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First nonperturbative calculation in light-front QED for an arbitrary covariant gauge
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This work is the first check of gauge invariance for nonperturbative calculations in light-front QED. To
quantize QED in an arbitrary covariant gauge, we use a light-front analog of the equal-time Stueckelberg
quantization. Combined with a Pauli-Villars regularization, where massive, negative-metric photons and
fermions are included in the Lagrangian, we are then able to construct the light-front QED Hamiltonian
and the associated mass eigenvalue problem in a Fock-space representation. The formalism is applied to
the dressed-electron state, with a Fock-space truncation to include at most one photon. From this
eigenstate, we compute the anomalous magnetic moment. The result is found to be gauge independent,

to an order in « consistent with the truncation.
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L. INTRODUCTION

Any calculation in a gauge theory should be checked for
its gauge dependence. Unfortunately, nonperturbative cal-
culations in light-front QED [1] have been limited to a
single gauge, usually light-cone gauge. This is due to the
need to solve the constraint equation for the nondynamical
part of the fermion field, which is entangled with the
photon field. A careful use of Pauli-Villars (PV) regulari-
zation [2] has been shown [3] to allow the use of Feynman
gauge, by providing cancellation of the photon-field de-
pendence in the constraint equation. What is remarkable,
however, is that this cancellation is actually not unique to
Feynman gauge but holds for any gauge. Thus, nonpertur-
bative calculations can be done in any gauge, provided the
free-photon part of the Hamiltonian can be constructed.
Here we provide such a construction for an arbitrary co-
variant gauge and apply the formalism to a calculation of
the dressed-electron eigenstate and its anomalous magnetic
moment, in order to investigate the gauge invariance of the
result.

This builds on earlier work on Yukawa theory [4] and
QED [3,5-9], where PV particles are used to regulate a
light-front Hamiltonian and the eigenstates of the
Hamiltonian are computed in one or more charge sectors
of the theory. The eigenstate is expanded in a truncated Fock
basis. The eigenvalue problem becomes a coupled set of
integral equations for the wave functions, which are the
coefficients of the Fock states in the expansion. Truncation
keeps the coupled set finite in size, and the PV regulariza-
tion keeps the integrations finite. For severe truncations, the
coupled set can be solved analytically. In general, the set is
solved numerically [6,8]. The renormalization can be
handled in a standard way, with the bare parameters of the
original Lagrangian fixed by physical constraints, or by a
sector-dependent parametrization, where the bare parame-
ters become dependent on the Fock sectors connected by the
terms in the Hamiltonian [7,10-14]. However, in a weakly
coupled theory such as QED, such an approach cannot be
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expected to compete with high-order perturbation theory,
due to numerical errors. Consideration of QED is a test for a
method intended for strongly coupled theories.

Light-cone coordinates [1,15] are used in order to have
well-defined Fock-state expansions, which are at the heart
of the method. We define these coordinates as x™ =t + z
for time and x = (x~ =t — z, X ) for space, with X; =
(x, y). The light-cone energy is p~ = E — p, and momen-
tum, p = (p" = E + p_, p,). The mass-shell condition
p? = m? relates these as p~ = (m* + p3)/p*. The pos-
itivity of p* keeps the vacuum simple and prevents vac-
uum contributions to the Fock expansions, except for the
possibility of zero modes [16]. These modes of zero p™ can
be neglected in theories where symmetry breaking does not
occur.

Our new construction of the Hamiltonian is based on a
light-front analog of the equal-time Stueckelberg quanti-
zation of a massive vector field [17]." The Stueckelberg
quantization is known to allow for a zero-mass limit. It is
also useful as a way to treat the physical and PV photons on
an equal footing, consistent with the need to maintain the
PV regularization. The quantization adds a fourth (unphys-
ical) polarization to the three physical polarizations. The
unphysical polarization is the only one that does not satisfy
the Lorentz gauge condition d - A = 0. However, it does
satisfy the Euler-Lagrange field equation, because its four-
momentum is placed on a different, gauge-dependent mass
shell, chosen in just such a way as to satisfy the field
equation. The key to the light-front analog is that the
chosen mass shell is invoked for the minus component of
the momentum, rather than the zero component. The de-
tails of this can be found below, in Sec. II.

With this new quantization, we can formulate mass
eigenvalue problems for the eigenstates of QED in an
arbitrary covariant gauge and test for the gauge invariance

'For an alternative construction for the massless case, which
uses the canonical Dirac constraint procedure, see [18].
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of physical quantities computed from the eigenstates. We
expect that gauge invariance will be broken by approxima-
tions made in solving the eigenproblems. One such ap-
proximation is the Fock-space truncation used to reduce
the eigenproblem to a finite size. Another is retention of
finite values for the regulating PV masses; the regulariza-
tion is constructed with use of flavor-changing currents that
explicitly break gauge invariance [3] and are removed only
in the infinite-PV-mass limit, which may not be possible in
a numerical calculation.

As a first test, we apply this formalism to a calculation of
the dressed-electron eigenstate. Fock space is truncated to
include only the bare-electron state and the one-electron/
one-photon states, plus their PV analogs. This leads to an
analytically solvable problem, reduced to an effective
2 X 2 matrix problem in the one-electron sector. From
the solution, the anomalous moment can be computed,
from the zero-momentum-transfer limit of the spin-flip
transition amplitude.

To obtain meaningful results, it is important to maintain
the chiral symmetry of the massless-electron limit. This is
achieved by adjusting the coupling strengths of the PV
photons, to ensure that the dressed mass is zero when the
bare mass is zero. As will be seen below, in Sec. III, this
requires two PV-photon flavors in any gauge. However, one
flavor is sufficient if the limit of infinite PV-fermion mass is
taken. This also holds for the sector-dependent approach
[13], as we show in Sec. III. In general, the constraint of
chiral-symmetry restoration and the PV-photon couplings
are gauge dependent.

There are, of course, other nonperturbative methods.
Lattice gauge theory [19] is particularly successful, and
use of Dyson-Schwinger equations [20] has produced no-
table results. However, these lack the direct access to wave
functions in Minkowski space, which light-front
Hamiltonian methods provide [1]. Thus, the methods are
quite complementary, particularly now that light-front cal-
culations can be done in an arbitrary gauge. There are also a
light-front lattice method, the transverse lattice [21]; a light-
front approach in terms of effective fields [22]; and a
supersymmetric formulation for discrete light-front
Hamiltonians specifically for supersymmetric theories [23].

The remainder of the paper contains the following sec-
tions. The general formalism for an arbitrary covariant
gauge is given in Sec. II. The dressed-electron eigenpro-
blem is solved in Sec. III and used there to compute the
anomalous moment. Section IV provides a summary of the
method and of the results obtained. Some details are left to
three Appendices.

II. LIGHT-FRONT QED IN AN ARBITRARY
COVARIANT GAUGE

We begin with the QED Lagrangian for Lorentz gauge
with an arbitrary gauge parameter ¢ and additional PV
fields:
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i = 0 corresponds to a physical field, and i = 1 and 2, to
PV fields. The photon fields have mass w;, and the zero-
mass limit uy — O for the physical photon is to be taken
later.

The coupling coefficients B; and &; satisfy constraints.
To keep e as the charge of physical fermion, we set By, = 1
and &, = 1. To regulate ultraviolet divergences that come
from loop integrals, we arrange cancellations for each
internal line summed over physical and PV fields, by
imposing the constraints

2 2
d(=Dig& =0 D(=DB=0 (23
i=0 i=0
Two remaining coefficients, say &, and 3,, are fixed by
requiring chiral-symmetry restoration in the massless-
electron limit [5] and a zero photon eigenmass [9].

The dynamical fields are ;; and A;,. We quantize the

dynamical fermion fields in the usual way

- (ke kx + gt ik-x
Vi \/1672 f dkx,[bis(Ke™%x + dl _ (k)e™1],
(2.4)
with
{bis®), bl (K} = (=1)'6,,8,08(k = k), (2.5)
{dis(l—c)’ d;s’(kl} = (_ 1)i5ii/8ss’5(k - kl) (26)

For the vector fields, we apply a light-front analog of
Stueckelberg quantization [17].
Consider the Lagrangian of a free massive vector field:

L = —%Fz + %,qu — %g(a - A)% (2.7)
The Euler-Lagrange field equation is
O+ ,u,z)AM —(1=2a,0-A)=0. (2.8)

This equation is satisfied by the Fourier expansion
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A,x) = Z e Bay(ke = + al(k)e* ]

m{
+ O lag®eF* + al (l_c)e"’g"‘]}, (2.9)

with k a four-vector associated with a different mass
i = u/+/Z, such that

k=k = (kK + g2)/k". (2.10)
The polarization vectors are defined by
e D(k) = (0,28, - kL /KT, 610, (211)
(k) = (K3 — wd)/k* Kt k) . (2.12)
eOk) = k/ ., (2.13)

and satisfy k - e® = 0 and e® - ¢ = —§,,, for A, A =
1,2, 3. The first term in A, satisfies ((J + u?)A,, = 0 and
d - A = O separately. The A = O term violates each, but the
field equation is satisfied. The gauge condition d - A = 0 is
to be satisfied by the projection of states onto a physical
subspace.

The light-front Hamiltonian density is

H=H|+11-0)0-A)9-A—20_A" =20, -A)),

(2.14)
with the Feynman-gauge piece being
1 3
Hlpmr =5 X @140 + p2(A0?] (2.15)
u=0

The metric of each field component is defined by e* =
(=1, 1, 1, 1). The light-front Hamiltonian for the free mas-
sive field is then found to be

fdxf;’-[l ,O—Idkz A l ’” al(ka,(k),
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Thus, the Hamiltonian for the free photon field takes the
usual form except that the mass of the fourth polarization is
different and gauge dependent and that the metric of this
polarization is opposite that of the other polarizations. In
Feynman gauge, this reduces to the usual Gupta-Bleuler
quantization [24].

The nondynamical components of the fermion fields
satisfy the constraints (i = 0, 1, 2)

(=1 0_thim + eABY b
J

= "y (- Doswi — ieA VB |
J

— (=D'my (2.18)

Ordinarily, light-cone gauge (A_ = 0) is chosen to make
the constraint explicitly invertible. However, the interac-
tion Lagrangian has been arranged in just such a way that
the A-dependent terms can be canceled between the three
constraints [3]. Multiplication by (—1)//B3; and a sum over
i yields

iy = (y’yDoLd = VY NBimii,  (219)

as the constraint for the composite field that appears in the
interaction Lagrangian. This constraint is the same as the
free-fermion constraint, in any gauge, and the interaction
Hamiltonian can be constructed from the free-field
solution.

Without this cancellation of A-dependent terms, the
constraint would generate four-point interactions between
fermion and photon fields, the instantaneous-fermion in-
teractions [1]. The addition of the PV-fermion fields has, in
effect, factorized these interactions into flavor-changing
photon emission and absorption three-point vertices. The
instantaneous interactions are recovered in the limit of

(2.16)  infinite PV-fermion masses because the light-cone energy
) denominator with an intermediate PV fermion cancels the
with uy = pfor A=1,2,3,but up = @i = w/+/C. The  PV-mass factors in the emission and absorption vertices, as

nonzero commutators are illustrated in Fig. 1.
" The light-front Hamiltonian, without antifermion terms,

[ar(k), a) (K')] = €6,y 8(k — k). 2.17) g
mo
my - 5
mp — 00

my

FIG. 1.

The infinite-PV-mass limit of a tree graph involving an intermediate PV fermion of mass m;. The external fermions are the

physical ones, with mass m. The limit yields an instantaneous interaction, denoted by the bar through the intermediate line.
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(2.20)

The instantaneous-photon terms associated with light-cone
gauge do not appear. The polarization vectors eg’\) have an

additional flavor index [, because they depend on the mass
of the photon flavor. The vertex functions are given by [3]
e PiGLTipyXq,tmm;+ptqg*
1673 gt /q+ —pT ’
V3. (pq) = —e pL-qL*ipLXGytmm;—ptq”
u=2 L lem P+CI+W ’
Vi (pg)— & P Tig) g (Pl ip)
N T e

e pT(@®Figh+q (p*xip)

Vi (p.g)=

V2. (p.g)= 2D
N N AT
and
0O (p. ) = Te m(p' *ip?) —mq" + ig?)
N T A e
() = —=¢ mi(p' = ip?) — mi(q" * iq?)
Uj-(p.q \/T N ’
m;q* —m;p*
¢/+(PrQ) \/Tp+q+\/7
ie m;gt —m;p*
U2 (p, q) = i (2.22)
PR eyt

The extension to include antifermion terms is straightfor-
ward [9]. We now apply this formalism to a nonperturba-
tive calculation of the dressed-electron state and its
anomalous magnetic moment.

II1. DRESSED-ELECTRON EIGENSTATE

A. Eigenvalue problem

We wish to solve the light-front eigenvalue problem
P ly(P)) = leg[f(P)} The eigenstate |¢(P)) is ex-
panded in a Fock basis where P* is diagonal and P 118
zero. Here we consider the lowest order truncation, to
include the bare-electron state and the one-electron/one-
photon states. For a total J, = = ;, the eigenstate is of the
form

PHYSICAL REVIEW D 84, 034001 (2011)

0= (B) = 3 zi'bi (P)10)

> [akciiwole - val@io). 3.1y
ljS)L
The normalization condition is
(Y7 (PP (P)) = 8(P' — P)8 . (3.2)

For this truncation, we can remove the second PV-fermion
flavor, since it plays no role in the regularization or chiral-
symmetry restoration [5]. We let m, — o0, B, — 0, and
B — L

The eigenvalue problem for this state reduces to a set of
coupled equations for the bare-electron amplitudes and the
two-body wave functions:

(7 = i = [P Py, 3B el ef )0

Jlp
X [VI(P — k P)CYE (0)
jit (B - _; )C;\l-:— (k)], (3.3)
and
m? + k2 2+ i3
I:MZ_ i _yJ. _Iu’l)\ ]C?[T(k)
= VEX (=15 Prep)(OIV]. (P = k P)S

with y = k% /P* being the photon’s longitudinal momen-
tum fraction. The second equation (3.4) is trivially inverted
to find the two-body wave functions:

ChE(k) = PEVED (1) 5 e (k)
% [Vﬁfi(z - & E)asi + U;u;/t(B - & B)Bvi]
m2+i2 2 k2 :
[MZ _ i—yL _ /“'l).; 1]
(3.5)

Substitution into the first equation (3.3) yields a 2 X 2
matrix eigenvalue problem for the one-body amplitudes
zl-i:

(M? —m?)z: = 2622( 1)’ ST+ AT +Fmma (I, + Aly)

—2(m; + my)(I, + AL)], (3.6)
with
d dk -1 1 mh
In(Mz):/‘yzL (2)2 6172 ’ n’
1o Gz — M st y(1 =)
3.7)
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j 2 2
sy = [DdkL (=D¢ AL g
167> S pp itk pitk y(l )2’
1=y y
and the gauge-dependent parts
11— dydk’,
Alp(M?)=— (—1)*g jil
’ 32 252 -2
» m2yz-i-k2
m? +k k2 2 k2 ’
R e e M AL
(3.9)

AlL(M?) =

L€ dydk’
32 252( D= [yz(l—y)2

M2y(1 —y) —miy—kj

i n? N
(M2 — C’y& L)(MZ +§ _l‘%;kﬁ)
(3.10)
1— dydk’
AJM) = - T
32 Zgz )y -y
(M? = 02(1 = y)? + k]
X 5 mitk] ,ul+kl o mAK Eiy
I AL =
(3.11)

For AJ we have taken advantage of the fact that
Y (—1)/"&, = 0 to simplify the expression by elimina-
tion from the numerator terms that are proportional to the
denominator.

For py < M — my, there is a line of poles in the (y, k7 )

plane, in an arc between the points at y = y. = [(M? —

m} + pd) = ‘/(M2 —m} + pd)* — 4M? 3]/ (2M?) on the
longitudinal axis. For py = 0, these reduce to y_ = 0 and
y+ = 1 — mj/M?, as considered previously [3]. As in that
case, we define integrals with these poles as principal
values. Also, the same considerations hold for poles asso-
ciated with denominators containing fi.

B. Analytic solution

The matrix problem (3.6) can be solved analytically, in
terms of the defined integrals. The solution is facilitated by
the identity J + AJ = M?(I, + Al,), which was shown
for Feynman gauge in [5] and is extended to an arbitrary
gauge in Appendix A.

The analytic solutions are

(M * mo)(M =+ my)
8m(my — mo)[2(1, + AI) £ M(Iy + Aly)]
(3.12)

a+ =
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with

Zo, (3.13)
1

and M = m,, the physical electron mass. The solution with
the lower sign is the physical one, because M = m, when
a_ =0.

We fix &, by requiring chiral-symmetry restoration, that
is, M = 0 for my = 0 when a_ is equal to the physical
value of @. This implies that (/; + Al,) must be zero. From
earlier work [5], we know that

167 zz( V= Ml/ > In(pj/m?),

(3.14)

Il(o)lmo 1/

so that we only need to evaluate

bz

l

ALO) =0 =

Xl (m3y + k3 )dydk’
(miy + ui(l —y) + k) (mly + p7(1 —y) +k3)
(3.15)

Next, we write k7 in the numerator as k3 + m} — m$ and
use the technique in Appendix A to conclude that the k% +
m? combination integrates to zero.” After the separation of
the denominator into two terms, we can easily perform the
remaining k2l integration, to obtain

AL (0)] =0 = - QZ( ,i) £
1 l
v+ wpil—y)
” [dy] ( miy + i} (l—y)> ©3.16)

The integral over y yields

3
m
A11(0)|n10:0 = 64 12

({ - 1)m1 ln(mz/ﬂlz) - (m1
{(mt — ui)mi — ui/d)

Therefore, the constraint from chiral-symmetry restoration
is

2
wp) I (.17)

Z(— )gl{ i/ mi 2 I3/

((: - 1)””2 ln(mz/,u%) - (ml Ml)lnf} 0
4 g(m1 )(m1 /g) .

162

(3.18)

’In general, k3 + m? is replaced by M?(1 — y)?, but here
M = 0.
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Thus, in any covariant gauge, two PV-photon flavors are
required to maintain the chiral limit.
In the limit of infinite mass for the PV electron, and with
use of ¥ ,(—1)'&; = 0, the general constraint reduces to
-1
Tg(—l)’& In(u7/p?) =0, (3.19)

with u any mass scale. Given &, =1 and &, =1 + &,,
this is solved by

In(po/ 1)
In(y/ py)

If the limit ., — oo can be taken, &, is reduced to zero and
the second PV-photon flavor is removed.

For the sector-dependent approach, the analogous quan-
tity to consider in Yukawa theory is A (M?), defined in
Eq. (B1) of [13]. The combination of various pieces used in
this definition yields, in the notation used there,

1 /‘ddeZ z (=) m;
64 ) x(1 - x) 2+R2 mARL KR ap

(3.21)

A comparison with our (3.7) shows that A(M?) =
111(M?)|¢,—o. When M =0 and mg = 0, the i = 1 term
of A is not zero, unless m; — oo. Therefore, m, in (29b)
of [13] is also not zero, in contradiction of chiral-symmetry
restoration. Thus, the sector-dependent approach requires a
second PV-photon flavor in Yukawa theory. For QED, the
situation is not materially different.

To complete the analysis of the eigensolution, we need
to consider the gauge dependence and infrared dependence
of the integral combination

A =2A1,(M?*) — MALy(M?),

&= — > 0. (3.20)

A (M?) =

(3.22)

which enters the denominator of (3.12). The combination
21,(M?) — MI,(M?) also appears there, but is gauge-
independent by definition and is known to be infrared
safe [3]. From the definitions (3.9) of Al, and Al;, we
can obtain, after eliminating k2l from the numerator in the
same manner as before,

1= N dydki
“meg2 Y I

(M—m)Z[M(l—y)-i-m]
X T (3.23)
(Mz ml+;< J_)( _om; +k +k )

The k3 integral yields

T Z(_I)N%(M —my)’ fdy[M(l —y) +m]
X ln{

M?y(1 = y)
M?y(1 —y)

miy + ui(l —y) —
miy + @i(l—y) —

}. (3.24)
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The j = O term is of order (M — mg)?> * a?, and the j = 1
term is of order 1/m,, after invocation of the chiral con-
straint (3.18) to eliminate the leading, order-m; term. Thus,
A breaks gauge invariance only in ways to be expected;
gauge invariance can be attained only without truncations
and then only in the m; — oo limit. The high-order «
correction is a signal of a truncation effect, and, of course,
the 1/m; contribution disappears as m; — 0.

To study the dependence on the IR mass scale w,, we
consider the wy — 0 limit of the j = [ = 0 term in (3.24),
which is

M(1 —y) + myg (3.25)
m

3272§(M_ O)ZI 4y I §— M1 -yl

The behavior near y = 0 is such that the term has a log
divergence multiplied by ({ — 1)(M — my). Thus, this con-
tribution is of order «, not &2, and, of course, is absent in
Feynman gauge. The order of the contribution is, however,
still consistent with being a truncation error. Also, the
presence of an IR divergence is consistent with the pres-
ence of other, UV divergences, which are uncanceled due
to truncation, as discussed in [3] and as discussed below,
with respect to normalization of the eigenstate.

C. Anomalous magnetic moment

We compute the anomalous magnetic moment of the
dressed electron from the spin-flip matrix element of
the electromagnetic current J [25]. The plus component
of the current is used because, in the absence of vacuum
polarization, it is not renormalized [5,26]. In general, the
transition amplitude for absorption of a photon of momen-
tum ¢ by a dressed electron is given by

J +(0)

Yo (P+ gl ly=(P))

»n 4 4 ' *ig? 2

=26,+F(q°) = T(SU:FQ(CI ), (3.26)
where F; and F, are the usual Dirac and Pauli form factors.
The anomalous moment is a, = F,(0); normalization of the
state is equivalent to F;(0) = 1. As described in [25], the

limit of zero momentum transfer for ¥, can be written as

B N :
o= =M [are 1k (i)
Jjls

(3.27)

This form assumes complete separation of the internal and
external momentum variables in the wave functions C%;; s>
which does occur for components in terms of polarizations.
The sum over polarizations A does not include the gauge
projection, because gauge invariance has already been bro-
ken by both the truncation and the flavor-changing currents.
The normalization condition (3.2), or F;(0) = 1, becomes

034001-6



FIRST NONPERTURBATIVE CALCULATION IN LIGHT- ...

1= @ = G+ Y [dke - 1MIC) WP,

JlsA
(3.28)

which determines z .

The reduction of the expression for the anomalous mo-
ment is given in Appendix B. The result in the limit of
infinite PV electron mass is given in (B7). The normaliza-
tion condition is evaluated in Appendix C, with the same
infinite mass limit yielding (C8). From these expressions,
the anomalous moment can be computed for various values
of the UV scale w;, the IR scale w,, and the gauge
parameter . Sample results are given in Figs. 2-4.
Because truncation errors do not allow either wy— 0,
except in Feynman gauge, or @, — o0, we look for regions
in each where the physical quantity is relatively flat. In
Fig. 4, we then look for sensitivity to the gauge parameter

1.2
e
¢ o5 :
R i
B b L
06 A C
I g=1/2 [
044 —— &= -
1 ——— ¢&=10 i

02 +¥—————"—
0 100 200 300 400 500

/Mg

FIG. 2. The anomalous magnetic moment a, for the dressed-
electron state truncated to include at most the one-electron/one-
photon Fock states, as a function of the PV-photon mass . The
IR mass scale w is 0.001m,, and the gauge parameter ¢ is 1/2,
1, and 10.

1.2

L
T

1.0

T

L
T

T

0.8 4

L
T

(2m/a) ag

0.6

T

L
|
|
|
|
|
|

X U

L
—_
=
N
T

L
T

LI

0.001 0.01

FIG. 3. Same as Fig. 2 but as a function of the IR mass scale
Mo, With w; = 200m,,.
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1.2
10 4 L
:
g ]
R q L
06 A r
0.4 L

02
0 2 4 6 8 10

FIG. 4. Same as Fig. 2 but as a function of the gauge parameter
£, with uy = 0.001m, and p; = 200m,.

when uy and w; have values in such regions. The plot
shows little sensitivity and, therefore, approximate gauge
independence, except for small values of {. For small £, the
theory is near the singular limit where the gauge-fixing
term is removed from the Lagrangian (2.1) and truncation
errors are amplified.

The remaining gauge dependence can be seen to be
consistent with the order of the truncation in the calcula-
tion. Because M — mg is of order «, we have, for the
leading term in a,, as given by (B7),

1 1 —y)M 1
M/ ay2IMy _1 o), (329)
o ~mgy —My(1—y) 2
and, therefore,
a, = 22+ 02 1/12). (3.30)

2

Up to normalization, the Schwinger result [27] of a /27 is
recovered, and the gauge-dependent contributions, as well
as some physical nonperturbative contributions, are higher
order in «, consistent with the truncation to one photon in
the Fock basis.

To complete the analysis, we must consider the normal-
ization factor z,, as given in (C8). At the present order of
truncation, a value other than 1 for z, represents a trunca-
tion error, in the sense that contributions occurring at the
same order in « for the numerator of the expectation value
for the anomalous moment have been left out by the
truncation; therefore, the gauge dependence of z, must
be due to truncation errors.

In the IR limit uy — 0, the normalization z does have a
singular contribution of the form 3 ;- 1;{{ f ‘i—) . This comes

from a combination of the last two terms of the curly
bracket in (C8) for ug— 0 and [ = 0. Therefore, the
normalization contains an IR divergence in addition to its
usual UV divergence, except in Feynman gauge, where
there is only a UV divergence.
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These divergences are the characteristic “‘uncanceled
divergences” caused by Fock-space truncation [3]. They
arise in both the standard and sector-dependent parametri-
zations, although in the latter case the IR divergence is
present even in Feynman gauge [7]. For the standard
parametrization used here, we find the divergences in the
normalization factor. For the sector-dependent parametri-
zation, the divergence is most easily seen by considering
the probability for the one-electron/one-photon sector. This
should be between zero and one, but the renormalization of
the sector-dependent coupling absorbs the divergence in
the normalization factor 1/z3 and allows the probability of
the one-electron/one-photon sector to diverge. In this case,
the overall norm of the eigenstate is maintained only
because the probability for the bare-electron sector goes
to negative infinity in such a way that the sum of proba-
bilities is formally one.

Because of the uncanceled divergences, not all of the PV
masses can be taken to infinity and, except for our standard
parameterization in Feynman gauge, the physical photon
mass cannot be taken to zero. As argued in [3], the errors
introduced by these limitations are to be minimized by
seeking ranges of mass values over which results do not
change significantly. This strikes a balance between the
errors caused by the presence of unphysical PV fields and a
nonzero photon mass and the errors associated with Fock-
space truncation. The former decrease with increasing PV
masses (as the PV fields are removed from the spectrum)
and decreasing photon mass; the latter, the truncation
errors, increase with increasing PV masses as the uncan-
celed divergences assert themselves.

IV. SUMMARY

We have developed a formalism whereby nonperturba-
tive calculations can be done for light-front QED in an
arbitrary covariant gauge. The formalism combines a light-
front Stueckelberg quantization for the free photon field
with a Pauli-Villars regularization that simplifies the con-
straint equation for the nondynamical part of the fermion
field. The Stueckelberg quantization allows the physical
and PV photons to be handled in the same way, which
facilitates the regularization and the preservation of sym-
metries. In Feynman gauge, this quantization is equivalent
to the Gupta-Bleuler quantization used previously [3,5,8].

As a first application of the formalism, we have studied
the dressed electron in a Fock space truncated to include at
most one photon and no positrons. In particular, we have
investigated the gauge invariance of the mass shift and the
anomalous magnetic moment. In both cases, the residual
gauge dependence can be ascribed to errors induced by the
Fock-space truncation. The dependence of the anomalous
moment on the gauge parameter { is illustrated in Fig. 4 in
the case where the PV-fermion mass m, is infinite. If the
PV-fermion mass is kept finite, there is also gauge
dependence of order 1/m;, due to fermion-flavor-mixing
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currents. The strong dependence as { — 0 is to be ex-
pected, because in this limit the gauge-fixing term is re-
moved from the Lagrangian and the theory becomes
undefined. We have also found that two PV-photon flavors
are required to maintain the chiral symmetry of the
massless-electron limit; this extends the earlier Feynman-
gauge result [5] to arbitrary gauges.

The formalism can be applied to higher-order trunca-
tions and to other charge sectors. For high-order trunca-
tions, where calculations are done numerically [8], the
PV-fermion mass m; must usually be kept finite; however,
with m; large enough, the gauge-dependent effects should
be small.
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APPENDIX A: AN INTEGRAL IDENTITY

From [5], we have already that J = M?I,. Thus, to show
that J + AJ = M?(I, + Aly), we need only consider the
gauge-dependent parts. If we write the common denomi-
nators in (3.9) as the difference of two terms, we obtain

1 M —m? dydi?
AT —M?*Aly= ——— > (= 1)/*lg f[ =
’ 32772121 o y

2 2
> T2 22
(1 _)’) M? _mitky  pitk
17

y y
1 )
- 1.2 - (A1)
M2 — mitky /’“§+ki '
1=y y

where we have used 1/(a7 — u?) =¢/(1 - Op? to
simplify the leading factors. For the terms that contain
m7; + ki, we change the integration variable y to

2 2
myp Tt ki
x=(1—-y) , (A2)
mjz-y + ,u%(l —y) + kﬁ_
or
02 + k2
F=(1-y) T (A3)

iy + @ =)+ R

depending on whether u, or fi,; appears in the denominator
of the integrand. As discussed in [5], these variables range
between O and 1, though in reverse order, and satisfy
2 2 2 2 2 4 2
mf—i—kﬁ_ +,ul +kl:mj+kl+/Ll + k7
1—y y I —x

. (A

and the analogous expression for X. With use of this
identity and differentiation of (A2), we obtain
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(m+k)

2 2
dx( 2_mj+kl_M12+k2l_M2). (A5)

(1 Wox
The analogous expression holds for dX. Substitution into (Al) and replacement of x and ¥ by y, to have a common
integration variable for all terms, yields

1—x X

1 O M?—m? [dydk? 1 1
AJ — M*Aly = _WZ(_WHQ 2 ’ [ yy * Mz( s MR @Ak o miAk ﬂfﬂ{)
7 : M~ =5 M~ =5
M? M?
+ |:(] o M2 — m?-%—ki _ M%*ki) N (1 N M2 — m; +k2 ﬂ%+ki)}}' (A6)
I-y y 1=y y

Here we have taken into account the reversed order of limits for x and ¥ by changing the sign of the terms in the square
brackets. Clearly, the sum of terms in the curly brackets is zero, and, therefore, AJ = M?Al,.

APPENDIX B: EVALUATION OF THE ANOMALOUS-MOMENT FORMULA

On substitution of the two-body wave functions (3.5) and use of the Kronecker deltas in spin, the expression (3.27)
for the anomalous moment becomes

0= -MY Y A1zt [avag —2TE) v e - kP i
e 1841 L y LMZ B m12'+ki B /’“?)WLki Ji'+ akl
y

21 8k2
JIA 70 =
el (UY, (P~ kP W(k)v (P~ kP)
eN (UL (P~ k P) - , (B1)
M2 — 3+k2 _ /"’%A-H(J. akl 8/(2 _ ’"/+k BT
I-y y -y y

with the vertex functions specified in (2.21) and (2.22). The terms generated by differentiation of the denominators cancel.
Simpliﬁcation of the remaining terms, summed over polarizations A, yields

11 m’(l )’) —m; 2
=—-M —1 JHI i e fd dk2 J g
g 2%;( ) §1Z Z Yy (1_y) (M2_m+k +k2)2

L m; 24+(1-20)/¢ L me o m, (mjmi/y+//,l)( 1 _ 1 )
y(I—y) (Mz_mf”ﬁ +’<2)2 pil=y\ 1=y ¥ (M2 — mi Ak +ki)2 (Mz_'"f+ki_#?+ki)2 ’

=y -y y 1=y y

(B2)

The ki integrals have double poles, if wy <M — mg or jig < M — myg; following the earlier convention in [3], we define
the integrals by

d d d
[ =t [P [ L% p [ L] ®3)
(x—a)* 72—027m x—a—mn x—a+mn
With or without the pole, we find
dk2 _ 2(1 —y)? B4
P e e "y
(M === == P
These leave the anomalous moment in the form
11 1 - iy — g+ i 2 .
__MZ Z( VALY é;z/ //fd ¥( Vlmyy — (m; "; m])] + Aa, (BS)
Gl my+,“~1(1_)’) My(l_y)

with Aa, a gauge-dependent part given by
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1-¢ a . - 1
Aa, = ——=2—M (=) e s (m — m;) fdyy(l - y){
{ 2w %; i ! miy + pui(l —y) = M?y(1 = y)

B mimpy® + ui(l —y)/{ }

[m3y + ui(l —y) — MA(1 — Wmiy + @p(1 —y) — M?y(1 = y)1)

Except for the normalization factors z7-, this expression is IR safe; the photon mass u can be set to zero. We first take

the limit m; — oo, which, with use of z; = z; = z;, implies Y ,(—1)'z; — 7o and 3;(—1)'m,;z; — Mz,. Next, the second
PV-photon flavor is removed by the limit My — 00, in which &, — 0 and &, — 1, to obtain

y(1 = y)[My — 2(M — my)]
a, ﬁ_Mz Z 1)1f Vo i Aa, (B7)

(B6)

and

1 _
M= m) T 1) [ar] o M

Aa _1=7
‘ { = mgy + ui(1 —y) — M?y(1 — y)

27
y(1 = y)moMy* + ui(1 — y)/{] }
CImdy + W20 —y) = MA(1— mdy + @20 —y) — MA(1 — ]I

(B8)

APPENDIX C: EVALUATION OF THE NORMALIZATION CONDITION

On substitution of the two-body wave functions (3.5), the normalization condition (3.28) becomes

+\3 2
1= (g5 = @2+ D D (1 g 25503 et f( - m(P") dydk} - ()‘)(k)e()‘)(k)
A M

2 2 2 2
Jloili M Ry,
1=y y

X [VEL(P ~ k PV, (P~ k P) + Ul (P~ k YUY, (P~ k P)} (@)

To simplify the expression, we first add and subtract the A = 0 term with the denominator replaced by the denominator of
the A # O terms. We then have

+ + i i+ + _+ 1
1= (26)2 _ (Zl_)2 + ZZ(_1)1+I+1 +i glzi_lzﬁ fW(P+)3dydki{( -
M

+k2 ZGAe()\) (k) e(/\)(/_()

m2+k> l
jloii" — ityl- m
1 1 ©) (1,0 }

+ - _ ke, WOHVEZ(P — k PV, (P~ k P

<(M2 mitk #l“rki)z (M? — mitk ﬂf“‘z) ) Be; ( U (_ B )t (£ B

=y y I=y y
+ UL(P — k P)UY, (P — k P)] (C2)
On use of the vertex functions in (2.21) and (2.22) and of z;” = z; = z;, we obtain

I 1

2 2
T LTI "t_“‘i)Z
-y

% [2’”5 = 2m;(my + mp)(1 = y) + mymp(1 — ¥+ kzl 1= g“(mj(m,»/ + mn) 21{2L . 1+ ,u,lz)]

y(1 = y)? { i—y Y-y ¢y
+ 1 [ 1 :”:mjz»mi/miuy k4 Iu, (mf + mirmi//)ki
u? i - e )2 31 — )2 _3 )2
Lo — Clvﬁ — l‘zz;’ki)z (M2 — le_r];l — '“12;"1)2 1=y y(1 =y (1 —y)
4 BmiOny &+ myn) | 32,&12ki ]} (C3)
y( =) y' (=)
The k% integrals are defined by (B3) when a pole is present. The integrals needed are given by (B4),
K3 dk% ) 5 )
— = =21 =y Inllmjy + pi(1 = y) = M?y(1 = y)[] (C4)
(Mz n; +k +k )

-y
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and

k4dk2 2 2 2 2
f( — — (1 = Y2y + 21— y) — M2y(1 — y)@Inflm2y + @3(1 — y) = M2y(1 — )] + 1),
M

m; +k +k2
)2

(C5)

where we have dropped infinite terms th;lt gance]Z in, the final expres§1ons dug: tg either ¥ ,(—1)'&, = 0 or the difference

between the two denominators, (M? — 17\} l)2 nd (M? — —)L - l)2 Substitution of these integrals yields

l=2-2+

1
— ) i1 21 fd { [2 2 _2m(mys + ma)(1 —
167 2}: E (=1 &1ziz y mjzy T M12(1 —y) - sz(l — ) y(mj m](ml mn)( y)

jl l/l”

P e S B 7 (e a e Y AR e
(1= yP) — (m,<m,+ml>y<1 )+t M )] 2(y = y)

X In[lm?y + p3(1 = y) = M*y(1 = y)[] +

1 1
Mz[my+ﬂz(1—y) M1 —y) miy + ap(l1—y) — sz(l—y)]

~4 2
-y
X [m%m imay? + —y T @2mymy + mp)y(1 - y>] # o [y + i1 =)

= M?y(1 — y)2Inflmy + ui(1 —y) = M>y(1 = I+ 1) = (m3y + @i (1 —y)

~2 _
~ 02501 = ) @allny + 30~ 3) = M50 = ]+ D]+ 300+ ) + 2]
!

X 1n<

Collecting terms with logarithms, we find that multipliers containing 1/y cancel. The remaining terms containing 1/y are
not singular in the full expression, which can be arranged explicitly by adding ! f = t0 the curly brackets of (C6). This
additional piece makes no contribution to the sum over /, because ¥ ,(—1)'¢;, = 0. The resulting expression for the
normalization condition is

miy + ap(1 —y) — M?y(1 —y) )} (C6)

miy + pi(l —y) = M?y(1 —y)

1
1= _ 1 I+ . fd { [2 2 _ 2m: g4+ ma (1 —
RRST 221.‘2( : b | B i+ ui(—y) = M>y(1—y) ylm; = 2m i+ min)(1 =)

l/l/!

S (1= 3) =y g + )1 = y)] 2yInlmly + p2(1 — y) = M2y(1 = )]
1 1 1 )
1 1 : — 2 _ m2(1 —
[m y+,u,(1—y) sz(l—y) {m y+,U«1(1—y) sz(l— )](1 y)[m/ M*(1—y)]

1
+ M—lz[y(mf +mgmp) + 2[m3 — M*(1 — y)]]ln(

miy+ @i (1—y) — M?y(1 —y) >}
miy + up(l —y) = M*y(1 —y)

(C7)

In the m; — oo limit, this becomes
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[Zy(m% —4moM(1—y) +M*(1—y)?) —I_TQVZmoMy(l —y)]

1

1
=2yIn[|mdy + ui (1 —y) —M?>y(1—y)l] +F
1

1

[m%yﬂf«%

1
(1—=y)=M*y(1—y) miy+ai(l—y) —M*( —y)]

X [mEM>?y3 +2 @2 moMy(1 —y)]— [

MFMW%MW—M+%M%+WH%%—WUWNM
1

1 1 ]
miy+ui(1=y)=M>y(1—y) {mdy+ @7 (1—y)—M>y(1—y)

mgy + @i (1—y)—M?>y(1—y)
mgy + ui(1—y)—M?>y(1—y)

)
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