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Non-Fermi liquid corrections to the neutrino mean free path in dense quark matter
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We calculate the neutrino mean free path with non-Fermi liquid corrections in quark matter from
scattering and absorption processes for both degenerate and nondegenerate neutrinos. We show that the
mean free path decreases due to the non-Fermi liquid corrections, leading to Iyl ~[...+
...C%a? In(mp/T)?]. This reduction results in a higher rate of scattering.
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L. INTRODUCTION

Recently, there has been a substantial effort to study the
properties of cold and warm quark matter. Such studies are
important to understanding the properties of the astrophys-
ical compact objects like neutron stars and pulsars. There
have been a lot of experimental efforts, like the Einstein
Laboratory, ROSAT, CHANDRA, and XMM, where
various measurements are performed to understand the
properties of neutron stars [1-3].

There is a possibility that, at the core of neutron stars, the
density may go up to 5 ~ 6 times the normal nuclear matter
density where the matter is not expected to be in the
hadronic phase [4,5]. In fact, under such a scenario, one
expects that it would be more appropriate to describe the
core of such dense stars as degenerate quark matter [6],
which is our main interest in the present work.

It is known that the newly born neutron stars cool via the
emissions of neutrinos and antineutrinos within a few
minutes, involving the direct [7-9] or the modified
URCA processes [8,10]. The direct URCA reactions can
proceed in neutron-rich matter if the ratio of the proton
number density to the total baryon number density exceeds
a critical value which follows from the energy and mo-
mentum conservation properties [11]. In the modified
URCA process, another nucleon catalyzes the reaction to
occur under situations where the direct URCA reaction is
forbidden.

For quark matter, the dominant contribution to the emis-
sion of neutrinos is given by the quark analogous of S
decay and the electron capture [9]. These reactions are
named as ‘“‘quark direct URCA” processes which have
been studied in detail by Iwamoto [7,8]. Our main focus
here is to calculate the neutrino mean free path (MFP), as
mentioned earlier, for cold and warm QCD matter.
Previously, the MFP of quark matter was derived in
Ref. [7], where the calculations were restricted to the
leading order by assuming free Fermi gas interactions.
Here, we plan to go beyond leading order to include
“plasma” or ‘“‘quasiparticle” effects arising out of the
interacting ground state. This, as we show, gives rise to
logarithmic corrections to the MFP in contrast to what one
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expects from the usual Fermi liquid theory (FLT) [12,13].
Similar non-Fermi liquid behavior of various thermody-
namical quantities has recently drawn significant attention
[4,5,9,14-16].

For example, in [4,14], the authors have computed the
leading contribution to the interaction part of specific heat
and entropy when the temperature is much smaller than the
chemical potential of quark matter. It has been shown, in
the case of specific heat, for ideal gas, the leading-order
term goes as O(u>T), while the correction term involves
O(T?). In the interacting case, as shown in Ref. [14], the
correction to the leading-order contribution involves non-
analytic terms, known as non-Fermi liquid (NFL) correc-
tions, which have been discussed extensively in [4,5,9,14—
16]. Ref. [15] examined NFL effects in the normal phase of
high density QCD matter both using the Dyson-Schwinger
equation and the renormalization group theory. Like spe-
cific heat, the magnetic susceptibility shows that similar
non-Fermi liquid behavior has been shown in [16]. Being
motivated by this series of works, we undertake the present
investigation to estimate and see the consequences of such
effects in the case of the neutrino MFP.

In FLT, quarks are treated as quasiparticles, and their
energy (E) is regarded as a functional of the distribution
function [12,13,17-20]. FLT is restricted to the low-lying
excitations near the Fermi surface, where the lifetime of
quasiparticles is long enough. Therefore, it is an important
tool to study the properties of nuclear (or quark) matter. In
Ref. [21], it has been argued that the exchange of dynami-
cally screened transverse gluons introduces infrared diver-
gences in the quark self-energies that lead to the
breakdown of the Fermi liquid description of cold and
dense QCD in perturbation theory. A detailed study of
non-Fermi liquid aspects of the normal state was presented
in Ref. [5]. There, the spectral density, dispersion relation,
and width of quasiparticles with momenta near the Fermi
surface were derived at 7 = 0 by implementing a renor-
malization group resummation of the leading logarithmic
infrared divergences associated with the emission of soft
dynamically screened transverse gluons [4,5].

We have already mentioned that such anomalous cor-
rections are ultimately connected to the absence of
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magnetic screening of gluons via Landau damping. One
such calculation, which we find to be the most relevant for
the present purpose, was performed in [9]. It was shown
that the emissivity that receives logarithmic corrections is
enhanced due to non-Fermi liquid effects. It might not be
out-of-context here to recall two important works on the
neutrino mean free path in QED plasma. One is due to
Tubbs and Schramm [22], and the other is done by Lamb
and Pethick [23]. In [22], the resultant mean free path was
calculated in the neutronized core and just outside the core.
It is concluded, in [23], that neutrino degeneracy reduces
the neutrino mean free path, which suggests that neutrinos
may flow out of the core rather slowly.

In our work, we show that the neutrino mean free path
receives logarithmic corrections where the dressed gluon
propagator is used instead of the bare propagator. In fact,
we generalize the [8,22,23] results by incorporating the
NFL corrections for the quark matter. The corrections to
the MFP for degenerate and nondegenerate neutrinos, as
we shall see, will involve different powers of «;.

In the interior of a neutron star, there are two distinct
phenomena for which the neutrino mean free path is calcu-
lated: one is absorption, and the other one involves the
scattering of neutrinos [8]. The corresponding mean free
paths are denoted by /2%, and I553 Tt is to be noted that one
also defines another MFP, known as the transport mean free
path, which enters into the calculation of the diffusion
coefficient. The scattering MFP, on the other hand, is related
to the relaxation time that characterizes the rate of change of
the neutrino distribution function [8]. One can combine
[t with 1255 to define the total mean free path [24],

11 1
ltotal - labs + lscatt . (1)
mean mean mean

II. MEAN FREE PATH

In this section, we calculate neutrino mean free paths in
quark matter, including NFL corrections both for degener-
ate and nondegenerate neutrinos. When the neutrino
chemical potential (w,) is considered to be much larger
than the temperature (T, the neutrinos become degenerate,
and, for nondegenerate neutrinos, x4, << 7. In our model,
the Lagrangian density is described by [7]

L) = %lﬂ(x)J"fV(x) T He, @)

where the weak coupling constantis G =~ 1.166 X 10! in
MeV units, and /,, and [J}, are the lepton and hadron
charged weak currents, respectively. The weak currents are

L(x) =2y, (1 —ys)ve + @y, (1 —ys)v, +..., (3)
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T (x) =cosb.iy*(1 — ys)d +sinf.iay*(1 —ys)s +...,
“4)

where 6, is the Cabibbo angle (cos?6, =~ 0.948) [25].

The mean free path is determined by the quark-neutrino
interaction in dense quark matter via weak processes. We
consider the simplest 8 decay reactions: the absorption
process

d+v,—u+e (®)]
and also is its inverse relation
ute —d+uv,. (6)

The neutrino mean free path is related to the total
interaction rate due to neutrino emission averaged over
the initial quark spins and summed over the final state
phase space and spins. It is given by [8]

dpy 1
(277)3 2Ed

dp, 1
(2m)’ 2E,

&p,
Q2m)?

1 _ 8
Bn(E,, T) 2E,

8 223 @m)*e*(Py + P, — P, = P)IMI?
XA{n(p )1 = n(p,)I1 = n(p,)]
- n(pu)n(pe)[l - n(pd)]}r (7)

where g is the spin and color degeneracy, which, in the
present case, is considered to be 6. Here, E, p, and n, are
the energy, momentum, and distribution function for the
corresponding particle. |M|? is the squared invariant am-
plitude averaged over the initial d quark spin and summed
over final spins of the u quark and electron as given by [8]

1
MIP =3 > M2 =64G2cos0,.(P,- P,)(P, - P,). (8)

7,040,

Here, we work with the two-flavor system, as the interac-
tion involving strange quarks is Cabibbo-suppressed [4,9].

A. Degenerate neutrinos

We now consider the case of degenerate neutrinos, i.e.,
when w, > T; or, in other words, we consider trapped
neutrino matter. So, in this case, both the direct [Eq. (5)]
and inverse [Eq. (6)] processes can occur, and both the
terms in Eq. (7) under curly brackets [8] are retained.
Consequently, the 8 equilibrium condition becomes u, +
Mm, = m, + n,. Neglecting the quark-quark interactions
and by using Eqgs. (7) and (8), for the mean free path, one
obtains
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1
labQD - —G200520 fd%pdfd3pztfd%pe(l - Cosadv)

X (1 — cosb,,)8*(P, + P, — P, — P,)
X [1+ e PE~#)n(p 1 — n(p )1 — n(p,)].
9

In the square bracket, the second term e BE~1) ig due to
the inverse process [Eq. (6)]. Since the masses of the u and
d quarks and electrons are very small, one can neglect the
mass effect on the mean free path. To carry out the mo-
mentum integration, we define p=|p,; + p,|=
|p, + p.| as a variable. Following the procedure described
by Iwamoto [8], one has

. pdp
sinf;,d0,, = —————, (10)
W p(d)pp(v)
4 2,24 4
p'—2p°pytpy
(1 —cosf,,)(1 —cosb,,)= (11)
: 4p(d)p(v)pu)p(e)
and
d
d*py = 2msinby,d0,,pidp, = 277pr ; dp ﬂdEd
14
ps(d) dpg
=27 pdp~—dw 12)
ps(v ) do (
Bp, = 2deEe u 4, (13)
p dw

where we denote the single particle energy E,(,) as w. For
the free case, dp/dw is the inverse quark velocity. It is
well-known that this slope of the dispersion relation
changes in matter due to scattering from the Fermi surface
and excitation of the Dirac vacuum. The modified disper-
sion relation can be obtained by computing the on-shell
one-loop self-energy. For quasiparticles with momenta
close to the Fermi momentum, the one-loop self-energy
is dominated by the soft gluon exchanges [26]. The quasi-
particle energy w satisfies the relation [26,27]

0 = E,(0) + ReX(w, p(w)), (14)

where we have approximated only to the real part of self-
energy, since the imaginary part of 3 turns out to be
negligible compared to its real part [14,16]. The detailed
analysis can be obtained in [27,28].

In the relativistic case, when the Fermi velocity vy is
close to the velocity of light ¢, the exchange of magnetic
gluons becomes important. In the nonrelativistic case, it is
suppressed by a factor (v/c)? with respect to the exchange
of electric gauge bosons and is usually neglected. The
magnetic interaction, as stated before, is screened only
dynamically, and the problem remains for the static gluons
[26,29]. Therefore, to obtain a finite result, a suitable
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resummation has to be performed [30,31]. The analytical
expressions for one-loop quark self-energy can be written
as [14-16,21,26]

_ gZCF(

¢2C
mp Cr
—u)l + — 15
o2 @ w) n(w—,u) 112 lo — ul. (15)

It exhibits a logarithmic singularity close to the Fermi
surface, i.e., when w — w. Thus, the long-ranged charac-
ter of the magnetic interactions spoils the normal Fermi
liquid behavior [12,13,17-20]. The breakdown of the
Fermi liquid picture is associated with the vanishing of
the discontinuity of the distribution function at the Fermi
surface [5,21]. This nonperturbative nature of the self-
energy gives rise to the non-Fermi liquid behavior. Here,
mp, is a cutoff factor and should be an order of the Debye
mass. Differentiating Eq. (14) with respect to p, we obtain

dp(@) 4t leading order in L m L as

dw
=(1- 5, Re3lo ))E<(ww>)

:[1+CFa 1( )]E (@)

37 plw)’
where «, is the strong coupling constant, Cp =
(N2—1)/(2N,), and N, is the color factor. Using

Egs. (9), (11)—(13), and (16), the neutrino mean free path
can be determined for two conditions. For |p,(u)—

Pf(€)| = |Pf(d) - Pf(V)|,

1 4 203 1 1 2
— _3G200520c Iu“u/;’e |:1 + = (Me) + _(&) :I
lmean m /‘LV 2 Mu 10 #u

2
XUE, — P + w1+ Cro 1n(@)] .
o

dp(w)
dw

(16)

T
(7

To derive the above, Eq. (17), we use the result of the
integral [8,32]

L " dE, jo " E, jo " AE[1+ e BE l(p )1 - n(p,)]
X [1 - n(pe)]a(Ed + EV - Eu - Ee)

=2 [(E,— u, P+ 77 (18)

Similarly, for |py(d) — p;(v)| = |p;(u) — ps(e)l, the
corresponding expression for the mean free path can be
obtained by replacing u,, < w, and p, < u, in Eq. (17).
Since quarks and electrons are assumed to be massless, the
chemical equilibrium condition gives p (u) + ps(e) =
ps(d) + ps(v), which we use to derive Eq. (17).

The other major contribution to the mean free path arises
from quark-neutrino scattering. The neutrino scattering
process from degenerate quarks is given by

qi + Ve(lje) —dq; + Ve(lje) (19)
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for each quark component of the flavor i(= u or d). The
scattering mean free path of the neutrinos in the degenerate
case can be calculated similarly, as evaluated by Lamb and
Pethick in [23] for electron-neutrino scattering. Assuming
m, /py << 1 and including the non-Fermi liquid correc-
tion through phase space, the mean free path is given by

1 3 I:(E,, — )+ 7T2T2]
g

—n
scatt, D qi 2
lmedn 16 ’7qu.

X [1 + C%: 1n<m—TD) :|2A(xl~). (20)

Here, m,. is the quark mass. Cy. and Cy, are the vector and
axial Vector coupling constants given in Table II of
Ref. [8]. In Eq. (20), if we drop the color factor and the
second square bracketed term, we obtain the results re-
ported in [23] for dense and cold QED plasma with m,
replaced by m,. In Eq. (20), the constants oy = 4G*m2 /m
[22], and n,, is the number density of the quarks, given by

—2[ 2m)3 B(qu Ha)’ @D

where 2 is the quark spin degeneracy factor. The explicit
form of A(x;) can be written as [8,23]

At -4 M)

'U"I;

1
+ cg,_)<2 + S ) +2Cy, Cy, x,], (22)

i /-LV/:u“q,» if My < Mg, and Xi = Iu'q,»/lu“v if

B. Nondegenerate neutrinos

We also derive the mean free path for nondegenerate
neutrinos, i.e., when u, << T. For nondegenerate neutri-
nos, the inverse process (6) is dropped. Hence, we neglect
the second term in the curly braces of Eq. (7). In this case,
only those fermions whose momenta lie close to their
respective Fermi surfaces can take part in a reaction. It is
to be mentioned here, if quarks are treated as free, as
discussed in [8,33,34], the matrix element vanishes, since
u and d quarks and electrons are collinear in momenta. The
inclusion of strong interactions between quarks relaxes
these kinematic restrictions, resulting in a nonvanishing
squared matrix amplitude. Since the neutrinos are pro-
duced thermally, we neglect the neutrino momentum in
the energy-momentum conservation relation [8]. This is
not the case for degenerate neutrinos where p, > T, and,
therefore, such an approximation is not valid there. By
doing an angular average over the direction of the outgoing
neutrino, from Eq. (8), the squared matrix element is given
by [9]
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|M|? = 64G200520Cp§-(Vd -P,)V,-P,)

Cr
= 64G20s20,p2E, i, aS, (23)

where V = (1,v;) is the four-velocity. To calculate
Eq. (23), we have used the chemical equilibrium condition
Mg = M, + ., and also, the relations derived from the
Fermi liquid theory are given by [9]

CFas
27’
Putting |M|? in Eq. (7), we have

l 3CFa
labsND 4 6 COS29 [dgpd‘/d%pu
% [@p.5"Py+ Py =Py~ Ponlp)

X [1 = n(p)It = n(p,)] (25)

Neglecting the neutrino momentum in the neutrino mo-
mentum conserving & function, the integrals can be
decoupled into two parts. Following the procedure of
Iwamoto [8], the angular integral is given by

A = [dﬂdjdﬂufdﬂﬁ(pd — Pu " De)

Crag
s (24)
a

vp=1-— op =

8 2
—_°7 (26)
May e
and the other part by
24Pa 4p [ 24P
B = ) )
[ ddE d/() Pu dEu u
x f P2dE,S(E, + E, — E, — E,)
0
X n(p)ll = n(p, )1 = n(p.)] (27)
Changing the variables to x; = (E; — wg)B, X, =

—(E, — m,)B, and x, = —(E, — u,)B and denoting the
single particle energy E,, as w, we have, from Eq. (27),

de(w) dpu(w) 2.2 2
da) da) pdpupe

X 8(xd +x, +x, + IBEV)n(xd)n(_xu)n(_xe)- (28)

B = /m dxydx,dx,

As the contribution dominates near the Fermi surfaces, the
extension of the lower limit is a reasonable approximation
[32,35].

Using Eq. (16) and performing the integration of
Eq. (28) following the procedure defined in [16,32,35],
we have

(E2 + 7°T?) Cra mp\ T2
B = 2 27|:1+ 1 (—)] 29
Mdru“ I 2(1 + e PE) 37 n T (29)

Using Eqgs. (25), (26), and (29), the mean free path at
leading order in T/ is given by

034004-4



NON-FERMI LIQUID CORRECTIONS TO THE NEUTRINO ...
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FIG. 1. Neutrino mean free path in quark matter for degenerate
neutrinos.
1 _ 3Cra; GPcos’d (E2 + 7°T?)
/2bs ND ] cMaMy e 1+ e‘ﬁET)
mean
Cra mp\71?
X [1 + s ln(—D>] . (30)
3w T

The first term is known from [8], and the additional terms
are higher-order corrections to the previous results derived
in the present work.

For the scattering of nondegenerate neutrinos in quark
matter, the expression of the mean free path was given by
Iwamoto [8]. We incorporate the anomalous effect which
enters through phase space modification, giving rise to

- = “n, o —
it 20 7 N\my, ) \wi
Cray mD)]2
X|1+—Inl—)]|. 31
[ 3 n( T GD

Here, we have assumed m, /p; << 1 and the constants o
and number density n,, defined earlier.

II1. RESULTS AND CONCLUSION

Armed with the results of the previous sections, we now
estimate the numerical values of the neutrino mean free
paths. Here, E, is set to be equal to 37, and m, = 10 MeV
[8,24]. For the quark chemical potential, following
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FIG. 2. Neutrino mean free path in quark matter for nonde-
generate neutrinos.

Ref. [9], we take u, =500 MeV corresponding to den-
sities p; = 6p, where p is the nuclear matter saturation
density. The electron chemical potential is determined
by using the charge neutrality and beta equilibrium
conditions, which yields u, = 11 Mev. The other parame-
ters used are the same as in [9].

From Fig. 1, we find that, for degenerate neutrinos, the
anomalous logarithmic terms reduce the value of the mean
free path appreciably both in the low and high temperature
regime. Figure 2 shows that, for nondegenerate neutrinos,
NFL corrections are quite large at low temperature, while,
at higher temperature, they tend to merge. It is interesting
to see, from these two plots, that NFL corrections to the
MFP in degenerate neutrinos are less than those of non-
degenerate neutrinos. This reduced mean free path is ex-
pected to influence the cooling of the compact stars. It is
also to be noted that all the results presented above are
restricted to the leading log approximation which can be
extended to take the next-to-leading-order corrections into
account [36]. We plan to undertake such investigations in a
future publication [37].
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