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Flexible parametrization of generalized parton distributions
from deeply virtual Compton scattering observables
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We present a physically motivated parametrization of the chiral-even generalized parton distributions in
the nonsinglet sector obtained from a global analysis using a set of available experimental data. Our
analysis is valid in the kinematical region of intermediate Bjorken x and for Q? in the multi-GeV region
which is accessible at present and currently planned facilities. Relevant data included in our fit are from
the nucleon elastic form factor measurements and from deep inelastic scattering experiments. Additional
information provided by lattice calculations of the higher moments of generalized parton distributions is
also considered. Recently extracted observables from deeply virtual Compton scattering on the nucleon

are reproduced by our fit.
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L. INTRODUCTION

High-energy exclusive leptoproduction processes have
been drawing increasing attention after a long hiatus since
they were first proposed as direct probes of partonic struc-
ture. The first exclusive electron proton scattering experi-
ments were conducted at both DESY (HI1, ZEUS, and
HERMES) and Jefferson Lab. A new forthcoming dedi-
cated set of experiments are currently being performed and
planned at both Jefferson Lab [1] and CERN (COMPASS)
[2]. The possibility of using neutrino beams to study hard
exclusive reactions also concretely exists within, e.g., the
Minerva experiment at Fermilab [3].

The interest in deeply virtual exclusive processes origi-
nates from the realization first discussed in Refs. [4-6] that
QCD factorization theorems similar to the inclusive deep
inelastic scattering (DIS) case can be proven. Collinear
factorization theorems have, in fact, so far been established
for deeply virtual Compton scattering (DVCS), involving
initially transverse photons, and for deeply virtual meson
production (DVMP), with initial longitudinal photons [7].
New developments in QCD factorization are also rapidly
evolving [8]. The leading-order diagrams describing the
amplitude for the scattering process are shown in Fig. 1. A
phenomenology ensues similar to the one extensively de-
veloped for inclusive scattering, an important difference
being that exclusive reactions provide us with additional
kinematical dependence on the momentum transfer
squared between the initial and final proton, 7, and on its
light cone (LC) component, {. The new ¢-channel variables
allow us to pin down, in principle, the dependence of the
parton distributions on spatial d.o.f. through Fourier trans-
forms of the generalized parton distributions (GPDs) [9].
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The latter enter the description of the soft matrix elements
for DVCS, DVMP, and related processes. The kinematical
variables external to the partonic loop in Fig. 1(a) are
the initial photon’s virtuality, 0?, the skewness,
(= (Aq)/(Pq) = Q?/2(Pq) = xpj, =A% with A=
P — P', P (P') being the initial (final) photon momentum.
(£, t, Q%) define a set of independent invariants. In the
factorized approach, one defines also internal loop varia-
bles, X = (kg)/(Pg)—the parton’s momentum fraction—
and k;—the intrinsic transverse momentum.

At high momentum transfer, the amplitude for DVCS
can be written schematically as

1 _
({1, Q%) = S g UPMUP) Y g 3 4 (4,1, 0, (D)
q

where we considered for ease of presentation only the GPD
H (detailed expressions will be given in what follows). The
analog of the Compton form factor (CFF) with one virtual
photon is

q'=q+A

k’'=k-A

FIG. 1 (color online). Leading-order amplitude for the DVCS
process, y* + P — y + P'.
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One has, therefore, that both the imaginary and real parts of
the amplitude, namely,

ImH (¢, 1) = a{H (& &, 1) — H, (0,4, 0], (3a)

ReH (¢, 1) = P.V. f_ll dXH,(X, {, t)<L + l), (3b)

X—¢ X

enter the description of the DVCS reaction. Information on
the partonic distributions, which is contained Hq(X, 1),
needs to be extracted from these observables. This is an
important difference with DIS where, because of the opti-
cal theorem, the cross section, by definition, measures the
imaginary part of the forward amplitude. The DIS cross
section is, therefore, directly proportional to linear combi-
nations of the soft matrix elements or parton distribution
functions (PDFs) convoluted with appropriate Wilson
coefficient functions. On the contrary, in DVCS, DVMP,
and related processes, one needs to disentangle both the
real and imaginary contributions of the CFFs defined in
Eqgs. (3a) and (3b) [10].

It was recently suggested to use dispersion relations
in order to relate the real and imaginary parts of CFFs.
However, as we noted in [11], dispersion relations do not
apply straightforwardly because of the appearance of
t-dependent physical thresholds. As a result, we reiterate
that both the real and imaginary parts need to be extracted
separately from experiment, at variance with the simplifi-
cation suggested, e.g., in Refs. [12,13].

On one hand, the type of information we wish to obtain
from high-energy exclusive experiments is a sufficiently
large range of GPD values in (¢, t, Q%) that would enable us
to reconstruct the partonic spatial distributions of the nu-
cleon from a Fourier transformation in A . This would
allow us both to explore the holographic principle for
the nucleon and to connect to transverse momentum dis-
tributions. On the other hand, it is important to have access
to the spin flip GPD, E, which is essential for determining
the orbital angular momentum contribution to the spin
sum rule.

The question of whether the various GPDs can be ex-
tracted reliably from current experiments has been raised,
given the complications inherent both in their convolution
form and in their complex multivariable analysis (see, e.g.,
[14,15]). A pragmatic response was given in [16,17] where
an assessment was made of which GPDs can be extracted
using the present body of data from Jefferson Lab and
Hermes. In particular, it was concluded that the only
CFFs that are presently constrained by experiments are
Re H and Im H , with rather large errors, up to 30%. A
global fit using the dual model of Ref. [ 14], valid mostly at
low Bjorken x, was also conducted in [15]. However, these
approaches raise many concerns. In particular, can the
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“dual model” used in the fits accommodate all of the
data with the given number of parameters? The problem
is critical, in particular, for both higher ¢ values and for the
real CFFs. Furthermore, the analysis of [17] does obtain
model-independent extractions of CFFs at the expense of
not allowing for extrapolations to kinematical domains
beyond the very sparse data sets.

The goal of our fit is to extract the GPDs from a variety
of experiments under the following basic assumptions:

(1) QCD factorization is working, namely, the soft and

hard parts are separated, as shown in Fig. 1;

(i1) and the GPDs contributing to DVCS are evaluated at

the lowest order in QCD.

This situation is somewhat similar to the extraction of
PDFs from structure functions at next-to-leading order,
where the PDFs are convoluted with the next-to-leading-
order Wilson coefficient functions. The convolution is
neither a substantial or conceptual obstacle, so long as
one is providing an appropriate initial functional shape.
The strategy we propose here provides a parametric form
of the chiral-even GPDs—H, E, H, and E—that is valid in
the multi-GeV, intermediate xp; region accessible at
Jefferson Lab and COMPASS.

We suggest the idea that, for extracting GPDs from
experiment, a progressive/recursive fit should be used,
rather than a global fit. In our fitting procedure, constraints
are applied sequentially, the final result being updated upon
including each new constraint. In a nutshell, in a first step,
we provide a flexible form that includes all constraints from
inclusive data—DIS structure functions and elastic electro-
weak form factors. We subsequently evaluate the impact of
presently available DVCS data from both Jefferson Lab and
Hermes. The data set used in our analysis is consistent with
the one from Ref. [16]. The parametric form is based on a
“Regge improved” diquark model that, because of its
similarities and possible connections with the dual model
[18], we call the hybrid model.

Our approach, however, makes two important distinc-
tions: i) we attack the GPD parametrization issue from the
bottom-up perspective. We adopt a flexible parametriza-
tion that is consistent with theoretical constraints imposed
numerically and let the experimental data guide the shape
of the parametrization as closely as possible. In this pro-
cedure, experimental evidence is used to constrain the
various theoretical aspects of the GPDs’ behavior, even-
tually giving rise to a complete model; ii) our model
differs from some of the lore on the partonic interpretation
of GPDs in the Efremov-Radyushkin-Brodsky-Lepage
(ERBL) region. In Ref. [19], we, in fact, pointed out that
the ERBL region, or the region with X </, cannot be
described in terms of a quark antiquark pair emerging
from the nucleon because of the presence of semidiscon-
nected, unphysical diagrams associated to this configura-
tion (Fig. 2). While casting a doubt on any partonic picture
in the ERBL region, we also suggested that multiparton
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distributions may restore the connectedness and, conse-
quently, the partonic interpretation of the DVCS graphs.
In this paper, we, therefore, adopted, as a practical scheme,
the hybrid model in the Dokshitzer-Gribov-Lipatov-
Altarelli-Paris (DGLAP) (X > () region and a minimal
model that is consistent with the properties of continuity
at X = /, polynomiality, and crossing symmetry for the
ERBL region (see, e.g., [20] for a review).

Details on the model are given in Sec. II. The new fitting
procedure is described in Sec. III. In Sec. 1V, we discuss
the implementation of world DVCS data. Finally, in Sec. V,
we draw our conclusions and outline future work.

II. COVARIANT FORMULATION
AND SYMMETRIES

We begin by describing the connection between the
Dirac basis formulation of the correlation function and
the helicity amplitude formalism in DVCS. Some of this
formalism was outlined in Refs. [20,21]. We, however,
present here the formal details that will be important for
the extraction of observables in Sec. IV.

A. Formalism

The factorization theorem for hard scattering processes
allows us to separate the hard scattering between the
elementary constituents, which is calculated using pertur-
bative QCD, from the soft hadronic matrix element, M, as

wy — _ d*k YK+ f)y”

T =i 2m)* Tr[((k + ) + ie
LY i — K — 4)7
(k A—g)P+

)M(k P A)] @)
M(k, P, A) is the off-forward correlation function
MNP ) = [ dye (@ N OWOIP A, )

where we have written out explicitly both the Dirac indices
i, j and the target’s spins A, A’. By projecting out the
dominant contribution in the Bjorken limit (Q? — oo,
Xpj = Q*/2Mv = {, and t fixed), which corresponds to
transverse virtual photon polarization, one obtains

|V /
T = g FAN + S el FAY, ®)

where gh” = g*” — p#n” — p'n*, b’ = aﬁo’pgT,uggy

n?p? = € T#¥  p and n being unit light cone vectors. The
labels S and A refer to the symmetric and antisymmetric
components of the hadronic tensor, with respect to u < v,
that will enter the unpolarized and longitudinally polarized
scattering, respectively, as will be clarified in what follows.

A possible kinematical choice is the one where the
struck quark’s LC longitudinal component is k™ = XP™
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|
: kK =( E— X)p+
I
|
I

P*=(1- Q)P+
. (-0

FIG. 2. Left: amplitude for DVCS at leading order in Q>. The
light cone components of the momenta for the active quarks and
nucleons are explicitly written. Right: Time-ordered diagrams
for DVCS: (a) dominant contribution in the X > { region; (b) a
qq pair is first produced from the nucleon and subsequently
interacts with the photons. This process dominates the X < ¢
region. The crossed terms where two of the particles in the same
class are switched are not shown in the figure.

and the momentum transfer, A - 1s decomposed into a LC
longitudinal component, A" = /P", and a transverse
component, A, such that the invariant t = A2 reads

t=—M/(1 =) -
can perform an 1ntegrat10n over the quark loop momentum,
namely, d*k = dk*dk d*k, = P*dXdk d’k,, obtain-
ing the following expressions for the CFFs:

S o 1 1
$ (&) [Hng(X_“l.gX_l ) F§ W(X,41),

(7)

! Using these variables, one

)Fg,Amx, 40,
(8)

1 1 1
X ,t=[ dX(— +
Finé 1y X—C+ie X—ie

where

F$ WX, ) = [U(P’ A’)(y*H(X, )
10'+"(—A )
+ T“E(X, Z, t))U(P, A)], )

e, A/)(y ysHX, 1)

1
F‘?X,A’(X’ g’ ) 2P+ [

+ s _2M EX ¢ t))U(P, A)]. (10)

The GPDs—H, E, H, and E—introduc_ed in the equations
include the integration over dk~ d’k ; P* = (P* + P*')/2,

'The formal difference between the so-called symmetric and
asymmetric notations is explained, e.g., in Ref. [20].
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and we did not write explicitly, for simplicity, both the
label for the different quark components and the depen-
dence on the scale of the process, Q2.

Equations (9) and (10) define the basic Dirac structure
for the chiral-even sector at leading order in 1/Q. The
connection with the helicity formalism is made by intro-
ducing the helicity amplitudes for DVCS,

A v * AL
Faannn = €Ty €07,

(1D

where eﬁ) are the photon polarization vectors, (A, A) refer

to the initial (virtual) photon and proton helicities, and
(A’,, A') to the final ones. The following decomposition
of FA, A A [21] can be made as

Ay, A

FA, AAp A= Zg)‘,y)‘/
AN

(X! éur [ Q2) ®AA’,/\/;A,)L(X’ é/’ t)’ (12)

where gi\y)\,A ” describes the partonic subprocess y* + g —
v + g, i.e., the scattering of a transverse virtual photon
from a quark with polarization A; Aps ., is the quark-
proton helicity amplitude, and the convolution integral is
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with §=(k+q?=Q(X— /¢, a=K—qP=
0°X/{,and g~ = (Pq)/P" = Q*/(2{P").

For DVCS, one can consider either the sum over the
transverse helicities of the initial photon, i.e., we take it as
unpolarized, or the difference of the helicities, in which
case the transverse photon is polarized. The outgoing
photon is on-shell, and thus purely transverse or helicity
*1. So, the leading incoming virtual photon will
have the same helicity in the collinear limit. Only
giji = g_Zvia Parity conservation) for the direct § pole
term or g, (= g=F) for the crossed i pole term will
survive. For either allowed combination, g5, = gi® +

grrand gh = gll —gii,
1 1
g =VX(X - ( + ) 14
8++=8++ ( {) X—C+ie X—ie (14)
where we use the S/A labels for the sum/difference be-
tween the positive and negative polarized photons for the
overall process representing the sum/difference between
the quark states’ helicities that arises as the quarks emerge
from the nucleons.
The quark helicity or chirality is conserved in this hard

givenby ® — [1 ¢+1 dX. In the Bjorken limit, g%,A v reads subprocess for DVCS. Hence, the A,/ y.o ) Will be chiral-
AN even. Equation (14) is the Wilson coefficient from Ref. [5]
v (X, O = [alk, A )y y™ y ulk, V)] times a kinematical factor that will cancel out when multi-
A, *A, AL A, plied by the soft part, as described below.
% (EM €v | Er & ) g, (13) The convolution in Eq. (12) yields the following decom-
§—ie i—ie position of the transverse photon helicity amplitudes:
|
flv=frosrtf =80 1y +A ), (15a)
¢+ =frs+ —for—+ =g‘i+ @Ay —A 1 ) (15b)
§r— =frr+- S g = g% @A 1 14 +AL 1) (15¢)
A= e —f =gt (A AL ), (15d)
where, because of parity conservation, A__ __ =A,, A , =A, . A _, =-A%, ,,andA,___ =
_Ai+,++'
By calculating explicitly the matrix elements in Eqs. (7) and (8), using the relations below,
) NI
— U(P, N)y*U(P, N) = ———= 8, a1, 16
P ( )y U(P, A) 1= ¢/2°M (16a)
\/1_ _ l.0'+’u _§2/4 _AAI _ZAZ
> (P, \ A UPAN) ="\ p +————"65_an 16b
P ( ) o e (P, A) U =z/2)°M i A=A (16b)
| R NI
—U(P', N)y*ysUP, A) = A SA A 16
B+ ( )y ysUP, A) — /20 (16¢)
NI At { ( A, —iAA,
> U(P',N)ys—UP,A) = — (AL p + ————=8r ), 16d
P ( )752M (P, A) 20 =¢/2) 4 TWY i A A) (16d)

one obtains the various helicity amplitudes written in terms of the following combinations of CFFs for the symmetric part,

R Ll 2V

+,+_1_§/2

" 1

Y = A )

and

_52/4
E, 17
(- ¢/T—2¢ (7
A, + i,
e (17b)
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N T
A =M gp g (8

M T A (7o e S
A . g 1 Al + lAzg (18b)

o T-C1-¢/2 2M

for the antisymmetric component.

A similar formalism was presented in [20], where,
however, the helicity amplitudes were identified with the
combinations

A A A A
i++f++: ~S++_ ++5 :Sl“*+f — if_f -

Here, differently from [20], we distinguish between the
two possible circular polarizations for the transverse
virtual photon that generate the S and A components.
Such components are written out explicitly throughout
this paper.

B. The hybrid model

We evaluate the quark-parton helicity amplitudes in
Eq. (12) using a covariant model. The simplest realization
of the covariant formalism is the quark-diquark model in
which the initial proton dissociates into a quark and a
recoiling fixed mass system with quantum numbers of a
diquark (Fig. 1). The covariant model can be made more
general by letting the mass of the diquark system vary
according to a spectral distribution. Extending the diquark
mass value generalization corresponds to ‘“‘Reggeizing”
the covariant model, since the spectral distribution can
then reproduce the Regge behavior, which is necessary to
describe the low X behavior (a likewise scenario was
considered in the pioneering work of Ref. [22]). Keeping
this in mind, in this paper, we will include a Regge term
multiplicatively, as shown later on. Because we introduce
similarities or open possible connections with the dual
model of Ref. [18], we denote this model of GPDs the
hybrid model.

For reasons explained in the Introduction, we adopt the
diquark model only for the DGLAP region, where X = {.
The DGLAP region can be considered a direct extension of
the parton model, where the struck quark with initial
longitudinal momentum fraction X is reinserted in the
proton target after reducing its momentum fraction to
X — ¢, { being the fraction transferred in the exclusive
reaction. In the DGLAP region, the initial and final quarks
are both off-shell, while the diquark intermediate state is
on mass shell. The soft part, A/ y.4 ), is described in terms
of GPDs. A is given by an integral over the k= and k
variables (see Appendix B for detailed expressions). In the
DGLAP region, the three soft propagators corresponding
to the quark that is emitted (k> — m?)~!, the quark that is
reabsorbed (k> — m?)~!, and to the intermediate diquark
system (P% — M%)~ ! have poles that lie, respectively, on
the negative imaginary k~ axis (k, k) and on the positive
axis (Py). Therefore, one closes the integration contour on
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the positive side, and the diquark is on its mass shell (see
also [23]).

As for the spin structure of the propagators, we have
adopted the same scheme as in Refs. [24,25], where we
considered both the S =0 (scalar) and S = 1 (axial-
vector) configurations for the diquark. This allows one to
obtain distinct predictions for the u and d quarks. However,
we assume a similar form for the scalar and axial-vector
couplings (scalarlike) and we distinguish their different
contributions by varying their respective mass parameters
in the calculations. This assumption is in line with previous
estimates [24-26], where it was advocated that the full
account of the axial-vector coupling does not sensibly
improve the shape of parametrizations, while considerably
increasing the algebraic complexity of the various struc-
tures (see, e.g., [27]). We define I as the scalar coupling at
the proton-quark-diquark vertex

k2_m2

F - Ky ’
G

g, being a constant.” The quark-proton helicity amplitudes
are defined as

A = [Py (K PIGAG P, (19)

with
ik, VU(P, A)
k2 _ mZ ’

UP', ANu(k', \')
k/2 _ m2

daalk, P) = T(k)

@ (K, P = T(K)

defining the helicity structures at each soft vertex. ¢ is real,
dpr = ¢\, for A = A, whereas ¢, = —¢p* . We list
the separate structures appearing in Eqgs. (19):

Ao = @160 W PYG kP, Q00
A= [dHidt W.PYG Py 200)
A = [@higt (W, P)do kP 200
Ao = [Pt PSP, 200

where

The choice of this vertex function is motivated by phenome-
nological reasons—it allows for an easier fit of the form fac-
tors—and also because it agrees with predictions within the
Schwinger-Dyson formalism. See discussions in [24,25] and in
[23].
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I'(k)

bl P) = lon + M) @1a)
bk, Py = L=+ i) T
¢+(k,P)=j_( i) @2le)
¢+_<ch'>=\/}1{:_‘;<1€1 i) ) C1d)

with k; = k; — (1 — X)/(1 — A, (i = 1,2).
Finally, the denominators are evaluated with the diquark
mass on shell,

kz—mz—XMz—LMz—mz—i (22a)
1-x X 1-X
X—¢ X—-7
k/2 2 — 2 M2_ 2
1—¢ —xxo "
1 - 1-X
——1_}‘;( l_—l—ZAl) (22b)

To extract the GPDs, we calculate the convolutions in
Egs. (15) using the expressions for the g and A functions
evaluated above. We obtain

\/— [(m + MX)(m + MI=5) + k- k]
NT= . (K — M3 (K — M%)?
_JI=7 —{%/4
BT A TN = 2
NS [y
[(m + MX)(ky + iky) — (m + M )(k, + ik,)]
(k M2 )Z(k/Z M2 )2
B 1 A, + A,
=20 -¢/2) 2Mm E. @4
N/—“‘l_; [(m + MX)(m + M= ) k, k]
1-X . (K — M3)*(K* — M3)?
_1T=7 - —{2/4 P
I N = 2
ki
[(m + MX)(k, + iky) + (m + M )(k1 + ik,)]
(k M2 )Z(k/2 MZ )2
o 5/2 Al + lAz ~
T2 -¢/2) 2M E (26)

from which the following forms for H, E, H, and E can be
derived:
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oo 5
[(m + MX)(m + M3=5) + k| -k, ]
2 14
. f “h (k2 = M3)2(K? — M3)?
52
E= j\rll__i/(z fdzkl
—2M(1 = O)[(m + Mx)'g —(m+
X (k2 _ M/Z\)Z(kIZ _ M?\)Z
(28)
oo
[(m + MX)(m + MI=H) — k- k.]
< Jen =g MY = M)
IS
4“/2[ )
&k,
4’”“ MO=O[(m + MX)ER + (m + MDY ]
X , (30)

0= M~ M
where N is in GeV*. The integrations over d’k, yield
finite values for the amplitudes in the limits A — 0 and

{ — 0 (see Appendix A).

C. Reggeization

It was noticed in Refs. [24,25] that the low X behavior of
the GPDs in the forward limit necessitates an extra factor
of the type = X~ ¢ in order to adequately fit current DIS
data. We reiterate that, for the off-forward case, this factor
is important even at intermediate/large values of X and
because the dominant behavior of the GPDs at low X
determines the nucleon form factors. In other words, the
lack of such a term hinders a good fit of the form factors.

One way to motivate the inclusion of a Regge term is
through a generalization of the diquark picture in which the
mass of the diquark, M2, is not fixed but has a spectral
distribution. As first shown in Ref. [22], in a simple co-
variant model for a PDF, choosing a spectral distribution of

the form pgr(M%) M)z(a(o) gives rise to the PDF behavior
x~ %0 upon integration over all M%. A more physical
picture of the nucleon might have two contributions,

p(M3) = ps(M%) + pr(M3), @31)

wherein pg; is sharply peaked at a fixed value of the diquark
mass M3 = M% and it yields the usual “fixed mass”
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diquark model. p; smoothly extends M% to large values
and, with the Regge power behavior, upon integration over
M%, will yield a Regge-type behavior largely dictated by the
shape of the spectral function itself.

We will illustrate this “Reggeization” process by con-
sidering the spin-independent GPD H(X, 0,0) = f,(X) as
a function of a continuum of diquark masses. Aside from
overall constant factors, the exact expression for the for-
ward limit for the mass My, obtained from Eq. (27), is
given by

2(m, + XM)?
H(X’O’O)oc[ 2 4 (1=X) (g2 2)73
(M} + S0 (M3 — xM?)]
. X ]77(1 - X)*
(M} + 523 - xmH)Pp] 6x’

(32)

Multiplying this expression with pg(M%) = Mff'(o) and
then integrating over all diquark masses from 0 to ® gives
the analytic result

[ " M pr(MAH(X, 0,0) ~ X0 (33)
0

for X — 0. In practice, we would not integrate from zero
mass and we would cut off the integral at the maximum
mass allowed by the kinematics. The fixed mass term
pc(M%) would give back the unintegrated expression
Eq. (33), which goes to a constant or X° as X — 0. A
plausible form for the spectral density of the diquark is
shown in Fig. 3.

Our main conclusion is that we can generate the Regge
behavior and still be consistent with the diquark model.
This is further borne out by recalling that, in a dual model
for the virtual photon-hadron scattering, there will be
Regge behavior in the high s region multiplying pole terms
for the intermediate states, which here would be diquarks.
This suggests that, for the exclusive processes, particularly
DVCS, the GPDs will have the factorized form of a Regge

2F

p(M,2) (GeV™?)

M2 (GeV?)

FIG. 3 (color online). A plausible diquark mass distribution,
the spectral density with Regge behavior M;"(O) with a(0) = 1.
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function for small X times a pole at the nearest singularity,
the lowest mass diquark, as in Eq. (33). This is the form we
take, as we show below.

At this point, this discussion does not consider the ¢
dependence, although it is plausible to incorporate the
Regge trajectory form a(f) = ay + o't, while including
the ¢ dependence of the diquark model. Including the
skewness, { # 0 is more complicated, because of the dis-
tinction between the DGLAP and ERBL regions. While
detailed calculations using Eq. (31) will be presented else-
where, in the present analysis, we adopt a factorized form
of the Regge term, which has similar features as the
Reggeized diquark model but is more in line with current
parametric forms of parton distributions,

R = X lataX)t+p(1] (34)

In this form, only the term X~ can be considered a proper
Regge contribution. The term o/(X) = a'(1 — X)? is con-
structed so as to guarantee that, upon Fourier transforma-
tion in A |, one obtains finite values for the nucleon radius
as X — 1 [28]. This prescription is obtained for { = 0 or
= —Aﬁ_ [29]. In order to extend it to  # 0, an additional
term in the exponent, B({), is introduced. The physical
motivation for this term is that it effectively accounts for
the shift between the initial and final proton’s coordinates
that occurs when Fourier transforming GPDs at £ # 0 [30].
As we will show in Secs. III and IV, two forms of  are
suggested by the behavior of the available DVCS data:

§2
1=

Bu({) = BL°. (36)

The effect of these terms is to allow for a data driven
change in the slope in ¢ of the GPDs, most likely an
increase, with respect to the diquark model predictions.
Since most DVCS data, so far, appear as asymmetries
given by ratios of different cross section combinations, it
is difficult to determine precisely the { behavior of the
CFFs and GPDs. It is, therefore, indispensable in future
experimental analyses to provide absolute cross sections,
as already done for the set of data provided by Hall A.
Introducing directly DVCS data to determine the behavior
of our fit is an important step that distinguishes our analysis
from other ones in that it helps establishing the main trends
of the multivariable-dependent data. The treatment of
multivariable dependence characterizes analyses aimed at
extracting GPDs from data. What we suggest here is a
bottom-up approach where experimental evidence is used
to constrain the various theoretical aspects of the GPDs’
behavior, eventually giving rise to a complete model.

Bi(d) =B (35)

D. Crossing symmetries

GPDs observe precise crossing symmetry relations. In
order to discuss these symmetry properties, we first
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introduce the so-called ‘““symmetric system’ of variables
{x, £}, where

KKt X/ 2AF i

S B R Ny

We also introduce the quark labels for all four chiral-
even GPDs, F, = {Hq, E, I:Iq, Eq}. By analogy with DIS,
we define F q(x, &) in the interval —1 =< x < 1, with the
following identification of antiquarks:

Fa(x, &) = =F,(x. ),  x<0. 37)

From this expression, one defines
Fy = F,(x &) — Fyx &) (38)
Ff = F,(x, &) + Fylx, &), (39)

where F; is identified with the flavor nonsinglet valence
quark distributions, and Y, F, with the flavor singlet sea
quark distributions. F, and F, obey the symmetry rela-
tions

Fy(né) = Fy(—x, ), (40)

Fy(x, &) = —Fj(=x§). (41)

In DIS, the commonly adopted Kuti-Weisskopf model
ensues [31], by which all distributions are evaluated at
positive x.

In the off-forward case, crossing symmetries are impor-
tant for the evaluation of the CFFs defined in Eq. (2). The
Wilson coefficient function, in fact, also obeys crossing
symmetry relations,

1 1
+

Ci(xyf)zx—§+ie_x+§—ie’

(42)

so that

I, = fo LCH o OH (£, (43)

H, = fo L dxC(x, HH, (x, & 1), (44)

and similar relations hold for E, and Eq. In the nonsym-
metric system of variables adopted throughout this paper,
the axis of symmetry is shifted to X = /2. Moreover,
xE[-L1]=X€[-1+1],and x=—-E=X=0,
x=§¢&=X=/_.

As explained in the Introduction, the validity of a simple
handbag-based partonic interpretation of DVCS in the
ERBL region has been recently questioned. The safest
choice for a parametrization in the ERBL region is, there-
fore, to adopt a “‘minimal”” model that accounts for cross-
ing symmetry properties, continuity at the crossover points
(X = 0and X = {), and polynomiality. A possible form is
obtained by parametrizing the crossing symmetric and
antisymmetric contributions, respectively, as follows:

PHYSICAL REVIEW D 84, 034007 (2011)

— H
S H+
o5 [
g 2
T
0
[ Q’=1.4 GeV>
2l 2=0.18
I t=-0.03 GeV>
-4 NP I I U B |

P | L
0.1 02 03 04 05 06 0.7 0.8
X

FIG. 4 (color online). Crossing symmetric, H*, and antisym-
metric, H™, contributions to the GPD H? at { = 0.18 and ¢ =
fmin- In this example, H? was taken equal to zero in the DGLAP
region.

Hy (X, {) = a (DX —a (X + HE (), (45)

Hi [(X,{)=a"X’ —a"{X*+ cX + 4, (46)

where a™({) = 6({H({, {) — 2SgrpL)/{’, SgreL being the
area subtended by H, in the ERBL region,

¢
SERBL = /;) dXH/ (X, (1)

(0 _g)(pgf— /,; ”T(_Xi’;;)dx). @47)

Skrpr appears in the definition of @~ multiplied by a factor
of 2 because of the crossing symmetry property for the
areas subtended by H, and H,. In Eq. (46), a® is a free
parameter. This choice of parameters gives H, = H~ =
H" at X = {, the antiquark component in the DGLAP
region being taken to be equal to zero in this phase of
our analysis. Notice that H, and H; are not required to
obey crossing symmetries. They are obtained by construc-
tion from Egs. (45) and (46). An example describing the
symmetric and antisymmetric components of H? is given
in Fig. 4.

III. RECURSIVE FIT: NUMERICAL EVALUATION
OF GPD PARAMETERS FROM INCLUSIVE
MEASUREMENT CONSTRAINTS

Here, we describe a recursive fitting procedure to extract
the chiral-even GPDs from available DVCS data. Our fit
uses the parametric forms (we omit the quark labels for
simplicity)

FIX. &) = NGy (X G ORFE(X, L1), (48)
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TABLE 1. Parameters obtained from our recursive fitting procedure applied to H,, E,, H 4> and Eq; q = u, d. In a first phase, we

fitted PDF global parametrizations in the valence quark sector and obtained m,, M%, MY,

q°

PHYSICAL REVIEW D 84, 034007 (2011)

and «,, as well as the normalization factor

for H,. Because we did not use the actual data at this stage, these parameters assume the fixed values in the table, with no error bar. We
subsequently obtained a;, Pg4» and the normalizations for E,, H 4> and Eq by fitting the proton and neutron electromagnetic form
factors and the axial and pseudoscalar form factors, respectively [Egs. (50)]. The value of the parameter in Eq. (34) is fixed at 8 = 10.
Also shown are the y? values for the separate contributions to the fit.

Parameters H E H E

m, (GeV) 0.420 0.420 2.624 2.624
My (GeV) 0.604 0.604 0.474 0.474
M} (GeV) 1.018 1.018 0971 0.971

@, 0.210 0.210 0.219 0.219

al 2.448 + 0.0885 2.811 £0.765 1.543 £ 0.296 5.130 £0.101
Pu 0.620 = 0.0725 0.863 = 0.482 0.346 = 0.248 3.507 £ 0.054
N, 2.043 1.803 0.0504 1.074

X’ 0.773 0.664 0.116 1.98

my (GeV) 0.275 0.275 2.603 2.603

M;i( (GeV) 0913 0.913 0.704 0.704
Mj’\ (GeV) 0.860 0.860 0.878 0.878

ay 0.0317 0.0317 0.0348 0.0348

o) 2.209 £0.156 1.362 = 0.585 1.298 + 0.245 3.385 £0.145
Pd 0.658 = 0.257 1.115 = 1.150 0.974 = 0.358 2.326 £ 0.137
N, 1.570 —2.800 —0.0262 —0.966

X’ 0.822 0.688 0.110 1.00

where F = H, E, H, E; the functions G%;,m are the co-
variant diquark contributions from Egs. (27)—(30), and
R%® was given in Sec. I1C.>

It should be remarked that our new parametric form
follows from the one used in Refs. [24,25], while present-
ing several important differences. We have, first of all,
completed a thorough analysis of the spin components of
the various GPDs, both in the unpolarized and polarized
sectors, thus releasing the assumption of a simplified
quark-proton vertex structure made in [24,25] and extend-
ing our analysis to the much-needed H and E functions.
The more careful spin treatment also results in a different
shape for E, which, in [24,25], closely followed H by
construction.

The most important features of our new parametrization

are summarized below:

(i) We consider only configurations for a spin-1/2 quark
and a spin-0 diquark. The flexibility in shape con-
tributed by considering a spin-1 diquark was, in fact,
not sufficient to allow us to model, e.g., the rise at
low X. We, therefore, opted for keeping the Regge
term, as in [24,25]. This can, in fact, be derived from
a “Reggeized” version of the model, as explained in
Sec. II.

(i1)) We model all chiral-even GPDs and we present for
the first time parametric forms for H and E, besides
new evaluations for H and E. Our analysis applies to

*In Appendix B, we present additional parametric forms that
are more practical for applications and numerical calculations.

the intermediate xz;, multi-GeV Q? regime which is
dominated by valence quarks in the DGLAP region.
Only u and d quark flavors are considered.

(iii)) We perform a recursive fit in which parameters are
evaluated orderly, from imposing constraints from
DIS experimental results first, then from the elastic
form factors, and eventually including DVCS data
directly. This procedure affords us a better control
on i) the number of parameters that are necessary to
constrain the GPD multivariable problem and
ii) the fit’s variants as new data are inserted.

All parameters obtained from the DIS and elastic con-
straints are given in Table I. They correspond to the first
two steps of our fitting procedure. While we address in
detail the impact of the GPDs H, E, and H on the descrip-
tion of available DVCS data, we postpone the discussion of
E to a dedicated analysis in [32]. As we explain, in what
follows, E contributes to DVCS observables multiplied by
a factor xp;, or & = xp,;/(2 — xp;). As experimental data
on DVCS target asymmetries accumulate, it is important to
clarify that the pion pole contribution to E scales as 1/xp j
only in specific models like the chiral soliton-based fac-
torized form described in Ref. [33]. While this factorized
form is a convenient model, the & singularity is not re-
quired by the general analytic structure of the GPD. In fact,
in our evaluation, £ is estimated to be suppressed by a
factor = 0.1 at Hermes kinematics.

The first set of experimental constraints is given by the
valence contribution to the inclusive DIS structure
functions,
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H(X,0,0,0%) = f{(X, 0%) = q,(X),
H1(X,0,0, 0%) = g{(X, Q%) = Agq,(X),

(49a)
(49b)

representing the forward limit of Eq. (48) (we have re-
stored both the quark labels ¢ = u, d, and for the Q2
dependence). f{ and g7 are obtained from DIS data. We
do not use directly experimental data in this phase of the
analysis, but we perform a fit of the valence components of
existing parametrizations. The fit was performed similarly
to Refs. [24,25]. By inspecting Eqgs. (27), (29), and (48),
one can see that, for t = 0 and { = 0, the only parameters
that enter are My, M), m in G%;,m, and a in R*¥

We fit separately the unpolarized, H, and polarized, H,
GPDs. For H, an additional parameter, /N, is fixed by the
baryon number sum rules constraints, [} dXu,(X) =2
and [ldXd,(X) = 1. Therefore, in our first step, we
have four parameters per distribution per quark flavor,
giving a total number of parameters consistent with
what was obtained in recent PDF parametrizations, e.g.,
[34-36]. As already noticed in [24-26], the diquark
model-based parametrization corresponds to a low initial
scale, Q2. Parametric forms are then evolved to the Q? of
the data using LO perturbative QCD evolution equations
[37]. Additional parameters not shown in the table are the
initial value of the perturbative evolution scale, Q2 =
0.0936 GeV?, and the parameters B appearing in
Eq. (35), B =10, and Eq. (36), B8 = 1.5. These were
fixed by implementing directly DVCS data in our fit, as
we will show in Sec. IV.

In the fit for A, we use a similar scheme as in current fits
[38,39], where

XAq,(X, 0%) = N X “Xq,(X, Q%)

We left the mass parameters My and M, fixed, as for the
unpolarized case, while we varied a and m. By letting the
latter vary, we obtain the effect of the extra term o (1 +
vX) introduced in [39] for the LO fit. Figure 5 shows our
curves for H, (X, 0,0) at the rather high value of Q* =
25 GeV?, in order to test the stability of our fit with
perturbative QCD evolution. Other available PDF parame-
trizations from quantitative fits are also shown in the figure.

In the second phase of our fit, we impose an additional
set of independent experimental constraints from the nor-
malizations of the chiral-even GPDs to the nucleon form
factors,

L "HOX, £, 1) = FIG), (50a)
fO "Eix, £ 1) = FIG), (50b)
fo 1 HY(X, ¢, 1) = G4(¢), (50c)
[ E1x. .0 = 63, (50)
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0T This paper Q*=25GeV?
— Alekhin 02
0.6 L— MSTWO08

CTEQ6L

X H,(X,0,0)

0.5 - . ) )
— This paper Q" =25GeV
— Alekhin 02

04 | — MSTWO8
— CTEQ6L

X H,(X,0,0)

FIG. 5 (color online). GPDs H,(X, 0,0) (top) and H,(X, 0,0)
(bottom), evaluated at Q% = 25 GeV?, compared with current
LO parametrizations [34-36].

where F{(z) and Fi(z) are the Dirac and Pauli form factors
for the quark ¢ components in the nucleon. G4 (¢) and G%(7)
are the axial and pseudoscalar form factors.

Notice that the GPD E is constrained by the pseudosca-
lar form factor of the nucleon through Eq. (50). When the
covariant or light front diquark spectator model is applied
to calculating E(X, ¢, 1), there is no kinematical singularity.
The combination A, _, + A_, ;. vanishes as { — 0 for
any X and z. This appears as a restriction on the GPD in the
DGLAP region, X = /. Requiring polynomiality leads to
the sum rule in the ERBL region,

X

T=¢h EX, ¢ 0.

D

¢ dX o - +1
[ e =60~ |
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Since the integral in the DGLAP region is finite for any ¢
and does not have a pole at { = 0, the ERBL region
integral will not either. This will be true of any spectator
model wherein there are no kinematic singularities intro-
duced. In the diquark spectator approach that we use, the ¢
dependence of the pion pole in the form factor can be
reproduced while satisfying the sum rule in Eq. (51) (for
small |7]) by a suitable choice of mass and “Regge”
parameters. This corresponds to a dual picture—a
t-channel pion pole emerging from an integral over an
s-channel diquark pole. In summary, we reiterate that the
GPD FE enters the target asymmetry always multiplied by
{(xg;), so that it contributes only weakly in the Hermes
kinematical region.

Isospin decompositions allow one to relate the quark
form factors to experimental measurements of F f((;)) the

Dirac (Pauli) form factors for the proton (neutron), respec-
tively. G4 and G are the isovector and isoscalar compo-
nents of the axial nucleon form factor and Gp. We used the
same selection of data as in Ref. [24] for the nucleon
electromagnetic form factors (see references in [40]).
The resulting parameters are given in Table I. More recent
data [41] are now available that show a milder slope of the
electric to magnetic proton form factor ratio at large |z].
However, these do not largely affect our fits that are limited
to the —t < Q% = 2-3 GeV? region. G, is obtained from
the global average of neutron beta decay and neutrino
scattering experiments (see Ref. [42] and references
therein),

8A
(1 =5

with g4 = 1.2695 £0.0029 and M, = 1.026 =
0.021 GeV. Gp is notoriously dominated by a pion pole
contribution, a small nonpion pole component being also
present. We used the experimental values displayed, e.g., in
Ref. [43]. A more thorough discussion of this form factor
will be given in [32].

As a result, for each quark flavor and GPD type, using
the constraints above, we can determine the additional
parameters, o’ and p in Eq. (48), and the normalizations
N [Eq. (48) and Table I]. The number of parameters used
is consistent with the one used in fits of the nucleon form
factor data. These require four parameters for G%, G¥,, and
G}, respectively, and two for G [40,44].

The GPDs H, ,(X,0,0), E, 4(X, 0,0), and H, 4(X, 0,0)
are shown in Fig. 6 both at the initial scale, Q(z,, and evolved
to Q> = 2 GeV?. A comparison with results on H? and E9
from [24,25] at the scale Q2 is also shown. In Fig. 7, we
show H, 4(X, {, t; 0?) evaluated at Q? = 2 GeV? and for a
variety of ranges in { = x; and Q. In Fig. 8, we show the
working of the property of polynomiality. This is, in a
nutshell, a direct consequence of extending the operator
product expansion to the off-forward case [5,45], according
to which the Mellin moments of GPDs read (see also [46])

Galn) = (52)

PHYSICAL REVIEW D 84, 034007 (2011)
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FIG. 6 (color online). GPDs F,(X,0,0) ={H, E, I:Iq}, for
g = u (left) and g = d (right), evaluated at the initial scale,
02 =0.0936 GeV?, and at Q% =2 GeV?, respectively. The

dashed lines were calculated using the model in Refs. [24,25]
at the initial scale.

q — ! n—1
Hi(¢ 1) _[—1 H,(x, & )x" ldx

= An()(t) + An,2(t)(2§)2 +...t An,n*l(t)(z'f)nil:
(33)

where n = 1, and only even powers of ¢ are included.
Similar results hold for E,, H 4> and Eq [46]; for n > 1,
the equation is also Q*-dependent. To illustrate polynomial-
ity, the moments of H, were plotted vs £ at the initial scale,

,2,, for different values of #, and for n = 5 (the trend shown
in Fig. 8 holds for even larger values of n). The two sets of
curves represent the calculation using the parametrization
from this paper and the results of a polynomial fit in &2,
Clearly, our parametrization satisfies the property of poly-
nomiality, although this cannot be inferred directly from the
functional form in Eq. (48).

To summarize, we proceeded through two steps of our
recursive fit. We used the flexible model described in
Sec. 1II to first fit the nucleon unpolarized and polarized
PDFs, respectively, by using all parameters that enter the
expressions at t = 0 and { = 0. We subsequently fitted the
nucleon electromagnetic and electroweak form factors us-
ing the additional parameters that enter at  # 0 and { = 0.
At this stage of the analysis, we established that, in order to
obtain GPDs that are constrained by a set of parameters
which is consistent with the ones used for independent fits
of the DIS structure functions and of the nucleon form
factors, a total number of 4 (DIS) plus 3 (Elastic) parame-
ters per quark flavor per GPD is needed. The number of
parameters is, in practice, reduced because of the physi-
cally motivated ansatze introduced in our approach, as one
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FIG. 7 (color online). H,(X, ¢ ;0% evaluated at Q2 =
2 GeV?. Each panel shows H, plotted vs X at different values
of { = 0.18, 0.25, 0.36, 0.45. For each value of £, several curves
are shown that correspond to a range of values in —¢ from 7, =
-M?22/(1 —{) to 1 GeV?.

0 0.1 0.2 0 0.1 0.2

T T
Moments from GGL -
12 Polynomial Fit

t=-0.35GeV2  0th

n'" moment

Oth

0.2 0.4

FIG. 8 (color online). The polynomiality property in our pa-
rametrization. The dashed lines are the theoretical results using
the parametrization from this paper; the solid lines correspond to
a polynomial fit in &2 to the theoretical curves. The two sets of
curves display an excellent agreement with each other, thus
demonstrating that polynomiality is satisfied in our model.
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can see by inspecting the values in Table I. Physical
assumptions are both useful to understand the trend of
data and, at the same time, they are known to introduce a
bias. This aspect is well-known to affect all hard process
multivariable analyses and it can be perhaps overcome in
suitable neural network-based approaches [47,48].

The third set of experimental constraints is given by
DVCS-type data. In our analysis, we use strictly DVCS
data that are cleaner from the theoretical point of view, as
compared to deeply virtual meson production. By fitting
the CFFs that are functions of £, ¢, and Q?, we will be able
to provide a constraint on the otherwise elusive { depen-
dence of the GPDs. To understand how many extra pa-
rameters are needed in extending the fit to its third phase,
we devised a procedure explained in the following section.

IV. IMPLEMENTATION OF DVCS DATA

We now discuss our procedure to extract GPDs from
available DVCS data. Fully quantitative studies were per-
formed in [16,17], where a number of observables were
fitted that were obtained from experimental data for the
process ep — ep<y from both Hermes and Jefferson Lab.
In order to have a consistent comparison, we included in
our analysis a similar set of observables. Below, we list
their expressions in terms of the CFFs displayed in Secs. II
and III. In order to proceed, we first introduce the helicity
formalism. This method allows us to obtain a physical
interpretation of the various structures and azimuthal an-
gular dependences involved, in terms of the photon helicity
states.

A. Observables

The observables included in our fit are from all the
DVCS measurements that were available to us, to date.
These are the cross section for unpolarized electron scat-
tering, do/d® [49,50], the beam spin asymmetry, A,
[49,51], the beam charge asymmetry, A- [52], and the
transverse spin asymmetries, ADY®S and Al [52,53].
The cross section for scattering of an electron/positron
beam with polarization & off a proton target is evaluated
considering the sum of the DVCS and Bethe-Heitler (BH)
amplitudes,

o’

=TI'Tgy + Tpvesl® (54

where the factor I is given by

a3 XBjY 1

I =
167 Q2(2MXB]‘€1) V1+ €

with y = v/€;, €, being the initial electron energy and
v = €, — €, the momentum transfer; € = 4M2x%j/ 0%
and ¢ is the (azimuthal) angle between the hadronic and
leptonic planes in the frame where the virtual photon’s
momentum is along the z axis [10]. The unobserved
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helicities have been summed over implicitly.* The various
observables that we consider are written as

d ITd*e"  d*o
7 = EI:— + :I = T'(|Tgul* + | Tpvesl? + 1),

d dd dd
(55)
d*o! _ d*o! _
Pk S ek (56)
dial Lg |Tgul* + | Tpyesl? + 1
d*oct _ d*o” )i
AC — dd d(])7 — , (57)
do’ | do |Teul? + [ Tpvesl?
d*ol _ d* 0'4: a* u’ﬁ
ADYCS — L 7o o)
d4 ¥ d4
S1 T
TDVCS |2
- |2 Ir | 2 (58)
|Tgul* + |Tovcsl
1 (d4(r:; _ d4(7';) _ d*o _ d*oz,
Al =~ Vao o o D
ur ot o
S1 @ T
Irp
(59)

|Tgul? + [ Tpvesl®

where d® = d¢pdxy;didQ*; the superscripts +(—) refer to
the beams’ charge; T (|) are for oppositely polarized elec-
tron beams; and the subscripts <= (=) represent the trans-
verse target polarizations, corresponding to the angles ¢
and ¢ + 7, respectively. The subscript TP follows the
notation of [10] for a transverse polarized target; the sub-
script LU is for a longitudinally polarized beam, L, and an
unpolarized target, U, while UT is for an unpolarized beam
and a transversely polarized target.

An expression for Tgy, the amplitude for the BH pro-
cess, is given in Ref. [10]. Here, we write the amplitude in
helicity basis in order to facilitate the expansion of the
observables in bilinear products of amplitudes and GPDs.
The basic form of the BH amplitude is

hA A A 1

Tey = Lhe™M—Jy,, (60)
0
where
LY = ik, W)y, (v, [K] — q” D)y
+ v [ + P D)y Julky, ) (61)
and

“Comparisons with experiments require a rotation of the
angles given above from the Belitsky-Kirchner-Mueller [10]
frame to either the Lab frame or the ep center-of-mass frame
corresponding, respectively, to Jefferson Lab and Hermes
experiments.
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Sy = O A F(@7)y

o*TA L
2M

+

FZ(AZ)]U(p, A6

The DVCS amplitude for scattering of a lepton with
helicity 4 is given by

A AN

ENV
TDVCS

i(ky, h)y u(ky, h)—5 Q2 T\'\ev ", (63)

where u(ky(y), h) are the initial and final lepton spinors; the

hadronic tensor, TA Al

the outgoing photon polarization vector. Tpycg can be
expressed in terms of helicity amplitudes by considering
the following expansion on the polarization vector basis
[54,55],

was defined in Sec. II, and ef,Ay is

hA A A + _
Tpyes " = Ay f+,A;A;,A' +4, f—,A;A;,A’
/QZ

+ —A?,fO,A;AQ/,A/, (64)
14

with
*1 1+e€
+ _ — ¥ *ig
A} r<1/2(1— hf)
1
=+ T i(ky, W)y = iy Julky, h), (65a)
2 2
‘/f_A; = é 1 _66 — ii(ky, h)ysulky, h).  (65b)

The f amplitudes were given in terms of CFFs in Sec, II.
At LO, by disregarding the longitudinal photon polariza-
tion, the only amplitudes that were found to contribute are

Sot v+ fot—+> f+++-»>and f __ [see Egs. (15)]. As
a consequence, the only term contributing to the unpolar-
ized term, |Tpycsl?, and corresponding to the transverse
cross section, doy/dt, is given by

1

0’ 2(1 €)
|f++,+7|

In terms of CFFs,

1 1 1

a @ 2(1—-¢) 2 - xBj)2

— 3 (EH + HE+EIH + IHE)

e e (I ATV L S SR
Sl Ve b} (66)

| Tpvesl? =

| Tovesl

4 i +ap)EE 4, E ]
1 —xp 4M? Bl am?

(67)
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Equation (67) is analogous to the term ¢§V®® in the expan-

sion given in [10]. Note that the sum over all the unob-
served helicities is implicit.

An analogous decomposition into the virtual photon
polarization basis for the Bethe-Heitler amplitude of
Eq. (60) has the form

AN, _
Ton ™™ = By Tonw + Bypd oo

Vo?

+ TBg,A;JO,A;A’- (68)
The hadronic amplitudes are
ry
Jepan—n = = ———=F2(0),
Ny
(p))?
Joaw—or = A—"2_p,0)
2MA1 — €
V2m¢é
+0p s —=(F(t) + F5(2)), (69

Vi-&

where terms of order (A, /p*)?> and (M/p*)> were
dropped.

The lepton tensor for the Bethe-Heitler amplitude can be
calculated from Eq. (61) using the relation

YEYTYP = gRTyP T gy gty — i€ty 5y,
(70)

Momentum conservation gives the exchanged virtual

photon momentum as gy =k, +¢q —k =q¢ ' —qg=

g —(p—p')=¢q — A. It can be seen that the Dirac

algebra is reduced to evaluating a single y” or y”y°.
The interference term is given by

_ sh, AN AL, b AATAY, sh, A, AL AL - ANAY,
1= Z (Tgy Toves "+ Toves  "Teu -
nANA,

(71)

We consider the following expansion over helicity states

hAAA, h A A A
of Ty 7 and Thycg

lepton helicity A,

in terms of fAy,A;A;,A’ for fixed

I" = [([B;}}:*IJ‘FI"F +t Bg*+1J0-+ +t B;:L*1J—1;+,+]A;1
+ BT g + BY Jo s
+Bh J+1++]Ah )f++++
+ (B Tt s + BY (Joe v + BT (ALY
(72)

PHYSICAL REVIEW D 84, 034007 (2011)
+By Y e+ + By o+
+ B Y e JATD
LB vier - + B o+ By iy rr AL

+ B ¥ Jp1m v — BY (Jo -
_BI1J+1+ ]A )f+++7, (73)
+ (B Jare— + BY (Joo - + BT AL
(74)
+ By - = B o -
— By Ve Ao ] (75)

where the various helicity-dependent terms are defined in
Egs. (61), (69), and (64).

We then cast Eq. (71) in a form analogous to the struc-
ture of the leading terms in the expansion of Ref. [10],°

1= Zlh = Z(c{) + ¢l cosp + hs!sing), (76)
h h
with coefficients given by
o = —g =20 2=y KQ[F RedH + (F,
1 - 2 — XBJ
+ Fy)ReH — Fz%eé'] (77)
=-802—-2y+ y2)K[F1<Re3{ + (F,
2 — xB/

+ Fy)RedH — F2%e£] (78)

(F, + F))ImH

st =8y(2 - y)KI:FlASm}[ +
2 — XB]

t

The kinematical factor K is, at leading order in —t/Q?,

with 1, = —x3;/(1 — x5,)M>.
For a practical approach, we streamline both the kine-
matical dependence and the GPD content of the various

>Note that I has been written for electron scattering. For
positron scattering as, e.g., in A, I appears with a negative
sign. This underlines the forms displayed in Egs. (55)—(58) and
(84).
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observables. By keeping the leading terms in —/Q? and in D(¢) + C(¢p) cosep
xp;, we obtain Ac= B(¢) — D(¢) (82)
d?) = ['(B(¢) + C(¢) cosep), (80) .
ADVCS — E(d)) Sln(¢ B ¢S) (83)
. B(¢) — D(¢) ~
A = A(¢p) singp &1
Y B(g) + C(¢) cosep
|
4y, = (F@) + G(8)cosd)sinlo — g) + H(d) cos(s — b)sind, )

where the coefficients A to H are presented in combina-
tions of factorized forms isolating the kinematical factors
K pycs from the dynamical parts,

A = K}(¢)ImC,, (85a)
B = C%H(d’) + K]%VCSCDVCS + K?(d))mecb (85b)

= K} (p)ReC,, (85¢)
D = KY(p)NeC,, (85d)
E = KicsChvess (85e)
F = Q—KUT(¢>)C,O, (85f)
G = K{T(¢)C}], (852)
H= K}”(QS)C}]IT. (85h)

C%(¢) defines the BH cross section and is given, e.g., in
[10]. The kinematical factors depend on 7, xg;, y, 0% and €
(we give their expressions in Appendix D); notice that, for
the BH and interference terms, there is an extra depen-
dence on ¢ due to the presence of the BH propagators. At
leading order, i.e., disregarding terms multiplied by x%j,
xpjt, one has

Fj-[+

(F1 + F2)5-[ F2<5’ (86)

Coves = N2 H + Im2H + Re>H + Im>H, (87)

CYles = ReEImH — ReH Imé, (88)

t t 11—
cUl = m(z — XBj)F1Sm5 W 7 XB] demg-[
(89)
t .
CVT = (1 - xBj)WanmJ{. (90)

B. Fit results

We present results from our fit, including all parameters
that were fixed using the Reggeized diquark parametriza-
tion described in Secs. II and III and displayed in Table 1.

B(¢) —

D(¢)

|
We introduce additional flexibility through extra parame-
ters entering Eq. (34) in order to constrain the { depen-
dence from all available DVCS data. Although, in
principle, as many £ parameters as the number of flavors
and GPDs could be introduced, given the small data set
presently available, we use one value of 8 for all GPDs.
More accurate studies including flavor and GPD-
dependent B parameters will be conducted as more data
become available. In Fig. 9, we show the real and imagi-
nary parts of the CFFs, (¢, 1), appearing in Egs. (85).
Similar results are obtained for E, H, and E. One can see
that the slope in ¢ flattens out as —¢ increases.

Our fit uses the two currently available sets of data, from
both Hall A and Hall B collaborations at Jefferson Lab, and
the Hermes Collaboration, respectively. Since the kine-
matical ranges covered by the two experiments only

FIG. 9 (color online).

Real and imaginary parts of the CFFs,
H (¢, 1), entering Eqgs. (85). The CFFs are plotted vs xg; = ¢,
for different values of ¢, at Q> = 2 GeV?2. They are shown with
the theoretical uncertainty from the parameters in Table I.
Similar results are obtained for E and H.
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partially overlap, in this first step, we start by fitting the
Jefferson Lab set and subsequently extend the results of our
fit to predict the behavior of the Hermes set.

1. Jefferson Lab data

The DVCS data on A;; from Hall B [51] and on the
sum and the difference of the beam polarization cross
sections from Hall A [49] were implemented directly in
our fit. This allows us to constrain the parameter 8. In
Figs. 10 and 11, we show the results of our fits using the
quantity A;;(90°) = A/B, Eq. (81). The experimental
points in the figure were obtained by fitting A; () in
the 12 bins displayed in Ref. [51] (Fig. 4). The statistical
and systematic errors were added in quadrature, and no
error correlations were considered (this is giving rise in
our case to larger error bands, although the central points
coincide with the ones in Ref. [51]). A similar procedure

1F )
[ ALy(90)

Q’=1.2 GeV*
xp;=0.13

[¢)

A

1.2 14

e b b b s

0 02 04 06 08 1
-t (GeV?)

FIG. 10 (color online). Beam spin asymmetry, A; (¢ = 90°),
in 12 of the xz; and 0? bins measured in Hall B [51]. The data
points were extracted by fitting A;;;(¢); however, they do not
represent the uncertainties reported in the experimental analysis.
The second panel from the top includes also data from Hall A
[49]. The full circles, open circles, and triangles represent data in
similar xz; and 7 bins, but at Q? values slightly displaced around
the value reported in the legend. All curves were obtained at the
kinematics displayed in the figure. Dashed lines: results from the
fit using only the PDF and form factor constraints as from
Table I. The solid lines represent the effect of introducing the
{-dependent term, Eq. (34), in the numerator of the asymmetry
only.
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was used for the Hall A data that are also displayed in the
figures. The dashed lines in both figures are a prediction
of the fit using only the PDFs and form factor constraints.
Clearly, by taking only these constraints, the ¢ slope of
the CFFs is unconstrained and evidently off the data trend,
as it can be seen in the larger { = xp; bins. The additional
term in Eq. (34) can regulate this behavior. Two possible
ways of implementing it are shown, respectively, by the
full lines in the two figures. In Fig. 10, a multiplicative
term was considered only in the numerator of the asym-
metry, given by A. In Fig. 11, the zeta-dependent factor
was introduced in the GPDs and used to calculate the
CFFs in both the numerator and denominator of
the asymmetry. The effect of introducing such terms in
the GPDs gives a different dependence that can be as-
cribed to modifying both the real and imaginary parts of
the CFFs. We show results using two different expressions
for B, Egs. (35) and (36), in order to illustrate some of the
subtleties that are involved in the extraction of the CFFs
and GPDs from the data. While the two expressions give
almost identical results for the asymmetry, they impact the
various terms—A, B, and C in Egs. (85)—in different
ways. With more data in hand, including a separation of
the absolute cross sections, one will be able to perform
precise fits of the behavior in {.

0.75 A0

05F
0.25

L o o W SR AR A A M R

Q’=2.3 GeV?

0.3
02
01 ‘
0 e 3

ool by b b b o by g 1y

0 02 04 06 08 1 12 14
-t (GeV?)

FIG. 11 (color online). Experimental data: same as Fig. 10.
Dashed lines: results from the fit using only the PDF and form
factor constraints as from Table 1. The effect of the {-dependent
terms given in Eq. (35) and (36) is given by the solid lines and
the dot-dashed lines, respectively.
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In Figs. 12-15, we analyze the effect of the different
GPD components on the fit to Hall B data. Figure 12 shows
the contribution of the BH term and of the coeffcients A
and B from Egs. (85), with the {-dependent term from
Eq. (35) (lines with bullets) and without it (lines with no
bullets). Figure 13 shows the separate contributions of the
numerator and denominator, A, and B, Egs. (85), to the
ratio defining the asymmetry A;;(90°). B is given by the
sum of the three terms displayed in the figure. Notice that
the real part of the CFFs enters only T3ycg, Which is a

Q’=1.7 GeV*
1 xp;=0.25
10-;
o :
=
D
=
(=]
(=7
£
=
© 2
°;10'r
=Y
)
-
<
107}
R SRR RS SNSRI S SR B S
0 02 04 06 08 1 12 14

-t (GeV?)

FIG. 12 (color online). Contribution of the BH term (dot-
dashed line) and of the coefficients A and B from Egs. (85)
with the /-dependent term from Eq. (35) (lines with bullets), and
without it (lines with no bullets), at 0? = 1.7 GeV? and xp; =
0.25. Similar results are obtained in other kinematics.

Q’=1.7 GeV’
1 xy;=0.25

10° o
Z
=
%}
=
)
-7
£
3
© 2
g 10 |
) C
)
-
<«

10-3 nd

| L | | | |

NI T SR L L L
06 08 1 12 14
-t (GeV?)

FIG. 13 (color online). Separate contributions of the numerator
and denominator, A and B, Egs. (85), to the A;,(90°). B is given
by the BH term (dot-dashed line) plus the sum of the |Tpycs|?
and interference terms (dashed line). 0> = 1.7 GeV?, and xp; =
0.25; similar results are obtained in other kinematics.
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1 L
3
S o't
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(=7
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5
< 102}
-
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— DVCS+I+BH
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— DVCS
10-3 3 7\ I 1 1 1 1 1
0 02 04 06 08 1 12

-t (GeV?)

FIG. 14 (color online). Impact of different GPD components
on data fit. The effect of including (solid curves) and excluding
(dashed curves) the real part of the CFFs is shown for each
component. 0% = 1.3 GeV?, and xgj = 0.12; similar results are
obtained in other kinematics.

relatively small contribution. To understand its impact on
the various observables, in Fig. 14, we plotted results both
including and excluding the real part.

Finally, in Fig. 15, we show the effect of the GPD H on
the fit. We confirm the result also quantitatively reported in
Ref. [17] that DVCS data from an unpolarized proton
target at Jlab kinematics are dominated by the contribution
of the GPD H. The dashed curves in the figure were
obtained by disregarding the contribution of H. E and E
have also very little impact on the data fit.

1 L
3
S 10t
£ ]
(=7
£
=]
S
g
% 1072}
-
< — A
— DVCS+I+BH
— DVCS+I
— DVCS
10 -3 ; 7\ I 1 1 1 1 1
0 02 04 06 08 1 12
-t (GeV?)

FIG. 15 (color online). Impact of different GPD components
on data fit. The effect of including (solid curves) and excluding
(dashed curves) H in the CFF evaluation is shown. The contri-
bution of E is always negligible; 0? = 1.3 GeV?, and xp; =
0.12. Similar results are found in other kinematical bins.
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0.1 e,
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0.01F %

O X =036
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FIG. 16 (color online). Hall A data [49] for the “‘sum” (upper
panel) and “‘difference” (lower panel) of the two electron beam
polarizations. Shown are curves, including the contribution of
the {-dependent factor from Eq. (34) (solid lines) and neglecting
it (dashed lines). All terms (DVCS, Interference, and Total) are
shown for the sum graph. The wide yellow bands in both panels
represent the error of the data fit. The green band in the
asymmetry graph is the theoretical error from our parametriza-
tion.

In Fig. 16, we show the results of our fit vs Hall A data
[49]. These are given as the “sum’ and “‘difference’ of the
two polarizations for the electron beam. Together with the
data, we also plot the results of a fit performed in [49]
(wide yellow bands). All theoretical curves are shown
with and without the /-dependent correcting factor from
Eq. (34). Moreover, while we confirm that the sum, or
absolute cross section, part is dominated by the BH term,

Im C,

I T Y Y RO B
-0.35 -0.325 -0.3 -0.275 -0.25 -0.225 -0.2 -0.175 -0.15
t (GeV?)

FIG. 17 (color online). Coefficient C, Egs. (72), extracted from
Hall A data [49]. Shown are the contributions from the GPDs, H,
E, and H. All curves include the term in Eq. (34). A comparison
with a previous prediction based on a simplified diquark model
and, including H, only [25] is also shown.
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we also point out the importance of the contribution from
the pure DVCS scattering, or |Tpycs|?, at leading order in
Q?. Also shown are the theoretical error bands for the
asymmetry. In Fig. 17, we compare our results to the
experimental extraction of the imaginary part of the inter-
ference term coefficient in A;y, Eqs. (81) and (85). The
role of the CFF for H proves fundamental in determining
the slope vs —t of this term. In order to illustrate this, we
show a comparison with a previous calculation of the
interference term where H was not included [25].

2. Hermes data

In the second phase of our analysis, we use our fit results
to Jlab data to predict the quantities A;y, Ac, and Ayp
extracted at Hermes [52,53]. Hermes data are provided as
“coefficients” of the azimuthal angle-dependent terms.
The dependence of these coefficients on the various kine-
matical variables is sensitive to the set of approximations
that one uses in the extraction, thus affecting quantitative
analyses. In order to facilitate the comparison and to once
more show some of the subtleties involved, in Fig. 18, we
show the results of our fit for A, U vs —t, Qz, and Xgj»
respectively, calculated at each kinematical bin provided
by Hermes [56] (curve denoted as ‘“Hermes kinematics’)
and at the nominal average values presented in each panel.
It is interesting to notice that, due to the correlation be-
tween xp; and Q? in the data, different features arise when
using the average bin values. In the figure (lower panels),

E — xs0.097 o {=0.118GeV2 E — -t=0.118 GeY?
0.(1) 3 Q’=2.5 GeV? 0,097 E Q=25 GeVY
01F E 3
02 ~4 ¢ \\\ 3
-0.3 ;* ? ?
-0.4 ;* ? 2
-0.5 F—  Hermes kinematicsf =
068 P S
0.1 ;* % ;7
0 E E E
01F 3
02
03F 3
04E epves F 3
OSE Hermes kinematicsf E
065 b LB
107 10" 11 107
-t (GeV?) Q (GeV?) Xy

FIG. 18 (color online). Calculations at Hermes kinematics
[52,53,56]. Shown is A;;;,(90°) vs —t, Q2, and xp,, respectively,
calculated at each kinematical bin provided by Hermes [56]
(curve denoted as ‘“Hermes kinematics’) and at the nominal
average values presented in each panel. It is interesting to notice
that, due to the correlation between Xpj and Q? in the data,
different features arise when using the average bin values. In the
lower panels, we also show the effect of disregarding the DVCS
term in the denominator (dashed curves).
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FIG. 19 (color online). Cross section components contributing
to A;(90°): A, BH (dot-dashed lines), the sum of the T3y
and the BH/DVCS interference terms (dashed lines), and B,
Egs. (85). The curves in the figure were calculated for the
same kinematical bins as in Fig. 18 [56]. In order to discern
the role of the various components involving GPDs from the
kinematics, we also show “dry runs” of our code in the lower
panels obtained by setting all GPD factors equal to one.

we also show the effect of disregarding the DVCS term in
the denominator. Similarly to the Jlab results, the GPD that
the data are largely sensitive to is H, the role of the other
GPDs being marginal. As a concluding remark on A, ;;, we
notice that Jefferson Lab Hall B data seem to suggest a

S
o

0.15

S
—

0.05

0
=

e e e Tt

< -0.05
-0.1

-0.15

-0.2

-0.25

°eeeee
- W R W

'
=

-0.1
-0.2
-0.3

o b e b e b e e b by

0.1 0.2 0.3 0.4 0.5
-t (GeV?)

FIG. 20 (color online). Coefficients of the beam charge asym-
metry, Ac, extracted from experiment [52,53]. The lower panel is
the coefficient for the cos¢-dependent term in Eq. (82), while
the upper panel is the cos¢-independent term.
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decrease of Ay with xp;. The curves in Fig. 18 used
Jlab data in the fit and, therefore, they show a definite slope
in xg;.

In Fig. 19, we show the different cross section compo-
nents contributing to A;;(90°), given by A and by the
contributions from BH, T3ycs, and the BH/DVCS inter-
ference terms in B, Egs. (85). The curves in the figure were
calculated for the same kinematical bins as in Fig. 18 [56].
In order to discern the role of the various components
involving GPDs from the kinematics, we also show “‘dry
runs” of our code in the lower panels obtained by setting
all GPD factors equal to one. The various kinematical
coefficients used in this analysis are written in Appendix D.

Finally, in Fig. 20 and 21, our predictions for A- and
Ay are shown vs —t. The agreement with Hermes data is
remarkably good within our theoretical error, despite the
fact that we did not implement directly such data in the fit.
Notice the larger error bar in A and A3, which is domi-
nated by the error on H, present in these observables. The
notation we use in the figures, matching Eqs. (85) and
Refs. [52,53,56], is

D(¢)/(B(¢) — D(¢)) = AL,
C(¢)/(B(¢) — D(¢)) = Ag.
(Fig. 20) and

+

C1

AUT,I

S1

AUT,[

oo b b b b b by vy

0 01 02 03 04 05 06 07
-t (GeV?)

FIG. 21 (color online). Coefficients of the beam charge asym-
metry, Ay, extracted from experiment [52,53]. The upper panel
shows the terms E and F from Eqs. (83) and (84), respectively;
the middle panel shows G, and the lower panel H, both in
Eq. (84). The curves are predictions obtained extending our
quantitative fit of Jefferson Lab data to the Hermes set of
observables.
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E(¢)/(B(¢) — D(¢)) = Ay(DVCS),
F(¢)/(B(¢) — D()) = Ayr(D),
G(¢)/(B(¢) — D(¢)) = Ay e
H(¢)/(B(¢) — D($)) = Ay g

(Fig. 21).

V. CONCLUSIONS AND OUTLOOK

In this paper, we have presented a parametrization of the
chiral-even GPDs that is inspired by a physically motivated
picture of the nucleon as a quark-diquark system with
Regge behavior. The spin structure of each of the four
GPDs is determined via the covariant quark-nucleon scat-
tering amplitude, with a diquark exchange. The masses,
couplings, and Regge power behavior that set the scale for
the dependence on the kinematic variables, X, £, ¢, and 02,
are determined via a recursive procedure. We fit the parton
distribution functions f; and g; for the u and d quarks with
H(X,0,0) and A(X,0,0) at a low scale. The electromag-
netic form factors, F;(f) and F,(r), constrain the first X
moments of H(X, £, t) and E(X, ¢, t). These first moments
are constrained to satisfy polynomiality, thereby removing
the ¢ dependence and leaving only the # dependence. This
requires fixing the parametrization of the ERBL region,
X </, for all £ so as to satisfy a sum rule for the form
factor. The same approach is used for the axial-vector form
factor and A. Similarly, the pseudoscalar form factor con-
strains E, although we have not used that here (the
contribution that is not dominated by the 7 pole is not
well-known and is the subject of a forthcoming paper [32]).

In a previous paper, Goldstein and Liuti [19] have shown
that the simple parton interpretation of the ERBL region is
dubious, so the parametrization used here for that region is
chosen to have a polynomial form and to satisfy the proper
crossing symmetry while maintaining polynomiality for
the first moments. This constrains the X — { dependence
through the sum rule, Eq. (51). Having fixed the parameters
of the Regge and diquark functions (Table I), the set of
measured DVCS observables can be determined using
evolution equations to match the Q? of different data
sets. From these GPDs, the Compton form factors that
enter the cross sections and asymmetries can be computed.
Beam asymmetry data indicate the need for a damping of
the higher { behavior of the contributing CFFs. We incor-
porate this effect through a multiplicative function of X, £,
and ¢ that lowers the high { value at higher ¢ [Eq. (34)].

The final determination of the parameters provides an
excellent fit to all of the available DVCS data. Newer
DVCS cross section and asymmetry measurements at
Jefferson Lab and COMPASS will provide a test of the
flexibility of the model developed here. At this point, we
see that this physically motivated model provides a far-
reaching interpretation of the separate spin-dependent
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GPDs, and thereby, a picture of the transverse structure
of the nucleons will emerge.

A number of questions remain that are being addressed
in ongoing work. The connection between the Regge-like
behavior of these GPDs and the more general form of
variable mass diquark exchanges has opened up the possi-
bility of having the Regge behavior emerge from diquark
mass variation. Such a variation will better approximate
the Fock space structure of the nucleon. A second, impor-
tant concern is the inclusion of sea quarks, whose contri-
bution will affect the low xz; dependence, particularly the
singlet, crossing even GPDs, whose Regge behavior is
dominated by Pomeron exchange. Finally, the important
extension of this parametrization scheme to the chiral-odd
GPDs is critical for the phenomenology of deeply virtual
meson electroproduction, which was begun particularly for
the 770 in Ref. [21]. The connection of chiral-odd GPDs to
the transversity structure of the nucleon is of great interest
as a signal of quark and gluon orbital angular momentum.
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APPENDIX A: USEFUL
INTEGRATION FORMULAS

A crucial point regarding the A; dependence in
Egs. (27)—-(30) is that the integral over k; can be done
explicitly over the azimuthal angle first, to yield the angu-
lar dependence. This is clear in noting that k; + ik, =
ke’ and k; + ik, = [k e’ — (1 —X)/(1 = DA,
where A | can be chosen to be in the x direction with no
loss of generality. Also, A -k; = A,k |cos¢. The ¢
dependence comes only from the k| in the helicity flip
numerators and the k? =#k>+ A2 —kTA™ +k AT—
2A | -k, in the denominators. When doing the integral
over ¢ from 0 to 277, the single factor e’? gives 0, as does
cos¢ or sin¢g alone. Hence, single flip amplitudes will
beginat A terms and double flip ones at A3 . The integrals
used are of the form

o 1 2ma
fo md¢_m’ (Ala)
2m cos¢ B 27
fo md‘f’_m, (Alb)

where b = 2k | A |, and a does not depend on A | .
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APPENDIX B: INITIAL SCALE GENERALIZED
PARTON DISTRIBUTIONS

We present here a more practical version of the diquark
contribution to the GPDs at the initial scale, Q? =
0.0936 GeV?. The complete parametrization needs to be
multiplied by the Regge term provided in Eq. (34). By
defining

L2(X) = XM% + (1 — X)M3 — X(1 — X)M?, (Bla)
u=m-+ XM, (B1b)
n'=m+ XM, (Blc)

I — X-7
X =7 (B1d)
A=[L*(X)+ (1 - X)2A3 % (Ble)
B=2[L*(X) - (1 — X)*A%] (B1f)
all four GPDs can be written as follows:
F(X, 1) = 7G (1 — X)P/2(1 — X')32
0 dk g0t g1k + g2K2
8 [0 [x+ OF [A + B+ 2F2 o>
(B2)
where k = k2. One has for E,
G, =2Np(1 = X)W1 —(R(X, 1), (B3a)
G, =0, (B3b)
go = pM[L*(X') + (1 — X")?A7% ], (B3c¢)
g1 = —M(p —24)), (B3d)
g, =0. (B3e)
For E,
e

Gy = 2N (1 — X)W1 — g(zl 7 2)R(X, 1), (Bda)

G, =0, (B4b)

go = wM[L*(X') + (1 — X')*A7 ], (B4e)

g1 = —M(p +24)), (B4d)

g, =0. (B4e)

For H,

G =N 1_%Ru't) B5
1 — HH » g’ > ( a)
§2

=—" _F, B5b
g0 = uu/[LA(X) + (1 — X')?A% ], (B5c)
g1 = pp' +[LAX) — (1 - X)?A%]  (B5d)
g =1 (B5e)

For A,
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1-¢
GI = NI:I—ZR(X: g’ t):

(B6a)
VI—=¢
2o

G, = mE (B6b)

g0 = pu/[L2(X)) + (1 — X’)ZAZL], (B6e)

g1 = pp' —[LA(X) — (1 - X")?A%]  (B6d)

g =1L (B6e)

In the forward limit, the GPDs reduce to the form
00 + g1k + g2K2

G = nG(1 - X)} f dic 2 B7
WGI( ) 0 K [K + Lz(X)]S ( )

where the functions g, g, and g, are evaluated at A2l =0
and ¢ = 0. Solving the integral for each case, we get

2u?+ LA(X
M ()X,a

H(X,0,0) = m(1 — X)? , BS
( ) = 7r( ) Lo (B8)
2 _ 12
A(X,0,0) = 7(1 - X)32'“—[64(X)X*“, (B9)
6L
M
E(X —27(1 — X EL xa Bl
(X,0,0) = 27( ) 36 , (B10)
E(X,0,0) = 7M(1 —x)ﬁxw[ﬂ (B11)
» > 3L6
4ul(1 —2X)M? — M2 + M?
_4pl( )5L8 X A]]. (B12)

APPENDIX C: PRINCIPAL VALUE INTEGRATION

The principal value integrations entering the CFFs
defined in Eq. (3b) were carried out with the modified
Gaussian method, yielding

L HY (X, (f Lo HY(X, 4t
Red =py [ axTKLD 1 H XL
{/2 X—{ Z/2 X

B l—Z 1 H+(X’Z’t)_H(§1§rt)
—Jﬂggﬂmgﬂ—ﬂﬂﬂdX "
L CHY(X, 1)

+ dX
/2 X

(CDhH

APPENDIX D: KINEMATICAL COEFFICIENTS IN
ASYMMETRIES AND CROSS SECTIONS

The kinematical coefficients in Egs. (85) are

o _ —8K*(2 —y)} 1
A e REOTX PO
1 _ 8K(2 - y)
Kl(d)) xBjszl((ﬁ)Pz(d’)ty 02)
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— — 2 with [10
Xpjy Pi()Py(P)t 1
P(¢$p) = ———=(H + 2K cos ), (D7)
. 22-2y+y) 1 Wit e
Kpycs = 2 22’ (D4)
(2—xp j) y0
t
Kpyes = K (1— y)Mz( y+y )2 —_— y20%
(D5) where
M 2—2y+y? H=(1_)’_l)"52)<1+L)_(1_XB')(2_)’)L-
KiT=-85-———=yT—-y, (DY 2 0 ! 0
Q 2 — xBj
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