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In this work, the complete one-loop calculation of meson-meson scattering amplitudes within Uð3Þ �
Uð3Þ chiral perturbation theory with explicit resonance states is carried out for the first time. Partial waves

are unitarized from the perturbative calculation employing a nonperturbative approach based on the N=D

method. Once experimental data are reproduced in a satisfactory way we then study the resonance

properties, such as the pole positions, corresponding residues and their NC behaviors. The resulting NC

dependence is the first one in the literature that takes into account the fact that the �1 becomes the ninth

Goldstone boson in the chiral limit for large NC. Within this scheme the vector resonances studied,

�ð770Þ, K�ð892Þ and �ð1020Þ, follow an NC trajectory in agreement with their standard �qq interpretation.

The scalars f0ð1370Þ, a0ð1450Þ and K�ð1430Þ also have for large NC a �qq pole position trajectory and all

of them tend to a bare octet of scalar resonances around 1.4 GeV. The f0ð980Þ tends asymptotically to the

bare pole position of a singlet scalar resonance around 1 GeV. The �, � and a0ð980Þ scalar resonances
have a very different NC behavior. The case of the � resonance is analyzed with special detail.
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I. INTRODUCTION

A completely reliable theory to describe the physics in
the intermediate energy region (resonance region) of QCD
is still missing nowadays, since neither the low energy
effective theory of QCD, namely, chiral perturbation the-
ory (�PT) nor perturbative QCD is valid in this region. The
appearance of very broad resonances, such as � and � [1],
makes the discussion even more difficult and thus poses a
great challenge for theorists. Several attempts have been
made to address the question by implementing nonpertur-
bative methods inspired from the S-matrix theory [2–4],
typically on the �PT results. One has approaches like the
inverse amplitude method (IAM) [5–8] to establish the
unitarized amplitudes, others are based on the N=D equa-
tions [9–13], Roy equations [14–16], or on building spe-
cific dispersion relations for the scattering amplitudes
[17,18], etc. Although the different approaches determine
values for the pole positions of the broad resonances � and
� in good agreement between each other, their nature is
still a controversial subject. One way to get insight into
them is to track the NC trajectories of resonance poles in
the complex plane. All the previous works along this
research line [19–24] are performed within SUð3Þ or
SUð2Þ �PT [25]. In the former case the degrees of freedom
(d.o.f.) correspond to the lightest octet of pseudoscalar
mesons, pions �, kaons K and the isoscalar �8, while the
singlet pseudoscalar �1 is considered as a heavy field
buried in the chiral counterterms. In the case of SUð2Þ
�PT only pions are taken as degrees of freedom. In

Ref. [26] the scalar-isoscalar states, including the �, are
investigated within the large NC Regge approach.
Uð3Þ �Uð3Þ chiral symmetry in QCD is broken because

of quantum effects that violate the conservation of
the singlet axial-vector current by the UAð1Þ anomaly
[27–29]. As a result the singlet pseudoscalar �1 is not a
pseudo-Goldstone boson [30]. Nevertheless, from the large
NC QCD point of view, the quark loop responsible for the
UAð1Þ anomaly [27] is 1=NC suppressed, thus indicating
that the �1 becomes the ninth pseudo-Goldstone boson in
the large NC limit [31,32]. Hence it is necessary to include
the �1 meson as a dynamical degree of freedom if one
attempts to discuss the NC trajectories of various reso-
nances. This important fact was lacking in previous studies
and is one of the main motivations of our current work.
Thanks to the large NC QCD, the singlet �1 field can be

conveniently incorporated into the effective field theory by
enlarging the number of degrees of freedom of the theory
from the octet of pseudo-Goldstone bosons to the nonet,
which is usually called Uð3Þ �PT [33]. One advantage of
foremost importance in our work is to use Uð3Þ �PT for
considering the running with NC of resonance poles be-
cause then one has a framework that conceptually admits to
consider the largeNC limit in �PT. For example, it then has
the proper number of degrees of freedom.
Compared with SUð3Þ �PT, employed in the previous

studies [19–24], a novel ingredient in Uð3Þ �PT is the �1

mass term from the UAð1Þ anomaly, which has nothing to
do with the current quark masses. The appearance of this
new scale in �PT could totally breakdown the well
celebrated chiral power counting. The introduction of the
1=NC expansion in Uð3Þ �PT fixes the problem, since the
singlet mass squared M2

0 behaves as Oð1=NCÞ in the large

NC limit. Thus, in Uð3Þ �PT there are three expansion
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parameters: momentum, quark masses and 1=NC, giving
rise to a joint triple expansion �� p2 �mq � 1=NC.

However, one should bear in mind that the value of the
singlet massM0, mainly determined from the masses of the
physical states � and �0, is not a small quantity (for a
review see Ref. [34]). In connection with this problem
Ref. [35] used the infrared regularization method (IR),
which is proposed to cure chiral violating terms from
loop corrections in baryon chiral perturbation theory in
the low energy region [36,37], to investigate the �0 physics
withinUð3Þ �PT. In IR the basic one-loop scalar integral is
divided into the infrared singular and regular parts. The
regular part is not considered in IR because its effects are
absorbed into the low energy constants of the theory. One
only needs to consider the infrared singular part. However,
contrary to baryon chiral perturbation theory, nothing pre-
vents the appearance of large �0 masses in the vertices
from derivatives acting on the external �0 fields, while this
is not an issue in baryon chiral perturbation theory because
of baryon number conservation. By the same token, in
meson �PT the total energy squared in the center of
mass frame (CM) is not restricted to be around one, two,
etc. �0 masses, which could indeed spoil the validity of a
loop calculation within IR. Although there are some spe-
cial processes, such as �0 ! ��� [35], which happen to
be covered by the constrained energy region of IR, in
general one can not naively apply IR in the pure meson
sector.

In the present discussion, we employ standard dimen-
sional regularization, as in conventional SUð3Þ �PT [25],
already applied in Uð3Þ �PT to calculate the pseudoscalar
weak decay constants in Ref. [38]. Then, the triple chiral
expansion scheme is necessary for preserving the power
counting. Investigations within Uð3Þ �PT along this line
mainly focused on the construction of higher order
Lagrangians [39,40] and the tree-level and one-loop cal-
culations for �� �0 mixing [38,41]. An important contri-
bution of our work is to offer the first complete one-loop
calculation in Uð3Þ �PT for meson-meson scattering, in-
cluding both the loop diagrams contributing to the pseudo-
Goldstone masses and decay constants, as well as the
genuine ones of meson-meson scattering. A preliminary
version of this calculation is given in Ref. [42].

Previous analyses from other groups only considered
tree-level amplitudes or performed partial one-loop calcu-
lations [43–45]. The �0 ! ��� decay was studied in de-
tail. Ref. [35] performed a one-loop calculation within IR,
and Ref. [46] undertook a two-loop calculation within the
framework of nonrelativistic field theory. However, in this

decay the three-momenta of the pions are not small com-
pared with their mass for some region of the kinematics.
Recently, Ref. [47] discussed the same process within the
triple expansion scheme by considering tree-level ampli-
tudes and part of the s channel loops, resumming �� final
state interactions.
Since one of the main interests of our work is to study

resonance properties, we will explicitly include bare reso-
nance fields in the Lagrangian within the framework of
resonance chiral theory [48,49]. However, including reso-
nances as dynamical degrees of freedom is not enough to
guarantee that one can safely apply the perturbative results
up to the resonance region, since the loops of pseudo-
Goldstone bosons, specially the unitarity or the s channel
loops, start to play an important role around the energy
region where resonances emerge. Thus, a proper way to
resum unitarity loops is crucial to study resonance proper-
ties. We use in this work the method provided in Ref. [10]
to accomplish this resummation. Notice also that not all the
resonances that stem in our study correspond to bare fields
because new resonances come out when strong enough
interactions are resummed.
The present paper is organized as follows. Section II

is devoted to the introduction of the relevant chiral
Lagrangian. The structure of the perturbative scattering
amplitudes is elaborated in Sec. III, which is followed by
the partial wave projection and its unitarization in Sec. IV.
The phenomenological discussion, including the fit quality
and features of resonances, such as masses, widths, resi-
dues and NC behavior, is given in detail in Sec. V. We
conclude in Sec. VI.

II. RELEVANT CHIRAL LAGRANGIAN

The chiral Lagrangian at leading order in Uð3Þ �PT
reads [33]

L � ¼ F2

4
hu	u	i þ F2

4
h�þi þ F2

3
M2

0ln
2 detu; (1)

where h. . .i denotes the trace in flavor space and the last
term corresponds to the UAð1Þ anomaly �1 mass term. The
definitions for the chiral building blocks are

u	 ¼ iuþD	Uuþ; �þ ¼ uþ�uþ þ u�þu;

U ¼ u2 ¼ eið
ffiffi
2

p
�=FÞ; D	U ¼ @	U� ir	Uþ iUl	;

� ¼ 2Bðsþ ipÞ; (2)

where r	, l	, s, p stand for external sources and the

pseudo-Goldstone bosons are collected in the matrix

� ¼
1ffiffi
2

p �0 þ 1ffiffi
6

p �8 þ 1ffiffi
3

p �1 �þ Kþ

�� �1ffiffi
2

p �0 þ 1ffiffi
6

p �8 þ 1ffiffi
3

p �1 K0

K� �K0 �2ffiffi
6

p �8 þ 1ffiffi
3

p �1

0
BB@

1
CCA: (3)
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In addition, F is the axial decay constant of the pseudo-
Goldstone bosons in the simultaneous chiral and large NC

limit. In the same limit the parameter B is related to the
quark condensate through h0j �qiqjj0i ¼ �F2B�ij. The ex-
plicit chiral symmetry breaking is implemented by taking
the vacuum expectation values of the scalar external source
field s ¼ diagðmu;md;msÞ, withmq the light quark masses.
Throughout we always work in the isospin limit, i.e. taking
mu ¼ md.

We follow the framework in Ref. [48] to include bare
resonance fields, where the interaction terms of pseudo-
Goldstone bosons and resonances are invariant under chiral
symmetry [50] and the discrete symmetries of charge con-
jugation C and parity P. Because of the presence of heavy
resonance states, the momentum expansion is not valid any
more in this theory. Nevertheless the 1=NC expansion
provides another guided principle to construct the
Lagrangian. The generic NC leading structure of the inter-
acting operator in resonance chiral theory has only one
flavor trace and in a schematic way can be written as

O i � hR1R2 . . .Rj�
ðnÞi; (4)

where �ðnÞ denotes the chiral building block with chiral
order OðpnÞ, that only incorporates the pseudo-Goldstone
bosons and the external source fields, and Ri stands for the
resonance fields. Although in the resonance chiral theory
the interacting terms with higher chiral orders (n � 4) are
not suppressed in general, many of them are absent if one
invokes the short distance constraints from QCD in large
NC [49] and does not allow fine tuning between different
operators [51]. To be practical in the phenomenological
discussion we restrict ourselves by including the full set of
operators with n � 2. Concerning the number of resonance

states in the interacting vertices, the most relevant ones in
meson-meson scattering consist of one single resonance
field.
In regard to the operators attached only to the interac-

tions between the pseudo-Goldstone bosons beyond lead-
ing order, it is commonly believed that they encode the
high-energy dynamics of the underlying theory, which
could be represented by the heavier states, such as reso-
nances. It has been shown that at Oðp4Þ in SUð3Þ �PT the
low energy constants (LECs) are saturated in good ap-
proximation by the lowest multiplet of resonances and
thus no additional pieces of LECs seem to be typically
needed in the theory [48,49].
In the present work, we exploit this assumption on the

saturation of the LECs by the lightest resonances, so that,
instead of local chiral terms contributing to meson-meson
scattering we take the tree-level exchanges of the scalar
and vector resonances. In this way we keep all local con-
tributions to meson-meson scattering up to and including
Oð�3Þ, while also generating higher order ones. We also
calculate in addition the one-loop contributions that count
one order higher in �.
The relevant resonance operators for the interactions

with the pseudo-Goldstone bosons read [48]

LS ¼ cdhS8u	u	i þ cmhS8�þi þ ~cdS1hu	u	i
þ ~cmS1h�þi þ ĉdhS9u	ihu	i þ ĉmS1ln

2 detu; (5)

L V ¼ iGV

2
ffiffiffi
2

p hV	
½u	; u
�i; (6)

where the resonance states are collected in the building
block R ¼ S, V,

S1 ¼ �1; S8 ¼

a0
0ffiffi
2

p þ �8ffiffi
6

p aþ0 �þ

a�0 � a0
0ffiffi
2

p þ �8ffiffi
6

p �0

�� ��0 � 2�8ffiffi
6

p

0
BBBBB@

1
CCCCCA; S9 ¼ S8 þ 1ffiffiffi

3
p S1;

V	
 ¼

�0ffiffi
2

p þ 1ffiffi
6

p !8 þ 1ffiffi
3

p !1 �þ K�þ

�� � �0ffiffi
2

p þ 1ffiffi
6

p !8 þ 1ffiffi
3

p !1 K�0

K�� �K�0 � 2ffiffi
6

p !8 þ 1ffiffi
3

p !1

0
BBBB@

1
CCCCA

	


:

(7)

The corresponding kinetic terms for resonance states read [48]

L V
kin ¼ � 1

2
hr�V�	r
V


	 � 1

2
M2

VV	
V
	
i; (8)

L S
kin ¼

1

2
hr	S8r	S8 �M2

S8
S28i þ

1

2
ð@	S1@	S1 �M2

S1
S21Þ; (9)

where

r	R ¼ @	Rþ ½�	; R�; R ¼ V; S; �	 ¼ 1

2
½uyð@	 � ir	Þuþ uð@	 � il	Þuy�: (10)
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Compared with Ref. [48] two additional 1=NC suppressed
operators appear in LS due to the inclusion of the singlet
�1. These are the monomials proportional to ĉd and ĉm in
Eq. (5). From the exchange of the scalar resonances these
terms give rise to tree-level meson-meson contributions
that are higher order, at least Oð�4Þ. In addition, these
new operators mainly contribute to processes involving
the �0 meson1 and since we deal with experimental data
related to �, K and � in the present discussion, as shown
explicitly below, the states with �0 only enter through an
indirect way. So their effects are rather tiny in the current
discussion and we discard these two new terms throughout.
We have checked that if included our results barely change.
For the remaining parameters of scalar resonances, instead
of imposing the large NC relations to the couplings and
masses of the octet and singlet, such as ~cd;m ¼ cd;m=

ffiffiffi
3

p
and M�1

¼ M�8
[48], we free them in our discussion. In

this way, we consider effects beyond leading order of 1=NC

in the scalar resonance Lagrangian implicitly.
The antisymmetric tensor formalism is used to describe

the vector resonance since, as it is demonstrated in
Ref. [49], only in this way does one not need to include
extra terms in the pseudo-Goldstone Lagrangian to fulfill
the QCD short distance constraints. For the vector reso-
nances ! and �, we assume ideal mixing throughout

!1 ¼
ffiffiffi
2

3

s
!�

ffiffiffi
1

3

s
�; !8 ¼

ffiffiffi
2

3

s
�þ

ffiffiffi
1

3

s
!; (11)

and we do not include any 1=NC suppressed operators in
this respect. Nonetheless, we employ different bare masses
for the �ð770Þ and K�ð892Þ in order to obtain a good fit to
data.

Before finishing this section, we introduce the last pieces
of the chiral Lagrangian involving only pseudo-Goldstone
bosons at Oð�Þ [40]

L� ¼ �1

F2

12
D	cD	c � i�2

F2

12
hUþ�� �þUic ;

c ¼ �i ln detU; D	c ¼ @	c � 2ha	i; (12)

with a	 ¼ ðr	 � l	Þ=2. The inclusion of such operators

does not improve our fits to data indeed. However, we take

into account the monomial proportional to �2 to bring our
prediction for themasses of� and�0 at their physical values
[1]. This is necessary in the present work, since in the fit all
of the pseudo-Goldstone masses have their physical values,
while we need to use our prediction for the masses when we
discuss the NC dependence of our results, in particular, the
movement of resonance poles withNC. Thus, it is necessary
to match our prediction for the masses of the pseudoscalars
as a function of NC with their physical values for NC ¼ 3.
Precisely the �2 term leads to an important contribution to
the � and �0 masses and in the triple expansion scheme its
chiral order is lower than the one of chiral loops. Though
this operator contributes tomeson-meson scattering aswell,
it mainly contributes to the processes involving �0 and the
inclusion of this term barely affects the global fit. Unlike the
�2 operator the monomial proportional to �1 in Eq. (12)
only contributes to themasses and the scattering amplitudes
in an indirect way, i.e. through the normalization of the �0
field, and its influence in the global fit is tiny. Indeed, if we
include this counterterm in our fits to data the resulting fitted
value tends to vanish. As a result, we do not consider the�1

term any further in scattering or for the �� �0 mixing and
masses.
Finally, we want to point out that there is no double

counting problem by having both the resonance
Lagrangians in Eqs. (5)–(9) and the local pseudo-
Goldstone operator �2, since the �2 term can be only
generated by integrating out the excited pseudo scalar
resonances, instead of the scalar and vector ones consid-
ered here.

III. STRUCTURE OF THE SCATTERING
AMPLITUDES

Even in the leading order Lagrangian Eq. (1), the flavor
eigenstates �8 and �1 are not mass eigenstates and we use
the angle � to describe the mixing of�8 and�1 at this order

�8 ¼ c� ��þ s� ��
0; �1 ¼ �s� ��þ c� ��

0; (13)

with c� ¼ cos� and s� ¼ sin�. In our notation �� and ��0 are
the fields that diagonalize the quadratic terms of the
Lagrangian Eq. (1). The �� �0 mixing at leading order is
discussed in Appendix B, Eqs. (B5)–(B7). The differences
between ��, ��0 and the physical states �, �0 are caused by
higher order operators, including loops, and can be treated
perturbatively within the triple expansion scheme.
Next we calculate the contributions beyond the leading

order to the scattering amplitudes in terms of the �� and ��0
fields, while for the leading order terms to meson-meson
scattering, stemming fromL� Eq. (1), one has to take care

of the full �� �0 mixing (see below). We also point out
that for the calculation of the basic amplitudes it is more
reasonable to use the �� and ��0 fields than the �1 and �8

ones. This is because the insertion of the leading order
mixing of �8 and �1 does not increase the order of a
diagram, as illustrated in Fig. 1 for a one-loop contribution.

FIG. 1. The dot denotes the mixing of �8 and �1 at leading
order, which is proportional to m2

K �m2
�.

1The term with ĉm is purely proportional to �2
1 while that with

ĉd requires at least one �1, which mainly becomes an �0 because
the �1 contribution to the � is suppressed by the pseudoscalar
mixing angle, as it is shown later.
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The leading order mixing is proportional to m2
K �m2

�, and
is always accompanied by the inclusion of one extra �8 or
�1 propagator that compensates the chiral power of the
vertex. As a result loop diagrams with an arbitrary number
of insertions of �8 � �1 mixing vertices have the same
order. On the contrary, the mixing of ��, ��0 only receives
contribution from higher orders, which guarantees that
diagrams with insertions from the ��� ��0 mixing are in-
deed suppressed.

The calculation of the scattering amplitudes comprises
the contact vertex from L� Eq. (1), the one-loop and

resonance exchange graphs, as illustrated in Fig. 2. In
addition, the mass and wave-function renormalization
terms, displayed in Fig. 3, should also be included. The
latter ones only affect the tree-level scattering amplitudes
from Eq. (1) up to the order we attempt to calculate, as the
contributions from the resonances and the loop diagrams
are already beyond the leading order. The decay constants
of the pseudo-Goldstone bosons, illustrated in Fig. 4, also
give rise to one higher order contribution by rewriting F in
terms of the physical ones in the leading order scattering
amplitudes. We express the scattering amplitudes employ-
ing one single physical decay constant F� throughout. The
relation between F and F� is given in Eq. (C2).

Another subtle contribution to the scattering amplitudes
is related to the �� �0 mixing, as commented above. We
recall that ��, ��0 result from the diagonalization of�8,�1 at
leading order, Eq. (13). After including the higher order
contributions from resonances and chiral loops, ��, ��0 will
mix again and the physical states �, �0 can be obtained by

diagonalizing ��, ��0. This extra diagonalization process
contributes relevant pieces to the scattering amplitudes
through the leading order results from Eq. (1). Thus it is
necessary to work out the ��� ��0 mixing at the one-loop
level by calculating the diagrams in Fig. 3. However, for
the already next-to-leading order contributions and higher,
namely, those amplitudes obtained from the exchange of
resonances and involving loops, we do not need to distin-
guish between ��, ��0 and �, �0, as their differences only
cause higher order effects that are beyond our current
consideration.
We parametrize the higher order ��� ��0 mixing as

L ¼ 1þ � ��

2
@	 ��@	 ��þ 1þ � ��0

2
@	 ��0@	 ��0

þ �k@	 ��@	 ��0 �
m2

�� þ �m2
��

2
�� ��

�
m2

��0 þ �m2

��0

2
��0 ��0 � �m2 �� ��0; (14)

where m �� and m ��0 defined in Eqs. (B5) and (B6) stand for

the leading order masses of �� and ��0 respectively, while
the different �i, given in Eq. (B8), contains the higher order
contributions. The physical eigenstates� and�0 are related
with the �� and ��0 fields by diagonalizing canonically the
quadratic terms in Eq. (14) in the following way

�

�0

 !
¼ cos�� �sin��

sin�� cos��

 !
1þ� ��

2
�k

2

�k

2 1þ� ��0
2

0
@

1
A ��

��0

 !
: (15)

We calculate the leading order contributions, correspond-
ing to diagram (a) of Fig. 2, in terms of the physical � and
�0 fields, so that we can directly use the physical values for
the masses. Up to the order considered in our calculation
for meson-meson scattering, namely, up to Oð�3Þ for local
tree-level contributions and up to Oð�4Þ for the one-loop
graphs, we can invert Eq. (15) in a perturbative way. Then
we have

��

��0

 !
¼ 1�� ��

2 ��k

2

��k

2 1�� ��0
2

0
@

1
A cos�� sin��

�sin�� cos��

 !
�

�0

 !
; (16)

where �� is determined through

tan�� ¼ �̂m2

m2
�0 � m̂2

�

; (17)

FIG. 2. Relevant Feynman diagrams in the scattering ampli-
tudes up to one-loop order. In diagram (d) the coupling of the
scalar resonances with the vacuum is indicated by a cross.

FIG. 3. Relevant Feynman diagrams for the pseudoscalar self-
energy.

FIG. 4. Relevant Feynman diagrams for the pseudoscalar de-
cay constants. The wiggly line corresponds to the axial-vector
external source.
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with

m̂ 2
� ¼ m2

�� þ �m2
��
�m2

��� ��;

m̂2
�0 ¼ m2

��0 þ �m2

��0
�m2

��0� ��0 ;

�̂m2 ¼ �m2 � 1

2
�kðm2

�� þm2
��0 Þ;

2m2
�0 ¼ m̂2

� þ m̂2
�0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm̂2

� � m̂2
�0 Þ2 þ 4�̂2

m2

q
;

2m2
� ¼ m̂2

� þ m̂2
�0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm̂2

� � m̂2
�0 Þ2 þ 4�̂2

m2

q
:

(18)

In the previous equations �� and �i are originated by
the higher order contributions from the resonances and
one-loop graphs. Up to the precision we consider, it is

safe to take only linear terms in the �i so that cos�� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2��

p ’ 1. From the relations between �, �0 and ��,
��0, given in Eqs. (15) and (16), there are two ways to
proceed for the calculation of the physical scattering am-
plitudes. One method, the one that we follow, consists of
writing the physical amplitudes by expressing �� and ��0 in
terms of the physical fields � and �0 in Eq. (1), and then
calculate the tree-level amplitudes. In this way, all the
masses from the kinematics are the physical ones, since
they correspond to the � and �0 fields. Another method is
to determine the amplitudes with � and �0 by using
Eq. (15) as a linear superposition of those calculated in
terms of the bar fields. However, one should bear in mind
that for this case the masses of �� and ��0 from the kine-
matics are those of the physical � and �0 fields to which
they are attached [45].

The explicit expressions for the mass and wave-function
renormalization, mixing parameters entering in Eq. (14),
pion decay constant, and scattering amplitudes are given in
the Appendices B, C, and D.

IV. PARTIALWAVE AMPLITUDE
AND ITS UNITARIZATION

Once the perturbative amplitudes are calculated from
Uð3Þ �PT, as done in the previous section, we can proceed
to perform the partial wave projections of the isospin
amplitudes and construct the corresponding unitarized am-
plitudes as well. The amplitudes TI with well-defined
isospin I from different processes are derived by assigning
the following phase convention to the pseudoscalars in
connection with the isospin basis states. This convention
is consistent with the one taken in Eq. (3),

j�i¼ j00i; j�0i¼ j00i; j�þi¼�j11i;
j��i¼j1�1i; j�0i¼ j10i; jKþi¼�

��������12 12
�
;

jK0i¼
��������12�1

2

�
; j �K0i¼

��������12 12
�
; jK�i¼

��������12�1

2

�
;

(19)

where jII3i is a state with isospin I and third component I3.

For �� ! �� scattering there are three isospin ampli-
tudes, I ¼ 0, 1, 2. They read

T0ðs; t; uÞ ¼ 3Aðs; t; uÞ þ Aðt; s; uÞ þ Aðu; t; sÞ;
T1ðs; t; uÞ ¼ Aðt; s; uÞ � Aðu; t; sÞ;
T2ðs; t; uÞ ¼ Aðt; s; uÞ þ Aðu; t; sÞ;

(20)

where Aðs; t; uÞ stands for the process �þ�� ! �0�0 and
s, t, u are the standard Mandelstam variables. These equa-
tions, and other similar ones that follow, are obtained by
invoking crossing symmetry [52].
For K� ! K� and �� ! K �K, the different isospin

amplitudes can also be expressed in terms of one single
amplitude, again by using crossing symmetry. One then has

T3=2ðs; t; uÞ ¼ TKþ�þ!Kþ�þðs; t; uÞ;

T1=2ðs; t; uÞ ¼ 3

2
T3=2ðu; t; sÞ � 1

2
T3=2ðs; t; uÞ;

T0ðs; t; uÞ ¼
ffiffiffi
3

2

s
½T3=2ðt; s; uÞ þ T3=2ðu; s; tÞ�;

T1ðs; t; uÞ ¼ T3=2ðu; s; tÞ � T3=2ðt; s; uÞ:

(21)

For �� ! �� and �� ! ��, we have

T0ðs; t; uÞ ¼ � ffiffiffi
3

p
Cðs; t; uÞ; T1ðs; t; uÞ ¼ Cðt; s; uÞ;

(22)

with Cðs; t; uÞ ¼ T�0�0!��ðs; t; uÞ. For �� ! ��0, �0�0

and ��ð�0Þ ! ��0, analogous formulas emerge and the
only difference is that Cðs; t; uÞ is redefined accordingly to
the scattering process.
The reactions K� ! K� and K�0 are pure I ¼ 1=2 and

are given by

T1=2ðs; t; uÞ ¼ � ffiffiffi
3

p
TKþ�0!Kþ�ðs; t; uÞ; (23)

and similarly when the �0 is in the final state. In terms of
them one also has the scattering amplitudes for the
t-crossed processes K �K ! �� and ��0, which is pure
I ¼ 1. It reads

T1ðs; t; uÞ ¼ � ffiffiffi
2

p
TKþ�0!Kþ�ðt; s; uÞ; (24)

and analogously for K �K ! ��0.
There are two isospin amplitudes inK �K ! K �K, that can

be expressed as

T0ðs; t; uÞ ¼ 2Dðs; t; uÞ þDðt; s; uÞ;
T1ðs; t; uÞ ¼ Dðt; s; uÞ; (25)

with Dðs; t; uÞ ¼ TKþK�!K0 �K0ðs; t; uÞ. Notice that here we
have derived both isospin amplitudes in terms of only one,
while previous works used both TKþK�!K0 �K0ðs; t; uÞ and
TKþK�!Kþ �K�ðs; t; uÞ [53–55].
For K �K ! �� and K� ! K�, the amplitudes involved

read

T0ðs;t;uÞ¼� ffiffiffi
2

p
Eðs;t;uÞ; T1=2ðs;t;uÞ¼Eðt;s;uÞ; (26)
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with Eðs; t; uÞ ¼ TK0 �K0!��ðs; t; uÞ. For K �K ! ��0, �0�0

and K�ð�0Þ ! K� and K�0, the formulas are analogous
and the only difference is that one needs to redefine
Eðs; t; uÞ for the corresponding process.

All the processes �ð0Þ�ð0Þ ! �ð0Þ�ð0Þ, with �ð0Þ either an �
or an �0, are I ¼ 0 and no crossing relation can be invoked
to reduce the number of amplitudes needed, one for each
process.

Next we can perform the partial wave projection for the
isospin amplitudes and the convention we use is

TI
JðsÞ ¼

1

2ð ffiffiffi
2

p ÞN
Z 1

�1
dxPJðxÞTIðs; tðxÞ; uðxÞÞ; (27)

where x ¼ cos’, with ’ the scattering angle between the
incoming and outgoing particles in the CM, and PJðxÞ
stands for the Legendre polynomial. In the previous equa-

tion ð ffiffiffi
2

p ÞN is a symmetry factor to account for identical
particle states, such as �� (with isospin 0, 1 or 2), �� and
�0�0. It corresponds to the so-called unitary normalization
of Ref. [9]. For example, N ¼ 1 for �� ! K �K and N ¼ 2
for �� ! ��, and so on.

The unitarization method we follow was developed in
Ref. [10] and is based on the N=D method [11]. The
essential of this approach is to separate the left-hand cut
(LHC)2 and the right-hand cut (RHC), due to unitarity, in
two different functions,NðsÞ and gðsÞ. The former does not
contain the two-particle unitarity cut but it has the LHC,
while the later contains only the two-particle unitarity cut
and not the LHC. A more detailed account of this unitar-
ization method can be found in Refs. [10,56–58]. In the
latter reference an explicit integral equation for the func-
tion NðsÞ in nucleon-nucleon scattering is deduced.

Let us consider first the elastic case, its generalization to
the coupled channel case is straightforward and given
below. Because of unitarity above the two-particle thresh-
old sth a two-meson partial wave amplitude TI

JðsÞ, with
well-defined isospin I and angular momentum J, fulfills

ImTI
JðsÞ ¼ TI

JðsÞ�ðsÞTI
JðsÞ� ) ImTI

JðsÞ�1 ¼ ��ðsÞ: (28)

In the previous equation

�ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½s� ðma þmbÞ2�½s� ðma �mbÞ2�

p
16�s

¼ q

8�
ffiffiffi
s

p ;

(29)

with ma and mb the masses of the two particles in the state
and q the CM three-momentum. Equation (28) implies that
the imaginary part of the inverse of a partial wave is
known. This can be used to write down a dispersion
relation of the inverse of TI

JðsÞ taking as integration contour
a circle of infinity radius that engulfs the right-hand cut
[10]. It then results

TI
JðsÞ�1 ¼ NI

JðsÞ�1 þ gðsÞ; (30)

so that the function of NI
JðsÞ, by construction, does not

contain the RHC and gðsÞ results from the known disconti-
nuity along this cut, Eq. (28). In this way gðsÞ is given by
the following dispersion relation,

gðsÞ ¼ gðs0Þ � s� s0
�

Z 1

sth

�ðs0Þ
ðs0 � sÞðs0 � s0Þ ds

0; (31)

with

Im gðsÞ ¼ ��ðsÞ; (32)

for s > sth ¼ ðma þmbÞ2. The dispersive integral in Eq.
(31) can be represented by the typical two-point one-loop
function [10]

x� ¼ sþm2
a �m2

b

2s
� 1

�2s

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4sðm2

a � i0þÞ þ ðsþm2
a �m2

bÞ2
q

;

16�2gðsÞ ¼ aSLð	Þ þ log
m2

b

	2
� xþ log

xþ � 1

xþ

� x� log
x� � 1

x�
: (33)

For the case of equal mass scattering, gðsÞ reduces to the
simple form

16�2gðsÞ ¼ aSLð	Þ þ log
m2

	2
� �ðsÞ log�ðsÞ � 1

�ðsÞ þ 1
; (34)

with

�ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

s

s
: (35)

In order to determine the interacting kernel NI
JðsÞ we

proceed as explained in Refs. [56,57], so that we match the
unitarized amplitude Eq. (30) to the perturbative calcula-
tion, which is performed up to the one-loop level.3 In this
way, Eq. (30) should be expanded up to one power of gðsÞ.
It then results for NI

JðsÞ,
NI

JðsÞ ¼ TI
JðsÞð2ÞþResþLoop þ TI

JðsÞð2ÞgðsÞTI
JðsÞð2Þ: (36)

Here TI
JðsÞð2ÞþResþLoop stands for the partial wave ampli-

tude from the perturbative calculation, with the super-
scripts (2), Res and Loop denoting the tree-level
amplitude from Eq. (1), resonance exchanges and loop
contributions, respectively, depicted in Fig. 2. The wave-
function renormalization and �� �0 mixing contributions
are included in Res and Loop.

2In this way we denote any crossed-channel cuts, including the
circular ones for the unequal mass scattering.

3Equation (30) is valid below the first threshold of multi-
particle states. Note that such states are further suppressed in
the � counting beyond our present one-loop calculation for the
interaction kernel (they at least imply a two-loop calculation)
and we do not consider them any longer.
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It can easily be checked that NI
JðsÞ from Eq. (36) does

not contain the RHC. This is due to the fact that the
perturbative partial wave amplitudes satisfy unitarity per-
turbatively

Im TI
JðsÞð2ÞþResþLoop ¼ TI

JðsÞð2Þ�ðsÞTI
JðsÞð2Þ

¼ �TI
JðsÞð2ÞImgðsÞTI

JðsÞð2Þ; (37)

for s > sth. Regarding the LHC contribution, wewould like
to emphasize that it is perturbatively treated and collected
in the NI

JðsÞ function defined in Eq. (36), unlike the RHC
that we take into account nonperturbatively.

If the amplitude TI
JðsÞ has a zero in the complex plane,

e.g. an Adler zero that appears in the subthreshold region of
some partial S-waves as a consequence of chiral symmetry
[59], this is accounted for in Eq. (30) by the corresponding
zero of NI

JðsÞ. The zeroes on the real axis correspond to
poles of the inverse of the amplitude, the so-called
Castillejo-Dalitz-Dyson poles [60]. As discussed in detail
in Ref. [10] when the LHC contributions are neglected

T̂I
JðsÞ ¼ TI

JðsÞ=q2JðsÞ can be written as

T̂ I
JðsÞ ¼

1

D̂I
JðsÞ

;

D̂I
JðsÞ ¼ � ðs� s0ÞJþ1

�

Z 1

sth

ds0
q2Jðs0Þ�ðs0Þ

ðs0 � sÞðs0 � s0ÞJþ1

þ XJ
m¼0

ams
m þXM

i

Ri

s� si
:

(38)

In the previous equation J þ 1 subtractions at s0 have been
taken, being the am, m ¼ 1; . . . ; J the corresponding sub-
traction constants. The last sum accounts for the presence
of poles in the inverse of the partial wave, with si and Ri

their locations and residues, respectively. For the S-waves
one has the location of nontrivial poles due to the Adler
zeroes. For a given partial wave its position fixes one of the
si pole positions in the right-hand-side of Eq. (38). In the

presence of LHC, D̂I
JðsÞ ¼ NI

JðsÞ�1 þ gðsÞ by comparing
the previous equation with Eq. (30), the zero in NI

JðsÞ is
moved according to the chiral expansion, Eq. (36), from its

leading position given by TI
JðsÞð2Þ. In the case of the IAM

one has to modify the standard formula [5–7] to account
properly for the Adler zero region [61], otherwise one has a
double zero instead of a simple Adler zero and a spurious
pole in the partial wave amplitude in the same subthreshold
region [61,62].
The previous formalism can be easily generalized to

scattering processes with multiple coupled channels by
employing a matrix notation. In this way, TI

JðsÞ, NI
JðsÞ

and gðsÞ ! gIJðsÞ are now matrices and Eq. (30) still holds.
Since phase space is diagonal then the matrix gIJðsÞ is also
diagonal, with its matrix elements given by Eq. (33),
evaluated with the appropriate masses for the correspond-
ing channel. The matrix TI

JðsÞ is symmetric, as required by
time reversal invariance [3], which then implies from
Eq. (30) that NI

JðsÞ is also symmetric.
Explicitly, for the IJ ¼ 00 case there are five channels

and the corresponding matrices read

N0
0ðsÞ ¼

N��!�� N��!K �K N��!�� N��!��0 N��!�0�0

N��!K �K NK �K!K �K NK �K!�� NK �K!��0 NK �K!�0�0

N��!�� NK �K!�� N��!�� N��!��0 N��!�0�0

N��!��0 NK �K!��0 N��!��0 N��0!��0 N��0!�0�0

N��!�0�0 NK �K!�0�0 N��!�0�0 N��0!�0�0 N�0�0!�0�0

0
BBBBB@

1
CCCCCA; (39)

g00ðsÞ ¼

g�� 0 0 0 0
0 gK �K 0 0 0
0 0 g�� 0 0
0 0 0 g��0 0
0 0 0 0 g�0�0

0
BBBBB@

1
CCCCCA: (40)

For the IJ ¼ 10 channel, the matrices are

N1
0ðsÞ ¼

N��!�� N��!K �K N��!��0

N��!K �K NK �K!K �K NK �K!��0

N��!��0 NK �K!��0 N��0!��0

0
B@

1
CA; (41)

g10ðsÞ ¼
g�� 0 0
0 gK �K 0
0 0 g��0

0
B@

1
CA: (42)

For the IJ ¼ 1
2 0 channel, it results

N1=2
0 ðsÞ ¼

NK�!K� NK�!K� NK�!K�0

NK�!K� NK�!K� NK�!K�0

NK�!K�0 NK�!K�0 NK�0!K�0

0
B@

1
CA; (43)

g1=20 ðsÞ ¼
gK� 0 0
0 gK� 0
0 0 gK�0

0
B@

1
CA: (44)

Similar results hold for the IJ ¼ 1
2 1 channel.

For the IJ ¼ 11 quantum numbers we have

N1
1ðsÞ ¼ N��!�� N��!K �K

N��!K �K NK �K!K �K

� �
; (45)

g11ðsÞ ¼ g�� 0
0 gK �K

� �
: (46)
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Let us consider now the purely elastic channels
where NI

JðsÞ and gIJðsÞ are just functions, not matrices.
For IJ ¼ 3

2 0, one has

N3=2
0 ðsÞ ¼ NK�!K�; (47)

g3=20 ðsÞ ¼ gK�: (48)

For IJ ¼ 20,

N2
0ðsÞ ¼ N��!��; g20ðsÞ ¼ g��: (49)

Finally, the appropriate functions for IJ ¼ 01 are

N0
1ðsÞ ¼ NK �K!K �K; g01ðsÞ ¼ gK �K: (50)

After having the unitarized scattering amplitude from
Eq. (30), the S-matrix for the IJ channel, SIJðsÞ, can be
defined straightforwardly in matrix notation

SIJ ¼ 1þ 2i
ffiffiffiffiffiffiffiffiffiffiffi
�I
JðsÞ

q

 TI

JðsÞ 

ffiffiffiffiffiffiffiffiffiffiffi
�I
JðsÞ

q
: (51)

with �I
JðsÞ ¼ �Im gIJðsÞ. From the matrix elements of the

S-matrix we can read out the phase shifts �kk and �kl, with
k � l, since

Skk ¼ jSkkje2i�kk ; Skl ¼ jSkljei�kl : (52)

V. DISCUSSION AND RESULTS

In this section we first discuss the fit to experimental data
in order to fix the free parameters in our approach. Later we
discuss the associated spectroscopy and its properties
under variation of NC.

A. Fit quality

We perform the fit for the IJ ¼ 00 channel up to
ffiffiffi
s

p ¼
1300 MeV. The inclusion of the �0 meson is not enough to
guarantee that our current calculation can be applied higher
in the energy region. There are good phenomenological
reasons to expect that the 4� state plays an important role
at this energy level and its influence can not be simply
neglected [12]. The observables fitted are shown in Fig. 5
and correspond to the elastic �� ! �� phase shifts,
�00
��!��, the elasticity parameter, jS00��!��j, and the phase

and one half of the modulus of the S-matrix element for the
inelastic process �� ! K �K above the K �K threshold,
�00
��!K �K

and 1
2 jS00��!K �K

j, respectively. For references to

the experimental data see Fig. 5.
For the IJ ¼ 1

2 0 channel, since there is no significant

inelasticity above the K�0 threshold, we fit the data up toffiffiffi
s

p ¼ 1600 MeV. Although for higher energies one al-
ready has the influence of the K�

0ð1950Þ resonance [45]

which we have not included. The observables in the fit are
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FIG. 5 (color online). Plots of the fit to the IJ ¼ 00 case. From top to bottom and left to right: the phase shifts of �� ! ��
(�00

��!��), the modulus of the S-matrix element for �� ! �� (jS00��!��j), the half modulus of the S-matrix element for �� ! K �K
(jS00

��!K �K
j=2) and the phase shifts of �� ! K �K (�00

��!K �K
). �00

��!�� data correspond to Ref. [88] (triangle in green), [65] (square in

blue) and the average data from Refs. [89–91] (circle in black), as employed in Ref. [10]. jS00��!��j is from Ref. [89]. jS00
��!K �K

j=2 is

from Refs. [92] (square in blue) and [93] (circle in black). The phase shifts �00
��!K �K

are from Refs. [92] (square in blue), [64] (circle in

black). The solid (red) line corresponds to the best fit, Eq. (55), while the error bands are presented by the shadowed area. Finally, the
more constrained fit of Eq. (59) is given by the dashed line. This notation also applies in Figs. 6 and 7.
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the K� ! K� phase shifts �ð1=2Þ0
K�!K�. The reference to

experimental data is given in Fig. 6.
For the IJ ¼ 10 channel, there are no available data for

scattering up to now and it is typical to use a �� event
distribution from other production processes to obtain
information on the a0ð980Þ resonance. As the production
mechanism is not under good theoretical control in our
work, we decide to fit the data around the resonance region
up to 1050 MeV, as explained below. The experiment data
for the �� distribution are illustrated in Fig. 6.

For the exotic channels with IJ ¼ 3
2 0 and IJ ¼ 20, we fit

the phase shifts ofK� ! K� and�� ! ��, respectively.
The references for the experimental data are given in Fig. 6.

The observables we fit in IJ ¼ 11 and IJ ¼ 1
2 1 are the

phase shifts of �� ! �� and K� ! K�, �11
��!�� and

�ð1=2Þ1
K�!K�, in order. They are fitted up to 1200 MeV, as we

only include the lowest multiplet of vector resonances in
the Lagrangian Eq. (6). The references to experimental
data can be found in Fig. 7.

Before moving to the details of the phenomenological
discussion, let us first comment on the free parameters in
our theory. Apart from the couplings in Eqs. (5), (6), and
(12), there are the bare mass parameters of the resonances,
the UAð1Þ anomaly mass M0 in Eq. (1) and the subtraction
constants aSL defined in Eq. (33) for different channels.
One way to reduce the number of the subtraction constants
is to impose the isospin symmetry for them [63]. In this
way, aSL of g�� in IJ ¼ 00 and in IJ ¼ 20 are the same.

Similarly, gK �K in IJ ¼ 00 and IJ ¼ 10 are also equal. This
also applies to gK� in IJ ¼ 1

2 0 and in IJ ¼ 3
2 0. In principle,

the subtraction constants in the remaining channels are
free. Nevertheless, if one further assumes Uð3Þ symmetry
within each orbital angular momentum the values of differ-
ent subtraction constants should also be equal. For this
result one should extend the proof given in Appendix A
of Ref. [63] in the SUð3Þ limit to the Uð3Þ case, that holds
for equal quark masses at leading order in large NC. Notice
that in this limit the quarks behave equivalently so that the
equality of the subtraction constants in SUð3Þ also implies
that they are equal for theUð3Þ case. We indeed exploit this
feature as much as we can in the numerical discussion. We
summarize the subtraction constants used in the fits dis-
cussed below:

a00SL¼a00;��SL ¼a00;K
�K

SL ¼a00;��SL ¼a00;��
0

SL ¼a00;�
0�0

SL ¼a20;��SL ;

að1=2Þ0SL ¼að1=2Þ0;K�SL ¼að1=2Þ0;K�SL ¼að1=2Þ0;K�
0

SL ¼að3=2Þ0;K�SL ;

a
10;��0
SL ¼a10;K

�K
SL ¼a00;K

�K
SL ;

a10;��SL ; (53)

and all of the subtraction constants in the vector channels
are set equal to a00SL.
In order to fit the �� mass distribution we need to

introduce two additional parameters to parametrize the
production mechanism, N and c, that enter in the
expression
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FIG. 6 (color online). From top to bottom and left to right: phase shifts of K� ! K� with IJ ¼ 1
2 0 (�

ð1=2Þ0
K�!K�), �� event distribution

with IJ ¼ 10, phase shifts of �� ! �� with IJ ¼ 20 (�20
��!��) and phase shifts of K� ! K� with IJ ¼ 3

2 0 (�ð3=2Þ0
K�!K�). �

ð1=2Þ0
K�!K�

corresponds to the average data from Refs. [94–96] (square in blue), as used in Ref. [10], and in Ref. [97] (circle in black). Data for the
�� event distribution are from Ref. [66] and the dotted line corresponds to the background [10]. �20

��!�� is from Refs. [98] (square in

blue) and [99] (circle in black). The experimental data for �ð3=2Þ0
K�!K� are taken from Refs. [100] (square in green), [101] (circle in blue)

and [95] (triangle in black). For the meaning of lines see Fig. 5.
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dN��

dE��
¼ q��N jTK �K!��ðsÞ þ cT��!��ðsÞj2: (54)

Here, q�� is the three-momentum of the �� system in the

CM and E�� ¼ ffiffiffi
s

p
is the energy in the same frame. The

parameter N accounts for the fact that the event distribu-
tion is not normalized. The linear combination of ampli-
tudes in the previous equation originates because the
a0ð980Þ shows up differently in them. See also Ref. [56]
for a more detailed explanation of the derivation of
Eq. (54) in connection with the invariant mass distribution
of �KN around the �ð1405Þ resonance.

In the end, we have 16 free parameters and the fitted
results are

cd ¼ ð15:6þ4:2�3:4Þ MeV; cm ¼ ð31:5þ19:5
�22:5Þ MeV;

~cd ¼ ð8:7þ2:5
�1:7Þ MeV; ~cm ¼ ð15:8þ3:3

�3:0Þ MeV;

MS8 ¼ ð1370þ132
�57 Þ MeV; MS1 ¼ ð1063þ53

�31Þ MeV;

M� ¼ ð801:0þ7:0
�7:5Þ MeV; MK� ¼ ð909:0þ7:5

�6:9Þ MeV;

GV ¼ ð61:9þ1:9
�1:9Þ MeV; a

10;��
SL ¼ 2:0þ3:1

�3:4;

a00SL ¼ ð�1:15þ0:07
�0:09Þ; að1=2Þ0SL ¼ ð�0:96þ0:10

�0:16Þ;
N ¼ ð0:6þ0:3

�0:3Þ MeV�2; c ¼ ð1:0þ0:6
�0:4Þ;

M0 ¼ ð954þ102
�95 Þ MeV; �2 ¼ ð�0:6þ0:5

�0:4Þ; (55)

with �2=d:o:f: ¼ 714=ð348� 16Þ ’ 2:15.
The corresponding figures from the fit are displayed in

Figs. 5–7. The width of the bands shown and the errors
given in the fitted parameters in Eq. (55) represent
our statistical uncertainties at the level of 2 standard devi-
ations [64]

n� ¼ ��2=ð2�2
0Þ1=2; (56)

being �2
0 the minimum of the �2 obtained corresponding to

the best fit, n� the number of standard deviations and
��2 ¼ �2 � �2

0.

As one can see in Figs. 5–7, most of the observables
are well reproduced through the fit. The phase shifts of
�� ! �� with IJ ¼ 00 in the low energy region from the
recent measurement of Ke4 decay [65] are included in our
fit and they can be perfectly reproduced. For the ��
invariant mass distribution, we explicitly subtract the back-
ground as analyzed in Ref. [66], which are mainly caused
by the tail of higher resonances. Compared with observ-
ables in the scalar channels, the errors in the vector chan-
nels are rather small. Among all of the curves, the least
satisfactory results from our fit correspond to the channels
with exotic quantum numbers with IJ ¼ 20 and IJ ¼ 3

2 0,

which is also an important source for the �2 resulting from
our fit. For example, with 42 data points, they contribute
281 to the total �2, i.e. 12% of degrees of freedom carry
39% of the �2. Nevertheless, one also has to remark that
the different experimental data in these channels are not
always compatible at the level of one �, which also causes
the �2 to increase. On the other hand, since no resonances
appear in those exotic channels, it may indicate that uni-
tarity is less important as compared with the other chan-
nels. In contrast, the LHC contribution could play a more
important role in this case [10,45]. We recall that precisely
our unitarization scheme only incorporates the LHC effects
perturbatively. Thus, an improvement on the treatment of
the LHC should provide a better fit for these two channels.
With the fitted parameters in Eq. (55) we can also

calculate the values for the masses of the � and �0 that
are obtained by diagonalizing Eq. (14). We then obtain
from Eq. (18) the values

m� ¼ ð526þ33
�41Þ MeV; m�0 ¼ ð951þ47

�60Þ MeV: (57)

The leading order mixing angle of �� �0 that results from
Eq. (1) is

� ¼ �16:2�
þ2:8�

�2:9�
: (58)

Concerning the resonance parameter cd in Eq. (55), the
value from our fit is a bit smaller than the previous deter-
minations, such as cd ¼ 19:1þ2:4�2:1 MeV given in Ref. [10],
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FIG. 7 (color online). Plots for the vector channels from the fits, Eqs. (55) and (59). The left panel is for the IJ ¼ 11 channel and the
right one is for IJ ¼ 1

2 1. The data of phase shifts for �� ! �� with IJ ¼ 11, �11
��!�� are from Refs. [102] (square in blue) and [103]

(circle in black). The data of phase shifts for K� ! K� with IJ ¼ 1
2 1, �

ð1=2Þ1
K�!K� are from Refs. [94] (circle in black) and [95] (square in

blue). For the meaning of lines see Fig. 5.
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cd ¼ 23:8 MeV reported in Ref. [45] and cd ¼
ð26� 7Þ MeV in Ref. [67]. Nevertheless, they are compat-
ible within the error bands. For the coupling cm, though
different approaches predict a broad range for its central
value, they always accompany a large error, for example
cm ¼ 31:5þ19:5

�22:5 MeV in the present case, cm ¼
ð15� 30Þ MeV in Ref. [10] and cm ¼ ð80� 20Þ MeV
given in Ref. [67]. Comparing the couplings related to
the singlet scalar with Ref. [10], our determination of ~cm
is compatible with ~cm ¼ 10:6þ4:5

�3:5 MeV in Ref. [10], while

for ~cd the current fit leads to a smaller value, compared
with ~cd ¼ 20:9þ1:6

�1:0 MeV given in the same reference. For

the bare masses of resonances, our present results agree
well with the previous determinations: MS8 ¼ ð1390�
20Þ MeV, MS1 ¼ ð1020þ40

�20Þ MeV in Ref. [10] and MS8 ¼
1400 MeV in Ref. [45]. Our values in Eq. (55) are compat-

ible with the estimates ~cd ’ cd=
ffiffiffi
3

p
and ~cm ’ cm=

ffiffiffi
3

p
based

on large NC [48], however the bare masses for the singlet
and octet scalar resonances are different, at around 30%, as
obtained in previous studies [10,12]. The current determi-
nation for the subtraction constant aSL is consistent with
the previous result in Ref. [10] as well. For the vector
resonance coupling GV , our result is in good agreement
withGV ¼ ð63:9� 0:6Þ MeV determined in Ref. [67]. The
UAð1Þ anomaly mass M0 carries a large error and agrees
with the conclusion in Ref. [34]. The 1=NC suppressed
parameter �2 is poorly known in the literature and in
Ref. [47] �2 ¼ 0:3 is estimated, which is somewhat in-
compatible with ours. Nevertheless in Ref. [47] the value of
�2 is not determined by any physical observables, but only
by naive dimensional analysis. Moreover in their case the
counterterm �2 is always accompanied by the factor of
m2

�, indicating the insensitivity of this parameter there.
We also show another more constrained fit by employing

relations and values in the literature, already commented
above, for the parameters shown in the fit of Eq. (55). In
particular we impose from the beginning the large NC

constraints [48] ~cd ¼ cd=
ffiffiffi
3

p
and ~cm ¼ cm=

ffiffiffi
3

p
. We also

take MS8 ¼ 1390 MeV and MS1 ¼ 1020 MeV, according

to Ref. [10]. For GV we take 60 MeV from the averages of
values taken from Refs. [23,49,67]. For M0 we take the
value 850 MeV from Ref. [34]. The subtraction constant

a10;��SL , given with large errors in Eq. (55), is now fixed at

þ2. The resulting fit is shown by the dashed lines in
Figs. 5–7, having now only 9 free parameters. We see
that the reproduction of data is of similar quality as the
one achieved by the fit in Eq. (55) and the �2=d:o:f: ¼
843=ð348� 9Þ ¼ 2:5 is not much larger. The resulting
values for the free parameters are now

cd ¼ 17:4MeV; cm ¼ 28:1MeV; M� ¼ 800:4MeV;

MK� ¼ 910:0MeV; a00SL ¼�1:14; að1=2Þ0SL ¼�0:89;

�2 ¼�0:22; N ¼ 0:55MeV�2; c¼ 0:84: (59)

Comparing with the values in Eq. (55) one observes rather
similar values, compatible within the errors given in
Eq. (55). The biggest change occurs for the value of �2,
although the new value lies well within the error band

given in Eq. (55). The resulting singlet couplings are ~cd ¼
cd=

ffiffiffi
3

p ¼ 10:05 MeV and ~cm ¼ cm=
ffiffiffi
3

p ¼ 16:20 MeV.

B. Resonances generated from unitarized amplitudes

We summarize the masses, widths and residues of the
various resonances in Table I. Resonances are character-
ized by their pole positions in the partial wave amplitudes
in unphysical Riemann sheets. Around a resonance pole sR,
corresponding to a resonance R, the partial wave amplitude
TI
JðsÞi!j tends to

TI
JðsÞi!j ! � gR!igR!j

s� sR
: (60)

By calculating the residue of the resonance pole we then
obtain the product of the couplings to the corresponding
decay modes. At the practical level we calculate the resi-
dues by applying the Cauchy integral formula

gR!igR!j ¼ � 1

2�i

I
js�sRj!0

TI
JðsÞi!jds: (61)

For every pole one has further to indicate in which un-
physical Riemann sheet it lies. Each function gðsÞ has 2
sheets and their relation is given by [9]

gIIðsÞ ¼ gIðsÞ þ 2i�ðsÞ; (62)

with gIIðsÞ the function analytically extrapolated to its
second Riemann sheet and gIðsÞ the function in its first
Riemann sheet, given in Eq. (33). Different Riemann
sheets are easily accessed by deciding on which sheet
every giðsÞ function, associated to channel i, is calculated.
In this way, for an IJ channel there are 2N possible sheets,
with N the number of coupled states with the same IJ
quantum numbers. Along the real s axis above threshold,
changing sheet implies the reversal of the sign of the
imaginary part of the giðsÞ function. In the following we
conventionally label the physical or first Riemann sheet as
ðþ;þ;þ; . . .Þ. The second Riemann sheet can be reached
by changing the sign of the first momentum, which is
labeled as ð�;þ;þ;þ; . . .Þ. The third, fourth and fifth
sheets, also considered in this work, correspond to
ð�;�;þ;þ; . . .Þ, ðþ;�;þ;þ; . . .Þ and ð�;�;�;þ; . . .Þ,
in order. More sheets can be obtained by taking more
combinations of plus and minus signs between the brack-
ets. At a given energy value

ffiffiffi
s

p
, there is one unphysical

sheet to which one can directly access from the physical
sheet by crossing from sþ i0þ to s� i0þ the branch cut
between the two thresholds Tn and Tnþ1, with Tn <

ffiffiffi
s

p
<

Tnþ1. In our current notation, this specific unphysical sheet
corresponds to changing the signs of all the three-momenta
below the considered energy point

ffiffiffi
s

p
, i.e.
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ð�;�; ::�|fflfflfflfflffl{zfflfflfflfflffl}n;þ;þ; . . .Þ (63)

In fact this is also the most relevant Riemann sheet where
one should search the pole for a given resonance affecting
that energy region, although other shadow poles may also
appear in other unphysical sheets [68]. Thus in the follow-
ing, we mainly present our findings for a given resonance
on the complex plane in this specific sheet and simply
comment the results appearing in other unphysical sheets.

Through the unitarization procedure described previ-
ously, we can simultaneously get the relevant resonances
in the considered energy region, such as �, f0ð980Þ and
f0ð1370Þ in the IJ ¼ 00 channel, � and K�

0ð1430Þ in IJ ¼
1
2 0, a0ð980Þ and a0ð1450Þ in IJ ¼ 10, �ð1020Þ in IJ ¼ 01,

�ð770Þ in IJ ¼ 11 and K�ð892Þ with IJ ¼ 1
2 1. The pole

positions and residues of these resonances are collected in
Table I. We comment on them channel by channel next.

1. IJ ¼ 00

Three kinds of resonance poles in the complex plane
have been found, which we identify with the �, f0ð980Þ
and f0ð1370Þ resonances. According to our previous dis-
cussion, the most relevant Riemann sheets for �, f0ð980Þ
and f0ð1370Þ correspond to those with ð�;þ;þ;þ;þÞ,
ð�;þ;þ;þ;þÞ and ð�;�;�;þ;þÞ, respectively. Their
pole positions are compatible within errors with those
given in the PDG [1]. The pole for the � resonance in
Table I is in close agreement with the pole position
ð484� 14� 255� 10iÞ MeV of Ref. [69], and slightly

narrower, considering errors, than that of Ref. [14]
ð441þ16

�8 � 272þ9
�12iÞ MeV.

From the residues given in Table I, one can see that the
biggest coupling of the � resonance is to the �� channel.
Nonetheless, it also has a large coupling to the K �K chan-
nel. From the value in Table I one has

��������g�!KþK�

g�!�þ��

��������¼
ffiffiffi
3

p
2

��������g�!K �K

g�!��

��������¼ 0:44þ0:03
�0:02; (64)

compatible with 0:37� 0:06 obtained in Ref. [70]. In this
reference this value is interpreted as an indication that the
� resonance has a strong glueball component.
One observes from Table I that the � couples very

weakly to ��. This is typical of unitarized �PT studies
[71]. However, from QCD spectral sum rules [72,73] the
presence around 1 GeV of a broad glueball, �B, together

with a S2 ¼ ð �uuþ �ddÞ= ffiffiffi
2

p
quarkonium, is required in

order to fulfill the corresponding scalar sum rules. If the
� resonance were purely gluonium then it would be an
SUð3Þ singlet and its coupling to pseudoscalar pairs of �,
K and �8 would be universal. In this case the coupling of
the � to �� would be the same as that to �þ��. On the
other hand, in Ref. [73], a maximal mixing between�B and
S2 is proposed, with a mixing angle �S ’ ð40–45Þ�. In this
case the size of the coupling of the � to �� depends
strongly on the value taken for the coupling of the � to a
kaon pair. For example, if one takes as in Ref. [73] that
jg�!�þ��=g�!KþK�j * 1, for definiteness we employ 1.2,
then

TABLE I. Pole positions for the different resonances in
ffiffiffi
s

p � ðM;�i �2Þ. The mass (M) and the half width (�=2) are given in units of
MeV. The modulus of the square root of a residue is given in units of GeV, which corresponds to the coupling of the resonance with the
first channel (specified inside the parentheses). The last two columns are the ratios of the coupling strengths of the same resonance to
the remaining channels with respect to the first one. The corresponding Riemann sheets where the resonance poles are located are
explained in detail in the text. Note that here the residues for ��, �� and �0�0 are given in the unitary normalization, due to the extra
factors of

ffiffiffi
2

p
dividing Eq. (27). Thus, one should multiply by

ffiffiffi
2

p
these couplings if one wishes to restore standard physical

normalization to 1 for these states. The error bands of the resonance parameters appearing in the table only correspond to the statistical
error from the fit in Eq. (55).

R M (MeV) �=2 (MeV) jResiduesj1=2 (GeV) Ratios

� 440þ3
�3 258þ2�3 3:02þ0:03

�0:03ð��Þ 0:51þ0:03
�0:02ðKK=��Þ 0:06þ0:03

�0:01ð��=��Þ
0:16þ0:03

�0:02ð��0=��Þ 0:05þ0:05
�0:03ð�0�0=��Þ

f0ð980Þ 981þ9
�7 22þ5

�7 1:7þ0:3
�0:3ð��Þ 2:3þ0:3

�0:2ðKK=��Þ 1:6þ0:3
�0:3ð��=��Þ

1:2þ0:1
�0:2ð��0=��Þ 0:7þ0:4

�0:5ð�0�0=��Þ
f0ð1370Þ 1401þ58

�37 106þ36
�23 2:4þ0:2

�0:1ð��Þ 0:62þ0:04
�0:05ðKK=��Þ 0:9þ0:1

�0:1ð��=��Þ
1:7þ0:4

�0:6ð��0=��Þ 1:1þ0:4
�0:6ð�0�0=��Þ

� 665þ9
�9 268þ21

�6 4:2þ0:2
�0:2ðK�Þ 0:7þ0:1

�0:1ðK�=K�Þ 0:5þ0:1
�0:1ðK�0=K�Þ

K�
0ð1430Þ 1428þ56

�23 87þ53
�28 3:3þ0:5

�0:4ðK�Þ 0:54þ0:07
�0:02ðK�=K�Þ 1:2þ0:2

�0:3ðK�0=K�Þ
a0ð980Þ 1012þ25�7 16þ50

�13 2:5þ1:3
�0:8ð��Þ 1:9þ0:2

�0:3ðKK=��Þ 0:01þ0:03
�0:01ð��0=��Þ

a0ð1450Þ 1368þ68
�68 71þ48

�23 2:3þ0:4
�0:5ð��Þ 0:6þ0:7

�0:2ðKK=��Þ 0:6þ0:2
�0:1ð��0=��Þ

�ð770Þ 762þ4
�4 72þ2

�2 2:48þ0:03
�0:05ð��Þ 0:64þ0:01

�0:01ðKK=��Þ
K�ð892Þ 891þ3

�4 25þ2�1 1:86þ0:05
�0:05ðK�Þ 0:91þ0:03

�0:02ðK�=K�Þ 0:45þ0:08
�0:08ðK�0=K�Þ

�ð1020Þ 1019:5þ0:3
�0:3 2:0þ0:04

�0:08 0:85þ0:01
�0:02ðK �KÞ
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�������� g�!�8�8

g�!�þ��

��������’ 0:8: (65)

However, if the latest value 0.37 [70] for
jg�!KþK�=g�!�þ��j is considered then�������� g�!�8�8

g�!�þ��

��������’ 0:15: (66)

This result is remarkably close to our prediction from
Table I�������� ~g�!��

g�!�þ��

��������¼ ffiffiffi
3

p ��������g�!��

g�!��

��������¼ 0:10þ0:05
�0:02: (67)

In the previous equation, as well as in the following, a tilde
over a coupling of the� to a state made of identical mesons
means that it is considered with physical normalization and
not with the unitary one, used in Table I, see Eq. (27).

Up to the authors’ knowledge this is the first time in the
literature that the couplings of the � to states involving the
pseudoscalar singlet �1 are calculated. In Ref. [72] one has
the upper limit �������� g�!��0

g�!�þ��

��������� 0:23: (68)

From this value one can obtain the corresponding upper
limit for the coupling of the � to �0�0 dividing by tan� the
one to ��0.4 Taking for � our value given in Eq. (58) we
then obtain the upper bound�������� g�!�0�0

g�!�þ��

��������� 0:07: (69)

From the values obtained in Table I we have

�������� g�!��0

g�!�þ��

�������� ¼
ffiffiffi
3

2

s ��������g�!��0

g�!��

��������¼ 0:20þ0:04
�0:02;�������� ~g�!�0�0

g�!�þ��

�������� ¼ ffiffiffi
3

p ��������g�!�0�0

g�!��

��������¼ 0:09þ0:09
�0:05;

(70)

which are perfectly compatible with the bounds given in
Eqs. (68) and (69) calculated from Ref. [72].

We then obtain a remarkable compatibility between our
results for the couplings of the � in Table I and those
obtained from QCD spectral sum rules [72,73], once the
latest value for the ratio of couplings jg�!�þ��=g�!KþK�j
is taken from Ref. [70]. Nevertheless, in our approach there
is not a corresponding bare state at the Lagrangian from
which the � pole could stem, it is mainly generated by the
strong interactions between pseudo-Goldstone bosons.

The f0ð980Þ resonance has its strongest coupling to K �K,
though it also couples almost as equally strong to ��.
Notice that the ratios of the couplings to K �K and ��
between the � and f0ð980Þ are nearly inverse to each
other. The importance of the �� channel for understanding

properly the f0ð980Þ was stressed in Ref. [10], because
once this channel is considered, the inclusion of a bare
single state around 1 GeV is required [10,12,71]. The
f0ð980Þ pole in fact moves continuously to the bare state
around 1 GeV if the g00ðsÞ-matrix is removed, e.g. by

multiplying it with a factor � 2 ½0; 1� and taking � ! 0.
But let us remark that the strong K �K interactions give rise
to a bound state close to the actual mass of this resonance
[9,74–77], around the K �K threshold.
The f0ð1370Þ resonance owns its origin to the octet

scalar �8 with the bare mass of 1370 MeV, as already
noticed in Ref. [12]. These bare poles gain their widths
through the unitarization procedure. The f0ð1370Þ couples
most strongly with the ��0 channel. However, a deeper
study of the f0ð1370Þ resonance requires us to include
explicitly the 4� channel [12].
These conclusions are further supported by the NC tra-

jectories of those poles, which we will discuss later.

2. IJ ¼ 1
2 0

For these quantum numbers we obtain two poles
corresponding to the � and K�

0ð1430Þ resonances.

The most relevant Riemann sheets correspond to
ð�;þ;þÞ and ð�;�;þÞ respectively, with poles
at

ffiffiffi
s

p ¼ ð665þ9
�9 � 268þ21

�6 iÞ MeV and
ffiffiffi
s

p ¼
ð1428þ56

�23 � 87þ53
�28iÞ MeV, in order. Their pole positions

are compatible with those in the PDG [1]. For the �
resonance the pole position ð658�13�279�12iÞMeV
is found in Ref. [15] from a Roy-Steiner representation
ofK� scattering, also in good agreement with our result. In
the fourth Riemann sheet, i.e. with ðþ;�;þÞ, a shadow
pole at

ffiffiffi
s

p ¼ ð717þ8
�5 � 280þ30

�24iÞ MeV is also found for the

� resonance. This resonance couples most strongly with
theK� channel, although it has also a large coupling to the
other channels. In turn, the K�

0ð1430Þ has its largest cou-
pling to the K�0 channel, which has its threshold quite
close to the resonance mass.
We also find a good agreement with the previous study

of Ref. [45] that shares for this channel many facts in
common with ours. The � resonance, similar to the case
of �, is generated mainly from the pseudo-Goldstone
interactions. The K�

0ð1430Þ pole originates from the bare

octet of scalar resonances in the Lagrangian Eq. (5). Again,
these conclusions are further supported below when dis-
cussing the NC dependence of the pole positions.

3. IJ ¼ 10

This is the most problematic channel in our analysis.
By imposing the Uð3Þ symmetry on the subtraction con-

stants, i.e. with the constraint of a10;��SL ¼a10;K
�K

SL ¼a10;��
0

SL ,

no good fit for this channel could be obtained simulta-
neously with the other data. Within a reasonable range for
the �� subtraction constant the best fit prefers positive
values, in contrast with the negative ones for the other4We thank S. Narison for suggesting us this procedure.
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channels, though the error for this parameter is large.
However, we notice that, similarly to previous studies
[9,10], if only the tree-level amplitudes are taken for the
interacting kernel one can fit well the same data and get a
reasonable pole for the a0ð980Þ resonance on the second
sheet. Also a similar negative value for the �� subtraction
constant results then as in the other channels, with the

constraint a10;��SL ¼a10;K
�K

SL ¼a10;��
0

SL [10]. We have checked

too that the influence of the ��0 channel to the mass
distribution of �� Eq. (54) is actually tiny. In addition,
no two-body scattering data are available for this channel
which also reduces its statistical weight in the fits
performed.

We show in Table I the a0ð980Þ and a0ð1450Þ pole
positions and residues. For a0ð980Þ, the most relevant sheet
should correspond to the one with ð�;þ;þÞ or ð�;�;þÞ.
However with our current best fit, no reasonable poles are
found in those Riemann sheets. Nevertheless, a pole lo-
cated in the fourth sheet, i.e. with ðþ;�;þÞ, at ffiffiffi

s
p ¼

ð1012þ25�7 � 16þ50
�13iÞ MeV appears. This rather indirect lo-

cation of the pole associated with the a0ð980Þ resonance
indicates that this resonance is to a large extent a dynami-
cal cusp effect within our approach. It couples mostly with
the K �K channel as shown in Table I.

The most relevant Riemann sheet for the a0ð1450Þ cor-
responds to the one with ð�;�;�Þ, since its mass is larger
than the ��0 threshold, where one has the pole

ffiffiffi
s

p ¼
ð1368þ68

�68 � 71þ48
�23iÞ. Other channels are lacking at the

typical energies for the a0ð1450Þ, as listed in the PDG [1]
for its decay widths. This lack of decay channels (e.g.
!�� and a0ð980Þ��) explains why our pole position for
this resonance gives a smaller width than in [1], though the
mass is compatible within errors. In our approach the
origin of this resonance is due to the bare octet of scalar
resonances in the Lagrangian of Eq. (5).

4. IJ ¼ 11, 12 1 and 01

For the vector channels we find poles corresponding
to the �ð770Þ and K�ð892Þ in their respective 2nd
Riemann sheets at

ffiffiffi
s

p ¼ ð762þ4
�4 � 72þ2

�2iÞ MeV and
ffiffiffi
s

p ¼
ð891þ3

�4 � 25þ2�1iÞ MeV, respectively. Data are reproduced

in a straightforward way, though we have to distinguish
between the bare � and K� masses with fitted values given
in Eq. (55). The quality of the fit is the same regardless of
freeing their subtraction constants or fixing them to the
scalar channels. This indicates that unitarity effects are not
so important, though they provide the right widths to the
bare poles [10]. The masses and widths from the resonance
poles agree well with the PDG values [1].

In addition, we have another pole corresponding to the
�ð1020Þ resonance in the vector isoscalar channel. We
obtain a width for this resonance to two kaons of around
4 MeV, which is close to the experimental partial decay
width of the�ð1020Þ to this decay channel of 3.5 MeV [1].
Nonetheless, another important decay channel for the

�ð1020Þ is the ��� state which is not considered in our
approach.

C. NC trajectories of the resonance poles

As discussed above in Sec. I, one of the important
improvements of our current work is to take into account
the NC dependence of the pseudo-Goldstone boson masses
when discussing the NC trajectories for the resonances.
This may potentially cause some significant effects be-
cause in the large NC limit the UAð1Þ anomaly disappears
and the �0 becomes also a pseudo-Goldstone boson [31].
Again we clarify that when fitting our theoretical for-

mulas with the experimental data, all the masses of the
pseudo-Goldstone bosons are taken from the PDG [1],
which we summarize in Appendix E for completeness.
Only when discussing the NC trajectories, do we start to
use our prediction for the pseudo-Goldstone masses. The
leading order mass parameters �m� ¼ 2Bmq and �mK ¼
Bðmq þmsÞ in Eq. (1), do not vary with NC because

B�OðN0
CÞ. This follows from the expression for the quark

condensate in the chiral limit from Eq. (1), h0j �qiqjj0i ¼
�F2B�ij, taking into account that both the quark conden-
sate and F2 are proportional to NC. The bare masses are
fixed in terms of the physical masses of the pion and kaon
by employing the expressions given in Eqs. (B2) and (B4),
with the resulting values

�m� ¼ 139:5þ4:4
�4:6 MeV; �mK ¼ 519:6þ12:0

�7:5 MeV: (71)

We summarize here the leading NC scalings of the remain-
ing parameters entering in our equations [40,48]

�2 � 1

NC

; M0 � 1ffiffiffiffiffiffiffi
NC

p ; fcd; cm; ~cd; ~cm;GVg �
ffiffiffiffiffiffiffi
NC

p
;

fMS1 ;MS8 ;M�;MK� ;M!;M�;aSLg �Oð1Þ: (72)

As commented above, theUð3Þ large NC relations between
the singlet and octet scalar couplings [48]

~c d ¼ cdffiffiffi
3

p ; ~cm ¼ cmffiffiffi
3

p ; (73)

are well fulfilled by our fitted values in Eq. (55), while the
mass relation MS1 ¼ MS8 is affected by a 30% variation,

still within expectations for a leading large NC prediction.
The weak pion decay constant F� deserves special

attention because we can also calculate the subleading
term in 1=NC. The point is that we have a � expansion
for this important parameter in terms of F, the pseudosca-
lar weak decay constant in the chiral and large NC limit
appearing in the chiral Lagrangians, and that scales asffiffiffiffiffiffiffi
NC

p
. The relation between F� and F is given in

Eq. (C2). From this expression the subleading 1=
ffiffiffiffiffiffiffi
NC

p
contribution to the running with NC of F�, is determined.
This is, of course, a specific feature of employing Uð3Þ
�PT with its associated � expansion.
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All the parameters in Eq. (72), except aSL, are present in
chiral Lagrangians, namely, in Eqs. (1), (5), (6), (8), (9),
and (12). It is important to notice that by construction,
since Uð3Þ �PT [33,39,40] is a combined 1=NC and chiral
expansion, every coefficient multiplying a monomial of the
fields does not contain any extra subleading piece in the
1=NC and chiral quark mass expansion. These extra terms
would be part of higher order monomials in the � expan-
sion. However, when fitting data, the actual numerical
values in Eq. (55) certainly reabsorb de facto higher order
contributions in this expansion. This is also the case for the
subtraction constant aSL.

We first consider the dependence on NC of our results by
taking the leading scaling with NC of the parameters in
Eq. (72) (but keeping the full NC dependence of F� from
Eq. (C2), as follows from our calculation.) Later, when
considering the properties of the � meson, we will also
discuss variations in our results by considering subleading
terms in the running with NC for many of the parameters in
Eq. (72).

Our full result for the NC dependence of the masses
of � Eq. (B2), K Eq. (B4), � and �0 Eq. (18), as well as
the leading order mixing angle � Eq. (B7), are shown in
Figs. 8 and 9, respectively. The most striking fact is the
reduction by more than a factor of 2 of the mass of the �
with NC. The mass of the �0 also diminishes significantly.
The K and � masses vary little, especially the latter. For
large NC all the masses of the pseudo-Goldstone bosons �,
K, � and �0 go to zero in the chiral limit. However, for
nonvanishing quark masses the �0 meson still gains a
relatively large mass in the large NC limit while the �
becomes similarly as light as the pion [78]. This can be
easily understood by looking at the leading order predic-
tion in the large NC limit for the pseudoscalar masses,

�m 2
� ¼ �m2

�; �m2
�0 ¼ 2 �m2

K � �m2
�; (74)

where �m� and �m�0 stand for the masses of the � and �0

mesons, corresponding to the notations of m �� and m ��0 in

Eqs. (B5) and (B6) withM0 ! 0. Now, taking into account
the values given in Eq. (71) for �m� and �mK we then end
with the following prediction for the leading order masses
of � and �0 in the large NC limit

�m� ¼ 139:5þ4:4
�4:6 MeV; �m�0 ¼ 721:5þ17:4�11:1 MeV: (75)

This leading order result already explains qualitatively the
NC behaviors for the masses of � and �0 mesons shown in
Fig. 8.

For the leading order mixing angle �, its NC dependence
is dominantly governed by the UAð1Þ anomaly massM0, as
one can see from Eq. (B7). It is also easy to demonstrate
that in the large NC limit, i.e. M0 ¼ 0, the leading order
mixing of �� �0 turns out to be the ideal mixing:
� ¼ �54:7�, as it should.

It is worth stressing that previous works discussing the
NC behaviors of resonances, such as Refs. [19,21], directly

identify the � meson with �8, since it is based on SUð3Þ
�PT. The �1 is considered implicitly through higher order
counterterms, as any other heavy field in �PT. In addition,
all of the pseudo-Goldstone masses are not changed in the
variation of NC [19–21,44]. However, as we have just
shown, the change with NC for the � mass is very
pronounced.
Next we discuss our findings for the NC dependence of

the resonance properties channel by channel. As a clarify-
ing remark let us mention that the following discussions
are based mainly on the resonance poles appearing in the
most relevant Riemann sheets for the energy region under
discussion, as previously elaborated, unless a specific state-
ment is given.

1. Poles in the IJ ¼ 00 channel

We can easily track the pole trajectories for the �,
f0ð980Þ and f0ð1370Þ resonances while varying NC. We
first discuss the case of the � in Fig. 10 and later we will
turn our attention to the more massive f0ð980Þ and
f0ð1370Þ resonances in Fig. 11.
Figure 10 has two panels. In the left one we show the

running with NC, starting with NC ¼ 3 in one unit steps, of
the � pole position in the variable

ffiffiffi
s

p
, similarly as done in

Refs. [19–21,79], while in the right panel the same is
shown employing the variable s, as in Refs. [21,80]. Our
full results correspond to the filled circles. The shadowed
areas around every curve are generated by employing the
same configurations of parameters that we exploit before in
calculating the error bands from our fits in Eq. (55) and in
Figs. 5–7. In this way we obtain the error bands for the
shown NC trajectories of the � in Fig. 10. As one can see
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FIG. 8 (color online). Masses for �, K, � and �0 as a function
of NC from 3 to 30 with one unit step. The different points are
obtained by using the best fit given in Eq. (55) and the shadowed
regions correspond to the error bands. Squares (magenta) are for
�0, diamonds (blue) for K, bursts (brown) for � and circles (red)
for �.
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from this figure the resulting curves are quite stable even
after taking into account the uncertainties of the inputs.
From the left panel we observe that the width increases
very fast with NC, so that already for NC ¼ 7 it doubles as
compared with its value at NC ¼ 3. In regards to its mass it
first increases with NC but for NC above 7 it decreases. In
the variable

ffiffiffi
s

p
the pole stays deep in the complex plane, as

observed already in Refs. [19,21,24,80]. However, there is
no point in continuing to interpret the imaginary part offfiffiffiffiffi
s�

p
at the pole position as one half of the width when the

mass is by far much smaller. The correct interpretation, as
pointed out in Refs. [21,80], is obtained by considering the
pole trajectory in the s complex plane: the mass square of
the � resonance becomes real negative.

In Refs. [21,24] the large NC limit of the one-loop IAM
is studied in the chiral limit and the following condition in
terms of the Oðp4Þ SUð3Þ chiral counterterms L2 and L3

[25] is obtained:

25L2 þ 11L3

8><
>:
>0; s� approaches positive real s axis;
¼ 0; s�moves to1;
<0; s� approaches negative s axis:

(76)

Making use of resonance saturation [48]

L2 ¼ G2
V

4M2
V

; L3 ¼ � 3G2
V

4M2
V

þ c2d
2M2

S8

; (77)

from the fitted values of Eq. (55), and takingMV asM�, we

have

25L2 þ 11L3 ¼ �11:2þ0:8
�0:6 	 10�3 < 0: (78)

Thus, our curve with circles for s� in the right panel of
Fig. 10, bending towards negative large real values of s, is

in agreement with the condition of Eq. (76) obtained in
Ref. [21].
Compared with the one-loop IAM result of Ref. [21] our

curve bends faster to the left in the s-complex plane. It is
interesting to point out that we can give rise to closer
curves than those of Refs. [19,21] if we freeze out the
full propagators of the vector resonances exchanged in the
crossed channels and only take the leading local terms
generated by them. This in fact corresponds to integrating
out the vector resonance states in our theory and keeping
only the leading contributions in the low energy sector,
which are Oðp4Þ. These terms are the ones incorporated in
the one-loop �PT calculation used in next-to-leading order
IAM Refs. [19,21], but not the higher order ones that arise
by keeping the full vector resonance propagators that enter
into our full calculation. The corresponding trajectory
within this approximation is shown in Fig. 10 by the
triangles, labeled as vector reduced throughout. Notice
that now the mass of the � keeps increasing with NC,
and the resulting trajectory is quite similar to that obtained
in Ref. [19], particularly for NC & 10. Let us remark also
that Refs. [19,79], within their estimated uncertainties, also
have � pole trajectories in the

ffiffiffi
s

p
variable with decreasing

mass (all of them have increasing width as our case.)
One could also interpret the discrepancy between the

circles and triangles in Fig. 10 arguing that higher order
effects in the expansion employed could potentially have a
large impact on the results. Let us first note that this
criticism, from what we explicitly showed (the comparison
between the triangles and circles in Fig. 10), applies strictly
to the IAM results. The higher orders included in our
approach give rise to a large variation with respect to the
results obtained when only their local reduction is kept, as
done in the IAM. Second, from this, one could of course
infer the possibility that higher orders not considered in our
approach, as well as in any of the other unitarization
methods, could give rise to quite different � pole trajecto-
ries for large enough NC. This is further discussed below,
see also Ref. [79].
In contrast, to integrate out or keep the full contributions

of the bare scalar resonance exchanges from LS Eq. (5)
does not change the NC trajectory of � in a significant
way. This also indicates that the bare scalar nonet has little
influence on the � pole, as already pointed out in Ref. [10].
There it was stressed that the �, � and a0ð980Þ originate
independently of whether the bare scalar singlet and octet
resonances are included in the formalism. This is also
understandable by looking at how the resonances contrib-
ute to the LECs in �PT. For example, L1, L2 in SUð3Þ �PT
are purely contributed by the vector resonances, which also
dominate L3 [48]. For L4, L5, L6, L8, they are dominated
by the scalar resonances [48]. Precisely in the �� ! ��
process, the factors accompanying L4, L5, L6, L8 are al-
ways proportional to sm2

�, tm
2
� or m4

�, which are less
important in the resonance region than the terms L1, L2,
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FIG. 9 (color online). Leading order �� �0 mixing angle �
Eq. (B7) as a function of NC from 3 to 30 with one unit step.
Similar to Fig. 8, the circle (red) points are from the best fit given
in Eq. (55) and the shadowed area corresponds to the error bands.
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L3 that are accompanied by s2, st or t2. Indeed, in the chiral
limit only the contributions to �� scattering proportional
to L1, L2 and L3 survive and with those LECs� and �were
perfectly generated in Ref. [21,24].

To conclude we can say that our results for the trajectory
of the � resonance pole are in qualitative agreement with
those from the one-loop IAM [19,21,24] and differences
can be understood in terms of the higher orders included by
using full resonance propagators for the crossed vector
exchanges.

Indeed, one-loop IAM is a particular case of our

approach that results by expanding5 N�1 ¼ Nð2Þ�1ð1�
Nð4ÞNð2Þ�1 þ . . .Þ. Then from Eq. (30) one has

T ¼ Nð2ÞðNð2Þ � Nð4Þ þ Nð2ÞgNð2ÞÞ�1Nð2Þ: (79)

In the previous expression the chiral order is indicated by
the superscripts. For simplicity in the notation we have
removed the subscript J and superscript I present in
Eq. (30). The derivations apply to any specific partial
wave. Now, reducing Eq. (30) to Oðp4Þ and applying
resonance saturation one has that

Nð2Þ ¼ Tð2Þ; Nð4Þ ¼ Tð4Þ þ Nð2ÞgNð2Þ;

T ¼ Tð2Þ½Tð2Þ � Tð4Þ��1Tð2Þ;
(80)

which is the one-loop IAM result.
However, our results are quite different from those ob-

tained in Refs. [20,21] by employing the IAM with a two-
loop SUð2Þ �PT calculation for �� scattering, where for
large NC the � pole falls down to the positive real s axis at
around 1 GeV2. Indeed, as discussed in more detail below,

we also obtain a pole in the large NC limit at
ffiffiffi
s

p ¼ MS1 ’
1 GeV, but it comes from the bare singlet state which, for
NC ¼ 3, is part of the f0ð980Þ resonance. However, the �
pole is not affected by its presence in a first approximation
and this is not the reason for the different � pole trajectory
obtained by us in comparison with Refs. [20,21].
In order to understand better this discrepancy with the

two-loop IAM calculations [20,21] let us discuss the ef-
fects of several contributions particular to our approach.
The first one corresponds to the influence of having Uð3Þ
�PT. Compared with SUð3Þ �PT, where � is identified
with the octet �8 and �1 is only implicitly included at
Oðp4Þ through the LEC L7, the present discussion incor-
porates the explicit contributions from the physical states
of � and �0 within Uð3Þ �PT with the � counting. As a
result we take into account the drastic reduction of the �
mass with NC as discussed above, see Fig. 8. However,
since the couplings of the � to ��, ��0 and �0�0 are weak
in our calculation (but not necessarily in others [72,73]),
Table I, one should then expect small effects on the � pole
trajectory from this more exhaustive treatment of the � and
�0 pseudoscalars in Uð3Þ �PT.6 To make this statement
more quantitative it is interesting to find a way to make
closer our approach to the SUð3Þ one and then compare.
This can be achieved by imposing the following conditions
when varying NC: (i) Freezing the mixing angle � at
leading order in Eq. (13) to zero, together with the higher
order mixing parameters in Eq. (14). (ii) The masses of the
� (then �8), �, K are fixed to their physical values and do
not vary with NC. (iii) The �1 mass is also fixed by using
the leading order result from Eq. (1) without mixing, which
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FIG. 10 (color online). Dependence of the � pole position, s� as a function of NC from 3 to 30 with one unit step. In the left panel we
show

ffiffiffiffiffi
s�

p
and in the right one s�. The full result (circle in red) corresponds to our calculation without any approximation. The points

labeled as vector reduced (triangle in blue) are obtained by keeping only the leading local terms from the vector resonance propagators.
The empty squares (in green) correspond also to our full result but taking into account subleading terms in the running of NC for the
resonance couplings, according to the model of Eq. (88). The shadowed areas enveloping the circles and the triangles show the error
bands of our full result and vector reduced approximation.

5This is also derived in Ref. [57].

6The weak couplings of the � to states with � and �0 is kept
when varying NC as we have explicitly checked, even though the
� mass decreases significantly with NC, as shown in Fig. 8.
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gives the value 1040MeV. In this way, the�meson inUð3Þ
�PT resembles the �8 in SUð3Þ �PT and the �1 only
appears in the scattering amplitudes involving �, K, �
mesons through the loops, which is suppressed by 1=NC.
This mimics the role of L7 in SUð3Þ �PT [19], although
one needs to be careful about the NC counting for L7 [81].
The corresponding s� NC trajectory within this approxi-
mation, named as mimic SUð3Þ, is so similar to our full
results in Fig. 10 that we do not show it explicitly. Thus, for
the � case differences that arise by having used the Uð3Þ
�PT in our approach are not significant and are not cer-
tainly responsible for the differences with respect to the
two-loop IAM results [20,21]. However, the situation could
change dramatically for other resonances, e.g. for the
f0ð980Þ and f0ð1370Þ, and in general for any other reso-
nance that had large couplings to states including the � and
�0 mesons. We also want to point out that, by the same
token, our study clarifies that previous results, e.g. those
from Refs. [19–21], are stable under the explicit inclusion
of the �1 singlet when increasing NC.

Another issue to be considered is the fact, pointed out
repeatedly in Refs. [79] regarding the IAM, that the large
NC limit is a weakly interacting limit while the phenome-
nological success of unitarization methods, e.g. ours, typi-
cally rests on resumming an infinite string of diagrams,
which is particularly strong. In our approach two types of
resummations are considered simultaneously: (i) At the
tree-level, by employing explicit resonance fields, so that
infinite local terms are resummed by taking vector and
scalar bare resonance exchanges. (ii) At the loop level, by
resumming the RHC. The former resummation is leading in
large NC while the latter is subleading. Point (i) is the most
important for studying the vector resonances, while point
(ii) dominates for the scalar ones in real life [10,24,79].

Concerning point (i), let us illustrate by considering
tree-level IJ ¼ 11 �� scattering from the leading order
Lagrangian in Eq. (1), required by current algebra, and the
vector resonance Lagrangians in Eqs. (6) and (8). It is well
known the dominant role of the � resonance in IJ ¼ 11
�� scattering at low and intermediate energies. These tree-
level contributions are the ones that survive in the large NC

limit. The corresponding amplitude is

T1��1
1 ðsÞ ¼ s� 4m2

�

6F2
�

þG2
Vsðs� 4m2

�Þ
3F4

�ðM2
� � sÞ þ G2

V

6F4
�ðs� 4m2

�Þ2

	
�
ð4m2

� � sÞ½16m4
� þ s2 � 8m2

�ð6M2
� þ sÞ

þ 12M4
� þ 24M2

�s�
þ 6M2

�ð4m2
� � s� 2M2

�Þð2sþM2
� � 4m2

�Þ

	 log
M2

�

sþM2
� � 4m2

�

�
; (81)

where the first term in the right-hand side of the above
equation is from the current algebra in Eq. (1), the second

term corresponds to the s channel exchange of a � reso-
nance and the last term is contributed by the � exchanges in
crossed channels, t and u.
Let us now calculate the local terms at Oðp2Þ,

T1��1
1 ðsÞ2, and Oðp4Þ, T1��1

1 ðsÞ4 corresponding to the
chiral expansion of Eq. (81) at low energy. We have for
these terms:

T1��1
1 ðsÞ2 ¼ s� 4m2

�

6F2
�

;

T1��1
1 ðsÞ4 ¼ sðs� 4m2

�ÞG2
V

2F4
�M

2
�

:

(82)

An interesting task is to apply the IAM at next-to-leading
order [5–7,21,24] in order to reconstruct the full T1��1

1 ðsÞ
amplitude from the contributions in Eq. (82). It results

T1��1
1 ðsÞ22

T1��1
1 ðsÞ2 � T1��1

1 ðsÞ4
¼ � s� 4m2

�

18G2
V

M2
�

s� F2
�M

2
�

3G2
V

: (83)

Then, we see that only when

GV ¼ F�ffiffiffi
3

p (84)

is fulfilled, one can reproduce the exact input s ¼ M2
�.

The relation in Eq. (84) is nothing but the so-called
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin (KSRF)
relation [82]. Within chiral resonance Lagrangians it was
derived originally in Ref. [23] by studying �� scattering
and later in Ref. [83] considering the pion vector form
factor. We confirm this relation here from a different point
of view. Because of the inclusion of the contributions from
the crossed channels, the current version differs from the

original one with GV ¼ F�ffiffi
2

p . Nevertheless if the contribu-

tions from the crossed channels are neglected, by dropping
the last term in the right-hand side of Eq. (81), we can then

recover the original KSRF relation GV ¼ F�ffiffi
2

p [49]

Another look at Eq. (83) can be obtained by employing
the results of Ref. [24] which gives the �mass square in the
chiral and large NC limit from one-loop IAM at the
position

s� ¼ � F2
�

4L3

: (85)

Taking into account Eq. (77) (and keeping the vector
contribution proportional to G2

V which is much larger
than the scalar one), one then has

s� ¼ M2
VF

2

3G2
V

: (86)

Then only when GV ¼ F�=
ffiffiffi
3

p
one can recover the exact

position of s ¼ M2
V ¼ M2

�, which is the same as Eq. (84).

This simple exercise shows that the success of the IAM
in the vector channels [24] is intrinsically related with the
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KSRF relation and vector-meson dominance [84].
This success is not related with having resummed the
RHC, as stated confusingly in Refs. [79], it occurs at the
tree-level, and it is then expected to occur at any order in
large NC because loop corrections are even further sup-
pressed with increasing NC. Notice that the benefits of the
tree-level IAM resummation of Eq. (83) is accomplished in
our approach by the explicit exchange of bare vector and

scalar resonances. Indeed, if GV � F�=
ffiffiffi
3

p
the IAM re-

summation would not be so accurate, while including
explicit resonance exchanges is not affected by tuning
coupling or mass parameters. For an explicit example on
this, corresponding to the exchange of a Higgs particle in
the spontaneous breaking of electroweak symmetry, see
Ref. [57].

Regarding the RHC resummation, point (ii) above, the
situation is the opposite since loops in general, and unitar-
ity loops, in particular, become less relevant when NC

increases. In this respect, the situation is more worrisome
than for the vector channels since when considering large
values of NC one is testing contributions not relevant in the
physical NC ¼ 3 case. Within one-loop IAM it was shown
in Ref. [24] that this could imply inconsistencies. In
Refs. [79] it is argued that if IAM describes data and
resonances within a 10 to 20% error, this means that the
other contributions at NC ¼ 3 are not badly approximated.
But since meson loops scale as 3=NC, while tree-level
inadequacies scale as Oð1Þ, those 10 to 20% errors at
NC ¼ 3 become 100% for values NC � 30 and �15, re-
spectively. This criticism also applies to our approach
because we rely on an expansion for the interacting kernel
NI

JðsÞ, Eqs. (30) and (36). In this sense, at least, part of the

differences between our results and the two-loop IAM
should correspond to different treatment of higher order
terms in the chiral expansion, those at NC ¼ 3 are not so
relevant but become more important for large NC.
Nevertheless, we think that the final reason why our results
differ with respect to the two-loop IAM results should be
deeper, since from the very start our curve for the full
results on the right panel of Fig. 10 bends to the left while
the analogous curve for the two-loop IAM results of
Ref. [21] bends to the right for NC � 3. There is also a
big qualitative change resulting from passing from one- to
two-loop IAM results (which is not properly understood
yet in the literature and that is related to the issue we are
discussing.) Our calculation resembles the one-loop case
much more closely. On the one hand, we employ explicit
resonance fields, with its associated tree-level resumma-
tion as just discussed. Note that the tree-level resummation
for the IAM only generates the full resonance exchanges in
the s channel. For example, taking again the toy model
described above the IAM result, Eq. (83), generates the �
pole in the s channel but not the cut due to the � exchanges
in the crossed channels. The latter correspond to the log
in Eq. (81). However, on the other hand, standard �PT

two-loop calculations [85], as those used in two-loop IAM
[20,21] include more Oðp6Þ operators than those that can
be reproduced by expanding the resonance propagators up
to this order included in our study [51] (but let us recall that
up toOðp4Þ, and also up toOð�Þ, we have all of them.) The
situation regarding terms that become more important for
the study of scalar resonances for large NC, but that are not
so important at NC ¼ 3, is then still far from being settled.
Interestingly, in our approach one knows beforehand

which is the resonance spectrum for NC ! 1. The reason
is just because in the equation that we use for calcula-
ting the TI

J-matrix, Eq. (30), NI
JðsÞ�1 scales as OðNCÞ

while gðsÞ scales as Oð1Þ. Then in the NC ! 1 limit
TI
JðsÞ ! NI

JðsÞ and the latter only contains the poles in-

cluded explicitly as bare resonances (vector and scalars)
from the Lagrangians Eq. (5) and (6). In this sense, when
reproducing data we are at the same time directly testing an
NC ! 1 spectrum which is known beforehand. However,
in the IAM due to the proliferation of higher order counter-
terms when passing from one- to two-loop order it is not so
clear which are the resonance poles that come up from the
model for NC ! 1, since they depend on the specific
values of the chiral counterterms.
Another issue of interest on which we want to elaborate

regarding its possible implications is the assumption of
using the leading running with NC for the parameters in
Eq. (72). The possible impact of subleading terms in the
running of NC for chiral counterterms was already pointed
out in Refs. [19,20,24,79]. Refs. [19,20,79] estimated this
uncertainty by varying the �PT renormalization scale in
which the counterterms are calculated. These values are
then taken as the initial ones to engage the simple leading
large NC running. In our case, we include a subleading
dependence on NC on the coupling parameters. We think
that for the bare masses this correction should be quite
small because, as discussed below, the displacement of the
bare resonance mass to its final pole position (atNC ¼ 3) is
quite short. Since both limits are so close it is then a good
approximation to keep them as Oð1Þ and not to elaborate
further on subleading contributions for the bare masses.
For the subtraction constant a00SL, we do not consider any

subleading term because at NC ¼ 3 it is already a common
number, being the same for all the five channels with
IJ ¼ 00 as required by the large NC Uð3Þ symmetry. The
parameters �2 � 1=NC and M0 � 1=

ffiffiffiffiffiffiffi
NC

p
already vanish

in the large NC limit so that subleading terms are not so
interesting because they are even further suppressed. Then,
their contributions in the large NC should be marginal
compared with those that we keep. Coming back to the
resonance couplings in Eq. (55) we take into account addi-
tional QCD-inspired assumptions of high-energy behavior,
such as unsubtracted dispersion relations for the pion
electromagnetic form factor [23,83];and for the scalar
strangeness changing scalar form factor [45,86] one has
the relations,
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GV ¼ F�ffiffiffi
3

p ;
XN
i¼1

cd;icd;i ¼ F2
�

4
: (87)

In the last equation the sum extends over the set of bare
scalar resonances considered. In our approach we only
include one scalar octet of resonances, N ¼ 1. This is the
so-called single resonance approximation which is based
on the 1=M2 suppression for more massive resonances. The
single resonance approximation was also employed in
Ref. [24] for studying the � and � resonance pole trajec-
tories within one-loop IAM in the chiral limit. Next we
apply the large NC relations of Eq. (87) to the physical
case. It follows then the scaling with NC:

GVðNCÞ ¼ GVðNC ¼ 3Þ F�ðNCÞ
F�ðNC ¼ 3Þ ;

cdðNCÞ ¼ cdðNC ¼ 3Þ F�ðNCÞ
F�ðNC ¼ 3Þ ;

cmðNCÞ ¼ cmðNC ¼ 3Þ F�ðNCÞ
F�ðNC ¼ 3Þ :

(88)

In the last equation we have assumed the same subleading
dependence on NC for cm as for cd. Note that cm is poorly
determined by the fit in Eq. (55) and it is not excluded that
cm ’ cd, as used e.g. in Ref. [45]. We also make use of the

already discussed Uð3Þ large NC relations ~cd ¼ cd=
ffiffiffi
3

p
and

~cm ¼ cm=
ffiffiffi
3

p
so that the scaling with NC of all the cou-

plings in Eq. (55) is driven by F�. Similar relationships
were employed in Ref. [24] to deduce constraints between
resonance saturation and unitarization by the one-loop
IAM. But note that here we now take advantage of the
fact that we can calculate both the leading and subleading
terms in the 1=NC expansion of F�, Eq. (C2), within the �
expansion7:

F�ðNCÞ
F�ðNC ¼ 3Þ ¼

ffiffiffiffiffiffiffi
NC

3

s �
1þ 1

16�2F2
�ðNC ¼ 3Þ

	
	
A0ð �m2

�Þ þ 1

2
A0ð �m2

KÞ

�

3

NC

� 1

��
: (89)

We show by the empty squares in Fig. 10 the resulting �
trajectories taking into account the subleading terms in the
running with NC for the resonance couplings according to
Eqs. (88) and (89). We observe that the curve still bends to
the left, and qualitatively speaking is not very different
to the circles obtained by considering the leading scaling
with NC shown in Eq. (72) (we recall that we always
include the subleading term in 1=NC for F�, Eq. (89).) It
seems plausible then that subleading terms in the large NC

expansion are not responsible for the difference between
our results and the two-loop IAM either [20,21].
The NC trajectory for f0ð980Þ is not reported in the IAM

method due to the difficulty to track this pole [19]. In
contrast, in our case its variation when moving NC can
be easily followed. The trajectories of the f0ð980Þ and
f0ð1370Þ also pose a strong evidence that they originated
from the singlet and octet scalar states in the Lagrangian,
respectively. However, one should also take into account
that the contribution to the physical f0ð980Þ due to a K �K
bound state [9,10,74–76] disappears in the large NC limit.
We see that the difference in the trajectories obtained in the
full result andmimic SUð3Þ cases differ significantly for the
f0ð980Þ and f0ð1370Þ resonances. This is expected because
these resonances couple strongly to states with the � and
�0. For the f0ð980Þ and f0ð1370Þ resonances, since in our
case their poles always fall down to the real axis at the
masses of the singlet and octet bare resonances in the
Lagrangian, in order, we only show the pole trajectories
from the best fit in Fig. 11. For NC ! 1 the uncertainty is
already given because their pole positions correspond to
the bare masses of the singlet and octet scalar resonances,
in order, given in Eq. (55) together with their errors.

2. Poles in the IJ ¼ 1
2 0 channel

The K�
0ð1430Þ pole can be easily tracked in the complex

plane, which we show in the third panel of Fig. 11. Like the
f0ð1370Þ, this pole falls down on the real axis for NC ! 1,
at s ¼ M2

S8
, indicating that it originates from the bare octet

scalar states with I ¼ 1=2. AtNC ¼ 3, its pole is somewhat
sensitive to the different modifications of our results al-
ready discussed, while for large NC they run towards the
same point, as expected. From Table I we can see that the
K�

0ð1430Þ resonance couples to K�0 as strongly as to K�
for NC ¼ 3, while its coupling to K� is suppressed. This
behavior is also kept when varying NC.
For the � pole trajectories, depicted in Fig. 12, the

situation is more involved. After NC ¼ 4, we could not
find its pole in the second Riemann sheet. However,
switching to the fourth sheet, i.e. with ðþ;�;þÞ, we can
then track the � pole for any value of NC. This is due to the
more complicated cut structures in IJ ¼ 1

2 0 case so that

the trajectories of � are not as smooth as for the � in the
IJ ¼ 00 case. This is the reason why the � pole in the
second Riemann sheet cannot be tracked because at
NC ¼ 5 the pole moves to another Riemann sheet obtained
by crossing the new cut in the complex plane, so that only a
bump remains in the second Riemann sheet. Indeed, for
NC ¼ 3 the � pole position in the fourth sheet is very
similar to that in the second sheet for NC ¼ 3 (as discussed
above). The resulting trajectory in the fourth Riemann
sheet is then shown by the circle points in Fig. 12. We
show the � pole trajectory with NC both in the

ffiffiffi
s

p
, left

panel, and s variables, right panel. The same remark as for
the � is in order for the � also. The correct interpretation is

7However, note that in Eq. (C2) we do not have all the
counterterms of L�2 because we use resonance saturation from
the Lagrangians (5). Extra resonance operators would be needed
which are beyond the scope of our study [51].
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obtained by considering the pole trajectory in the s com-
plex plane: the mass square of the � resonance becomes
negative, as stressed in Ref. [80] for the similar � case.
From Fig. 12 one observes that the pole trajectory bends to
the left for the final as well as for the mimic SUð3Þ
approximation. However, for the vector reduced approxi-
mation it tends to the right for NC * 10 in the

ffiffiffi
s

p
complex

plane. In Fig. 12 the mimic SUð3Þ and vector reduced
approximations are not shown, they were already shown
in Fig. 10 for the similar � case.

3. Poles in the IJ ¼ 10 channel

The trajectories for the a0ð1450Þ pole position are shown
in the last panel of Fig. 11. One can see that for this

resonance the trajectories bend and make a knot for

NC < 7. In order to visualize this behavior different sym-

bols for the pole positions up to NC ¼ 7 have been used in

the figure. Independently from this peculiar behavior the

a0ð1450Þ pole position trajectories can be followed easily

in a smooth way as NC varies. As expected, for large NC
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this pole moves to the real axis with zero width at s ¼ M2
S8
,

the same position as for the f0ð1370Þ and K�
0ð1430Þ. It

corresponds to the bare isovector members of the scalar
octet S8, Eq. (7). All SUð3Þ breaking effects in the masses
of these heavier scalar resonances originate through pseu-
doscalar loops and disappear in the large NC limit.

For the a0ð980Þ pole in the fourth sheet, we can track its
trajectory up to NC ¼ 18 without any difficulty, which we
display in Fig. 13. After NC ¼ 19, only bumps appear in
this sheet because there is a cut in the complex plane that
connects the fourth Riemann sheet with another one, that
would be obtained by crossing this cut in the complex
plane continuously (not the real axis on which the standard
Riemann sheets based on unitarity are defined), where the
pole is finally located. Contrary to the � case we cannot
find a unique sheet where we can track the pole position
from NC ¼ 3 onwards to high values of NC. Although
similar poles can be tracked if we switch to other sheets
for NC > 18, there is some discontinuity when passing
from one trajectory to another in different Riemann sheets.
The trajectory shown in Fig. 13 corresponding to our full

results clearly indicates that this resonance is dynamically
generated [9,10,76], since it moves further and further in
the complex plane with a huge width increasing very fast
with NC.

4. Poles in the IJ ¼ 11, 12 1 and 01 channels

The NC trajectories of the �ð770Þ and K�ð892Þ vector
resonances are shown in the left and right panels, respec-
tively, of Fig. 14. Both the � and K� move to the real axis
with increasing NC, as one can see in Fig. 14, indicating
that their widths vanish in the large NC limit. Indeed they
vanish exactly as 1=NC. In addition their masses move very
little. Both facts are in agreement with their standard
interpretation as �qq resonances which imply an N0

C scaling

with NC for the mass and 1=NC for the width.
Our results agree well with the previous conclusions on

this respect [19,20,24]. Nevertheless, the NC trajectories of
the residues for the K�ð892Þ in our full calculation show a
clearly different feature, compared with the mimic SUð3Þ
approximation. As one can see in Fig. 15, the residues of
K� are rather similar between the two frameworks, while
the residues of K�0 in the full result are obviously larger
than theK�1 in themimic SUð3Þ approximation, which can
be attributed to the �� �0 mixing angle. In contrast to the
almost flat residue of K� (in fact K�8) in the mimic SUð3Þ
approximation, a more complicated structure appears in
the full result. We verify this structure is caused by the NC

variation of the � mass. As one can see the kink in the
residue of K� happens around NC ¼ 14, where precisely
the K� threshold becomes lighter than the K�ð892Þ mass.
The NC trajectory for the �ð1020Þ pole position is

completely analogous to those discussed for the �ð770Þ
and K�ð892Þ, but even simpler because it is an elastic
channel and the width of the �ð1020Þ is very small,
Table I. This is why we do not dedicate a separate figure
for this case. This type of trajectory is then in agreement
with the standard �qq interpretation for this resonance.
Nevertheless, there is some movement in the �ð1020Þ
mass due to the small variation of the nearby K �K threshold
with NC, see Fig. 8.
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FIG. 13 (color online). Dependence on NC for the a0ð980Þ pole
position from 3 to 18 with one unit step. The notation is the same
as in Fig. 10.
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VI. CONCLUSIONS

In this work, we complete the first one-loop calculation
of meson-meson scattering in Uð3Þ �PT in the literature,
that comprises simultaneously a chiral and a 1=NC expan-
sion, the so-called � counting. It is also the first work in
which the NC trajectories of resonance pole positions are
studied taking into account the fact that the�1 becomes the
ninth Goldstone boson in the large NC limit. This has a
large impact in the hadron spectrum because the mass of
the � pseudoscalar in large NC decreases drastically and
tends to be as light as the pion.

In our one-loop Uð3Þ �PT calculation for scattering
amplitudes, instead of the local terms atOð�3Þ, we include
explicit resonance fields whose exchange generates these
terms, as well as higher order ones. In order to compare
with data, including the resonance region, we have unita-
rized the previous one-loop amplitudes projected in partial
waves. For the unitarization we employ a nonperturbative
scheme based on the N=D method, where the right-hand
cut is resummed while the crossed-channel cuts are per-
turbatively treated as given by the input partial waves from
Uð3Þ �PT. We achieve a good reproduction of meson-
meson scattering data from the�� threshold up to energies
between 1.2–1.6 GeV, depending on the particular partial
wave.

We then studied the spectroscopy content of our solution
by considering the poles and related residues of the differ-
ent partial waves. Various resonance poles in the complex
energy plane are then found, namely, for the �, f0ð980Þ,
f0ð1370Þ, �, K�

0ð1430Þ, a0ð980Þ, a0ð1450Þ, �ð770Þ,
K�ð892Þ and�ð1020Þ resonances. The pole positions agree
remarkably well with the PDG values [1]. The correspond-
ing residues are calculated as well, which give us the
coupling strengths of every resonance to the different
channels. The couplings of the � resonances were studied
in detail. We first discuss that the ratio of the couplings of
the � to KþK� and �þ��. Our result for this quotient,
0:44þ0:03

�0:02, is in close agreement with the determination in

Ref. [70], where its not-small size is interpreted as an

indication in favor of the glueball content of the �. In
our case, this resonance originates dynamically because
of the �� interactions [9,10,24]. We further compared our
results for the couplings of the � to ��, ��0 and �0�0 with
previous results from Narison and collaborators. These
authors obtain a coupling of the � to �� that depends
markedly on the value taken for the ratio of the couplings
of the � to KþK� and �þ��, while ours is small. For the
couplings to ��0 and �0�0 our calculation is in agreement
with the upper bounds from Ref. [72].
We pay special attention to the NC dependences of the

poles for these resonances as well as for their residues. Our
approach fills a gap in the literature because previous
studies did not take into account the Goldstone boson
nature of the �1 field in the large NC limit, due to the
vanishing of the UAð1Þ anomaly with large NC. The tra-
jectories for the pole positions are obtained by taking the
leading scaling with NC of the UAð1Þ anomaly mass, �2,
the subtraction constants aSL and the bare resonance pa-
rameters. The scaling with large NC of F� also includes
subleading terms determined from our one-loop calcula-
tion in Uð3Þ �PT. The NC dependences of the pseudo-
Goldstone masses have been taken into account for
determining the resulting trajectories. The large reduction
of the � mass with NC, that becomes similarly light as the
pion for largeNC is especially remarkable. We discussed in
depth the particular case of the � resonance. We show that
our results are in qualitative agreement with the ones of
the one-loop IAM. We obtain that s�, the pole position of
the � resonance in the variable s, bends towards the real
negative axis. This behavior is expected according to a
relation obtained in Refs. [21,24], given the values of the
largeNC leadingOðp4Þ counterterms L2 and L3 that follow
from our calculation making use of resonance saturation.
We also find that higher order terms arising within our
approach by keeping the full resonance propagators in the
crossed vector resonance exchanges give rise to a qualita-
tive different behavior in the

ffiffiffi
s

p
-complex plane for the �

case for not too large NC values (NC * 7). This is easily

 0

 0.4

 0.8

 1.2

 1.6

 2

 0  5  10  15  20  25  30

R
es

id
ue

 0

 0.4

 0.8

 1.2

 1.6

 2

 0  5  10  15  20  25  30

R
es

id
ue

FIG. 15 (color online). The NC running of the various residues of the K�ð892Þ resonance. The absolute value of the coupling to K� is
given by the circular points, while for the other states the ratio to the K� coupling is shown. Triangles apply to K� (K�8) and squares
to K�0 (K�1). The left (right) panel corresponds to our full (mimic SUð3Þ) results.

ZHI-HUI GUO AND J. A. OLLER PHYSICAL REVIEW D 84, 034005 (2011)

034005-24



understood because for increasing NC the loop contribu-
tions from crossed diagrams tend to vanish faster with NC

than those from the resonance exchange diagrams. In this
way, the cancellation between both contributions found in
Ref. [10] at NC ¼ 3 for the resonant scalar channels below
1 GeV, is spoilt for higher values of NC and then there is
more sensitivity to crossed-channel dynamics. As a result,
we find that the pole position for the � resonances has a
mass that typically decreases with NC, while this is not the
case if the vector resonance exchanges are reduced to the
leading local term contribution. Similar results are also
obtained for the � resonance.

The last point is one of the most problematic issues in
determining the large NC trajectory for the � resonance
pole. As stressed in Refs. [79] one is sensitive in this case
to terms that are not so significant at NC ¼ 3 so that a
testing ground for the model is lacking. Particularly taking
into account that the tendency for js�j is to increase with
NC at around or above 1 GeV2, so that model dependence
becomes more important. Indeed, our results are quite
different from the two-loop IAM results [20,21] where s�
bends towards real positive values of s, falling down to the
real axis at around 1 GeV2. Surely the most important
reason for such disagreement has to do with the different
way higher orders are treated within the two-loop IAM and
our approach. In addition, we have argued about other
reasons. We have excluded that the explicit consideration
from our side of the �1 as a degree of freedom, by extend-
ing SUð2Þ or SUð3Þ �PT framework to Uð3Þ �PT, is not
responsible for such disagreement. The basic reason is that
the � resonance within our approach couples weakly to
states containing the � and �0 and, then, is not so sensible
to any improvement in the treatment related to those states.
This is an interesting result by itself because then our
calculation establishes that previous studies [19–21], are
stable under the explicit inclusion of the �1 singlet even
when increasing NC. However, this is not the case for all
the other resonances studied that have large couplings to
states with � and/or �0 and it is a necessary step forward to
consider Uð3Þ �PT.

We also considered the possible presence of subleading
terms in the large NC running of the resonance parameters
in the resonance Lagrangians by employing model results
in the literature that are obtained by imposing QCD-
inspired assumptions for the high-energy behavior of
some form factors. We then obtain that they scale as F�,
whose scaling we calculate within Uð3Þ �PT at the one-
loop level. Subleading terms in the resonance masses are
not considered because they move very little from NC ¼ 3
(actual physical poles) to NC ¼ 1 (bare masses). They are
also not taken into account for parameters vanishing in the
large NC limit. We conclude tentatively that subleading
terms are not responsible for the discrepancy of our results
with those of the two-loop IAM [20,21]. We also point
out that within our approach we know beforehand the

resonance spectrum in the NC ! 1 limit, because it di-
rectly corresponds to the bare resonances introduced. In
this way, when fitting data we are testing a knownNC ! 1
set of resonances. In the IAM the knowledge of the NC !
1 resonance spectrum is more uncertain at the level of
two-loops because of the proliferation of higher order
counterterms and the dependence of the precise spectrum
with the explicit numerical values of the counterterms.
Regarding the f0ð980Þ we obtain that in the large NC

limit it tends to a zero width pole position corresponding to
the bare singlet scalar resonance around 1 GeV. It is worth
stressing that in other studies a zero width pole with mass
of 1 GeV was already found for large NC from the evolu-
tion of the � pole trajectory [20,21]. However, the pole at
1 GeV disappears in those studies for NC ¼ 3 and only the
� remains [20]. In our case, both states remain. On the one
hand, we have the bare scalar pole around 1 GeV that
contributes to the f0ð980Þ resonance pole in NC ¼ 3 while,
on the other hand, the � resonance originates dynamically
mainly from pion interactions. In addition, the strong K �K
interactions near the threshold in the S-wave gives rise to
another strong contribution of the f0ð980Þ as a K �K bound
state. This contribution disappears in the largeNC limit and
only the bare singlet scalar state pole contributes. It is an
interesting exercise for future work to check that our bare
singlet scalar pole at around 1 GeV is enough to guarantee
local-duality [87].
The a0ð980Þ resonance disappears deep in the complex

plane for largeNC, by increasing its width and mass, which
is always positive and large. This behavior corresponds to a
dynamically generated resonance. We also discussed the
NC trajectories for the f0ð1370Þ, a0ð1450Þ and K�ð1430Þ.
Asymptotically for large NC, they tend to the zero width
pole position of the bare octet of scalar resonances in-
cluded at the tree-level around 1.4 GeV.
Finally, the vector resonances �ð770Þ, K�ð892Þ and

�ð1020Þ are reproduced with properties in good agreement
with the PDG [1]. They have anNC pole position trajectory
in good agreement with the expectations for a �qq state,
with a quenched mass running as N0

C and the width de-

creasing as 1=NC. The decreasing � mass with NC makes
the K�ð892Þ resonance become heavier than the K� chan-
nel for NC around 15. The crossover between the mass of
the resonance and the K� threshold manifests in a kink in
the coupling to K�.
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APPENDIX A: CONVENTION OF THE
LOOP FUNCTIONS

The one-loop functions that appear in our Uð3Þ �PT
calculation are calculated in dimensional regularization

within the MS� 1 renormalization scheme [25]. They

are defined as

A0ðm2Þ¼ ð2�	Þ4�D

i�2

Z
dDq

1

q2�m2
¼�m2 ln

m2

	2
;

B0ðs;m2
a;m

2
bÞ¼

ð2�	Þ4�D

i�2

Z
dDq

1

q2�m2
a

1

ðq�pÞ2�m2
b

¼ 1� log
m2

b

	2
þxþ log

xþ�1

xþ
þx� log

x��1

x�
;

(A1)

where 	 is the renormalization scale, s ¼ p2 and x� was
defined in Eq. (33). In case of equal masses, the two-point
function reduces to

B0ðs; m2Þ ¼ 1� log
m2

	2
þ �ðsÞ log�ðsÞ � 1

�ðsÞ þ 1
; (A2)

with �ðsÞ defined in Eq. (35).

APPENDIX B: RENORMALIZATION OF THE WAVE FUNCTIONS AND MASSES

From the calculation of the �, K, �� and ��0 self-energies Fig. 3, with the latter fields defined in Eq. (13), we have:
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The leading order masses of ��, ��0, i.e. m �� and m ��0 defined in Eq. (14), and the ��� ��0 mixing angle from Eq. (1) are

found to be
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with �2 ¼ �m2
K � �m2

�.
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The higher order mixing parameters of ��� ��0 are defined in Eq. (14). They read
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APPENDIX C: RENORMALIZATION OF PION
DECAY CONSTANT

The definition of pseudoscalar weak decay constant is

h0jAa
	j�bðpÞi ¼ iF�bp	�

ab; (C1)

where the axial-vector current is Aa
	 ¼ �q	5

�a

2 q.

Throughout this work we have expressed F in the chiral
limit in terms of the physical pion decay constant F�. The
corresponding expression coincides with the one in SUð3Þ
�PT [25,38], once resonance saturation of the Oðp4Þ �PT
counterterms is assumed [48]. It reads

F� ¼ F

�
1þ 1

16�2F2
�

	
A0ðm2

�Þ þ 1

2
A0ðm2

KÞ



þ
	
4~cd~cmðm2

� þ 2m2
KÞ

F2
�M

2
S1

� 8cdcmðm2
K �m2

�Þ
3F2

�M
2
S8


�
:

(C2)

APPENDIX D: SCATTERING AMPLITUDES

By using crossing symmetry and isospin symmetry, as
we discussed in Section IV, all the meson-meson scattering
amplitudes with well-defined isospin and angular momen-
tum in Uð3Þ �PT can be reduced to the calculation of 16
independent processes.
Because of the much lengthy expressions of the one-

loop Uð3Þ �PT scattering amplitudes, we only provide
here the analytical expressions for the tree-level results
at leading order, denoted with the superscript (2). For the
remaining parts, comprising the ones from the loops and
resonance exchanges, one can download the MATHEMATICA

file from http://www.um.es/oller/u3FullAmp16.nb, that
can also be provided by the authors by request.
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APPENDIX E: NUMERICAL INPUTS

In the numerical discussion, we take the average values for the masses of the charged and neutral pions and kaons. The
values taken are summarized below in units of MeV:

m� ¼ 137:3; mK ¼ 495:6; m� ¼ 547:9; m�0 ¼ 957:7; F� ¼ 92:4;

	 ¼ 770:0; M� ¼ 1026:0; M! ¼ 783:0: (E1)

The value for M� is adjusted so as to reproduce the pole position of the �ð1020Þ resonance in Table I according to the
PDG [1].
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Peláez, J. Ruiz de Elvira, and F. J. Ynduráin, Phys. Rev. D
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