ha�

@k1�@k2�

¼ ieg2�
CF

16Nc

� tr½���5���	ðP1�x2P2Þ�����5�
ðP1�k2Þ2ðk1�k2Þ4

; (11)

associated with h0j �qðzÞ�5�
�i@�qð0Þj�ðP1Þi and the simi-

lar matrix element for the final-state pion.
The LO hard kernel from Fig. 1(b) contains

Hb� ¼ �ieg2�
CF

16Nc

tr½���5���
�ðP2 � k1Þ�	���5�

ðP2 � k1Þ2ðk1 � k2Þ2

� ðk1 � k2Þ�ðk1 � k2Þ�
ðk1 � k2Þ2

; (12)

whose differentiation with respect to k1� and k2� leads to

Hb�
TTðk1; k2Þ

¼ ieg2�
CF

16Nc

tr½���5���
�ðP2 � x1P1Þ�	���5�

ðP2 � k1Þ2ðk1 � k2Þ4
:

(13)

This hard kernel corresponds to the matrix element of the
initial-state pion with the derivative of the antiquark field
�qðzÞ. Equations (11) and (13) represent the gauge depen-
dence in LO two-parton-to-two-parton scattering at power
of 1=Q2, which was also observed in [10].

The second source of gauge dependence arises from
Fig. 2, where three partons appear in the initial state as
indicated by Eq. (2). All possible attachments of the addi-
tional valence gluon to the lines other than the valence

quark and antiquark in the initial state are labeled by letters
A; B; � � � . In principle, the diagrams with the attachments
to the valence quark and antiquark in the initial state should
be included in order to respect Uð1Þ gauge symmetry for
the electromagnetic interaction.2 These diagrams contrib-
ute to higher Gegenbauer terms in the two-parton twist-3
pion distribution amplitudes. Equations of motion can then
be constructed to relate the coefficients of the higher
Gegenbauer terms in the two-parton twist-3 and three-
parton twist-3 pion distribution amplitudes [20]. Hence,
one should pay attention to the consistency between the
models for these two sets of distribution amplitudes in a
numerical analysis. We shall adopt the nonasymptotic
models for both sets of distribution amplitudes in Sec. III,
when estimating the importance of the three-parton con-
tribution relative to other two-parton contributions in the
pion electromagnetic form factor.
According to Eq. (8), we absorb a color matrix Tc and

the coupling constant g associated with an attachment
into the matrix element for the initial-state pion, and an-
other Tc goes into the evaluation of gauge-dependent hard
kernels. For example, the color factor corresponding to the
attachment A of the valence gluon to the virtual quark line
is given by

tr ½TbTaTbTc� ¼ � 1

4Nc


ac; (14)

where the color matrix Ta (Tb) comes from the valence
(hard) gluon vertex. After summing over c, the tensor 
ac

sets c ¼ a in the matrix element for the initial-state pion,
leading to Eq. (2). Including the coefficient 2 in Eq. (8), we
adopt the structure ���5=2 for the initial state in the
calculation of Fig. 2, whose details can be found in
Appendix A. The results are collected as follows:

H�
AT ¼ �ieg2�

1

32N2
c

� tr½���5���	ðP1 � x2P2Þ�����5�
ðP1 � k2Þ2ðk1 � k2Þ4

; (15)

FIG. 2. Diagrams with three partons from the initial state,
where letters A; B; � � � denote the attachments of the additional
valence gluon.

2We thank V. Braun for pointing out this Uð1Þ gauge
symmetry.
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H�
BT ¼ ieg2�

1

32

tr½���5���	ðP1 � x2P2Þ�����5�
ðP1 � k2Þ2ðk1 � k2Þ4

;

(16)

H�
CT ¼ 0; (17)

H�
DT ¼ �ieg2�

1

32N2
c

� tr½���5���
�ðP2 � x2P2 � y1P1Þ�	���5�

ðP2 � k2 � l1Þ2ðk1 � k2Þ4
;

(18)

H�
ET ¼ �ieg2�

CF

16Nc

� tr½���5���
�ðP2 � x1P1 � y1P1Þ�	���5�

ðP2 � k1 � l1Þ2ðk1 � k2Þ4
;

(19)

H�
FT ¼ ieg2�

1

32N2
c

� tr½���5���
�ðP2 � x2P2 � y1P1Þ�	���5�

ðP2 � k2 � l1Þ2ðk1 � k2Þ4

� ieg2�
1

32N2
c

� tr½���5���
�ðP2 � x1P1 � y1P1Þ�	���5�

ðP2 � k1 � l1Þ2ðk1 � k2Þ4
;

(20)

H�
GT ¼ ieg2�

1

32

� tr½���5���
�ðP2 � x1P1 � y1P1Þ�	���5�

ðP2 � k1 � l1Þ2ðk1 � k2Þ4

þ ieg2�
1

32

� tr½���5���
�ðP2 � x1P1 � y1P1Þ�	���5�

ðP2 � k1 � l1Þ2ðk1 þ l1 � k2Þ4
;

(21)

H�
HT ¼ �ieg2�

1

32N2
c

� tr½���5���
�ðP2 � x1P1 � y1P1Þ�	���5�

ðP2 � k1 � l1Þ2ðk1 þ l1 � k2Þ4
;

(22)

with the gluon momentum fraction y1 ¼ lþ1 =P
þ
1 .

Summing the above expressions, we arrive at

XH
i¼A

H�
iT ¼ Ha�

gT þHb�
gT; (23)

with

Ha�
gT ¼ Ha�

TTðk1; k2Þ; Hb�
gT ¼ Hb�

TTðk1 þ l1; k2Þ: (24)

The contributions from the attachments A and B are added
intoHa�

gT with the desired color factor CF. The contribution

from the attachment D and the first term in the
attachment F cancel each other. The second term
from the attachment F and the first term from the
attachment G are combined into the expression with the
color factor CF, which then cancels the contribution from
the attachment E. The second term of G and the contribu-
tion from the attachment H are added into Hb�

gT . Note that

Ha�
gT does not depend on the valence gluon momentum l1,

which can then be integrated out of the matrix element,
giving h0j �qðzÞ�5�

�gTaAa
�ð0Þqð0Þj�ðP1Þi. The hard kernel

Hb�
gT , depending on the combination k1 þ l1, corresponds

to the matrix element h0j �qðzÞ�5�
�gTaAa

�ðzÞqð0Þj�ðP1Þi.
Because of the symmetry under the exchange of the initial-
and final-state kinematic variables, the gauge-dependent
hard kernels with three partons from the final state are
written as

Ha�
Tg ¼ Ha�

TTðk1; k2 þ l2Þ; Hb�
Tg ¼ Hb�

TTðk1; k2Þ; (25)

where l2 is the momentum carried by the outgoing valence
gluon.
At last, we extract the gauge dependence from the three-

parton-to-three-parton diagrams. In this case the indices �
and �, associated with the initial and final valence gluons,
respectively, must be carried by gluon vertices, instead of
by parton momenta. Focusing on the gauge-dependent
piece, we can apply the Ward identity to hard gluons. It
is easy to find that Fig. 3, where the two valence gluons
scatter via a three-gluon vertex, does not contribute: if the
gauge dependence arises from the lower hard gluon, the
results, being proportional to the parton momenta after
applying theWard identity, should be dropped. If the gauge
dependence arises from the upper hard gluon, the Ward
identity diminishes the amplitude for a similar reason.
It is also easy to see that Fig. 8(a) with a four-gluon vertex
does not contribute to a gauge-dependent hard kernel.
If both the valence gluons attach to the quark line, the

FIG. 3. One of the three-parton-to-three-parton diagrams,
where the two valence gluons scatter via a three-gluon vertex.
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gauge-dependent contribution vanishes because of the
Ward identity applied to the antiquark line. If both the
valence gluons attach to the antiquark line, the gauge-
dependent contribution vanishes too.

The other diagrams are classified into several sets, which
are formed by all possible attachments of a hard gluon as
displayed in Figs. 4(a)–4(l). Cancellation occurs in each set
of diagrams after applying the Ward identity. Neglecting
those pieces proportional to the parton momenta, we have

ðaÞ þ ðbÞ ¼ ðcÞ þ ðdÞ ¼ 0;

ðeÞ þ ðfÞ þ ðgÞ þ ðhÞ ¼ 0:
(26)

A finite gauge-dependent contribution comes only from
Figs. 4(i)–4(l), given by

ðiÞ þ ðjÞ ¼ Ha�
gg ¼ Ha�

TTðk1; k2 þ l2Þ;
ðkÞ þ ðlÞ ¼ Hb�

gg ¼ Hb�
TTðk1 þ l1; k2Þ:

(27)

Because of the same expressions of Ha�
TT and Ha�

gT , their

corresponding matrix elements are combined into

h0j �qðzÞ�5i�
�D�ð0Þqð0Þj�ðP1Þi ¼ 0; (28)

with the equation of motion for the quark field,
6Dð0Þqð0Þ ¼ 0. That is, the gauge invariance holds, when
the contributions from Figs. 1 and 2 are combined. The
combination of the matrix elements for Ha�

Tg and Ha�
gg also

vanishes according to Eq. (28). A similar reasoning applies
to the gauge-dependent hard kernels Hb�

TT and Hb�
Tg and to

Hb�
gT and Hb�

gg : the combination of their matrix elements

vanishes due to the equation of the motion for the quark
field in the final-state pion. This observation completes the
proof of the gauge invariance of the LO three-parton
contribution to the pion electromagnetic form factor at
the power of 1=Q2 in the kT factorization theorem. The
extension of the proof to all orders can follow the steps
outlined in [13]. Note that our proof applies to the collinear
factorization theorem too: simply neglecting transverse
momenta in denominators, one can show the gauge
invariance of the three-parton contribution to the pion
electromagnetic form factor in the collinear factorization
theorem.

III. THREE-PARTON CONTRIBUTION

In this section we calculate the three-parton contribution
to the pion electromagnetic form factor. Start with the
gauge-invariant twist-3 matrix element

h0j �qðzÞ�þ
�0�5iD�ðz0Þqð0Þj�ðP1Þi; (29)

where the subscript � is associated with the vertex the
valence gluon attaches to. The power behavior will not be
changed, and the gauge invariance will not be broken by
inserting another covariant derivative Dþ. We then
exchange Dþ and D�, take the difference of DþD� and
D�D

þ, and apply the identity ½Dþ; D�� ¼ �igGþ
� . It is

then equivalent to employing the following alternative
matrix element [21], which defines the three-parton twist-3
pion wave function Tðz; z0Þ,

FIG. 4. Three-parton-to-three-parton diagrams, where the valence gluon from the initial state is shown, and the possible attachments
of the valence gluon from the final state are represented by dots.
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h0j �qðzÞ�þ
�0�5gG

þ
�ðz0Þqð0Þj�ðP1Þi

¼ if�m0ðPþ
1 Þ2gT��0Tðz; z0Þ; (30)

with the chiral scale m0 ¼ m2
�=ðmu þmdÞ, m�, mu, and

md being the pion, u quark, and d quark masses, respec-
tively. The operators with other spin structures contribute
at higher twists: for example, the operator �	�5G�� gives

a three-parton twist-4 contribution, and �5G�� does not

contribute [20,22,23]. With Eq. (30), one may verify the
gauge invariance of a hard kernel in the kT factorization
theorem by demonstrating the cancellation between the
gauge-dependent contributions from the operators @þA�

and @�A
þ [21].

Below we derive the hard kernels from the three-parton-
to-three-parton diagrams corresponding to Eq. (30) in the
Feynman gauge (� ¼ 0). Choosing this gauge, the operator
@�A

þ does not contribute, so only @þA� is relevant. The
three momenta P1 � k1 � l1, k1, and l1 are assigned to the
initial-state quark, antiquark, and gluon, respectively, and
P2 � k2 � l2, k2, and l2 to the final-state quark, antiquark,
and gluon, respectively. We have the structures for the
initial- and final-state pions

1

4
���0

�5

i

lþ1
if�m0ðPþ

1 Þ2gT��0 ¼� i

4y1
P1�

T
��5f�m0;

��5

1

4
�þ�0 �i

l�2
ð�iÞf�m0ðP�

2 Þ2gT��0 ¼ i

4y2
�5P2�

T
�f�m0;

(31)

where the gluon momentum fraction y2 is defined by
y2 ¼ l�2 =P�

2 , and the gamma matrix �T involves only
transverse components.

There are totally 196 diagrams for the three-parton-to-
three-parton scattering, which can be divided into four
categories.3 Category A contains 20 quark-gluon configu-
rations, in which neither of the valence gluons attaches to
the hard gluon line. Each configuration allows 6 different
attachments for the photon line. We further divide this
category into two groups as shown in Fig. 5, where both
valence gluons attach to the same quark or antiquark line,
and in Fig. 6, where one valence gluon attaches to the quark
line and another to the antiquark line. Only the diagrams
giving nonvanishing contributions are displayed. As

observed in Appendix B, the amplitudes with both the
valence gluons attaching to the quark line are power-
suppressed. Category B contains 8 quark-gluon configura-
tions, in which one of the valence gluons attaches to the
hard gluon line. Each configuration allows 5 different
attachments for the photon line, among which those
with nonvanishing contributions are displayed in Fig. 7.
Category C contains 4 quark-gluon configurations, where
both the valence gluons are connected to the hard gluon.
Each configuration allows 4 different attachments for the
photon line, among which those with nonvanishing contri-
butions are displayed in Fig. 8. Category D contains 4
quark-gluon configurations, where the two valence gluons
scatter via a three-gluon vertex as shown in Fig. 3. Each
configuration allows 5 different attachments for the photon
line. Since this category of diagrams does not contribute,
we shall not discuss them further. Besides, when a valence
gluon attaches to a valence quark, the diagram should
be regarded as being from an effective two-parton Fock
state, and will not be calculated.
We extract the hard kernels proportional to the final-state

momentum P2	. The hard kernels proportional to P1	

can be obtained by exchanging the kinetic variables of
the initial- and final-state pions. Adopting the electric
charge e, instead of the quark charge eu or ed, we have
taken into account the diagrams with the virtual photon
attaching to the antiquark line. Figure 8(a) with a four-
gluon vertex gives the dominant three-parton contribution

H8a ¼ ieg2
f2�m

2
0

16y1y2

N2
c

8ðN2
c � 1Þ

� tr½���5P2�
T��	ðP1 � k2 � l2Þ��P1�

T��5�
ðP1 � k2 � l2Þ2ðk1 � k2Þ2ðk1 � k2 þ l1 � l2Þ2

� ðg��g�� þ g��g�� � 2g��g��Þ

¼ �ieg2
f2�m

2
0

16y1y2

N2
c

N2
c � 1

� tr½P2�	P2P1�
ðP1 � P2Þ2ðk1 � k2 þ l1 � l2Þ2ðk1 � k2Þ2

: (32)

To arrive at the second expression, we have made an
approximation according to the power counting Q2 �
xQ2, yQ2 � k2T [14], under which the TMD term in the
following denominator is neglected:

FIG. 5. Three-parton-to-three-parton diagrams in category A, where both valence gluons attach to the same quark or antiquark line.

3We thank the referee for suggesting this classification of
diagrams.
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FIG. 6. Three-parton-to-three-parton diagrams in category A, where one valence gluon attaches to the quark line and another to the
antiquark line.

FIG. 7. Three-parton-to-three-parton diagrams in category B, where one valence gluon attaches to the hard gluon line.

FIG. 8. Three-parton-to-three-parton diagrams in category C, where both valence gluons attach to the hard gluon line.
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ðk2 � l2Þ
ðP1 � k2 � l2Þ2

¼ ðk2 þ l2Þ��þ

�2Pþ
1 ðk2 þ l2Þ� ¼ P�

2 �
þ

�2Pþ
1 P

�
2

¼ P2

ðP1 � P2Þ2
: (33)

The expressions for other three-parton-to-three-parton
diagrams are collected in Appendix B.

Since the Sudakov factor for exclusive QCD processes
was derived in the space of impact parameters [4,5], we
Fourier transform Eq. (32). The kT factorization formula
for the pion electromagnetic pion form factor from
Fig. 8(a) is then written as

F8aðQ2Þ ¼ ��sf
2
�m

2
0

N2
c

N2
c � 1

Z 1

0
dx1

Z 1�x1

0

dy1
y1

�
Z 1

0
dx2

Z 1�x2

0

dy2
y2

�ðx1; y1Þ�ðx2; y2Þ

� Kð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 þ y1Þðx2 þ y2Þ

q
QÞKð ffiffiffiffiffiffiffiffiffi

x1x2
p

QÞ; (34)

where the three-parton pion distribution amplitude
�ðx1; y1Þ corresponds to Tðz; z0Þ in Eq. (30) in the space
of momentum fractions. The functions K, arising from
the Fourier transformation of the TMD denominators
ðk1�k2þ l1� l2Þ2 and ðk1 � k2Þ2 in Eq. (32), are defined by

KðtÞ ¼
Z 1=�

0
bdbK0ðtbÞ exp½�sðPþ

1 ; bÞ�; (35)

in which K0 is the modified Bessel function, and the
explicit expression of the Sudakov exponent sðPþ

1 ; bÞ is
referred to [5,24]. We have kept only the most effective
piece of the Sudakov evolution in the small x region, that
results from the gluon exchanges between the energetic
valence quark and the Wilson line associated with it.
Because the Sudakov factor exp½�sðPþ

1 ; bÞ� diminishes
at b ¼ 1=�, with the QCD scale � � 0:3 GeV, the upper
bound of the integration variable has been set to 1=� in
Eq. (35). For an order-of-magnitude estimate and for dem-
onstrating the smallness of the three-parton contribution,
we do not consider the renormalization-group evolution
from the low scale, at which � is defined, to the scale of
the hard kernel. The coupling constant is also assumed to
be a constant �s ¼ 0:5.

Fourier transforming the hard kernels in Appendix B
into the impact-parameter space, we construct the corre-
sponding kT factorization formulas similar to Eq. (34). We
then add all the contributions to the pion electromagnetic
form factor, and employ the model of the three-parton
twist-3 pion distribution amplitude [20,22]

�ðx1; y1Þ ¼ 360�3x1ð1� x1 � y1Þy21
�
1þ!3

2
ð7y1 � 3Þ

�
;

(36)

for a numerical analysis, with the parameters �3 ¼ 0:015
and !3 ¼ �3, and 1� x1 � y1 being the momentum
fraction of the valence quark. The total three-parton
contribution to Q2FðQ2Þ, FðQ2Þ being the pion electro-
magnetic form fact, is displayed in Fig. 9. The curve
exhibits a decrease inQ2 (though not obvious in the figure)
compared to the LO and NLO twist-2 contributions, in-
dicating that this contribution is power-suppressed. It is
only about 5% of the sum of those evaluated in [14,25],
including the LO twist-2, NLO twist-2, and LO two-parton
twist-3 pieces. That is, the three-parton contribution is not
crucial for accommodating the experimental data of
Q2FðQ2Þ [26,27] in the whole accessible range of Q2 up
to 10 GeV2. The only important subleading contribution to
the pion electromagnetic form factor that has been inves-
tigated so far comes from the chirally enhanced two-parton
twist-3 one.

IV. CONCLUSION

In this paper we have applied the kT factorization theo-
rem to the study of the power-suppressed three-parton
contribution to the pion electromagnetic form factor.
It was demonstrated that the gauge invariance of the
kT-dependent hard kernel holds for this power correction:
the gauge dependence proportional to parton transverse
momenta from the two-parton Fock state and the gauge
dependence associated with the three-parton Fock state
cancel each other. We have calculated the three-parton-
to-three-parton hard kernel at LO, and found that the
three-parton contribution is about 5% of the sum of the
LO twist-2, NLO twist-2, and LO two-parton twist-3 ones
in the whole range of experimentally accessible Q2. Our
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FIG. 9 (color online). Q2 dependence of the three-parton con-
tribution to the pion electromagnetic form factor. The LO
twist-2, NLO twist-2, and LO two-parton twist-3 contributions
are quoted from Fig. 7 in [14], which were derived using the
nonasymptotic models for the pion distribution amplitudes.
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analysis shows that the power expansion for this exclusive
process might be reliable in the kT factorization theorem.
At the same power of 1=Q2, the two-parton twist-4
contribution should be taken into account, which has
been studied in the framework of light-cone sum rules
[19]. We shall calculate this correction in the kT factoriza-
tion theorem in the future, which involves a twist-2 distri-
bution amplitude from one side and a two-parton twist-4
distribution amplitude from the other side. We shall also
extend our framework to exclusive B meson decays, for
which three-parton contributions have been analyzed in
light-cone sum rules [28], in the QCD (collinear)
factorization [29], and in the soft-collinear effective
theory [30].
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APPENDIX A: GAUGE DEPENDENCE

In this appendix we present the detailed derivation of
the gauge-dependent hard kernels from Fig. 2. The
attachment A contains, with the color factor in Eq. (14),
the gauge-dependent piece

H�
A ¼ ieg2�

1

32N2
c

tr½ðk1 � k2Þ�5���	ðP1 � k2Þ��ðP1 � l1 � k2Þðk1 � k2Þ���5�
ðP1 � k2Þ2ðP1 � l1 � k2Þ2ðk1 � k2Þ4

: (A1)

Inserting the identity k1 � k2 ¼ ðP1 � l1 � k2Þ � ðP1 � l1 � k1Þ into Eq. (A1), we obtain

H�
A ¼ ieg2�

1

32N2
c

�
tr½ðk1 � k2Þ�5���	ðP1 � k2Þ�����5�

ðP1 � k2Þ2ðk1 � k2Þ4

� tr½ðk1 � k2Þ�5���	ðP1 � k2Þ��ðP1 � l1 � k2ÞðP1 �1k1 � l P1 � k1 � l1Þ���5�
ðP1 � k2Þ2ðP1 � l1 � k2Þ2ðk1 � k2Þ4

�
: (A2)

The second term, proportional to the momentum P1 � k1 � l1 of the incoming valence quark, should be dropped, since
there is the valence gluon A� from the initial state already. Taking the derivative of the first term with respect to k2�, and
then substituting k1 ¼ x1P1 and k2 ¼ x2P2 into the numerator, we have Eq. (15).

The diagram with the attachment B of the valence gluon to the hard gluon line produces the gauge-dependent hard
kernel

H�
B ¼ �eg2

1

8Nc

tr½�
0�5���	ðP1 � k2Þ��0���5�
ðP1 � k2Þ2

trðTdTbTcÞ�dba

��

�
�

g


0

ðk1 � k2Þ2
ðk1 � k2 þ l1Þ�ðk1 � k2 þ l1Þ�0

ðk1 � k2 þ l1Þ4

þ �
ðk1 � k2Þ
ðk1 � k2Þ
0

ðk1 � k2Þ4
g��

0

ðk1 � k2 þ l1Þ2
� �2 ðk1 � k2Þ
ðk1 � k2Þ
0

ðk1 � k2Þ4
ðk1 � k2 þ l1Þ�ðk1 � k2 þ l1Þ�0

ðk1 � k2 þ l1Þ4
�
;

(A3)

with the triple-gluon vertex,

�dba

�� ¼ fdba½g��ð2l1 þ k1 � k2Þ
 þ g�
ð2k2 � 2k1 � l1Þ� þ g
�ðk1 � k2 � l1Þ��; (A4)

fdba being a antisymmetric tensor. Using the identity

tr ðTdTbTcÞ ¼ 1

4
ðddbc þ ifdbcÞ; ddbcfdba ¼ 0; fdbcfdba ¼ Nc


ac; (A5)

ddbc being a symmetric tensor, the above amplitude becomes

H�
B ¼ �ieg2

1

32

tr½�
0�5���	ðP1 � k2Þ��0���5�
ðP1 � k2Þ2

½g��ð2l1 þ k1 � k2Þ
 þ g�
ð2k2 � 2k1 � l1Þ�

þ g
�ðk1 � k2 � l1Þ��
�
�

g


0

ðk1 � k2Þ2
ðk1 � k2 þ l1Þ�ðk1 � k2 þ l1Þ�0

ðk1 � k2 þ l1Þ4
þ �

ðk1 � k2Þ
ðk1 � k2Þ
0

ðk1 � k2Þ4
g��

0

ðk1 � k2 þ l1Þ2

� �2 ðk1 � k2Þ
ðk1 � k2Þ
0

ðk1 � k2Þ4
ðk1 � k2 þ l1Þ�ðk1 � k2 þ l1Þ�0

ðk1 � k2 þ l1Þ4
�
: (A6)
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The �2 term leads to

ieg2
1

32
�2

tr½ðk1 � k2Þ�5���	ðP1 � k2Þðk1 � k2 þ l1Þ���5�
ðP1 � k2Þ2ðk1 � k2Þ4ðk1 � k2 þ l1Þ4

½ðk1 � k2Þ � ð2l1 þ k1 � k2Þðk1 � k2 þ l1Þ�

þ ðk1 � k2Þ � ðk1 � k2 þ l1Þð2k2 � 2k1 � l1Þ� þ ðk1 � k2 � l1Þ � ðk1 � k2 þ l1Þðk1 � k2Þ��: (A7)

Inserting the identity k1 � k2 þ l1 ¼ ðP1 � k2Þ � ðP1 � k1 � l1Þ, it is easy to see that the first term of the identity gives an
expression which is canceled by the corresponding one from the attachment G. The second term, being proportional to the
momentum P1 � k1 � l1 of the incoming valence quark, should be neglected.

We then consider the � terms. The first � term in Eq. (A6) gives

� ieg2
1

32
�
tr½ð2l1 þ k1 � k2Þ�5���	ðP1 � k2Þðk1 � k2 þ l1Þ���5�

ðP1 � k2Þ2ðk1 � k2Þ2ðk1 � k2 þ l1Þ4
ðk1 � k2 þ l1Þ�

� ieg2
1

32
�
tr½ðk1 � k2 þ l1Þ�5���	ðP1 � k2Þðk1 � k2 þ l1Þ���5�

ðP1 � k2Þ2ðk1 � k2Þ2ðk1 � k2 þ l1Þ4
ð2k2 � 2k1 � l1Þ�

� ieg2
1

32
�
tr½���5���	ðP1 � k2Þðk1 � k2 þ l1Þ���5�

ðP1 � k2Þ2ðk1 � k2Þ2ðk1 � k2 þ l1Þ4
ðk1 � k2 þ l1Þ � ðk1 � k2 � l1Þ;

(A8)

which is negligible for the same reason as for the �2 term. Hence, H�
B receives a contribution only from the second

� term,

H�
B ¼ �ieg2

1

32
�
tr½ðk1 � k2Þ�5���	ðP1 � k2Þ�����5�
ðP1 � k2Þ2ðk1 � k2Þ4ðk1 � k2 þ l1Þ2

ðk1 � k2Þ � ð2l1 þ k1 � k2Þ

¼ �ieg2
1

32
�
tr½ðk1 � k2Þ�5���	ðP1 � k2Þ�����5�

ðP1 � k2Þ2ðk1 � k2Þ4
: (A9)

To arrive at the second line, the higher-power term l21 ¼ �l21T has been added, so we have ðk1 � k2Þ � ð2l1 þ k1 � k2Þ þ
l21 ¼ ðk1 � k2 þ l1Þ2. The differentiation of the above expression with respect to k2� leads to Eq. (16). The diagrams with
other attachments in Fig. 2 can be calculated in a similar way, so the detail will not be presented here.

APPENDIX B: HARD KERNELS

In this appendix we collect the expressions of the three-parton-to-three-parton hard kernels for the pion electromagnetic
form factor in the Feynman gauge. Start with category A defined in Sec. III. When the attachments of the two valence
gluons are arranged in the way that the hard gluon vertices sandwich the spin structures associated with the pions,
the contribution diminishes because of ��P1�

T
��� ¼ 0 or ��P2�

T
��� ¼ 0. The nonvanishing amplitudes come from

Figs. 5 and 6, which are written as

H5a ¼ �ieg2
N2

c þ 1

N2
cðN2

c � 1Þ
trðP2�	P2P1P2P1Þ

ðP1 � P2Þ2ðP1 � k2 � l2Þ2ðP1 � k1 � l1 � P2Þ2ðk1 � k2Þ2
; (B1)

H5b ¼ ieg2
N2

c þ 1

N2
cðN2

c � 1Þ
trðP2�	P2P1l2l1Þ

ðP1 � P2Þ2ðk1 � k2 þ l1 � l2Þ2ðk1 � l2Þ2ðk2 � l1Þ2
; (B2)

H5c ¼ ieg2
N2

c þ 1

N2
cðN2

c � 1Þ
trðP2P1P2�	P2P1Þ

ðP2 � k2 � l2 � P1Þ2ðP2 � k1 � l1Þ2ðP1 � k1 � l1 � P2Þ2ðk1 � k2Þ2
; (B3)

H6a ¼ ieg2
1

N2
cðN2

c � 1Þ
trðP2l1P2�	P2P1Þ

ðP1 � k1 � l1 � P2Þ2ðk1 � k2 þ l1Þ2ðl1 � k2Þ2ðP2 � k1 � l1Þ2
; (B4)

H6b ¼ �ieg2
1

N2
cðN2

c � 1Þ
trðP2�	P2P1P2P1Þ

ðP1 � P2Þ2ðk1 � k2 þ l1Þ2ðl1 � k2Þ2ðP1 � k1 � l1 � P2Þ2
; (B5)

H6c ¼ ieg2
1

N2
cðN2

c � 1Þ
trðP2�	P2P1P2P1Þ

ðP1 � P2Þ2ðk1 � k2Þ2ðk1 � l2ÞðP1 � k2 � l2Þ2
: (B6)
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It is observed that the results from Figs. 5(a) and 5(c) are suppressed by a power of 1=Q compared to Fig. 5(b). That is,
when both the valence gluons attach to the quark line, the contribution is power-suppressed. The hard kernels from Fig. 6
are of the same power as Eq. (B2).

Figure 7 from category B gives the hard kernels

H7a ¼ � i

2
eg2

1

N2
c � 1

tr½P2ðk1 � l1ÞP2�	P2P1�
ðP2 � k1 � l1Þ2ðk1 � k2 þ l1Þ2ðk1 � k2Þ2ðP1 � k1 � l1 � P2Þ2

; (B7)

H7b ¼ i

2
eg2

1

N2
c � 1

tr½P2�	P2ðk1 � l1ÞP2P1�
ðP1 � P2Þ2ðk1 � k2 þ l1Þ2ðk1 � k2Þ2ðP1 � k1 � l1 � P2Þ2

; (B8)

H7c ¼ i

2
eg2

trðP2�	P2P1Þ
ðP1 � P2Þ2ðk1 � k2 þ l1Þ2ðk1 � k2Þ2

; (B9)

H7d ¼ � i

2
eg2

1

N2
c � 1

tr½P2�	P2P1ðk2 þ 2l2Þl1�
ðP1 � P2Þ2ðk1 � k2 þ l1Þ2ðl1 � k2Þ2ðk1 � k2 þ l1 � l2Þ2

; (B10)

H7e ¼ � i

2
eg2

1

N2
c � 1

tr½P2�	P2P1l1ðk1 þ 2l1Þ�
ðP1 � P2Þ2ðk1 � k2 þ l1 � l2Þ2ðk1 � l2Þ2ðk1 � k2 � l2Þ2

; (B11)

H7f ¼ � i

2
eg2

1

N2
c � 1

tr½P2�	P2P1ðk2 � l2ÞP1�
ðP1 � P2Þ2ðk1 � k2Þ2ðk1 � k2 � l2Þ2ðP1 � k2 � l2Þ2

: (B12)

Figure 8 from category C contributes the hard kernels

H8a ¼ �ieg2
N2

c

N2
c � 1

trðP2�	P2P1Þ
ðP1 � P2Þ2ðk1 � k2 þ l1 � l2Þ2ðk1 � k2Þ2

; (B13)

H8b ¼ � i

2
eg2

N2
c

N2
c � 1

ðk1 � k2 � 2l2 þ l1Þ � ðk1 � k2 � l1Þ trðP2�	P2P1Þ
ðP1 � P2Þ2ðk1 � k2 þ l1Þ2ðk1 � k2Þ2ðk1 � k2 þ l1 � l2Þ2

; (B14)

H8c ¼ � i

2
eg2

N2
c

N2
c � 1

ðk1 � k2 þ l2Þ � ðk1 � k2 þ 2l1 � l2Þ trðP2�	P2P2P1Þ
ðP1 � P2Þ2ðk1 � k2 þ l1 � l2Þ2ðk1 � k2 � l2Þ2ðk1 � k2Þ2

: (B15)
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