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We compute the energy of a static hybrid, i.e., of a hybrid quarkonium with static quark and antiquark,

at short distances in D ¼ 4; 3, dimensions. The soft contribution to this energy is the static potential of a

color-octet quark-antiquark pair at short distances, which is known at two loops for arbitrary D. We have

checked this expression employing thermal field theory methods. Using the effective field theory potential

nonrelativistic QCD we calculate the ultrasoft contributions to the hybrid (and singlet) static energy at the

two-loop level. We then present new results for the static hybrid energy/potential and the hybrid decay

width in three and four dimensions. Finally we comment on the meaning of the perturbative results in two

space-time dimensions, where the hybrid does not exist.
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I. INTRODUCTION

In a recent paper [1] we have studied the potential and
energy of a static color-singlet quark-antiquark state at
short distances in D space-time dimensions (though with
special emphasis on the three-dimensional case). It is the
aim of this paper to perform a similar analysis for the static
hybrid energy and the associated octet potential.

The energies of static hybrid systems are very interesting
quantities. They can teach us a lot about the dynamics of
QCD, and can be potentially relevant for the theoretical
description of physical hybrids made of heavy quarks.
Their behavior at long distances might contain information
on the detailed dynamics responsible for confinement,
whether it is due to strings and, if so, of which kind.
Most relevant for us, however, is that the hybrid energy at
short distances approximately equals the sum of the static
octet potential energy and the respective gluelump mass.
This relation was first quantified in Refs. [2,3] and recently
exposed in a unified and model-independent framework
[4,5] using the effective field theory ‘‘potential nonrelativ-
istic QCD’’ (pNRQCD) [6] (for a review see [7]).

The physics of the static hybrid system in the short
distance limit is governed by, at least, two physical scales.
One is the soft scale �1=r, the inverse distance between
quark and antiquark, the other is the ultrasoft scale
��V � Vo � Vs, where Vo and Vs are the static octet
and singlet potential, respectively. The effective theory
pNRQCD is particularly suitable to study this limit, as it
profits from the large-scale separation: 1=r � �V. For
small distance r the static hybrid state can be understood
to consist of a color-octet quark-antiquark state (acting as a
static source in the octet representation) coupled to some
ultrasoft and/or nonperturbative gluons to form an overall
color-singlet state. A close relative of the static hybrid
(as we will see below) is the gluelump, which consists
of a static octet source (of whatever origin) attached to
nonperturbative gluons forming a color-singlet state.

In order to gain a deeper understanding of the physics
of the static hybrid system one can also consider how
it is qualitatively affected by changing the number of
dimensions from four (4D) to three (3D) or two (2D).
The three-dimensional result is also important on its own.
Four-dimensional thermal QCD effectively undergoes a
dimensional reduction for large temperatures. Therefore,
determining the renormalization group (RG) structure for
the static potential in three dimensions might open the way
to a resummation of logarithms at finite temperature.
Three-dimensional space-time is moreover a good testing
ground for renormalon issues, since the linear power di-
vergences associated with renormalons in four dimensions
become logarithmic divergences in three dimensions and
can be traced back using dimensional regularization (see
Ref. [1]). Last but not least the computations in less than
four dimensions represent important consistency checks of
the theoretical framework used to describe the 4D hybrid
(and singlet) systems at short distances.
The color-octet static potential is obtained by integrating

out the soft scale and has received quite some attention in
the last decade. ForD ¼ 4, it was computed with two-loop
precision in Ref. [8], the leading three-loop logarithms
were obtained in Ref. [9], and the associated resummation
of logarithms was carried out in Ref. [10]. The 4D two-
loop result of Ref. [8] was confirmed in Ref. [11] by
computing the correlator of two Polyakov loops at finite
temperature, which is then related to the singlet and octet
static potentials. From the terms given in Ref. [8] we have
also been able to read off the general D-dimensional ex-
pression for the static octet potential, and verified it using
the method developed in Ref. [11]. This expression is
infrared-divergent for D ¼ 3. The divergences must be
canceled by the ultraviolet divergences of the ultrasoft
contribution. We calculate the latter in pNRQCD for arbi-
traryD up to two loops and present the results in full detail
on a diagram-by-diagram basis. We also compute the
D-dimensional ultrasoft two-loop correction to the static
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singlet energy providing an independent confirmation of
the results obtained in Refs. [12,13]. The one-loop ultrasoft
singlet and octet contributions are basically identical ex-
cept for trivial modifications. The ultrasoft two-loop octet
computation has previously been considered in Ref. [14],
where a one-to-one correspondence to the singlet result in
the temporal (A0 ¼ 0) gauge was claimed. This statement
can be rather problematic due to the singular nature of the
gluon propagator in this gauge. Actually, for D ¼ 4, the
anomalous dimension of the octet static potential we find
differs from the one obtained using the relation between
singlet and octet computation based on the A0 ¼ 0 gauge
argument of Ref. [14]. In three dimensions the problem is
even more acute, as the result obtained from the suggested
singlet-octet correspondence does not have the correct
divergence structure to make the computation renormaliz-
able and to derive a meaningful anomalous dimension. Our
explicit ultrasoft two-loop result in Feynman gauge, in
contrast, does, and exactly cancels the infrared divergences
of the static octet potential for D ¼ 3. This represents a
strong cross-check of our calculation.

The discussion in the present paper closely follows the
lines of Ref. [1]. Therefore, we will skip some details by
referring to that reference. The outline of the paper is as
follows. In Sec. II we introduce the theoretical setup and
present the bare two-loop soft and ultrasoft results for the
color octet. The expressions for the relevant pNRQCD
diagrams in Feynman gauge are shown in the Appendix,
both for the color octet and singlet case. In Sec. III we
obtain the static hybrid energy at next-to-next-to-next-to-
leading logarithmic (N3LL) order (apart from the soft
three-loop matching constant) for D ¼ 4. Sec. IV contains
the complete RG-improved ultrasoft calculation up to
NNLL level in three dimensions. In Sec. V we discuss
the situation in two dimensions, and in Sec. VI we present
our conclusions.

II. PNRQCD

Up to the next-to-leading order (NLO) in the multipole
expansion (and irrespectively of the space-time dimension)
the effective Lagrangian density of pNRQCD in the static
limit takes the form1

L ¼ TrfSyði@0 � VsðrÞÞSþ OyðiD0 � VoðrÞÞOg
þ gVAðrÞTrfOyr � ESþ Syr � EOg

þ g
VBðrÞ
2

TrfOyfr �E;Ogg þOðr2Þ: (2)

We define color-singlet and -octet fields for the quark-
antiquark system by S ¼ Sðr;R; tÞ and Oa ¼ Oaðr;R; tÞ
respectively.R � ðx1 þ x2Þ=2 is the center position of the
system. In order for S and Oa to have the proper free-field
normalization in color space they are related to the fields in
Eq. (2) as follows:

S � 1lcffiffiffiffiffiffi
Nc

p S; O � Taffiffiffiffiffiffi
TF

p Oa; (3)

where TF ¼ 1=2 for the fundamental representation of
SUðNcÞ. All gluon fields in Eq. (2) are evaluated in R
and the time t, in particular, the chromoelectric field
E � EðR; tÞ and the ultrasoft covariant derivative iD0O �
i@0O� g½A0ðR; tÞ;O�.
In the following we will use the index ‘‘B’’ to explicitly

denote bare quantities. Parameters without this index are
understood to be renormalized. We will furthermore use
the notation D � 4þ 2� � nþ 2�n, where �n ¼ D�n

2 pa-

rameterizes the (typically infinitesimal) difference to the
closest integer dimension n ¼ 4; 3; 2. The bare parameters
of the theory are the coupling constant �B (gB) and
the potentials Vfs;o;A;Bg;BðrÞ, generically denoted by VB.

The associated renormalized coefficients �ð�Þ and
Vfs;o;A;Bgðr;�Þ are the Wilson coefficients of the effective

Lagrangian and depend on the renormalization scale (�).
They are typically fixed at a scale smaller than (or similar
to) 1=r and larger than the ultrasoft and any other scale in
the problem by matching the effective to the underlying
theory, which in this case is QCD in the static limit.
In our convention �B has integer mass dimension,

½�B� ¼ ½�� ¼ M4�n (½g2B� ¼ M4�D), and is related to gB
by

�B ¼ g2B�
2�n

4�
; (4)

where � is the renormalization scale. It has a special status
since it does not receive corrections from other Wilson
coefficients of the effective theory. Therefore, it can be
renormalized multiplicatively

�B ¼ Z��; (5)

where

Z� ¼ 1þ X1
s¼1

ZðsÞ
�

1

�sn
: (6)

The RG equation of � is

�
d

d�
� � ��ð�; �nÞ ¼ 2�n�þ ��ð�; 0Þ: (7)

In the limit �n ! 0

�
d

d�
� � ��ð�; 0Þ � ��ð�Þ ¼ �2�

d

d�
Zð1Þ
� : (8)

For the octet potential we employ an additive renormal-
ization convention

1In principle, to fully account for the nonperturbative contri-
butions at Oðr2Þ we have to add the term

�L ¼ g
VCðrÞ
8

rirjTrfOy½DiEj;O�g (1)

to the Lagrangian in Eq. (2).
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Vo;B ¼ Vo þ �Vo: (9)

The counterterm �Vo generally depends on the Wilson
coefficients of the effective theory, i.e., on � and V, and
on the number of space-time dimensions. Using the mini-
mal subtraction (MS) renormalization scheme in DðnÞ
dimensions we define

�Vo ¼
X1
s¼1

ZðsÞ
Vo

1

�sn
: (10)

From the scale independence of the octet bare potential

�
d

d�
Vo;B ¼ 0; (11)

one obtains the RG equation of Vo. It can schematically be
written as

�
d

d�
Vo ¼ BðVÞ; (12)

BðVÞ � �
�
�

d

d�
�Vo

�
: (13)

Note that BðVÞ is, in general, a function of all the potentials
appearing in the Lagrangian. Note as well that Eq. (12)
implies that all the 1=�n poles disappear once the deriva-
tive with respect to the renormalization scale is performed.
This imposes some constraints on �Vo:

O ð1=�nÞ: BðVÞ ¼ �2�
@

@�
Zð1Þ
Vo
; (14)

Oð1=�2nÞ: BðVÞ @

@V
Zð1Þ
Vo

þ��ð�Þ @

@�
Zð1Þ
Vo

þ 2�
@

@�
Zð2Þ
Vo

¼ 0;

(15)

and so on.

A. Bare results in D dimensions

This subsection summarizes the bare results of the cal-
culations relevant in this work. In D-dimensional momen-
tum space we can write the bare octet potential as

~V o;B ¼ 1

2Nc

g2B
1

k2

X1
n¼0

g2nB k2n� ~cðoÞn ðDÞ
ð4�ÞnD=2

; (16)

where ~cðoÞ0 ðDÞ ¼ 1 and ~cðoÞ1 ðDÞ ¼ ~cðsÞ1 ðDÞ, ~cðsÞ1 ðDÞ being the
analogously defined one-loop coefficient for the static
singlet potential, see Ref. [15]. The two-loop coefficient

~cðoÞ2 ðDÞ differs from ~cðsÞ2 ðDÞ, which was computed in
Ref. [16]. We denote this difference by

�~c2ðDÞ ¼ ~cðoÞ2 ðDÞ � ~cðsÞ2 ðDÞ: (17)

�~c2ð4Þwasfirst obtained inRef. [8]. The resultwas confirmed
in Ref. [11] using thermal QCD and effective theorymethods
to compute the correlator of two Polyakov loops and relate it
to the singlet and octet potentials. Although no explicit
expression is given one can also read the D-dimensional
coefficient �~c2ðDÞ off the results in Ref. [8]. Using the
approach developed inRef. [11]we have been able to confirm
that expression for arbitrary D. It reads

�~cðoÞ2 ðDÞ ¼ C2
A

�3�ð�þ 1
2Þsec2ð��Þð�ð2�þ 3Þ�ð�� 1

2Þ�ð2�þ 1Þ cscð��Þ þ ��ð3�þ 3
2Þ secð��ÞÞ

�ð32 � �Þ�ð2�þ 1Þ2�ð3�þ 1
2Þ

: (18)

After Fourier transformation to position space Eq. (16)
becomes (see, e.g., Ref. [17])

Vo;B ¼ 1

2Nc

g2B
X1
n¼0

g2nB r�2ðnþ1Þ�

r

~cðoÞn ðDÞ
ð4�ÞnD=2

� �½1=2þ ðnþ 1Þ��
22�2n��3=2þ��½1� n��

� 1

2Nc

g2B
X1
n¼0

g2nB cðoÞn ðDÞr�2ðnþ1Þ�

r
: (19)

We now consider the ultrasoft bare correction to the
hybrid energy at Oðr2Þ in the multipole expansion. It can
be determined from the calculation of the bare octet
self-energy �us

B ðEÞ in terms of (1PI) loop diagrams in
pNRQCD. The octet propagator including the ultrasoft
corrections (but neglecting nonperturbative ones) then
takes the form

Z
dteiEthOaðtÞObð0Þi � i

E� VB
o � �us

B ðEÞ : (20)

To extract the ultrasoft correction to the static octet
energy2 at Oðr2Þ it is sufficient to set E ¼ VB

o jOðr0Þ in the

bare expression for the self-energy,3 i.e., �Eus
o;B ¼ �us

B ðE ¼
VB
o Þ þOðr3Þ.
The one-loop result equals the analogous singlet correc-

tion [9,18,19] except for a change of the color factor and
the replacement �V � Vo � Vs ! ��V

2This correction is understood to be complex as long as we do
not explicitly disentangle the real part associated with the
physical energy and the imaginary part associated with the decay
width, see Sec. II B.

3In order to consistently treat the 3D infrared divergence at
Oðr0Þ (which is canceled by an ultraviolet divergence of non-
perturbative origin) in dimensional regularization it is important
to set E ¼ VB

o before performing the loop integrations of the
self-energy diagrams in this ‘‘bare’’ approach. As a check we
have computed the corresponding off shell diagrams and explic-
itly performed the renormalization of the potentials and the octet
field. Finally taking the ‘‘renormalized’’ on shell limit E ! Vo

gives the same result for the ultrasoft correction to the static
hybrid energy.

STATIC HYBRID POTENTIAL IN D DIMENSIONS AT . . . PHYSICAL REVIEW D 84, 034016 (2011)

034016-3



�Eus
o;Bð1-loopÞ ¼ �g2

1

2Nc

V2
Að1þ �Þ

� �½2þ ���½�3� 2��
�2þ�

r2ð��VBÞ3þ2�:

(21)

In Feynman gauge it comes from the pNRQCD diagram
shown in Fig. 1. The two-loop expression is new and reads

�Eus
s;Bð2-loopÞ ¼ g4

1

2Nc

CAV
2
A�½�3� 4�� 1

ð2�Þ2
1

4�2þ2�

� �2½1þ ��½gð�Þ � ð1þ 2�Þg1ð�Þ
þ goð�Þ�r2ð��VBÞ3þ4�; (22)

where

gð�Þ ¼ 2�3 þ 6�2 þ 8�þ 3

�ð2�2 þ 5�þ 3Þ
� 2��ð�2�� 2Þ�ð�2�� 1Þ

ð2�þ 3Þ�ð�4�� 3Þ ; (23)

g1ð�Þ ¼ 6�3 þ 17�2 þ 18�þ 6

�2ð2�2 þ 5�þ 3Þ þ 4ð�þ 1ÞnfTf

�ð2�þ 3ÞNc

þ 2ð�2 þ �þ 1Þ�ð�2�� 2Þ�ð�2�� 1Þ
�ð2�þ 3Þ�ð�4�� 3Þ ; (24)

goð�Þ ¼
2�4��5ð2�þ 3Þð2�2 þ 2�þ 1Þ�ð�2�� 7

2Þ�2ð��� 3
2Þ�ð2�þ 9

2Þ
��ð�4�� 3Þ�2ð�þ 1Þ : (25)

It is the central result of this work. In the Appendix we
separately present the analytic expressions for the two-loop
self-energy diagrams that contribute to Eq. (22) in
Feynman gauge. We have also computed the correspond-
ing two-loop expressions for the color singlet, which pro-
vide an explicit confirmation of the result obtained in
Refs. [12,13] and can also be found in the Appendix.

The computation of the ultrasoft octet self-energy has
also been addressed in Ref. [14], where it was argued that
the result could be related to the singlet one (which is
gauge-invariant) in the temporal (A0 ¼ 0) gauge. In order
to reach this conclusion, the effects involving the gluonic
content of the hybrid in the soft and ultrasoft computation
were neglected (see Eq. 17 in Ref. [14]). Then, after
choosing the A0 ¼ 0 gauge, it is indeed easy to see that
all nonvanishing self-energy diagrams at Oðr2Þ are, apart
from the color factor and the sign of �V, the same for
singlet and octet. Requiring gauge invariance of the final
outcome one thus would obtain

V2
A

TF

ðD� 1ÞðN2
c � 1ÞNc

r2

�
Z 1

0
dtet�VBhvacjgEa

EðtÞ�ðt; 0ÞadjabgE
b
Eð0Þjvaci (26)

for the bare ultrasoft contribution to the static octet energy
(in Euclidean space-time) at Oðr2Þ and to all orders in �.

At Oð�Þ (one-loop) Eq. (26) agrees with Eq. (21).
However, atOð�2Þ (two-loop) Eqs. (22) and (26) are differ-
ent, since goð�Þ ¼ 0 in Eq. (26). This is in contradiction

with our nonzero result for goð�Þ in Eq. (25), which was
obtained by an explicit two-loop calculation in Feynman
gauge (see App. A 1). The existence of a nonzero value for
go is required on a theoretical basis in Sec. IV. Otherwise
�Eus

o;B would not produce the right divergence structure in

D ¼ 3 dimensions to make the theory renormalizable nor
lead to a consistent RG equation for the potential, as there
would be some divergences proportional to logarithms of
the ultrasoft scale left after the subtraction of the one-loop
subdivergences. Our explicit computation, in contrast, is
consistent with the renormalizability of the theory, and
moreover perfectly cancels the infrared divergences of the
soft computation. This represents a strong check of our
computation. In Sec. III we will see, that with our result
in Eq. (22) we also obtain a different NLL anomalous
dimension of the octet potential Vo in four dimensions
compared to Ref. [14]. The corresponding cancelation of
soft infrared and ultrasoft ultraviolet divergences in four
dimensions can however not be checked, since the required
soft four-loop result is not known at present.
Actually, the fact that there are problems with the naive

usage of A0 ¼ 0 gauge becomes apparent at several points
of the calculation. In pNRQCD this already happens at
Oðr0Þ in the multipole expansion for D ¼ 3. At this order
the bare soft result for Vo is infrared-divergent
(cf. Equation (47)), but in the A0 ¼ 0 gauge there are no
ultrasoft octet self-energy diagrams to cancel that diver-
gence. It is also remarkable that in this gauge the spacelike
strings of the rectangular Wilson loop contribute to the
static potential, whereas in Feynman gauge they are ex-
pected to be negligible.4 This can be easily visualized for
D ¼ 2, since then time and space coordinates can be

FIG. 1. One-loop octet self-energy diagram at Oðr2Þ.

4In Ref. [15] it was explicitly shown that the spacelike strings
in Feynman gauge do not contribute to the 4D static singlet
potential through two loops.
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symmetrically interchanged (in the Euclidean), showing
that in the A0 ¼ 0 gauge the contribution to the singlet
potential comes exclusively from the spacelike strings.
Actually that is true for arbitrary D at tree level. For a
detailed analysis at one loop see, e.g., Ref. [20] and the
references therein. Overall, we think it would be very
interesting to quantitatively study the effect of the asymp-
totic gluonic degrees of freedom on the static singlet and
hybrid energy in the A0 ¼ 0 gauge.

To the above discussion one should also add the Oðr2Þ
ultrasoft contributions from octet self-energy diagrams
without singlet-octet transitions. They are proportional to
V2
B or VC and may have logarithmic ultraviolet divergen-

ces, relevant for the determination of the counterterm
(�Vo) and the anomalous dimension of Vo. These diver-
gences can, however, not be proportional to positive
powers of �V, because the ultrasoft scale �V does not
appear in the diagrams with on shell external fields, and the
corresponding contributions vanish in dimensional regu-
larization. Therefore they cannot solve the A0 ¼ 0 gauge
problem described above, since the first discrepancies
between our two-loop result in Eq. (22) and the Oð�2Þ
term in Eq. (26) are linear in �V for D ¼ 3 and cubic for
D ¼ 4.

B. Observables

At short distances we approximate the bare propagator
of a generic hybrid system as follows:

Z
dteiEthHaOaðtÞHbObð0Þi� i

E�VB
o ��BðEÞþi�

: (27)

Ha stands for the gluonic content of the hybrid (Ha ¼ Ba,
Ea, etc.) and �BðEÞ is the self-energy of the system ex-
pressed in terms of bare parameters (potentials, couplings).
It accounts for effects at the ultrasoft and the nonperturba-
tive scale.

Let us now construct some observables. In this paper we
focus on the hybrid static energy and decay width. Their
definition can become gauge-dependent for unstable parti-
cles. Fortunately this is not so in our case, since both the on
shell and pole definition (see, e.g., Ref. [21] for the re-
spective definitions) are identical at the precision of our
computation. Close to the resonance we can expand �BðEÞ
around the complex pole position EH þ i�H=2 of the
hybrid propagator in Eq. (27). In this paper we will con-
sider ultrasoft self-energy contributions�us

B up to two-loop
level and NLO in the multipole expansion. It is therefore
sufficient to approximate �BðEH þ i�H=2Þ by �BðE0Þ and
set E0 ¼ VB

o jOð�2Þ for D ¼ 4 and E0 ¼ VB
o jOð�Þ for D ¼ 3.

Note that in the latter case Oð�2Þ terms would produce
subleading Oðr3Þ corrections to the energy and decay
width.

We now choose to shift the energy origin by adding
�2mB, i.e., E ! E� 2mB. The term 2mB ¼ 2mþ
2�mðsoftÞ will allow to absorb ultraviolet soft divergences

(into �mðsoftÞ) that may appear in the computation. m has a

clear physical meaning in the case of heavy quarkonium: it
represents the heavy quark (pole) mass. At NLO in the
multipole expansion we thus have

1

E� 2mB � VB
o ��BðE� 2mBÞ

¼ ZH

E� EH þ i�H=2
þOððE� EH þ i�H=2Þ0Þ; (28)

where ZH is the normalization of the hybrid propagator and

EH � i�H=2 ¼ 2mB þ VB
o þ �BðE0Þ (29)

is the complex position of the hybrid propagator pole. It
can be understood to be composed of contributions from
different energy regions. After factorization we can ex-
press it in the following way (either bare or renormalized):

EHðrÞ� i�H=2¼2mBþVo;Bþ�Eus
o;Bþ�Enp

H;B

¼2mMSð�sÞþVo;MSðr;�s;�Þ
þ�Eus

o;MS
ð�;�npÞþ�Enp

H;MS
ð�npÞ: (30)

The subscript MS of mMSð�sÞ denotes the scheme for

possible hard infrared divergence subtractions (canceling
the ultraviolet soft divergences), e.g., in three dimensions,
and should not be confused with the ultraviolet (hard)
renormalization scheme for the mass. In four dimensions
we have mMSð�sÞ ¼ mOS, where mOS is the usual on shell

mass of the heavy quarks. Similarly Vo;MSðr;�s; �Þ !
Vo;MSðr;�Þ in four dimensions, where Vo is the octet

potential and encodes the effects due to soft degrees of
freedom. �Eus

o and �Enp
H encode the effects due to the

ultrasoft and nonperturbative degrees of freedom, respec-
tively. Each term depends on the respective factorization/
renormalization scales: �s separates the hard (m) from the
soft scale (1=r), � separates the soft from the ultrasoft scale
(�V) and �np separates the ultrasoft from the nonpertur-

bative scale (�QCD). For real factorization scales �s, �,
�np, the decay width �H is contained in the terms �Eus

o and

�Enp
H . We give more details in the next sections.

III. RESULTS FOR D ¼ 4

In four dimensions the renormalized coupling constant
� satisfies a nontrivial RG equation. We will work here

in the MS renormalization scheme, which is related to the
MS scheme by a redefinition of the renormalization scale:

�ðMSÞ ! �ðMSÞc
�1
MS

, where cMS ¼ e1=2ðlnð4�Þ��EÞ. The coun-
terterm coefficient

Zð1Þ
� ¼ �

4�
�0 þ 1

2

�2

ð4�Þ2 �1 þ . . . (31)

is understood in the MS scheme, but the form of the
anomalous dimension of �,
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��ð�Þ ¼ �2�

�
�0

�

4�
þ �1

�2

ð4�Þ2 þ . . .

�
(32)

is the same in both schemes, MS and MS. The constants
�0 ¼ 11

3 CA � 4
3TFnf and �1 ¼ 34

3 C
2
A � 4CFTFnf �

20
3 CATFnf are the standard MS (MS) one- and two-loop

coefficients of the QCD beta function.
We also have to consider possible soft and ultrasoft

corrections to VA. They were obtained in Ref. [10] with
leading logarithmic (LL) accuracy, in Ref. [13] with
NLO accuracy and in Ref. [14] with NLL accuracy. The
outcome is

�
d

d�
VA ¼ 0þOð�3Þ (33)

for the anomalous dimension and VA ¼ 1þOð�2Þ for the
initial matching condition. We conclude that for the preci-
sion of our calculation we can use VA ¼ 1.

The counterterms of the octet potential, which subtract
the ultraviolet divergences from the result of our ultrasoft
two-loop computation in Eq. (22) in four dimensions, read

Zð1Þ
Vo
¼�r2�V3 1

2Nc

V2
A

�
�

3�
þ�2½CAð47�12�2Þ�10TFnf�

108�2

�
;

(34)

Zð2Þ
Vo

¼ �r2�V3 1

2Nc

V2
A

2

3
�0

�2

ð4�Þ2 : (35)

The latter expression comes from the 1=�24 pole of the
two-loop result and from the �2=�4 divergence of �B in
the divergent term of the one-loop self-energy.

From Eqs. (34) and (35) we can derive the RG equation
of the octet potential at two-loop order.5 We find

�
d

d�
Vo;MS ¼ r2�V3 1

2Nc

V2
A

�
2�

3�

þ �2½CAð47� 12�2Þ � 10TFnf�
27�2

þOð�3Þ
�
:

(36)

This result holds in any momentum-independent renormal-
ization scheme that is related to the MS scheme by a
(D-independent) redefinition of the renormalization scale
�. Solving the RG equation we can write the RG-improved
static octet potential as

Vo;MSðr;�Þ ¼ Vi:c:
o;MS

ðr;�iÞ þ �VRG
o;MS

ðr;�i; �Þ; (37)

where

�VRG
o;MS

ðr;�i;�Þ¼� 1

2Nc

V2
Ar

2ð�VÞ32�
�0

�
2

3�
ln
�ð�Þ
�ð�iÞ

�ð�ð�Þ��ð�iÞÞ
�

8

3ð4�Þ2
�1

�0

�CAð47�12�2Þ�10TFnf

27�2

��
(38)

describes the ultrasoft RG evolution of Vo and the initial
matching condition at the (soft) scale �i is given by

Vi:c:
o;MS

ðr;�iÞ ¼ 1

2Nc

�ð�iÞ
r

X3
n¼0

�
�ð�iÞ
4�

�
n
aðoÞn ðr;�iÞ (39)

with coefficients (aðoÞ0 ðr;�iÞ ¼ 1)

aðoÞ1 ðr;�iÞ ¼ a1 þ 2�0 lnð�ie
�ErÞ;

aðoÞ2 ðr;�iÞ ¼ aðoÞ2 þ �2

3
�2

0 þ ð4a1�0 þ 2�1Þ lnð�ie
�ErÞ

þ 4�2
0ln

2ð�ie
�ErÞ;

aðoÞ3 ðr;�iÞ ¼ aðoÞ3 þ a1�
2
0�

2 þ 5�2

6
�0�1 þ 16	3�

3
0

þ
�
2�2�3

0 þ 6aðoÞ2 �0 þ 4a1�1 þ 2�2

þ 16

3
C3
A�

2

�
lnð�ie

�ErÞ þ ð12a1�2
0

þ 10�0�1Þln2ð�ie
�ErÞ þ 8�3

0ln
3ð�ie

�ErÞ:
(40)

Explicit expressions for a1 and aðoÞ2 can be found in the

literature [16,22]. The constant aðoÞ3 is still unknown and

represents the only missing piece in the N3LL result for
the Wilson coefficient Vo, Eq. (37). Note that this expres-
sion is real for positive renormalization and matching
scales � and �i.
We can now determine the complex pole of the hybrid

(octet) propagator in four dimensions. Up to nonperturba-
tive effects, which we neglect here, it is given by

EHðrÞ� i
�H

2
’EoðrÞ� i

�o

2
’Vi:c:

o;MS
ðr;1=rÞ

þ�VRG
o;MS

ðr;1=r;�VÞþ�Eus
o;MS

ð�VÞ: (41)

Therefore, besides the octet potential, we also need the

ultrasoft correction in the MS scheme, which we obtain
from our bare two-loop result in Eq. (22) after subtraction
of the divergences. It reads

5In our counting this translates to N3LL order, because �V
comes at least with one power of �.
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�Eus
o;MS

ð�Þ ¼ 1

2Nc

r2ð��VÞ3V2
A

�
� �

9�

�
6 ln

���V

�

�
þ 6 ln2� 5

�
þ �2

108�2

�
18�0ln

2

���V

�

�
� 6ðNcð13� 8�2Þ

� 2�0ð�5þ 3 ln2ÞÞ ln
���V

�

�
� 2Ncð�84þ 39 ln2� 8�2ð�2þ 3 ln2Þ þ 72	ð3ÞÞ

þ �0ð67þ 3�2 � 60 ln2þ 18ln22Þ
��

: (42)

Note that this object is complex for positive �. Since the octet potential is real, the imaginary part of �Eus
o;MS

ð�Þ directly
gives the decay width. Choosing � ¼ �V in Eq. (42) we find for the decay width of the hybrid (octet) system

�H ¼ 4

3
�ð�VÞ 1

2Nc

r2�V3

�
1þ �ð�VÞ

12�
ðNcð13� 8�2Þ � 2�0ð3 ln2� 5ÞÞ þOð�2Þ

�
þOðr4Þ; (43)

where we have to use the NLO expression for the ultrasoft
scale �V:

�Vðr;�iÞ ¼ CA

2

�ð�iÞ
r

X1
n¼0

�
�ð�iÞ
4�

�
n
aðoÞn ðr;�iÞ; (44)

which is scheme- and factorization-scale-independent at
this order.

For EH we need the real part of �Eus
o;MS

ð�Þ:

EHðrÞ ¼ Vi:c:
o;MS

ðr; 1=rÞ þ �VRG
o;MS

ðr; 1=r;�VÞ

þ Re

�
�Eus

o;MS
ð�VÞ

�
: (45)

Replacing the first two terms in this equation by Eq. (37)
and using the leading term of Eq. (42) in the last term,
we reach N3LL accuracy. Equation (42) also provides the
subleading ultrasoft correction to the hybrid energy rele-
vant at N4LL order.

We will not attempt to compare our results with 4D
lattice simulations. This would require the incorporation
of nonperturbative effects and the proper treatment of
renormalons, which goes beyond the scope of this paper.

IV. RESULTS FOR D ¼ 3

The derivation of the static octet potential in three
dimension is quite analogous to the color-singlet case,
which has been discussed in detail in Ref. [1]. We therefore
focus on the novel aspects of the analysis for the octet
(hybrid) system in this section and refer to Ref. [1] for a
more careful account on the universal issues related to the
3D static potential.
As argued in Ref. [1], the coefficients VA=B are not

renormalized at Oðr0Þ, i.e.
ZA=B ¼ 1þOðrÞ: (46)

The reason is that the potentials and � have to appear
perturbatively (with positive powers) in the counterterms,
otherwise the renormalizability of the theory at leading
order of the multipole expansion would be spoiled.
Moreover, we can set VA ¼ VB ¼ 1 ( just like in 4D), as
Oð�Þ soft corrections would be multiplied by factors of r
and would move us away from the precision of Vo aimed
for at this paper. Actually, from inspection of the possible
diagrams that will contribute at the soft scale, we know that
VA=B ¼ 1þOð�2Þ [13].
From the bare soft computation we can completely fix

�Vo through Oðr2Þ. We obtain (for the ultrasoft counter-
terms)

Zð1Þ
Vo

¼ CA

2
�þ r2�V2�

�
CF � CA

2

�
1

4
þ r2�VCA�

2

�
CF � CA

2

�
1

2
� r2�3

�
CF � CA

2

�

� ð13�2 � 2304ÞC2
A þ 8ð19�2 þ 144ÞCATFnf � 48TFnfð4ð�2 � 10ÞCF þ �2TFnfÞ

2304
; (47)

Zð2Þ
Vo

¼ r2�V�2

�
CF � CA

2

�
CA

1

8
þ r2�3

�
CF � CA

2

�
C2
A

1

12
;

(48)

Zð3Þ
Vo

¼ r2�3

�
CF � CA

2

�
C2
A

1

48
; (49)

ZðnÞ
Vo

¼ 0 8 n > 3: (50)

The soft calculation is organized in powers of �r. The tree-
level computation gives the first term in Eq. (47) (once the
ultraviolet divergences of the soft one-loop heavy quark
self-energies have been subtracted). The soft one-loop
contribution to the octet potential is infrared safe. The
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two-loop computation leads to the remaining terms. These
results are exact at Oðr2Þ.

The fact that one can renormalize the potential with a
finite number of terms at a given order in the multipole

expansion, i.e., ZðnÞ
Vo

¼ 0 for n > 3 at Oðr2Þ, reflects the

super-renormalizability of the theory in three dimensions.
The infrared divergences of the bare potential have to

cancel the ultraviolet ones of the ultrasoft computation.
We can then use the explicit one- and two-loop ultrasoft
contributions to partially check the structure of the octet
potential counterterm in Eqs. (47)–(49).

At leading order in the multipole expansion the octet
field has a residual interaction with the ultrasoft gluon
field. The octet potential receives an ultraviolet-divergent
correction from the one-loop self-energy diagram shown in
Fig. 2, which yields the first term in Eq. (47). This is the
only term at Oðr0Þ, since higher loop diagrams cannot
contribute because the coupling and the potentials have
to appear perturbatively (with positive powers) in the Z’s.
Since � has dimensions of mass, the potentials would
appear with negative powers in multiloop diagrams at
Oðr0Þ. This is not allowed by renormalizability. By the
very same reason the octet field does not require renormal-
ization at Oðr0Þ:

Zo ¼ 1þOðr2Þ: (51)

We now consider higher orders in the multipole expan-
sion. At two soft loops in dimensional regularization
infrared poles up to Oð1=�33Þ appear. The ultrasoft compu-

tation in pNRQCD yields the following results for the
counterterms:

(1) The second term in Eq. (47) comes from the 1=�3
divergence of the ultrasoft one-loop correction in
Eq. (21). It is scheme-independent and fixes, to-
gether with Eqs. (14) and (15), the first term of
Eq. (48) and (49). It would also be possible to
compute these 1=�23 and 1=�33 divergences directly.

The 1=�23 term is confirmed by the ultrasoft two-

loop result in Eq. (22). The 1=�33 term would how-

ever require an ultrasoft three-loop calculation,
which has not been performed yet.

(2) The third term in Eq. (47) follows from the remain-
ing 1=�3 divergence in the ultrasoft two-loop
correction, Eq. (22), once all subdivergences (asso-
ciated with the Oðr0Þ octet potential) have been
subtracted. This result combined with Eq. (15)
then fixes the second term of Eq. (48).

In summary: the explicit ultrasoft computation allows us
to check the three first terms of Eq. (47) and the first
term of Eq. (48). We find perfect agreement. The use of
Eqs. (14) and (15) allows us to completely check Eq. (48)
and (49). We also find perfect agreement. Note that this can
be understood as a nontrivial cross-check of two indepen-
dent determinations of these terms.
The only remaining term is the last one in Eq. (47). This

term would be canceled by the sum of the ultrasoft ultra-
violet divergences from three-loop octet self-energy dia-
grams with and without singlet-octet transition. The latter
diagrams are proportional to V2

B or VC and scaleless (for on
shell external fields), as they are insensitive to the ultrasoft
scale �V. Therefore, the associated RG evolution will run
down to the nonperturbative scale �. This is not so for the
ultrasoft diagrams with singlet-octet transition, which get
infrared regulated by the ultrasoft scale�V correspondingly
producing logarithms of �V. Without an explicit ultrasoft
three-loop calculation we are not able to distinguish among
the divergences from the two types of diagrams nor check
the last term of Eq. (47), which has been deduced from the
soft result. Therefore, we turn the problem around and use
the latter to fix the ultraviolet divergences of the ultrasoft
three-loop computation for the next sections.

A. pNRQCD RG

We can now deduce the RG equations of Vo. Again the
discussion is similar to the one of Ref. [1] to which we refer
for extra details.
At leading order in the multipole expansion the RG

equation of the octet potential reads

�
d

d�
Vo ¼ �CA�: (52)

The running of �V at this order reads (including the tree-
level matching condition)

�VXðr;�Þ ¼ ��CA lnðr�dXÞ þOð�Þ; (53)

where X stands for the factorization scheme (e.g., MS

or MS)

dMS ¼ e�E=2
ffiffiffiffi
�

p ’ 2:365 46;

dMS ¼ dMSc
�1
MS

¼ e�E=2 ’ 0:890 536;
(54)

with cMS ¼ e1=2ðlnð4�Þ��EÞ.
Now we consider the subleading contributions to Vo.

The complete anomalous dimension of the static octet
potential through Oðr2Þ takes the form

�
d

d�
Vo ¼ BðVoÞ

¼ �CA�þ X2
n¼0

CF�V
2
Ar

2�BnðCA�Þnð�VÞ2�n;

(55)
FIG. 2. One-loop contribution to the octet propagator at Oðr2Þ.
The dotted line represents the A0 field.
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and is explicitly given by

�
d

d�
Vo ¼ �CA�� r2�V2

X�

�
CF � CA

2

�
V2
A

1

2
� 2r2�VXCA�

2

�
CF � CA

2

�
V2
A þ r2�3

�
CF � CA

2

�

� V2
A

ð13�2 � 2304ÞC2
A þ 8ð19�2 þ 144ÞCATFnf � 48TFnfð4ð�2 � 10ÞCF þ �2TFnfÞ

384
: (56)

The form of the anomalous dimension in Eq. (56) is
invariant under scheme transformations that amount to a
redefinition of the renormalization scale: � ! �c�1

X , where
cX is a �3-independent constant (cMS ¼ 1). We indicate
renormalized quantities in this class of momentum-
independent renormalization schemes by an index ‘‘X’’
(X ¼ MS, MS, etc.) as, e.g., �VX in the above equations.

By solving the RG equations in the MS scheme we
obtain the static octet potential with Oð�3r2Þ precision:

Vo;MSðr;�s; �Þ ¼ Vi:c:
o;MSðr;�s; �iÞ þ �VRG

o;MSðr;�i; �Þ;
(57)

where

�VRG
o;MS

�
r;
1

r
; �

�
¼ �CA� lnð�rÞ þ

�
CF � CA

2

�
r2�3

�
� 1

6
C2
Aln

3ðr�Þ � 1

4
C2
A½�4þ �E þ ln��ln2ðr�Þ

þ
�
C2
A

�
13�2

384
þ 1

8
ð��2

E þ 8�E � 48þ ð8� 2�EÞ ln�� ln2�Þ
�
þ nfTF

�
CA

�
3þ 19�2

48

�

þ CF

�
5� �2

2

��
� ðnfTFÞ2 �

2

8

�
lnðr�Þ

�
(58)

is the running and

Vi:c:
o;MS

�
r;�s;

1

r

�
¼ CF� lnðr2�2

s�e
�EÞ � CA

2
� lnð�e�EÞ þ �

4

�
CF � CA

2

�
ð7CA � 4nfTFÞ�2r

þ
�
CF � CA

2

�
r2�3

�
C2
A

�
�2

2304
ð39�E � 715þ 564 ln2þ 39 ln�Þ þ 25

3
� 31

24
	ð3Þ

� 1

48
ð�E þ ln�Þð144� 12�E þ �2

E þ ln2�� 12 ln�þ 2�E ln�Þ
�
þ nfTFCF

�
�2

24
ð15� 6�E

� 8 ln2� 6 ln�Þ þ 1

2
ð5�E � 8þ 5 ln�Þ

�
þ nfTFCA

�
�2

288
ð57�E � 97þ 12 ln2þ 57 ln�Þ

þ 1

6
ð9�E � 22þ 9 ln�þ 10	ð3ÞÞ

�
þ ðnfTFÞ2

�
�2

48

�
7� 3�E � lnð16�3Þ

���
(59)

is the initial matching condition. Note that the tree-level
and one-loop matching conditions have been included. The
tree-level result depends on the factorization scale �s �
1=r, which separates the hard and the soft regime. The
dependence on this factorization scale cancels the infrared
scale dependence of the mass, cf. Equation (30).

We stress that we have obtained the exact contributions
to the static potential through Oðr2Þ. There is nothing left.
Moreover, by setting ���V large logarithms are resumed

up to the scale �V, i.e., we have determined all logarithms
of r�V at Oð�3r2Þ.
The above results have been presented in the MS

scheme. We can easily transform them to another
momentum-independent scheme by redefining the
renormalization scale. In particular, if we write the expres-
sion in terms of �V, most of the scheme dependence
gets encapsulated in �V. For instance, Eq. (58) can be
reexpressed as

�VRG
o;MS

�
r;
1

r
;�

�

¼�VXðr;�Þ��VXðr;1=rÞþ1

6

�
CF

CA

�1

2

�
r2�V2

Að�V3
Xðr;�Þ��V3

Xðr;1=rÞÞþ r2CA�
2

�
CF

CA

�1

2

�
V2
Að�V2

Xðr;�Þ

��V2
Xðr;1=rÞÞ� r2�2

�
CF

CA

�1

2

�
V2
A

�ð13�2�2304ÞC2
Aþ8ð19�2þ144ÞCATFnf�48TFnfð4ð�2�10ÞCFþ�2TFnfÞ

384

�

�ð�VXðr;�Þ��VXðr;1=rÞÞ: (60)
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B. Ultrasoft contributions (�Eus
o )

The general structure of the ultrasoft contribution �Eus
o

at Oðr2Þ is

�Eus
o ð�; �Þ ¼ � 1

2Nc

�V2
Ar

2�V2
X1
n¼0

�
CA�

�V

�
n

� Xnþ1

s¼0

cn;sln
s

�
�V

�

�
; (61)

where we have set �np ¼ �. The dependence on �np first

appears at three loops in thisOðr2Þ contribution to �Eus
o . At

present, concrete results for the ultrasoft corrections are
available at one,Oðg2Þ, and two-loop level,Oðg4Þ, given in
Eqs. (21) and (22). After MS subtraction they read

�Eus
o;MSð1-loopÞ ¼

1

8Nc

�V2
Ar

2�V2
MS

�
1þ �E � lnð4�Þ

þ 2 ln

���VMS

�

��
; (62)

�Eus
o;MSð2-loopÞ

¼ 1

4Nc

�2V2
Ar

2�VMS

�
�CAln

2

���VMS

�

�
þ CAð2� �E

þ lnð4�ÞÞ ln
���VMS

�

�
� 1

2
CA

�
�2 � 7þ 1

2
ð2� �E

þ lnð4�ÞÞ2
�
� 2nfTF

�
: (63)

Note that the these expressions have imaginary parts.
Setting �� �VXð�Þ resums large logarithms into the po-
tential Vo and minimizes them in the ultrasoft contribution
�Eus

o . It also simplifies the determination of the decay
width of the octet (hybrid) system

�H ¼ 1

2Nc

�V2
Ar

2�V2
MSð ��usÞ�þ 1

2Nc

�2V2
Ar

2�VMSð ��usÞ
� CA�ð2� �E þ lnð4�ÞÞ þOð�3r2�V0Þ; (64)

where

�� us � �VXð ��usÞ ¼ CA�Wð1=ðCA�dXrÞÞ (65)

and WðzÞ is the Lambert function (here: X ¼ MS).
The precision of Eq. (64) is limited by the existence

of some unknown single logarithms that appear in the
three-loop ultrasoft self-energy (see next subsection). The
imaginary parts of those logarithms produce terms like
��� �3r2.

C. Subleading ultrasoft and nonperturbative effects

Even without an explicit computation we can obtain
some information on the ultrasoft three-loop terms. At
three loops we start to have contributions from diagrams

with no singlet-octet vertices. They are proportional to V2
B

or VC and vanish in dimensional regularization (for on
shell external fields), as they are insensitive to the scale
�V. Therefore, any ultraviolet divergence proportional
to V2

B or VC should be canceled by an infrared one,
which signals a sensitivity to the nonperturbative scale �.
We quantify this statement with the following equation

�
d

d�
�Eus

o ð�; �Þ ¼ �BðVÞ � �
d

d�
�Enp

H ; (66)

where the RG structure of the nonperturbative term is the
following

�
d

d�
�Enp

H ¼ CA�þ Br2�3ð1þOð�=�VÞÞ: (67)

Solving this equation we obtain

�Enp
H ð�npÞ ¼ CA�

�
ln

�
�np

�

�
þ cH

�
þ B�3r2 ln

�
�np

�

�

þOð�3r2Þ; (68)

where cH is a nonperturbative constant that depends on the
specific hybrid (gluelump) we consider. Actually, the
Oðr0Þ term is nothing but the gluelump mass

�Hð�npÞ ¼ CA�

�
ln

�
�np

�

�
þ cH

�
: (69)

It can be related to a gauge-invariant correlator as

�H ¼ lim
T!1

i

T
lnhHaðT=2Þ�adj

ab ðT=2;�T=2ÞHbð�T=2Þi;
(70)

where Ha is the field operator associated with the gluonic

component of the hybrid and �
adj
ab ðT=2;�T=2Þ is a Wilson

line in the adjoint representation, see Ref. [4].
Note on the other hand that B is independent of the

hybrid type and can be obtained from perturbation theory.
It is however unknown at present and constrains, besides
the nonperturbative gluelump mass �H, the precision of
our result.
At this point we could also analyze subleading ultrasoft

effects in the �=�V expansion along the lines of Ref. [1],
as some of them, namely, the logarithmic terms propor-
tional to V2

A, are fixed by the RG structure. In view of the
dominant uncertainties discussed above, and because there
are more unknowns than in the singlet case [1], we refrain
from performing that analysis here.
Combining Eqs. (57), (62), (63), and (68) we can write

down the static hybrid energy EH ¼ 2mMS þ Vo;MS þ
�Eus

o;MS þ �Enp
H;MS. Expressed as a double expansion in

�r and 1= lnðr�VÞ it reads with Oð�2r2Þ and NNLL
accuracy
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EH ¼ 2mMSð�sÞ þ CF� lnðr2�2
s�e

�EÞ þ �

4

�
CF � CA

2

�
ð7CA � 4nfTFÞ�2rþ �VRG

o;MS

�
r;
1

r
; ��us

�

þ �Eus
o;MSð ��us; �npÞ þ �Enp

H;MSð�npÞ þOð�3r2ln0Þ
¼ 2mMSð�sÞ þ CF� lnðr2�2

s�e
�EÞ � CA

2
� lnðr2�2�e�EÞ þ CA�cH;MS

þ �

4

�
CF � CA

2

�
ð7CA � 4nfTFÞ�2r�

�
CF � CA

2

�
�3r2

�
1

6
C2
Aln

3ðr�VMSÞ þ 1

4
C2
Að2�E � 3� 2 ln2Þln2ðr�VMSÞ

þ
�
C2
A

�
83�2

384
þ 1

8
ð4�2

E þ 4ln22� �Eð10þ ln256Þ þ 38þ 8 ln2� 2 ln�Þ
�

� nfTF

�
CA

�
2þ 19�2
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�
þ CF

�
5� �2

2

��
þ ðnfTFÞ2 �

2

8

�
lnðr�VMSÞ

�
þOð�3r2 lnð�VMS=�ÞÞ: (71)

We have checked that the explicit scheme dependence of
�VRG

o;MS and �E
us
o;MS and the implicit scheme dependence of

Eq. (71) through the logarithms of �V cancel up to
Oð�3r2ln0Þ. Note also that cH;MS is scheme-dependent.

The leading uncertainty of Eq. (71) comes from the
nonperturbative gluelump mass �H. The constant �H is
independent on the distance r and therefore drops out in the
force, i.e., the derivative of the potential. In that case the
leading uncertainty is due to the coefficient B, which is
unknown but, unlike �H, of perturbative origin and could
be determined by an ultrasoft three-loop calculation.

Equation (71) represents one of the main results of this
paper. One could try to perform some comparison with the
(quenched) lattice data existing in the literature [23–27]. It
is not clear though that these simulations reach short
enough distances that our results can be tested quantita-
tively (on the other hand it should not be too costly to
perform a dedicated short-distance simulation to test our
expression). Moreover, it would be as well very interesting
to study the accidental symmetries and degeneracies
among different hybrid energies that should appear at short
distances along the lines of the studies in four dimensions
performed in Refs. [4,5]. To this end one could consider
energy differences where the perturbative terms (the non-
analytic, i.e., logarithmic dependence in r) cancels. The
noncanceled terms should be produced by the nonpertur-
bative terms (note that the scheme dependence of cH=H0

cancels in the difference)

EH � EH0 ¼ CA�ðcH � cH0 Þ þ CHH0r2 þOðr3Þ: (72)

All this would require a dedicated analysis, which will be
carried out elsewhere.

V. RESULTS FOR D ¼ 2

It is also interesting to investigate static hybrid systems
in two space-time dimensions. In the following we set
nf ¼ 0 for simplicity. In exactly two dimensions physical

hybrids do not exist, as there are no propagating (physical)
gluons. It is instructive to see how this finding arises in an

explicit calculation. For a typical hybrid, the object to be
computed is, e.g.,

hWHi ¼
�
1

Nc

TrP EðT=2;RÞ � Eð�T=2;R0Þ

� exp

�
�ig

I
�
A
dx




�	
; (73)

where the contour � of the integral in Eq. (73) is a rectangle
with spatial extension r and temporal extension T in
Minkowski space and we have inserted two chromoelectric
fields on each spacelike end-string of the rectangularWilson
loop. We could have also chosen other gluonic configura-
tions instead, but this would only make the discussion more
complicated without changing the physical outcome.
Equation (73) is gauge-invariant. Choosing axial

(A1 � 0) gauge in exactly two dimensions, the only non-
vanishing component of the gluon field-strength tensor is
F01 ¼ �F10 ¼ �@1A0. Hence, (A0) gluons neither inter-
act among themselves, nor propagate in time, since no
time derivative acting on the gluon field is left in the
Lagrangian. Therefore only6 planar ‘‘ladder’’ diagrams
(with ‘‘potential’’ gluons) contribute to hWHi. In the large
T limit the final result takes the form

hWHi � hEaðT=2ÞEað�T=2Þie�iVoT (74)

where VoðrÞ ¼ 1
2Nc

�r. Note that this octet potential is the

same as obtained from a leading order, tree-level, compu-
tation in 2D static QCD. Therefore the nonexistence of the
hybrid does not arise from the fact that the octet potential
diverges in two dimensions (generating an infinite hybrid
mass) but rather from the fact that

hEaðT=2ÞEað�T=2Þi � �ðTÞ (75)

is local in time. That is because the gluon does not propa-
gate in time.

6We do not include in this discussion possible interactions of
E with the gluons in the timelike strings. They would produce
terms proportional to the singlet: �e�iVsT , but not contribute to
the hybrid energy.
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For D> 2 one expects hWHi to converge towards the
previous result in Eqs. (74) and (75) as D ! 2, provided
the limit is smooth. The discussion parallels to some extent
the one for the singlet potential in Ref. [1]. Like in that case
we cannot make definite statements, since the calculation
of the Wilson loop becomes intrinsically nonperturbative.
The reason is that the proper ultrasoft expansion parameter
is now �V=g� gr, see Ref. [1]. Thus the nonperturbative
ultrasoft (�V=g) expansion and the perturbative multipole
(gr) expansion mix.

All we can say is that the cancelation of the soft and
ultrasoft one-loop contributions we observed for the singlet
potential [1] also occurs for the hybrid potential, because
the computation differs only in the prefactor. For the
chromoelectric correlator we find at leading order in �

hEaðT=2ÞEað�T=2Þi �Oð�Þ: (76)

This is what we would expect from the decoupling of
gluons in two dimensions. Nevertheless at NLO in � one
obtains a finite contribution. Again we can not draw any
definite conclusion, as this result is obtained in standard
perturbation theory, whereas the correct expansion entails
inverse powers of the coupling constant g.

VI. CONCLUSIONS

We have computed the energy of a static hybrid in the
weak coupling limit in four and three space-time dimen-
sions. Employing finite temparature theory methods we
have checked the static potential of a color-octet quark-
antiquark pair with distance r at two loops for an arbitrary
number of dimensions D. The result represents the soft
contribution to the static hybrid energy. Using the effective
theory pNRQCD we have explicitly calculated the missing
ultrasoft two-loop contributions. We have also confirmed
the respective two-loop result for the color singlet. The
cancelation of soft infrared and ultrasoft ultraviolet diver-
gences is a strong cross-check of our results.

For D ¼ 4 we have determined the static octet potential
and the static hybrid energy through N3LL order, up to the
unknown three-loop soft matching condition. The result

disagrees with an earlier result obtained in Ref. [14]. We
have also given the ultrasoft contribution to the static
hybrid energy at N4LL and computed the decay width of
the hybrid/octet system at NLL order.
In D ¼ 3 dimensions our result for the static hybrid

energy reaches Oð�3r2Þ accuracy in the (soft) multipole
expansion. At this order we have determined the complete
expression at NNLL order in the ultrasoft �=�V expan-
sion. The precision of the result is only limited by unknown
terms of order Oð�3r2 lnð�V=�ÞÞ and the nonperturbative
gluelump mass. The former can in principle be obtained
by a perturbative three-loop computation, whereas the
latter requires lattice simulations (note, however, that the
gluelump mass vanishes in derivatives of the potential, like
the force). Besides the energy we have determined the 3D
hybrid/octet decay width throughOð�3r2Þ in the multipole
expansion and NLO in the �=�V expansion.
We have also studied the two-dimensional case, where

the exact result is known: hybrids do not exist. This is due
to the temporal locality of the gluonic correlators as there
are no propagating (physical) gluons in exactly two space-
time dimensions, see Eqs. (74) and (75), rather than due to
an infinite octet potential or hybrid mass. In the D ! 2
limit this result is more complicated to obtain, because
already the ultrasoft contribution is intrinsically nonper-
turbative. Strong cancellations have to occur among the
different contributions from the soft, the ultrasoft and the
nonperturbative (g) scale. We can only report partial and
inconclusive results on this limit, particularly because they
are based on perturbation theory, which is not reliable
for D ! 2. Nevertheless, it might be worth exploring the
D ! 2 limit in more detail, as it could provide nontrivial
information about the dependence of the (D-dimensional)
perturbative results on ðD� 2Þ.
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APPENDIX A: TWO-LOOP PNRQCD SELF-ENERGY DIAGRAMS IN FEYNMAN GAUGE
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L :¼ ln

�
� �V

�MS

�
; �MS

:¼ �e�ð1=2Þð�E�lnð4�ÞÞ (A7)
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CðdÞ
o :¼ �16iCA

�
CA

2
� CF

�
�2�dr2V2

A�
2ð��VÞ2d�5��4�n

MS
e�2�nð�E�lnð4�ÞÞ (A8)
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o :¼ �iCA

�
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� CF

�
�Vr2V2
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2 (A9)

Cð4Þ
o :¼ � iCAðCA

2 � CFÞ�V3r2V2
A�

2

�2
(A10)

2. Relation between singlet and octet diagrams

�so ¼ �CðdÞ
o

4�dðd2 � 6dþ 10Þ�ð12 � dÞ�ð12 � d
2Þ2�ðd2 þ 1

2Þ2�ðdþ 1
2Þ

ðd� 4Þ�ðd�1
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2 Þ ¼ (A15)
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o

�
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