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Pseudoscalar meson and heavy vector meson scattering lengths

Zhan-Wei Liu*
Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

Yan-Rui Liu"
Department of Physics, H-27, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan

Xiang Liu*
School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China

Shi-Lin Zhu®
Department of Physics and State Key Laboratory of Nuclear Physics and Technology and Center of High Energy Physics,
Peking University, Beijing 100871, China
(Received 14 April 2011; revised manuscript received 10 June 2011; published 1 August 2011)

We have systematically studied the S-wave pseudoscalar meson and heavy vector meson scattering
lengths to the third order with the chiral perturbation theory, which will be helpful to reveal their strong
interaction. For comparison, we have presented the numerical results of the scattering lengths (1) in the
framework of the heavy meson chiral perturbation theory and (2) in the framework of the infrared
regularization. The chiral expansion converges well in some channels.
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L. INTRODUCTION

In the past eight years we have witnessed the renaissance
of the hadron spectroscopy. Many interesting new hadron
states were discovered experimentally, some of which do
not fit into the quark model easily. These new hadron states
include (1) the famous XYZ states, which are either char-
monium or charmonium-like states above the open-charm
decay threshold; (2) the narrow charm-strange mesons
D,(2317), D,;(2460) etc.; (3) the charged Upsilon-like
Z,, states recently announced by Belle collaboration [1]. A
general feature of many of these new hadrons is that they
are very close to the two open-flavor meson threshold. For
example, X(3872) is very close to the DD*, pJ/i and
wJ /i threshold. D(2317) is very close to the DK thresh-
old. These charged Z, states are very close to the B™B*
threshold. Because of their proximity to the two meson
threshold, one may wonder whether some of these new
hadron states are good candidates of loosely bound mo-
lecular states composed of two mesons? Or will the
coupled-channel effect between the bare gg state in the
quark model and the two meson continuum help lower and
push the mass of the bare quark model state close to the
threshold? In order to allow the above two mechanisms to
work, there must exist attractive interaction between the
two mesons.

Generally speaking, it is very difficult to study the
hadron interaction starting from the first principle of strong

*liuzhanwei @pku.edu.cn
1Lyrliu@th.phys.titech.ac.jp
xiangliu@1lzu.edu.cn
$zhusl @pku.edu.cn

1550-7998/2011/84(3)/034002(11)

034002-1

PACS numbers: 12.39.Fe, 13.75.Lb, 14.40.Lb

interaction, i.e., quantum chromodynamics. Most of such
investigations are performed on the lattice numerically.
However, we may turn to chiral perturbation theory for
help if one of the interacting mesons is a light pseudoscalar
meson. In this case one can derive the scattering amplitude
order by order rigorously. From the scattering amplitude,
we can extract the scattering length, which is directly
related to the hadron interaction. In this work we will study
the pseudoscalar meson ¢ and heavy vector meson D*
scattering lengths in order to learn whether there exits
attraction between the pseudoscalar meson ¢ and heavy
vector meson D*. Such a study will provide valuable
information on their interaction to the D*K system.

Up to now, a few new charmed mesons and their prop-
erties have attracted much interest over the past few years,
especially the extremely narrow Dy, (2317), D,;(2460)
states. The D(D,) and D*(D7) mesons constitute the light-
est charmed doublet according to heavy quark symmetry.
The recently observed new charmed particle D(2317) is
speculated to be a candidate of possible molecular states
composed of the D meson and K meson. The DK interac-
tion is very important for us to understand the underlying
structure of the D,;(2317) meson [2,3]. There have been
some lattice investigations on the 77D scattering [4-6], KD
scattering, and D,(2317) [7-9]. If there are strongly at-
tractive interactions between them, the D* meson and
pseudoscalar meson might also form possible molecular
states. Our present study of the ¢ D™ scattering with chiral
perturbation theory would be helpful to the future lattice
simulation of the ¢ D* scattering numerically.

Chiral perturbation theory and lattice QCD are widely
used to study the hadron interaction in the nonperturbative
region of QCD [10-17]. The interaction between the D
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meson and the light pseudoscalar meson was studied re-
cently with chiral perturbation theory [18-20]. It is inter-
esting to extend the same formalism to study the
interaction of the heavy vector meson D™ and the light
pseudoscalar meson. In this paper, we will calculate the
S-wave scattering lengths of the pseudoscalar meson and
D* meson with the heavy meson chiral perturbation theory
(HMYPT) and the infrared regularization (IR) [21-28].
The scattering length a,p- reflects their interaction. In
our formalism ay)- is related to the threshold 7" matrix
Typ: Typ- = 8m(1 + /;"—Ii)a¢D*, where m,, and Mp: are
the masses of the light pseudoscalar meson and D* meson,
respectively.

With the explicit power counting scheme, HM yPT is a
useful tool to investigate the heavy meson interactions
[21-24]. We will expand our calculation by € = p/A,
where p represents the momentum of the light pseudosca-
lar meson, the small residue momentum of the heavy
meson in the nonrelativistic limit, or the mass difference
0 between D and D* mesons, and A, represents either the
chiral symmetry breaking scale around 477 f . or the heavy

mesons’ masses M (about 1900 MeV) in the chiral and
heavy quark symmetry limit. The IR scheme is also a
useful tool based on chiral perturbation theory [25-28],
which ensures both good power counting and correct ana-
lyticity. IR and HM yPT generally lead to the same results
except that the IR formalism includes the higher-order
infrared parts of the loop graphs [25].

This paper is organized as follows. In Sec. II we list the
basic notations, the relevant Lagrangians, and the chiral
corrections to the threshold 7" matrices with HM yPT. We
present the IR expressions in Sec. III. The low-energy
constants (LECs) are estimated in Sec. IV. Finally, we
give the numerical results and discussions in Sec. V.

II. THE T MATRICES WITH THE HEAVY MESON
CHIRAL PERTURBATION THEORY

We list the Lagrangian of HM yPT at the leading order
here,

fQTT(u u”/+-a%t) )

L4, = —(iv- oH)H) + (Hv - TH) + g(HirysH)
— i (Ho  Ha,), @

where f is the decay constant of the pseudoscalar meson in
the chiral limit, and

1+
H = ——(P,y* +iPys),

3)
_ 1+0
H = y"Hty" = (Pify* + iPTys)
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P = (D° D*,D}), P, = (D, D**,Di*),. (4
Heavy quark symmetry is exact only when the heavy quark
mass is infinite. In this work we will also systematically
include effects of the explicitly broken heavy quark sym-
metry through the last term containing the D* and D mass
difference o in Eq. (2). The notations read

= 2l€h0,6) =§wt%a,
& =explig/2f), « = ENxET £ Exé, (5)
= diag(m2, m2 ZmK —m2),
+ % ,Z]T-F K+
¢ = f m —7775_:7’% K20 (6
K_ K _%’T]

The following Lagrangians at the second and third order
are used in the calculation of the threshold 7 matrices,’

L7, = coHATr(x,) + c\(Hy H)
— co(HH)Tr(v - uv - u) — cs(Hv - uv - uH), (7)

L), = kod(HAYTr(x) + x,8(H x. H)
— 1k 6(HH)Tr(v - uv - u) — k38(Hv - uv - uH)
+ k(H[xy_, v - u]H). (8)

The O(€?) and O(e*) Lagrangians could also contain terms
like (Ho*"Ho ,,)Tr(x+), (Ho* x Ho ). These terms
break the heavy quark symmetry hence are suppressed.
They lead to different LECs ¢;’s and «;’s for the ¢ D and
¢ D" scattering, although they do not result in the new
independent vertices we need.

There are 11 independent 7" matrices in the pseudoscalar
meson and D* meson scattering due to the isospin sym-
metry. The threshold T matrices start at O(e), which can be
derived from Eq. (2)

G/2) _ _Ma (1/2) _ 2ma n _
17 , T/ , T /.=0,

D f%- D f%- wD5

2m m

0) _ K (1) (1/2) _ K
T T ) T ® T 0, T K T T Ta,

KD ﬁ( KD KD? 72 ©)
A — Mg (O Mk (1/2) _ M

KD fx kb fx KD fx

0 _ 0 _
TUD* =0, Tan =0,

where the superscript in the bracket represents the total
isospin of the channel. We express 7 matrices with the
renormalized decay constants f, fx, and f, [29,30] rather

"The sign in front of ¢, in Eq. (9) of Ref. [18] should be +.
The signs in Egs. (12) and (13) should be consequently changed.
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than f here. The difference could be accounted for through
T matrices at O(€?) or higher order.

Similarly we get the results at O(e?),”
T(3/2) - 860"’1%7 + 4C1m%. + 2C2m%7. + C3m%.

7TD* - f2 ’

w

T(l/z) _ SCom%. + 4clm%7 + 262m3, + c3m%.

e 1% ’

8com% + 2com?

T(l) __ocomz Comz

aD:i f2 ’

w

o _ 8comy +8cimk + 2comy + 2c3mk
Tep = f%( ,
7 _ 8com% + 2c,m%

KD 12 ’

K

70/2 _ 8com% + 4cym% + 2c,m% + c3mi (10)
70 _ 8com% + deymk + 2c,m% + cymk

Kb 1% ’
7O _ 8com% — dcym% + 2c,m% — cymk

Kb fx ’
70/ _ SCOm%( + 4clm%< + 262m%< + C3m%(

Ko: fi ’
7O _ 24comy +4cymZ + 6¢cmy + cym3

nD* 3f% ’
7O _ 24com3 + 32¢ymy, — 16¢,m3, + 6¢ym3, + deymi,

nD; 3f% ’

Here we have used the Gell-Mann-Okubo mass relation
m2 = (4my — m%)/3, which makes the expressions more
concise.

The T matrices contain contributions from both the tree
and loop diagrams. We show all 18 loop diagrams which
contribute to the threshold 7 matrix at O(e®) in Fig. 1. We
calculate them with the dimensional regularization and
modified minimal subtraction. More specifically, for the
unstable D* meson we renormalize its wave function at the
point 7

dIl - (r)

Zpy =1+—2"21
b d(r) r=r

D

where Ilp:(r) is the one-particle irreducible D* self-

o

energy, r is the remaining momentum r=v-p — M,
and 7 is the complex pole of the propagator 7 — 6 —
I1,:(7) = 0. The divergences from loops can be absorbed
after the wave function renormalization and redefinitions
of k is

>The constant C; in Tg),)( of Ref. [18] should be %(3C1 - Cp).

The corrected 7" matrix is the same as T, here.
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FIG. 1. Nonvanishing loop diagrams for the pseudoscalar me-
son and D* meson scattering lengths to O(e?) with HMyPT and
IR. The dashed lines, thin solid lines, and thick solid lines
represent the pseudoscalar Goldstone bosons, D mesons, and
D* mesons, respectively.

2¢%L 58°L
4K0+K2=—g2 +4ky+ K5, K1=—g 5+ K,
9f 12f
3L, 3L (12)
K3 _—2+ K3, ——2+ K,
A 4f
where
AD—4 1 1
=}  +_ — 1 —Indm)}.
167 {D —3 Tl ! W)}
(Euler constant y; = 0.5772157) (13)

Here A is the scale of the dimensional regularization. We
will set it at 47 f ., 47f, and 47 f, respectively for the
pion, kaon, and 7 scattering.

In order to make the expressions short, we introduce the
following notations and functions:
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2

_ g _ 5 m,] mn
J=- T —Y (27Tm,,3 +2(m,? — 8%)*cos 1(— m—n) + 3my,*8log=% — 2m,*5 — 257 log—*
T —mZ + 8
—2m,3 — 2(8% — m,2) 2 logm 24+ 2(8% — 2 10g$ — 2imd2/8% — m,>?
+ 2iTtm 248> — m,* — 3m zﬁlogA +2m 25+25310g)‘)
2 2Vm? — §%cos™ (= 2) + 25 log(%) + 27m — & m>8
Wom) = -5 ,
167 1% | 28 10g2 + 2357 — m?(10g? 2242 — i) + 2mm — & m =6
m? — w*cos™! (= 2) m? = w?
a)3 log™ 3 2
Vim, w) = 77_2]5’\ - 2::2][4 - 7:2)f4 Vo? — m? log% m? <’ w<0. (14)

Vw? — m?(— log4W +im) m* <o’ o=0

In the third-order T matrices there are some terms proportional to those in Eq. (10). Therefore, we divide the T matrices
into two parts,

T=T+T, (15)

where T, can be obtained from Eq. (10) through the following replacement:

co — K0, — k9, ¢y — K50, c3 — K50. (16)

The remaining T at O(e®) reads

1 3 1 1 1 8m3 ic"
T(;z/)%) §V(m1<, —-mg) — gV(mm —-m,) — V(mﬂ, m,) + ﬁm W( ) 5;nfTw(mW) +2V, — ?
1 3 1 1 1 16m3 1"
T(;/)z*) = 1_6V(m1<r —m;) — EV(mK: my) — 2V(m,,, my,) + ﬁm W(m ) — —m ZW(m,) — 4V, + f% ,
(1) 1 1 2,
Tﬂ—D* = _§V(mK’ _mﬂ') - gV(mK) m']T) + §m7TW(m77)r
3 1 1 1 16m3 k"
0. =- g Vg, my) =2 Vmg, =my) == Vimg, mg) = Jm3 — §m%<W(m,7) —3V, =3V + V, + TK
K
1 1 J 1 V.
TE(IZ)* = _gv(mm mg) — gV(mK, —mg) + I;IK §m%<W(m,7) —V,+V; + 2
3 3 1 1 4 8m3 k"
T(Igéz*) = _EV(m ml() - RV(mﬂ-, m[() - gV(mK, —m,() — gV(mK, mK) — §]/n%(V[/(,/nn) + 3V2 — f[%i ,
. 3 1 1 1 Jm>
T%l;)* = _Rv(mn’ —mg) — EV(m,,, —mg) — ZV(mK: —mg) — gV(mK, mg) — TK
I, 2V, 8myk”
——mgW(m,) +2V, + V3 — — — ,
g KT 3 2
3 3 1 1 1 8m3 k"
Tg)* a 1_6V(m’7’ —mg) = Rv(m”’ —mg) + ZV(mK, —mg) — gV(mK, mg) + Jmy — §m%<W(mn) —3V; + f]%i ,
#1/2) _ _ 3 1 1 4, 8m3 k"
7.7 =—=—V(m,, mg) ——V(m,, mg) —=V(mg, —mg) — =V(mg, mg) — ~m2W(m,) — 3V, + )
KD; 16 K 16 8 8 9K m f%(
3 3 2 2 1 1
T(y(,)l))* = _EV(’”K, —m,) — 16V(mK, m,) — 3m%(W(mK) + §m%,W(m,,) T 2W(m,) + 5m ZW(m,),
7O — = V(g —my) — 2V — L Wmg) + S m2Wm,) — 22w 17
T g (mg, —m,) 3 (mg, m,) 3 MK (mg) oM (m,) g™ (m,), (17)
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where V| =V, = V; =
with IR.

The T matrices of the pseudoscalar meson ¢ and D
meson scattering with HM yPT were derived in Ref. [18].
For the ¢ D case, there is no ¢y DD vertex in the leading
order. Therefore, in the loop calculation there are no simi-
lar diagrams of the third column in Fig. 1 where ¢ D are the
intermediate states. If we let § — 0 and neglect the explicit
breaking of heavy quark symmetry, the 7 matrices of the
pseudoscalar meson and D* scattering will be the same as
those of the pseudoscalar meson and D meson scattering to
O(é€%) at the threshold [18], which is required by the heavy
quark symmetry.

V, = 0 with HM yPT but nonzero

III. THE T MATRICES WITH THE INFRARED
REGULARIZATION METHOD

For the IR scheme, we use the heavy meson Lagrangian
with the relativistic form at the leading order,

LY — p pprpt — N PPt — D prrpeprt
Hp — 7 v
+ (M + 8 PBL + i2gM(PLur Bt — PurBi)
+ g(ISj‘Luo(fDBlﬁ*;Jr — fDBf’;uaIS;ZT)e“”‘)‘B, (18)

where heavy quark symmetry is also assumed to relate the
couplings of the 7D*D vertex and wD* D" vertex, and

P= iD,P,=i0,P, — TP,

\/E’ pta — Yuta " (19

iD, Pl =ia, Pl + TP}, (Similar for P*.)

The second-order and third-order Lagrangians we use are
the same as the relevant terms in Egs. (7) and (8), but some
coefficients should be redefined to fit the experimental
data,

Lg)d) = 2M(COI‘~)*“I—T”:r Tr(yy) + 0113*”/\/+}~);T
— czls*/‘f’*l:f Tr(u - u) — c3P*u - uISZT), (20)

Ligy = 2M(oP™ Py Tr(. )8 + iy P x Pt
_ Kzﬁ*#ﬁtj Tr(u-u)d — k3P u- ”ISZT 5)

+iMk(D, Py, u Pt — Py, u’]1D, P,
@1

The T matrices are nearly the same as those of HM yPT
except that the expressions of J, W(m), V(m, w), V|, V»,
V3, and V, are more complicated. We list their definitions
in the infrared scheme in Eq. (B7) in the Appendix. We
have also verified that the results with IR are the same as

those with HM yPT when M approaches to infinity.
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IV. LOW-ENERGY CONSTANTS

The difference of our results between HM yPT and IR
originates at the third order due to different loop integrals.
We use the same LECs at the first and second order for both
HM yPT and IR. At the leading order, we have [31]

. = 139 MeV, « =494 MeV, &= 142 MeV,
fr=92MeV, fx=113MeV, f,=12fy,
g = 0.59.

At the second order, from the mass splitting between heavy
mesons we get®

1My — M3+ M2, — M2,
= — . - =0.12 GeV~L. (22
7 6 M(m% — m?) ¢ 22)

In order to obtain other LECs that can not be determined
from the available experimental data, we resort to the
resonance saturation model [32,33].

At O(€?) only the light unflavored mesons with J* = 0
and charmed mesons with J© = 1% contribute to the
¢ dD*D* vertex at threshold. Thus we consider the scalar
singlet (o (600)), the scalar octet k(x(800), ay(980),
f0(980)), and D,;(2460) vector triplet in this section. In
the Appendix A we will discuss the uncertainty of the
LECs at this order.

Here we list the corresponding effective Lagrangians,

Lyr=4¢,;Tr(u-u)o + ¢, Tr(x,)o,

23
c(,P*"LP";:r o (23)

Lopp =

Integrating the o meson out through the ¢ channel we get

8c
T Tr(y . )PPt + ‘o dTr(v uv-u)P*rPit.

0'

2¢, ¢
L~ 02
0'
(24)

Similarly, from the Lagrangians of the scalar octet k

Lowr =4c; Tr(u - ux) + c,, Tr(x . k),

25
£KP*P* = CKP*lLKP;T, ( )

one obtains

3m 2 T(X+)PMPT+ 2 mP’uX+P,LT

8cch
_32
8CCd

K  ~
‘Eeff

Tr(v - uv - u)P*“P;‘;r

+ —==P*v-uv- uP*Jr (26)

Integrating D, (2460) out of the following interacting
Lagrangian:

3The coefficient 4 in Eq. (33) of Ref. [18] should be 8. The
correct values of ¢, are 0.12 GeV~! in Eq. (22) and 0.10 GeV ™!
in Eq. (36) of this paper.
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Ly o460 = G1(D*1(2460)u,i9” Pt — i6” P4l u, D (2460))
+G,(—id,D" 1 (2460)u, P,
+ Phu,id, D¥ (2460))
= (G, + G,)(D*! 2460)u,i0” P,

—i0" Pl u, D" (2460)) + O(€?), (27)
one gets
G, + G,I*M -
LD2400) '21 2 D pry-uv-uPit. (28
M D,;(2460) MD*

The effective coupling constants |G, + G,| were estimated
with QCD sum rule approach in Ref. [34]: |G, + G,| =
1.2 =0.2.

Adding the above effective Lagrangians (24), (26), and
(28) together, one can estimate the LECs by comparing the
sum with the relevant terms in Eq. (7),

o = C(rém o CxCim
0 - 2 2 »
m, 3my,
_ CkCnp
cp = m2 y
K
- 29
4e,Cq  deycy (29)
c2 = -— —_—
m> 3m2’
4c,.cy |G, + G,|*M
Ccy = — .
2 2 a2
M Z(MDA.,(2460) Mp,.)

For the broad resonances ¢(600) and «(800), we use the
masses and widths extracted from a model-independent
way [35,36],

m, = 441115 MeV, I, =544 Mev;
mK(goo) =658 +13 MCV, FK(SOO) =557 =24 MeV.

(30)

In our numerical analysis, we take m, = 820 MeV for
illustration.
For the coupling constants ¢, and c,,, we use [32]

lcgl = 3.2 X 1072 GeV, le,] = 4.2 X 1072 GeV,
cgCm > 0. 3D
Although there is no empirical value of c,, we may get it

by comparing the c¢;’s obtained in different ways in
Eq. (22) and (29)

le.] =19 ¢, >0. (32)

Moreover, the coupling constants should obey the nonet
relations in the large N, limit,

Ed =%Cdr Em =%Crru

(33)
Cy = ic = *1.
s \/g K

In this way, we get the LECs at O(€?),

PHYSICAL REVIEW D 84, 034002 (2011)
co = 0.10 GeV~1,
c, = —0.30 GeV |,

¢; =012 GeV,
c3 = 0.42 GeV~ .

(34)

The resonance saturation method may bring large
uncertainty in the determination of the LECs at the third-
order. We take the value of k" in Ref. [18]

k" = —0.33 GeV?, (35)

which is obtained by fitting the lattice QCD results [37].
We simply assume the other tree diagram contributions at
O(é€%) are small and neglect them as done in Refs. [12,38].

V. NUMERICAL RESULTS AND DISCUSSIONS

We show the numerical results of the 7" matrices order by
order and the scattering lengths with HM yPT in Table 1.*

The p0s1t1ve real parts of a(l/ 2) a([%*, agy, a(Kll/)i), %?

and an . indicate that the interactions are attractive for

these channels. From Table I, we see that the chiral expan-
sion of the pion channels converges well. The loop dia-
grams contribute largely to the kaon and eta channels due
to the large mass of kaon and eta. But luckily they are
canceled by the tree diagram at O(€?), which makes the
whole result convergent.

We compare the loop contribution between the HM yPT
and IR scheme in Table II. For both cases the dominant
loop contributions are those with the intermediate state D*
meson. The numerical results are similar in the pion-
scattering channels with these two different schemes. But
the results differ greatly in the eta scattering channels.

The mass difference o affects our results only through
the intermediate D meson in the loop diagrams. For com-
parison, we list the 6-dependent part of the T matrices in
Table II when 6 — 0 and 6 = 142 MeV. We notice that
the correction from the heavy quark symmetry breaking in
the loop diagrams with the D meson intermediate state is
small in the KD* channels. However, such a correction is
significant in the #D*=32  7D*=1/2 and 5nD=0
channels.

From Table II, the IR scheme lowers the loop contribu-

(3/2) (1/2) (1) (0) (1/2)
tion in the channels 77, T 1% ,TﬁD T > and TKD* The

T matrices of the ¢ D scatterlng in the nonrelativistic yPT

“The numerical values in Ref. [18] also need a few corrections.
The corrections are given here in the form of {O(p?),
Total, Scattering lengths};.  In  Table I, they are
{—14.2,1.1, 004}T<o>, {6.4,7.5 + 5.5,0.23 + 0.17i}7, ,» and
{=6.7, —6.2 + 11. 11 —0.19 + 0.35i}7, . In Table II, they are
{- 14205002}«», {6473+551026+0201}TH and
{—=6.9, —6.6 + 11. ]l —0.24 + 0.35i}y, . In Table III, they are
{—15.1, —0.6, OOZ}T(o {6.1,7.3 +551 0.22 + 0. 171}TD
{-7.4,-7.0 + 11.1;, 0. 22 + 0.35i}7, . To get a positive ap
and nearly vanishing ap_, one requlres C,>0.8 GeV ! and
Cy <42 GeVL
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TABLE I. The threshold 7 matrices for the pseudoscalar meson and D* meson scattering order by order in units of fm with HM yPT.
0(€)

O(e")  0(e?) loop tree total Total Scattering length
¢ —32 05 —1. = 0.0096i 0.17 —0.88 — 0.0096i —3.6 — 0.0096i —0.13 — 0.000 36
T2 65 0.5 0.53 — 0.0096i -0.33  0.19 — 0.0096i 7.1 = 0.0096i 0.27 — 0.000 36
T, 0 0.09 ~1.1 0 ~1.1 -1 —0.039
Tf?},* 15 15 11. — 0.00016i —-9.8 1.1 — 0.00016i 24. — 0.00016i 0.76 — 5.2 X 107°;
V). 0 0.75 —1.5+5.6i 0 —1.5+5.6i —0.7 + 5.6i —0.022 + 0.18i
TV =76 41 -5.9 4.9 —0.98 —4.5 —0.14
. =76 41  —7.4-0000054i 49  —25-0.000054i  —5.9—0.000054i —0.19 — 1.7 X 1075
Tﬁgg* 7.6 —2.6 8.8 + 0.000 16i —4.9 3.9 + 0.000 16i 8.9 + 0.000 16i 0.29 + 5.2 X 107
VY 16 4.1 4.+ 83 —4.9 —0.86 + 8.3i 11 + 8.3 0.35 + 0.27i
T 0 1.2 0.46 + 3.i 0 0.46 + 3.i 1.7 + 3. 0.051 + 0.094i

e 0 5.8 0.0036 + 6.1i 0 0.0036 + 6.1i 58 +6.1i 0.18 + 0.19i
TABLE II. Comparison of the 7" matrices from the loop diagrams for the pseudoscalar meson and D* meson scattering between
HM yPT and IR.
Intermediate state: D meson Intermediate state: D* meson Loop: total
HMPT IR HM xPT IR HM PT IR

8 = 142 MeV §—0 6=142MeV  6—0 &=142MeV &= 142 MeV 8 = 142 MeV 8 = 142 MeV
TO®  —0.053-0.0096i 0014  —0.043 — 0.0076i  0.0045 -0.99 —0.84 —1. — 0.0096i —0.88 — 0.0076i
TP —0.053 - 00096 0014  —0.05—-0.0093;  0.031 0.58 03 0.53 — 0.0096i 0.25 — 0.0093i
) -0.043 —0.046 -0.03 -0.04 -1l —0.88 -1l -0.91
. 0.69 — 0.000 16i 0.93 0.46 — 0.00015i 076 10. 7.5 11. = 0.000 16i 8. — 0.000 15
70, —0.076 +0.000054i —0.14  —0.014 +0.0019 —0.18 —1.4+5.6i —3.6+2.9i —1.5+5.6i ~3.6+2.9i
T 0.46 051 0.29 0.43 -6.3 ~13. -5.9 ~13.
. 0.31 —0.000054i 04 0.17 - 0.00099i  0.38 -7.7 —14. ~7.4-0.000054i  —14. — 0.00099i
T, —0.46 + 0.00016;  —0.68 —0.33 - 0.0027i —0.51 9.3 1. 8.8 + 0.00016i 11. = 0.0027i
e 0.46 0.51 0.31 0.42 3.6 + 8.3 L1 +4.4i 4.+ 83 L5+ 4.4i
T2 0.14 + 0.0021i 0.16 0.088 +0.0018i  0.13 0.32 + 3.i —2.9 + 1.6i 0.46 + 3.i 2.8+ 1.6i
). -0.022 0.013 —0.015 0016 0.025+6.1i —6.2+3.2i 0.0036 + 6.1i —6.2+3.2i

were compared with those in the relativistic yPT with the
extended-on-mass-shell renormalization schemes in
Ref. [20]. The relativistic effect would also lower the
loop contribution in some channels such as TS%Z), T;léz).
The resonance D, (2460) couples to the D*K strongly. Its
role is similar to that of A(1232) in the case of the pion
nucleon scattering. D,;(2460) is very close to the D*K
threshold and may be quite important for the D*K
T-matrix. In contrast, the nonstrange P-wave axial-vector
D meson lies well above the D* 7 threshold. Its contribution
is less important. In this work we have tried to include some
of the corrections from the P-wave axial-vector D meson
through the LEC c¢3. We expect that the results would be
improved particularly for the D*K channel if D, (2460) is

included as an explicit degree of freedom as A(1232) in
heavy baryon chiral perturbation theory [39—41].

We can also study the pseudoscalar meson and B* meson
scattering with P}, and P representing (B, B%, BY) and
(B*~, B0, B:Y), respectively, in Eq. (4). The situation is
very similar to the D* case. With the following different
constants:

co =008 GeV~!, ¢, =0.10 GeV !,
¢, = —025GeV™!, ;=044 GeV!,
. (36)
K= —033GeV2 M =5323 MeV,
8 = 46 MeV,
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TABLE III. The threshold T matrices for the pseudoscalar meson and B* meson scattering order by order in units of fm with
HMPT.
0(€)

O(e") 0(€?) loop tree total Total Scattering length
T3 -3.2 0.44 -1 0.17 ~0.83 -3.6 ~0.14
T/ 6.5 0.44 0.58 -0.33 0.24 7.1 0.28
T 0 0.063 ~1.1 0 ~1.1 -1 —0.04
T, 15 6.9 11 -9.8 0.72 23 0.83
TV 0 0.53 —1.4 +5.6i 0 —1.4 +5.6i —0.88 + 5.6i —0.032 + 0.2i
T ~7.6 3.7 —6.2 4.9 -13 -5.2 -0.19
), ~7.6 3.7 ~7.6 49 —2.7 —6.6 —0.24
T 7.6 -2.6 9.1 —4.9 4.2 9.2 0.34
s 7.6 3.7 3.7+ 8.3 —4.9 —1.2 +83i 10. + 8.3i 0.37 + 0.3i
74 0 1 037 +3.i 0 037 +3.i 14 +3.0 0.049 + 0.11i
. 5.2 0.022 + 6.1i 0 0.022 + 6.1 52+46.1i 0.19 + 0.22i

and g = 0.52 [42], we can also analyze the interaction of
the pseudoscalar meson and B* meson. The numerical
results with HMYPT are shown in Table III. They are
only slightly different from those of the pseudoscalar
meson and D* meson scattering.

As mentioned in Ref. [18], it is easy to get pseudoscalar
meson and heavy antimeson scattering lengths with the
C-parity transformation,

_ 70

(1)
Ty Hm/n’

(o))
TF_IK_ T Hm/n

e Tiig = Tik: (37)
where [ is the total isospin and H(H) denotes the heavy
meson(antimeson).

In short, we have investigated the pseudoscalar meson
and D* meson scattering lengths to O(e*) with HMyPT
and IR methods. The chiral expansion in the 77D* channels
converges well. We hope our present study may be helpful
to the possible extrapolation in the future lattice simulation
of the light meson and heavy meson scattering. Our results
may also be useful to the phenomenological investigation
of the possible molecular states composed of one heavy
meson and one light meson.
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APPENDIX A: THE UNCERTAINTY OF LECS
WITH RESONANCE SATURATION METHOD

Other resonances with the same quantum numbers as o,
k, and D, (2460) will also contribute to ¢;’s. Generally, the
heavier the resonance is, the less its contribution to the
LECs. Here we will check the uncertainty which other
resonances would cause.

From Eq. (29), we see that o does not contribute to ¢,
and c5. For the LECs ¢ and ¢,, the contribution K from
the o and « scales as

(AD)

In principle the LECs would absorb the contributions from
the f(1370) singlet and the K octet [K;;(1430), a(1450),
f0(1500)] and other heavier resonances similarly. Similar
to Eq. (A1),

2
| Kzl _ m5,a370) _
| Kk :

re
Ky

0.9.

(A2)

In the channel f,(1500) — 77 and f,(1500) — KK, the
decay momentum is 516 and 568 MeV, respectively. We
can estimate the magnitude of ¢, x- and c,, x- using the

experimental partial width

['(fo(1500) — mm) = 10977 X (5.1723)% MeV,
['(f(1500) = KK) = 10917 X (8.671-9)% MeV,
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and similar effective Lagrangians as in Eq. (26). One gets

lcak:] ~ 1.9 X 1072 GeV,
|Cm,KS ~3.0X 1072 GeV, Cak:Cmi; <0; oOr
lcar:] ~ 1.3 X 1072 GeV,
lem gl ~ 1.5 X 1072 GeV, Cak;Cmi; = 0. (A4)
Therefore,
| Kisl_ Neama] el mi _lex] m
| K, | leaml Tedd mk. ™ el m%
ek
= 03—~ 0.3, (A5)
le,

In the last step we have assumed that the coupling ck: in
the D*D*Kj; vertex is of the same order as c¢,.. Now we have
|~7<K;| ~0.3|K,| and Ky (1370 ~ 0.11K,|. In other
words, the correction ¢;’s from the heavier resonances is
roughly 30%.

In principle, heavy vector resonances
[D,;(2536)] would also give corrections to cs,

D,(2420)

{1, k*, kMK, kP k" kP}

PHYSICAL REVIEW D 84, 034002 (2011)

G, + G2|D (2420)M
AQ;Z
2(M? MD*)

(A6)
D, (2420)

By fitting I'(D,,(2536)— D*K) <I'(D,, (2536)) <
2.3MeV, one finds |G| + G;lp,2420) < 0.16. So |Acs| <
0.03 GeV™!, which is less than 10% of c; in Eq. (34).

Moreover, the variation of the mass of the « octet
from 658 MeV to 985 MeV would introduce the 20%
uncertainty to ¢y, and ¢, and 60% uncertainty to ¢; and
¢3. In short, the determination of ¢;’s in Eq. (34) are not
accurate. But their sign and order of magnitude should be
reliable.

APPENDIX B: SOME FUNCTIONS
AND CONSTANTS IN THE
INFRARED SCHEME

We perform the tensor decomposition of the IR integrals
as follows:
1/‘ dk {1, k™, k*k"}
i J1@m)d (kK> —m?>+ie)(p—k)>— M +ie]
={1O(p*, m?, M?), p* 1D (p?, m*, M), g#* 1 (p?, m*, M?)
+ ptp IV (p? m* M)}, (B1)

1 d%
i ,[1(27T)d (K> — m? + ie)(k> —m3 + ie)[(p — k)> —

M? + i€]

= {Fo(p?, m3, m3, M?), p*F\(p* m3, m3, M?), g*"F,(p?, m3, m3, M?)

+ p#p"Fs(p*, m3, m3, M?), p*

P pPFu(p?, mi, m3, M?) + (g4 pP + ghPp” + g"? p¥)Fs(p?, m, m3, M?)},

(B2)

where M is the mass of the heavy meson and m, m,, m, are the masses of the light pseudoscalar mesons. The Lorentz

invariant coefficient /© can be written as [25],

202 4 om2 22 4 om2
FACIP IR VE) I SR . S S (2logﬂ— 1)
p 32 p A
—/1 = chos”(— %) Q] =1
+8 C; 2><_‘ VQZ_110g<1'<an)2_l_an> Q<—1,
T

where

PP —m?— M?
2Mm

O =

SE

, o

The other coefficients are

02 {7T+10g(

1
& =1 +2aQ + o2, Lz—{

(B3)

1/ “”“)2 1)} Q>1

)‘D*4

1
+ E(yE -1- 1n477)}. (B4)

167°|D — 4
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p2 — M? + m2
2p?
I1D(p% m? M?) = y i . (m21(0)(p2, m?, M?) —

2
10(p2, m2, M?) = 10(p2, m2, M?) + 5 (L + —— log )
p 1672

2
P’ — M* + m? 102, m? M2)>
5 , m?, ,

pz—Mz-i-m
2

I18(p?, m?, M?) = 1D(p2 m2 M?) — 1(2)(p m2, M?),
P’

19(p* m3, M?) — 1V(p?, m3, M?)

F(p?, ni3, i3, M?) = — . j=0123
1 (d+2 d+2
F4(p2’ m%’ m%’Mz)_—d<TI (p mz’M2)+—( 2 M2+m%)F3(p2) m%) m%)MZ)

—21D(p?, m3, M?) — 2m3F,(p?, m3, m3, Mz)),

p2_M2+

FS(PZ, mly mzy MZ) = I(’;)(p m2 MZ) + 4

2

With the definitions,

hi(m) S 2M3LFs(M3., m?, m?, M3) + 4M2.F5(M3., m*, m?, M?%.)}
1im) = ’

f4
2402
&M 282 M
hy(m) = f“M; 9 IO m?, Mp)| oy, + Do 1O, m? M2 e,
282 M
h3(m) = *y mzy xz)lx—DMD D a 1(2)(M2 ,m X )lx—»Mn*’

we can show the functions used for IR in Eq. (17),

2
W(m) = %{4MD*F2(MD*, m, m, Mp:) + 2MpFy(Mpe, m, m, Mp)},,

2
8
J = F{4MD*F2(MD*’ My, M, Mp) + 2MpFy (M), My, Mo, Mp)},,

3mlw

87T2f4
+ 2Mp I (@ + Mpe, m, Mpye) + 2M3. 1% (0w + Mpe, m, M)},

1
Vim, w) = log% - JT4{2MD*w21(O)(a) + My, m, M) + 4M2. 01D (0 + My, m, M)

Vi = gl lme) = hyon) =3 halimg) = 3 halmg) = 5 halomy) + 3 hs(omg) = 55 o)
Vo = i =haCme) = S halm) = 2 hlon,)+ 3 hstomg) = 5 st )}

Vs = (1) = Shony) = 3 halong) = 1 halmy) + 3 hong) = 3 hslom) = sty
Vi = i3 ha(mg) = halomg) = 3 halmy) + 2 s(y) — slong) = 3 s )}

The {X}, in Eq. (B7) represents lim,_,X after removing the terms proportional to L.
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