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We study hadronic decays of mesons and baryons in the context of the Dyson-Schwinger equations of

QCD. Starting from a well-established effective interaction in rainbow-ladder truncation, we consistently

calculate all ingredients of the appropriate decay diagrams. The resulting strong couplings are presented

as functions of the quark mass from the chiral limit up to the respective decay thresholds. In particular, we

investigate the � ! �� and for the first time the � ! N� transitions. Both meson and baryon results

compare well to available lattice QCD results as well as experimental data and present the first step

towards a comprehensive covariant study of hadron resonances in the Dyson-Schwinger approach.
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I. INTRODUCTION

In hadron physics the strong interaction dominates the
decay width of a resonance if appropriate hadronic chan-
nels are open. Thus, strong decays are an issue of para-
mount interest and any study of hadrons as mere bound
states is necessarily incomplete if the states under inves-
tigation lie above the relevant thresholds.

Consequently, strong decays of hadrons in terms of
composites of quarks and gluons have been studied from
the beginning, e.g., in quark models, and various decay
mechanisms, formulations, and levels of sophistication
have been employed over the years. We exemplarily men-
tion harmonic-oscillator models [1–3], the elementary-
emission model [4–7], flux-tube breaking [8–10], the
quark-pair creation or 3P0 mechanism [11–13] and a

simple coupled-channel formulation of meson resonance
properties in relativistic Hamiltonian dynamics [14–17].
These approaches range from the aforementioned non- and
semi-relativistic as well as fully Poincaré-invariant quark-
model calculations with various interactions to reductions
of a Bethe-Salpeter treatment of hadrons, e.g., [18–21].
Ideally one would have a consistent and comprehensive
coupled-channel calculation of meson and baryon reso-
nances, see, e.g., [22]. However, to consistently implement
an analogous approach within QCD is challenging. Recent
lattice studies provide promising progress [23–29]; never-
theless it is encouraging that reasonable results can already
be obtained without working with resonances from the
very beginning.

In the Dyson-Schwinger-equation (DSE) approach to
QCD two-body systems are described by the Bethe-
Salpeter equation (BSE). Hadronic transition processes
were considered in [30–33], and an exploratory study of
the strong decay of light vector mesons to two pseudosca-
lars was performed in this framework some years ago [34].
Here we revisit this study and investigate in detail both

model-parameter and quark-mass dependence of the re-
sults, and we compare to experimental data and analogous
calculations in lattice-regularized QCD.
As the next important step towards a comprehensive

investigation of the entire hadron spectrum, we generalize
this calculation to a strong baryon decay and calculate the
hadronic coupling of the �-baryon to N�. The �ð1232Þ
resonance plays an important role in pion-nucleon scat-
tering and pion photoproduction experiments; see [35,36]
for recent reviews. Its experimental width mainly owes to
the decay into a nucleon and a pion, whereas the electro-
magnetic � ! N� decay channel is considerably sup-
pressed. The corresponding strong coupling constant
g�N� has been studied in various approaches, e.g., in
the quark model [37,38], in meson-exchange models
[39,40], via light-cone sum rules [41,42], and recently
also in lattice QCD [43]. The �-baryon is an essential
component in a realistic description of meson-baryon
interactions in nuclear physics, for instance via chiral
effective field theories, and the computation of the �N�
vertex from its underlying quark-gluon dynamics is an
important task in hadron physics.
The present study is motivated by recent successes in the

implementation of the Dyson-Schwinger approach to vari-
ous aspects of hadron phenomenology. In particular we
make use of a well-established effective model setup in
rainbow-ladder (RL) truncation, together with the consis-
tent extension to a quark-diquark picture for baryons.
Successful applications of this setup pertain to various
observables: meson spectra and leptonic decay constants
of pseudoscalar and vector mesons were studied over the
full range of quark masses from chiral limit to bottomo-
nium [44,45], and recently the feasibility of such meson
studies for any spin has been demonstrated [46].
Electromagnetic properties of pseudoscalar and vector me-
sons involve a consistent construction of the electromag-
netic interaction process via triangle diagrams analogous to
the one used here [47–50]. They have proven to be
an excellent example for the importance of correctly*valentin.mader@uni-graz.at
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implementing the symmetry properties of the underlying
theory in numerical calculations.

The extension of the approach to baryons can be sim-
plified via the introduction of diquarks [51–53]. The
corresponding investigations of baryons in a covariant
quark-diquark setup have already undergone considerable
development [54–60] and very recently culminated in the
first genuine three-quark treatment of nucleon and �
masses and nucleon electromagnetic form factors in the
covariant Faddeev framework [61–64].

This article is organized as follows: in Sec. II we collect
the necessary building blocks of the approach; the � ! ��
and � ! N� transition diagrams are worked out in
Sec. III; Sec. IV contains our results for both meson and
baryon sectors; and we conclude in Sec. V. Decay-width
formulas and the color-flavor traces of the decay diagrams
are collected in the appendices. All calculations are per-
formed in Euclidean momentum space and in the isosym-
metric limit in Landau gauge QCD.

II. BUILDING BLOCKS

Our investigation of hadronic decays involves numerical
solutions of several integral equations whose properties
and solutions have been studied elsewhere. In particular,
we are concerned with the quark DSE, the meson and
diquark BSEs and, in the context of baryons, the quark-
diquark BSE. In the following we briefly review these
equations and the properties of their solutions, and for
each case we refer the reader to more detailed discussions
in the literature.

A. Truncation and effective interaction

Numerical model studies of hadrons such as the one
presented here necessitate a truncation of the infinite tower
of DSEs. In the following we will restrict ourselves to the
RL truncation which substitutes the fully dressed quark-
gluonvertexwith a bare vertex. Its counterpart in a hadronic
bound-state equation is a gluon ladder kernel, i.e., a dressed
iterated gluon exchange between two quarks. The combined
strength of the gluon propagator and quark-gluon vertex is
then modeled by an ansatz. Phenomenologically important
directions of improvement beyond RL involve the imple-
mentation of pseudoscalar meson-cloud effects but also
other structures in the quark-gluon vertex and the qq and
q �q kernels, see [65–67] and references therein.

The RL truncation offers many advantages. It is simple
to implement, but at the same time allows for sophisticated
model approaches to QCD within the DSE-BSE context
since it satisfies the axial-vector and vector Ward-
Takahashi identities (see, e.g., [47,48,68–73]). The axial-
vector Ward-Takahashi identity is essential for the correct
realization of chiral symmetry and its dynamical breaking
in any model calculation. In particular, it imposes
constraints upon the construction of the integral-equation
kernels. As the most prominent result, Goldstone’s

theorem is satisfied [72] and one obtains a generalized
Gell–Mann-Oakes-Renner relation valid for all pseudosca-
lar mesons and all current-quark masses [74,75]. The
vector Ward-Takahashi identity on the other hand is the
guiding principle for the construction of consistent
electromagnetic currents.
In RL truncation the equations as presented in the fol-

lowing subsections contain an essential model ingredient,
namely, an effective interaction G which we choose from
Ref. [76] as

Gðk2Þ
4�Z2

2

¼ D�k4

!6
e�k2=!2 þ 2��mð1� e�k2=�2

t Þ
ln½�þ ð1þ k2=�2

QCDÞ2�
; (1)

where k is the gluon momentum and Z2 the quark renor-
malization constant. This particular form has been em-
ployed in many of the works listed as successes of the
approach in the introduction. It provides the correct
amount of dynamical chiral symmetry breaking as well
as quark confinement via the absence of a Lehmann rep-
resentation for the dressed quark propagator. Furthermore,
it has the correct perturbative limit, i.e., it preserves the
one-loop renormalization group behavior of QCD for so-
lutions of the quark DSE. Following [76], we have �t ¼
1 GeV, � ¼ e2 � 1, Nf ¼ 4, �

Nf¼4

QCD ¼ 0:234 GeV, and

�m ¼ 12=ð33� 2NfÞ. The main motivation of this func-

tion, which mimics the behavior of the product of quark-
gluon vertex and gluon propagator, is of phenomenological
origin. While currently debated on principle grounds (e.g.,
[77,78]) the impact of its particular form in the far IR on
meson masses is expected to be small (see also [79] for an
exploratory study in this direction).
The phenomenologically important regime, in particular,

with respect to light meson (e.g., pion) properties, is the
intermediate-momentum region, modeled by the Gaussian
term in Eq. (1).D and!, in principle free parameters of the
model interaction, can be used to investigate certain aspects
of both the interaction and the bound states in the BSE. In
particular one can interpret D as an overall strength and !
as an inverse effective range of the interaction. In the range
! 2 ½0:3; 0:5� GeV, the prescription D�! ¼: �3

IR ¼
const. follows from fitting of the model parameters to
ground-state properties [76] and defines a one-parameter
model, characterized by a fixed infrared scale �IR ¼
0:72 GeV. Apparently [45] an insensitivity of an observ-
able to ! in this prescription is characteristic for a ground
state, while orbitally- or radially-excited-state properties
show considerable dependencies on!. In the present work,
we also consider such a possibility and plot bands to
indicate the model-parameter dependence of our results.

B. Quarks

The Dyson-Schwinger equation for the quark propagator
in rainbow truncation is illustrated in the left panel of Fig. 1
and reads
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SðpÞ�1 ¼ Z2ðipþm0Þþ 4

3

Z
q
Gðk2ÞT

��
k

k2
��SðqÞ��; (2)

where SðpÞ is the renormalized dressed quark propagator,
p and k ¼ p� q are the quark and gluon momenta, andR
q ¼

R
d4q=ð2�Þ4 represents a four-momentum integra-

tion. T
��
k =k2 with T

��
k ¼ ��� � k�k�=k2 is the free gluon

propagator, �� is the bare quark-gluon vertex, and Gðk2Þ is
the effective interaction defined above in Eq. (1). Dirac and
flavor indices have been omitted for simplicity and the
factor 43 comes from the color trace. The bare current-quark

massm0 is the input of the equation. The solution of Eq. (2)
requires a renormalization procedure, the details of which
can be found together with the general structure of the
quark DSE in, e.g., [74,76].

SðpÞ is an important ingredient in all of the following.
We note that its solution as an input for the various BSEs
described below must be known in a parabola-shaped
region of the complex p2 plane, the size of which is
proportional to the mass of the respective bound state
that it helps to constitute. As a result, a sophisticated
numerical approach is needed and we refer the reader to
[80] for a description of our particular solution method.

C. Mesons

In our framework mesons with total q �q momentum P
and relative q �q momentum p are studied via the meson
BSE. Its structure in RL truncation is shown in the right
panel of Fig. 1 and reads

�Mðp; PÞ ¼ � 4

3

Z
q
Gðk2ÞT

��
k

k2
���Mðq; PÞ��; (3)

where �Mðk;PÞ is the Bethe-Salpeter amplitude and
�Mðq;PÞ ¼ SðqþÞ�Mðq;PÞSðq�Þ is referred to as the
Bethe-Salpeter wave function. The quark and antiquark
propagators depend on the (anti)quark momenta qþ ¼
qþ 	P and q� ¼ q� ð1� 	ÞP, where 	 2 ½0; 1� is a
momentum partitioning parameter usually set to 1=2 for
systems of equal-mass constituents (which we do as well).
The quark-antiquark interaction kernel is given by a ladder
dressed-gluon exchange, whose dependence on the gluon
momentum is characterized by the same effective interac-
tion, Eq. (1), as in the quark DSE Eq. (2). The combined set
of truncated Eqs. (2) and (3) thus already by construction
satisfies the axial-vector Ward-Takahashi identity.

The general dependence of the meson amplitude on the
various four-momenta can be written in terms of N cova-
riant structures Ti reflecting the quark and antiquark spins,
together with scalar components Fi, i ¼ 1; . . . ; N as

�Mðq;PÞ ¼
XN
i¼1

TiðP; q;�ÞFiðq2; q � P;P2Þ; (4)

where semicolons separate four-vector arguments, and
N ¼ 4 for mesons with total spin J ¼ 0 and N ¼ 8 other-
wise (see, e.g., [46]). A detailed account of the Ti for
pseudoscalar and vector mesons as needed in our calcula-
tion can be found in Ref. [45].
The components are scalar functions of their three scalar

arguments: the total momentum squared P2, the relative
momentum squared q2, and an angular variable q � P. Note
that for an on-shell amplitude P2 ¼ �M2 is fixed, while
one artificially varies P2 in the solution process of the
homogeneous BSE (see, e.g., [81,82], where also all nec-
essary details on the numerical solution method can be
found). In the corresponding inhomogeneous vertex BSE
on the other hand, one would have P and therefore also P2

as a completely independent variable (see, e.g. [81,83,84]).
Thus, the on shell scalar components Fiðq2; q � P;P2Þ ef-
fectively depend on the two variables q2 and q � P. The
latter can be parameterized by the variable z 2 ½�1; 1�
related to the cosine defining the angle between P and q.
With such a reparameterization in mind, the components
Fi can be expanded further in Chebyshev polynomials,
which leaves Chebyshev moments of the Fi as sole func-
tions of q2 (for details and an illustration of Chebyshev
moments, see [74,85]).
For our case very few Chebyshev moments are sufficient

to produce converged results. However, in the context of
the decay processes we note that, as a result of the kine-
matics in the triangle diagram as shown below, one needs
to know the Bethe-Salpeter amplitudes in a certain region
for the relative momentum squared p2 in the complex
plane. We achieve this by a continuation of the relevant
Chebyshev polynomials into the complex p2 plane via a
Taylor-expansion technique up to 4th order which yields a
converged result.

D. Diquarks

The relevance of diquark degrees of freedom in hadron
physics has been reviewed in [51], and diquarks are in

FIG. 1 (color online). (Color online) Left panel: quark DSE (2) in rainbow truncation. Right panel: schematics of the meson BSE (3)
and diquark BSE (5) in ladder truncation.
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many respects conceptually similar to mesons. In our
setup, diquark correlations appear as structures in a
quark-quark system whose properties can depend on the
truncation or the effective interaction. In particular, in RL
truncation diquarks appear as timelike poles in the quark-
quark T-Matrix, which is an unphysical result since
diquarks are not color singlets but elements of an antisym-
metric color antitriplet. This has been identified as a trun-
cation artifact, i.e., diquarks disappear from the physical
spectrum beyond RL truncation [86]. Nevertheless, the
significance of diquark correlations as binding structures
within baryons has become apparent in various baryon
form-factor studies, see, e.g., [58,60,64,87]. Moreover,
the diquark concept has received support from investiga-
tions of diquark confinement in Coulomb-gauge QCD [88].

In our particular case the diquark BSE in RL truncation
reads

�Dðp; PÞC ¼ � 2

3

Z
q
Gðk2ÞT

��
k

k2
���Dðq; PÞC��; (5)

where C is the charge-conjugation matrix, �D is the di-
quark amplitude, �Dðq;PÞC ¼ SðqþÞ�Dðq;PÞCSðq�Þ,
and for all practical purposes the only difference from
the meson BSE Eq. (3) is the color factor.

In the description of baryons as quark-diquark bound
states and also for the description of baryonic transitions as
given below one needs to know not only the diquark
amplitudes but also the diquark propagator. A defining
equation for this propagator can be consistently derived
from the two-quark Dyson equation and reads schemati-
cally [61]

D�1 ¼ tr
Z

��DS�DS
T � tr

ZZ
��DK

�1�D; (6)

which still contains on shell amplitudes �D resulting from
Eq. (5). To obtain the propagator D for general P2 appro-
priate ansätze for the off shell amplitudes are chosen [61].
K is the same quark-quark interaction kernel that enters
Eqs. (3)–(5), and a bar on an amplitude denotes charge

conjugation: ��ðq; PÞ ¼ C�ð�q;�PÞTCT .

E. Baryons

In this work baryons are interpreted as bound states of a
quark and a diquark, which reduces the three-quark prob-
lem to an effective two-body problem derived via omission
of three-quark interactions and a pole ansatz in the quark-
quark T-matrix, see, e.g., [54–56,61]. The interaction in
the resulting equation is an iterative quark exchange, where
in every iteration step the spectator quark and one quark
inside the diquark exchange roles. This quark-diquark BSE
is illustrated in Fig. 2 and reads

�

Bðp; PÞ ¼ cð
�Þ

Z
k
K
�

Q-DQSðkqÞD��0 ðkdÞ��0
B ðk; PÞ; (7)

where �

B are the quark-diquark amplitudes of the respec-

tive baryon. Their general Dirac-Lorentz structure is de-
scribed, e.g., in Refs. [54,61] and their decomposition in
terms of covariant basis elements and Lorentz-invariant
components is analogous to the previously discussed case
of a meson amplitude, i.e., Eq. (4) and below. The quark-
diquark exchange kernel is given by

K
�
Q-DQ ¼ ��

Dðkr; kdÞSTðqÞ ��

Dðpr; pdÞ; (8)

with pq;d and kq;d being the external and internal quark and

diquark momenta and pr, kr the relative momenta that
enter the diquark amplitudes, cf. Figure 2.
The treatment of light baryons such as the nucleon and�

in the quark-diquark approach usually retains the lightest
diquark degrees of freedom, i.e., scalar and axial-vector
diquarks. The �-baryon then involves only axial-vector
diquark correlations whereas the nucleon contains both.
As a consequence, the �N� coupling will involve axial-
axial contributions as well as axial-scalar diquark transi-
tions. The superscripts in Eqs. (7) and (8) account for both
kinds of diquarks and an implicit sum over these indices is
understood: �
 are scalar (
 ¼ 0) or axial-vector diquark
amplitudes (
 ¼ 1 . . . 4) obtained from their respective

diquark BSEs (5), and D00 and D��0
denote the scalar

and axial-vector diquark propagators, respectively. The

color-flavor trace in Eq. (7) reads cð00Þ ¼ �cð
�Þ ¼ � 1
2

and cð0
Þ ¼ cð
0Þ ¼
ffiffi
3

p
2 for the nucleon, whereas in the

case of the � it is given by cð
�Þ ¼ �1. For details on
the solution of the quark-diquark BSE we refer the reader
to Refs. [61,89].

III. HADRONIC DECAYS

Given a certain truncation of the DSE-BSE system, one
can compute observables involving various currents
through a consistent construction of the relevant invariant
transition matrix elements. In our case we consider tran-
sitions between three hadrons and need a quark-level pic-
ture of the corresponding matrix elements. In the meson
case, for RL truncation one arrives at a so-called triangle
diagram [34], depicted in Fig. 3, which corresponds to a
generalized impulse approximation. Analogous diagrams
are used at this level for, e.g., meson electromagnetic form

FIG. 2 (color online). (Color online) The quark-diquark BSE,
Eq. (7).

V. MADER et al. PHYSICAL REVIEW D 84, 034012 (2011)

034012-4



factors [47]. For baryons an appropriate construction is
also possible and given below.

A. Mesons: � ! ��

For the meson sector we investigate the � ! �� tran-
sition which, in terms of Lorentz quantum numbers, cor-
responds to an VPP-vertex. As in the usual kinematical
setup for a two-body decay one has the total �-meson
momentum Q and the relative momentum of the pion
decay products P ¼ ðP2 � P1Þ=2. All mesons are on shell,
i.e., Q2 ¼ �m2

� and P2
1 ¼ P2

2 ¼ �m2
�, which entails

P �Q ¼ 0. Because of the transversality of the �-meson
the most general Dirac-Lorentz structure of the transition
can be parametrized as

�
�
��� ¼ 2P�g���; (9)

where g��� is its dimensionless coupling constant. The

corresponding triangle diagram is illustrated in Fig. 3 and
reads

�
�
���¼ tr

Z
q

���ðq2;P2ÞSðqþPÞ ���ðq1;P1Þ��
� ðq;QÞ; (10)

where the ��� are the (charge-conjugated) on shell pion
amplitudes, i.e., the canonically normalized solutions of
their homogeneous BSEs, S is the renormalized dressed
quark propagator obtained from its DSE, and �

�
� is the

�-meson wave function defined in connection with Eq. (3).

The traces in color and flavor space yield a factor 3
ffiffiffi
2

p
in

front of the integral, cf. App. B.
More generally, the ��� transition matrix element cor-

responds to the coupling of the pion to an external vector
current. Specifically, if the �-meson amplitude that appears
in Eq. (10) were replaced by the dressed quark-photon
vertex, evaluated at arbitrary momentum squared Q2, the
respective triangle diagram would constitute the pion’s
electromagnetic form factor: �

�
��� ¼ 2P�F�ðQ2Þ. As

the photon fluctuates into �0, the dressed quark-photon
vertex, obtained from its inhomogeneous BSE, self-
consistently develops a �-meson pole whose on shell

residue is proportional to the �-meson amplitude �
�
�

[47]. Such a purely transverse component is an important
ingredient in various hadronic form-factor studies where it
contributes typically �50% to �, N and � squared elec-
tromagnetic radii [47,50,87,90]. Consequently, the residue
of the pion form factor at the �-meson pole Q2 ¼ �m2

� is

proportional to g���:

F�ðQ2 ¼ �m2
�Þ !

f�m�

Q2 þm2
�

g���ffiffiffi
2

p : (11)

In the present study we are primarily interested in the
value of g��� on the mass shell Q2 ¼ �m2

�. In a covariant

formalism such as ours, one may simply choose a frame
of reference—in our case the rest frame of the decaying
particle—by settingQ ¼ ð0; 0; 0; im�Þ and P ¼ ð0; 0; �; 0Þ,
where �2 ¼ m2

�=4�m2
�. Then, together with Eq. (10),

g��� is straightforward to evaluate numerically.

B. Baryons: � ! N�

In the baryon case, the coupling of an on shell nucleon
and �-baryon to a pseudoscalar current is described by
the pseudoscalar transition form factor G�N�ðQ2Þ. The
�-baryon is a spin-3=2 particle and is thus represented
by a Rarita-Schwinger spinor. Combined with the restric-
tion to positive energies for the nucleon and �, the most
general Dirac-Lorentz structure of the respective interac-
tion vertex is given by

��
�N� ¼ G�N�ðQ2Þ Q�

2MN

�þ
N ðPfÞP��

� ðPiÞ; (12)

where Pi, Pf are the incoming � and outgoing nucleon

momenta, Q ¼ Pf � Pi is the pion momentum,

and�þ
B ðkÞ ¼ ð1þ k̂Þ=2 is the positive-energy projector of

the baryon with k̂ being the respective normalized momen-

tum P̂i or P̂f. The Rarita-Schwinger projector of the �

reads

P ��
� ðkÞ ¼ �þ

� ðkÞ
�
T��
k � 1

3
��
T�

�
T

�
; (13)

where T
��
k is a transverse projector with respect to k and

the �-matrices �
�
T are transverse to k as well.

At the quark level, the coupling of nucleon and � to a
pseudoscalar current is represented by the quark-
pseudoscalar vertex �5. The latter satisfies an inhomoge-
neous BSE which has the same structure as Eq. (3) except
for an additional inhomogeneous term on the right-hand
side [74]

�5ðp;QÞ ¼ Z4i�5 � 4

3

Z
q
Gðk2ÞT

��
k

k2
���5ðq;QÞ��: (14)

Its residue at the pion pole Q2 ¼ �m2
� is proportional to

the homogeneous pion amplitude �� (cf. also [74,84]):

�5ðp;QÞ ! Z4

Z2

f�m
2
�

2m0

1

Q2 þm2
�

��ðp;QÞ; (15)

FIG. 3 (color online). (Color online) The ��� triangle dia-
gram, Eq. (10).
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where f� is the (calculated) pion decay constant and m0 is
the bare current-quark mass that enters the quark DSE (2).
The solution for �5 provides an off shell expression for the
pion amplitude �� and thereby allows to compute the
pseudoscalar transition form factor at spacelike momenta
Q2 > 0. Then, G�N�ðQ2Þ corresponds to the form factor
obtained from ��ðp;QÞ in Eq. (15), where the pion pole as
well as its residue are removed, and its on shell value is the
�N� coupling constant G�N�ð�m2

�Þ ¼ g�N�.
For the � ! N� system the construction analogous to

Eq. (10) is more complex since there are diquarks as well
as quarks present as constituents of the states involved in
the transition. Moreover, the pion will not only interact
with the quarks and diquarks directly but can couple to the
quark-diquark kernel as well, i.e., impulse-approximation
diagrams alone are no longer sufficient in studying the
� ! N� transition.

A systematic procedure to derive the coupling of a
baryon to an external current is the gauging-of-equations
method of Refs. [91–93]. In the context of baryon electro-
magnetic form factors it has been applied to the quark-
diquark model [94] as well as the three-quark approach
[64]. The starting point is to identify the current with the
residue of the ’gauged’ quark-diquark (or three-quark)
T-matrix on the baryon’s mass shell. Upon exploiting the
relation between the T-matrix and the kernel of the re-
spective bound-state equation, the hadronic matrix ele-
ments of the current are obtained as a sum of diagrams
that describe the coupling of the current to all ingredients at
the constituent level, i.e., in our case to the quark and
diquark propagators as well as the quark-diquark kernel.
The procedure can be applied for mesons as well where, in
the case of a rainbow-ladder quark-antiquark kernel, the
triangle diagram of Fig. 3 is recovered.

The generalization of the method from an electromag-
netic to a pseudoscalar current, as well as different kinds of
baryons in the initial and final state, is straightforward. The
resulting diagrams are displayed in Fig. 4 and involve
impulse-approximation couplings to the quarks and di-
quarks as well as a coupling to the exchanged quark that
appears in the quark-diquark kernel. In principle there
would be further diagrams that contain seagulls, i.e.,

pseudoscalar couplings to the diquark amplitudes. For
electromagnetic form factors such seagull contributions
are typically small [58,61] but necessary to ensure electro-
magnetic gauge invariance; however, in the present case
we do not consider them further. The �N� transition
matrix element is then decomposed as

�
�
�N� ¼ �

�
Q þ�

�
DQ þ�

�
EX; (16)

where the three contributions are given by

��
Q ¼

Z
½ ��


N���
��
� �D
�;

�
�
DQ ¼

Z
½ ��


NS�
��
� �D

0

�
0�0
D� D�0�;

�
�
EX ¼

ZZ
½ ��


NS�
�0
D �T

�
��
0
D S�

��
� �D

0

D��0
: (17)

Here we suppressed the explicit momentum dependencies
for brevity. The kinematics are analogous to the electro-
magnetic form-factor case and are described, e.g., in

App. C.1 of Ref. [60]. �

N and ���

� are the quark-diquark

amplitudes for the nucleon and �-baryon; �� ¼ S��S is
the pion (off shell) Bethe-Salpeter wave function obtained
through the pseudoscalar vertex (15); D
� is the diquark

propagator; �

D is the diquark amplitude; and �
�

D� is the
vertex that describes the coupling of the pion to a diquark
propagator. If an axial-vector diquark is involved, 
;� ¼
1 . . . 4 are Lorentz indices. Scalar-axial vector transitions,
originating from the scalar-diquark component in the nu-
cleon, can only occur in��

DQ and��
EX; in that case: 
 ¼ 0,

andD00 denotes the scalar diquark propagator and �0�
D� the

scalar-axial vector transition vertex induced by the pion.
We note that all ingredients of Eq. (17) are determined

self-consistently: Eqs. (2), (5)–(7), and (14) provide the
dressed quark propagator, the scalar and axial-vector di-
quark amplitudes and propagators, the baryon amplitudes
and the pseudoscalar vertex. The diquark-pion vertices are
obtained in analogy to Eq. (10), i.e., through respective
triangle diagrams. The color and flavor traces in Eq. (17)
are worked out explicitly in App. B.

AX AX AX
SC

AX
SC

AX

FIG. 4 (color online). (Color online) Decomposition of the �N� transition matrix element in the quark-diquark model, Eqs. (16) and
(17). Seagull terms are neglected. ’SC’ and ’AX’ denote the types of diquarks (i.e., scalar and axial-vector) that can appear in
combination with the nucleon and � bound-state amplitudes.
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IV. RESULTS AND DISCUSSION

The building blocks of the � ! �� and � ! N� tran-
sition matrix elements have been determined in the pre-
vious sections and we proceed with computing Eqs. (10)
and (16) numerically. The Lorentz-invariant coupling con-
stants g��� and g�N� are extracted via appropriate mo-

mentum contractions and Dirac traces, cf. Equation (A12).
Since within our chosen truncations the ingredients of
the equations for g��� and g�N� are computed self-

consistently, the effective quark-gluon coupling defined
in Eq. (1) is the only model parametrization with impact
upon the results. We explore the sensitivity to this ansatz by
varying the ! parameter from its central value ! ¼
0:4 GeV which is indicated by the colored bands in the
plots of this section.

A. Mesons

Our result for g��� at the physical u=d-quark mass is

shown in Table I and compared to the experimental point
given by the PDG [95]. In Fig. 5 we plot g��� as a function

of the pion mass squared and compare to recent lattice
results [23–28].

The following observations are important: first, both the
magnitude and m2

� dependence of our results are in agree-
ment with lattice results, including a slight underestimation
of the experimental value by about 15%. Second, the !
dependence of the result is small, which results from the
ground-state characteristics of the �- and �-meson ampli-
tudes regarding their dependence on the relative-
momentum squared. This second point also solidifies the
result of [34] where only the central value of our band,
! ¼ 0:4 GeV was used.

Next, the very weak dependence on m2
� compares well

to analyses using chiral perturbation theory [96–98], where
one concludes from the strong phase-space dependence of
the decay width that the coupling’sm2

�-dependence should
indeed be close to zero. Consequently, when plotting the
� ! �� decay width in our approach as a function of m2

�,
Fig. 5, the falloff can be almost completely attributed to the
phase-space factor in Eq. (A11) and the width vanishes
when the decay channel closes.

While comparison to experiment is favorable, the small
difference between our result and the experimental value

for g��� warrants some discussion. The present model

calculation uses a simple truncation, but an effective inter-
action which is fitted to the pion mass and underestimates
the �-meson mass by about 5%. While the resulting kine-
matical mismatch is responsible for a small part of the
difference, the main contributions are others. Even though
one has to expect some effect from nonresonant corrections
to RL truncation, the main improvement would be a self-
consistent treatment of the �meson as a resonance, i.e., an
inclusion of an explicit�� decay channel in the interaction
kernel of the vector-meson BSE, in which, of course, also a
different (refitted) effective interaction would have to be
used. However, such an approach is much more involved
than the present one and clearly beyond the scope of this
study, in particular, for the baryon case. In addition, the
reasonably small difference from the experimental value of
g��� gives reason to expect that for this particular transi-

tion the present approach is at least a reliable gauge for
future studies and results.

B. Baryons

The decay width of the �-baryon is governed almost
exclusively by the strong interaction, namely, via the decay
into the nucleon and a pion. The only other decay channel,
the electromagnetic � ! N� transition, has a branching
fraction of less than 1%. Experimentally, �� ¼
118ð2Þ MeV [95], from which the corresponding coupling
strength g�N� ¼ 29:4ð2Þ can be inferred via Eq. (A11).
Different conventions that are commonly employed in the
literature read

g�N�

2MN
¼ g0�N�

m�

¼ g00�N�; (18)

with g0�N� � 2:16 and g00�N� � 15:7 GeV�1.

For general off shell momenta the � ! N� coupling is
described by the pseudoscalar transition form factor
G�N�ðQ2Þ which we obtain from Eqs. (16) and (A12). To
compute the Q2-dependence of the form factor we work in
the Breit frame where the pion momentum is given byQ ¼
ð0; 0; jQj; 0Þ. This has the advantage that the relative mo-
menta in the baryon amplitudes are real and no continu-
ation into the complex plane is necessary. However, due to
the difference in the nucleon and � masses, the singularity
structure in the quark and diquark propagators imposes
kinematical constraints on the accessible Q2 region from
both below and above. Hence, to obtain the form factor
g�N� ¼ G�N�ðQ2 ¼ �m2

�Þ at the pion mass, we fit our
results at spacelike Q2 with a dipole form

GDipoleðQ2Þ ¼ G�N�ð0Þ
ð1þQ2=�2

�Þ2
; (19)

where G�N�ð0Þ and �� are free fit parameters.
Our result for the transition form factor G�N�ðQ2Þ at the

physical u=d mass is shown in the left panel of Fig. 6. Its
computed value in the kinematically allowed range is

TABLE I. Comparison of our summarized mass and coupling
values at the physical point for the central value of the ! band to
corresponding experimental data. The pion mass is fitted to
experiment, all other numbers are predictions of the model
with no further parameters adjusted or introduced. The masses
are given in GeV; the coupling constants are dimensionless.

m� m� MN M� g��� g�N�

This work 0.14 0.74 0.94 1.28 5.20 28.1

Experiment 0.14 0.77 0.94 1.23 5.98 29.4
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plotted as a band with solid margins, where the width of the
band corresponds to the model parameter!, whereas the fit
results in the unaccessible region are shown as dashed
lines. The resulting value of the strong coupling constant,
g�N� ¼ 28:1, is remarkably close to the experimental
number. We also note that the Q2-evolution of G�N�ðQ2Þ
is in good agreement with the lattice data of Ref. [29].

In general the dipole fits work very well and provide an
adequate representation of the form factor G�N� at space-
like values of the squared pion momentum. As described in
connection with Eqs. (14) and (15), theQ2-evolution of the
form factor is governed by the pseudoscalar vertex �5

which includes all pseudoscalar-meson poles, i.e., both
the pion’s ground state as well as its excitations. While
the pion ground-state pole and its residue were removed
from Eq. (15) to obtain G�N�, the remaining excited states
are still encoded in the vertex, hence the form factor G�N�

must diverge at the respective pole locations. Indeed we
find that the dipole mass �� in Eq. (19) roughly coincides
with the mass of the first excited state in the 0�þ channel
which in RL trunctation, at the u=dmass and for the central
! value, is obtained as m�? ¼ 1:1 GeV [99].
The left panel of Fig. 6 also includes the (quark-)

impulse-approximation contribution to G�N�, i.e., the first

Sum
Imp-Q

0.0 0.0 0.1 0.2 0.30.5 1.0
0

10

20

30

0

40

20

60

1.5 2.0 2.5

FIG. 6 (color online). (Color online) Left panel: the transition form factor G�N� as a function of the squared pion momentum Q2.
The upper band corresponds to the full result and the lower band shows the impulse-approximation value where the pion couples to the
quark line only. The width of the bands again shows the dependence on !. The solid lines are the results of the calculation in the
kinematically allowed regions whereas the dashed lines are the respective dipole fits, cf. Equation (19). The pion mass shell
Q2 ¼ �m2

� is indicated by the vertical line and the star shows the experimental value g�N� ¼ G�N�ð�m2
�Þ. Right panel: Current-

mass evolution of g�N� (upper band) and G�N�ðQ2 ¼ 0Þ (lower band). The vertical shaded area depicts the !-dependent location of
the threshold M� ¼ MN þm�.

FIG. 5 (color online). (Color online) Left panel: Evolution of the ��� coupling with the pion mass squared. The experimental point
is indicated by the star and the symbols denote lattice data from Refs. [23–28]. For better readability the point of the Göckeler group is
shifted slightly to the right. Right panel: The decay width of the �-meson versus the pion mass squared. The width of the bands
illustrates the dependence on ! (see text).
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diagram in Fig. 4 corresponding to �
�
Q of Eq. (16). Here

the diquark is merely a spectator and, since the �-baryon
only involves axial-vector diquark degrees of freedom,
only an axial-vector diquark propagator can appear in
that diagram. Figure 6 shows that such a direct coupling
to the quark provides roughly one third of the value of
G�N�. The axial-axial contributions stemming from the
second and third diagrams are comparatively small and
contribute �10% to the full result. The remainder owes in
equal parts to the axial-scalar transitions that are generated

from the transition vertex �0�
D� in the second diagram and

the axial-scalar contribution ��
D�

T
�
��0
D in the exchange

diagram, cf. Equation (17).
Once again, the current-quark-mass dependence of the

transition form factor can be studied by varying the current
mass in the quark DSE. That change will be reflected in all
ingredients that enter the transition matrix element.
Similarly to the meson case, the overwhelming contribu-
tion to the mass dependence of the decay width ��N�

comes from the phase-space factor in Eq. (A11). This is
especially conspicuous in the form factorG�N�ðQ2 ¼ 0Þ at
vanishing pion momentum, shown in the right panel of
Fig. 6, which is practically independent of the current-
quark mass. Similar features have been reported for N
and � electromagnetic form factors [60,64]. The observa-
tion stays true for the Q2-evolution, i.e., G�N�ðQ2Þ as well
as its individual contributions retain their shape throughout
the current-mass range if they are plotted over a dimen-
sionless variable such as Q2=M2

N . Considering Eq. (19),
this means that the dipole fit works also well for higher
quark masses since the mass of the excited pion also varies
with the current-quark mass in a similar fashion as MN

and M�.
On the other hand, the value of g�N� ¼ G�N�ð�m2

�Þ
rises with the quark mass because of the current-mass
dependent pion pole location. This property is also visible
for g��� in Fig. 5, albeit less pronounced, as the �-meson

mass is nonzero in the chiral limit and therefore varies over
a much smaller range when evolving the current-quark
mass. The shaded area in Fig. 6 indicates the threshold
positionM� ¼ MN þm� where the decay channel closes,
and the width of the band is again induced by the
!-dependence which enters mainly through the mass of
the �, cf. Ref. [100].

We finally note that in determining the � ! N� tran-
sition form factor we have neglected the pseudoscalar
seagull terms which would appear in addition to the dia-
grams displayed in Fig. 6. Judging from the smallness of
the electromagnetic seagulls in the case of electromagnetic
form factors, this approximation might be well justified.
The question of its validity can be settled by investigating
the � ! N� transition in the three-quark framework of
Ref. [64] where all such missing contributions, while no
longer appearing explicitly, would be automatically
included.

V. CONCLUSIONS

We presented a calculation of the hadronic � ! �� and
� ! N� decays, as well as the pseudoscalar transition
form factor G�N�ðQ2Þ, in the framework of Dyson-
Schwinger and covariant bound-state equations. A consis-
tent construction for the decay diagrams was implemented.
The � ! �� transition was computed from the quark-
antiquark Bethe-Salpeter equation in rainbow-ladder trun-
cation whereas the � ! N� transition was studied within
the covariant quark-diquark model. All ingredients are
determined self-consistently which leaves a phenomeno-
logical ansatz for the quark-gluon coupling as the only
model input.
The results in both cases compare well with experimen-

tal and lattice data. The ��� coupling is underestimated
by �15% and slowly rises with the current-quark mass, in
agreement with lattice results. A similar observation holds
for the � ! N� coupling which agrees also well with the
experimental result. We find that G�N�ð0Þ is practically
independent of the current-quark mass. Consequently, the
decay widths for � and � are mainly governed by the
available phase space.
The present calculation provides a first step towards a

thorough investigation of hadron resonances and their
decays within QCD. An important future direction in that
respect would involve the implementation of explicit ���
and �N� decay channels in the �-meson and �-baryon
bound-state equations. Such an extension would represent
a considerable step beyond the rainbow-ladder truncation
employed herein and contribute to a more realistic descrip-
tion of hadron resonances from their underlying dynamics
in QCD.
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APPENDIX A: MATRIX ELEMENTS
AND DECAY WIDTHS

For the decay of a particle with momentum p and mass
M into two decay products with momenta pi and masses
mi, with p ¼ P

ipi, the decay width is given by

� ¼ I

2M
jMj2; (A1)

where the squared transition matrix element jMj2 is aver-
aged over the spins/polarizations, i.e.,
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jM���j2 ¼ 1

3

X



jM
j2; jM�N�j2 ¼ 1

4

X
ss0
jMss0 j2

(A2)

and a sum over all final states is implicit. The phase-space
factor I ¼ �=ð4�MÞ involves the quantity

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM2 � ðm1 þm2Þ2ÞðM2 � ðm1 �m2Þ2Þ

p
2M

(A3)

which in the rest frame of the decaying particle is given by
� ¼ jp1j ¼ jp2j; thus the decay width becomes

� ¼ �

8�M2
jMj2: (A4)

In the case � ! �� one obtains specifically:

M 
 ¼ �
�
����

�

 ) jM���j2 ¼ 4

3
�2
���g���; (A5)

where from Eq. (A3) and the kinematics in Fig. 3 one has

���� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�=4�m2
�

q
¼

ffiffiffiffiffiffi
P2

p
; (A6)

and the polarization vectors "
�

 of the �-meson are nor-

malized to "
�

 "

�

0 ¼ �

0 . In the case � ! N� Eq. (12)

entails

M ss0 ¼ �us�
�
�N�u

�
s0 ¼

g�N�

2MN

�usQ
�u

�
s0 ; (A7)

where Q is the pion momentum, and the nucleon and �
spinors are normalized toX

s

us �us ¼ 2MN�
þ
N ;

X
s

u
�
s �u�s ¼ 2M�P

��
� ; (A8)

respectively. This yields

jM�N�j2 ¼ 1

6

M�

MN

��2
�N�g

2
�N� (A9)

with the spin sum

� ¼ trf�þ
N ðPfÞ�þ

� ðPiÞg ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

�N�

M2
�

vuut : (A10)

The strong decay widths in both cases are then given by

���� ¼ �3
���g

2
���

6�m2
�

; ��N� ¼ ��3
�N�g

2
�N�

48�M�MN

: (A11)

To extract the coupling constants from the matrix ele-
ments in Eqs. (10) and (16), one has to perform appropriate
momentum contractions and Dirac traces which yields:

g��� ¼ P��
�
���

2�2
���

; g�N� ¼ 3MN

��2
�N�

trfQ���
�N�g:
(A12)

APPENDIX B: COLOR AND FLAVOR FACTORS

While the color and flavor traces in the quark DSE (2)
and meson and baryon bound-state equations, Eqs. (3), (5),
and (7), have already been worked out in the main text, we
still have to perform these traces for the � ! �� and
� ! N� transition matrix elements (10) and (16).
We work in the SUð2Þf-isosymmetric limit and thus we

have two degenerate quark flavors u ¼ ð10Þ and d ¼ ð01Þ.
They transform according to the fundamental representa-
tion of SUð2Þ, whereas the antiquarks �u ¼ ð10Þ and �d ¼ ð01Þ
transform according to the complex conjugated fundamen-
tal representation. These can be used to construct repre-
sentation matrices of mesons as quark-antiquark, diquarks
as quark-quark and baryons as quark-diquark bound states.
The � and the �-mesons discussed in this article are

isovector states with three isospin projections, which can
be labeled by the corresponding electric meson charge. A
possible representation is given by the matrices

rþ ¼ ju �di ¼ �1 þ i�2

2
; r0 ¼ ju �ui � jd �diffiffiffi

2
p ¼ �3ffiffiffi

2
p ;

r� ¼ jd �ui ¼ �1 � i�2

2
; (B1)

where the �i are the Pauli matrices, and the flavor matrices

are normalized to trfryi ryj g ¼ �ij. The color factors for the

mesons are given by �AB, where A, B ¼ 1, 2, 3 denote the
quark indices.
The �0-meson in the triangle diagram of Eq. (10) can

couple to the upper and the lower quark line. The color
trace in both diagrams equals 3 whereas the Dirac traces
yield an opposite sign: ð�"Þ���� ¼ �ð�#Þ����, where �"
represents the expression in Eq. (10). The full color-fla-
vor-Dirac trace of the �0 ! �þ�� transition then yields

� trfryþry�r0g3�" � trfryþr0ry�g3�# ¼ 3
ffiffiffi
2

p
�";

i.e., the color-flavor trace of Eq. (10) is 3
ffiffiffi
2

p
.

Similar to the mesonic case, for two degenerate flavors
there exist four different diquarks, one of which is an
isoscalar whereas the other three form an isotriplet. The
difference from mesons in flavor space is due to the differ-
ent transformation properties of quarks and antiquarks. The
representation for the diquark flavor matrices reads

s0 ¼ judi� jduiffiffiffi
2

p ¼ i�2ffiffiffi
2

p ; s1 ¼ juui ¼ 1þ�3

2
;

s2 ¼ judiþ jduiffiffiffi
2

p ¼ �1ffiffiffi
2

p ; s3 ¼ jddi ¼ 1��3

2
:

(B2)

The flavor factors for baryons in the quark-diquark
picture are given by the Clebsch-Gordan coefficients ac-
cording to the respective diquark content of the baryon. For
proton and neutron they read
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p ¼
0
@u

�����������
ffiffiffi
2

3

s
d;�

ffiffiffi
1

3

s
u;0

1
A; n¼

0
@d

�����������0;
ffiffiffi
1

3

s
d;�

ffiffiffi
2

3

s
u

1
A;
(B3)

where the first terms represent the isoscalar diquark con-
tributions and the remaining three the contributions from
the isovector channel in the same order as Eq. (B2). The
�-baryons do not contain any contribution from the scalar
diquark, and the corresponding Clebsch-Gordan construc-
tion yields

�þþ ¼ ðu; 0; 0Þ; �þ ¼
0
@ ffiffiffi

1

3

s
d;

ffiffiffi
2

3

s
u; 0

1
A;

�0 ¼
0
@0;

ffiffiffi
2

3

s
d;

ffiffiffi
1

3

s
u

1
A; �� ¼ ð0; 0; dÞ:

(B4)

Finally, the color factors are ð"ABC=
ffiffiffi
6

p Þ for the diquark

amplitudes and ð�AC=
ffiffiffi
3

p Þ for the N and � quark-diquark
amplitudes, where A, B are quark indices and C is the
diquark index.

In the case of the �þþ ! p�þ transition the three
contributions in Eq. (17) yield the following flavor traces:X
j

pyj r
y
þ�þþ

j ;
X
ij

pyi �þþ
j 2trfsyi sjryþg;

X
ij

pyi sjr
y
þs

y
i �

þþ
j :

(B5)

Only the axial-vector diquark contributes to the � (hence
j ¼ 1, 2, 3) whereas the nucleon has both scalar (i ¼ 0)
and axial-vector diquark components (i ¼ 1, 2, 3).
Combined with the color traces þ1 for the impulse-
approximation diagrams and �1 for the exchange
diagrams the final result for the �þþ ! p�þ transition
matrix element in Eq. (16) reads

� ¼
ffiffiffi
2

3

s �
�AA

Q ��AA
DQ þ ffiffiffi

3
p

�SA
DQ þ 1

2
�AA

EX �
ffiffiffi
3

p
2

�SA
EX

�
;

where the superscripts S and A refer to the scalar or axial-
vector diquark content in the outgoing (left) and incoming
(right) baryon amplitudes.
The remaining processes are obtained accordingly by

replacing p, �þþ and rþ with the appropriate flavor struc-
tures of Eqs. (B1), (B3), and (B4). The bracket in the
previous equation is identical in all cases whereas the
prefactors become:

(i) �
ffiffi
2
3

q
for the transitions �þþ ! p�þ, �� ! n��;

(ii) � 2
3 for �

þ ! p�0, �0 ! n�0;

(iii) �
ffiffi
2

p
3 for �þ ! n�þ and �0 ! p��.

For every initial state one has to sum over all final states
via Eq. (A1), hence one gets for both �þ and �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��������23
��������2þ

��������
ffiffiffi
2

p
3

��������2

s
¼

ffiffiffi
2

3

s
; (B6)

and thus all flavor factors in the �N� system are the same.
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