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Adding a fourth generation to the standard model and assuming it to be valid up to some cutoff �, we

show that electroweak symmetry is broken by radiative corrections due to the fourth generation. The

effects of the fourth generation are isolated using a Lagrangian with a genuine scalar without self-

interactions at the classical level. For masses of the fourth generation consistent with electroweak

precision data (including the B ! K� CP asymmetries), we obtain a Higgs mass of the order of a few

hundreds GeV and a cutoff � around 1–2 TeV. We study the reliability of the perturbative treatment used

to obtain these results taking into account the running of the Yukawa couplings of the fourth quark

generation with the aid of the renormalization group equations, finding similar allowed values for the

Higgs mass but a slightly lower cutoff due to the breaking of the perturbative regime. Such low cutoff

means that the effects of new physics needed to describe electroweak interactions at energy above �

should be measurable at the LHC. We use the minimal supersymmetric extension of the standard model

with four generations as an explicit example of models realizing the dynamical electroweak symmetry

breaking by radiative corrections and containing new physics. Here, the cutoff is replaced by the masses of

the squarks and electroweak symmetry breaking by radiative corrections requires the squark masses to be

of the order of 1 TeV.
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I. INTRODUCTION

Many experimental results on B physics (see [1]) can be
seen as hints of physics beyond the standard model (SM).
Electroweak precision data also points to new physics
scenarios [2]. In the LHC era, new physics related to the
observability of the Higgs boson is worthy to study and the
elucidation of the Higgs sector properties is a topic of
utmost importance.

A simple extension of the standard model (SM) is the
introduction of a new generation of quarks and leptons
(SM4). Precision data do not exclude the existence of a
sequential fourth generation [3–8]. An extensive review
and an exhaustive list of references to the work on the
subject previous to our century can be found in [9]. Recent
highlights on consequences of a fourth generation can be
found in [10]. These include mechanisms of dynamical
electroweak symmetry breaking by condensates of fourth
generation quarks and leptons [11–14], convergence im-
provement of the three SM gauge couplings due to the
Yukawa coupling contributions from the fourth generation
[15], the possibility of electroweak baryogenesis through
first-order electroweak phase transition with four genera-
tions [16–18], CP violation based on Jarlskog invariants
generalized to four generations [19], and the hierarchy
problem [20].

The B ! K� CP asymmetries puzzles can also be
easily solved by a fourth generation [21–23] for a range

of extra quark masses within the values allowed by high
precision LEP measurements [3–5], namely [24]

m‘4 �m�4 ’ 30–60 GeV

mu4 �md4 ’
�
1þ 1

5
ln

mH

115 GeV

�
� 50 GeV

jVud4 j; jVu4dj & 0:04

jU‘4 j; jU�4
j & 0:02; (1)

where V (U) is the Cabibbo-Kobayashi-Maskawa (Maki-
Nakagawa-Sakata) quark (lepton) mixing matrix which is
now a 4� 4 unitary matrix. These bounds are subject to
direct search limits from LEPII [25] and CDF [26,27]:

m�4;‘4 >100GeV mu4 >311GeV md4 >338GeV: (2)

In Refs. [21–23], in order to solve the CP asymmetry
puzzles in B ! K�, one needs the extra quarks to be
within the following range [21]:

400 GeV<mu4 < 600 GeV: (3)

Such values of new quark masses imply strong Yukawa
couplings. So, it is natural to expect that this fourth gen-
eration could play a special role in the electroweak sym-
metry breaking (EWSB). Contrary to other works where it
is assumed that Yukawa couplings are strong enough to
produce composite scalars at low energy [11–14], we shall
assume that the perturbative treatment [28] is still valid.
This assumption is justified by the fact that even fourth
generation masses in the range of 300–600 GeV imply
Yukawa couplings (gf) around 2–3. In the loop expansion,
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the perturbative parameters are given by g2f=4� which are

still smaller than one for these mass values.
In this work we study the effect of a fourth generation in

the dynamical breaking of electroweak symmetry. In order
to isolate these effects and following the spirit of [29], we
start in Sec. II with a model with vanishing scalar self-
interactions at the classical level and maintain this condi-
tion at the one-loop level. In this model the symmetry
breaking of the gauge group SUð2ÞL �Uð1ÞY is a dynami-
cal effect exhausted by the Yukawa couplings of chiral
fermions to the Higgs scalar. In Sec. III we relax the
condition of vanishing effective self-interactions and per-
form a renormalization group (RG) improvement in order
to determine whether perturbative conditions remain valid
when the running of Yukawa couplings are taken into
account. Finally, in Sec. IV we also explore the implica-
tions of this kind of dynamical EWSB mechanism in
the minimal supersymmetric standard model (MSSM) ex-
tended with a fourth generation of chiral matter (MSSM4)
(see [30] for a closely related approach) which has been
studied in many situations [31–33].

II. SYMMETRY BREAKING INDUCED BY THE
FOURTH GENERATION

We start with the Lagrangian describing electroweak
interactions and consider only the part required for our
purposes, namely

L ¼ 1

2
@��@����2ðvÞ

2
�2 � �ðvÞ

4!
�4

þX
a

�
�c ai��@�c

a � gaðvÞffiffiffi
2

p � �c ac a

�
: (4)

Here, � is the neutral component of the standard Higgs
doublet and c a is the corresponding fermion field with
a ¼ t; u4; d4; ‘4; �4. We assume that our description of the
electroweak interaction by the symmetries of the standard
model is valid only up to a cutoff �, but our perturbative
expansion will be done on the physical couplings at the
scale v (see e.g. [34] for a discussion on this viewpoint), a
fact that we emphasize by explicitly showing the depen-
dence of the parameters on this scale which—anticipating
results—we identify below as the electroweak symmetry
breaking scale.

As it is well known, if �2ðvÞ< 0 and �ðvÞ> 0 we have
spontaneous symmetry breaking already at tree level.
In this model we are interested in the possibility of trigger-
ing EWSB without invoking a spontaneous breakdown,
and therefore, we require an authentic scalar field, i.e.,
�2ðvÞ> 0. We expect SB to be induced by quantum effects
and we are especially interested in the isolation of the
effects due to the fourth generation in such a dynamical
EWSB. With this aim, we start taking �ðvÞ ¼ 0, which is
the limiting case where one-loop effects of the scalar sector
are completely suppressed and only the matter sector is

responsible for EWSB. The condition �ðvÞ ¼ 0 should not
be taken as a fundamental requirement of the model nor as
a fine-tuning condition, but instead as the limiting scenario
where the effects of the fourth generation are more easily
recognizable.
The one-loop corrections to the classical potential

Vð0Þ ¼ 1
2�

2ðvÞ�2 can be calculated using standard tech-

niques [35]. At the one-loop level we obtain

Vð1Þ
f ¼ �2ðvÞ

2
�2 �X

a

4Na
c

32�2

Z �2

0
dk2Ek

2
E ln

�
k2E þm2

að�Þ
k2E þm2

að0Þ
�
;

(5)

where Na
c is the number of colors of the field labeled by a

andm2
að�Þ ¼ g2aðvÞ�2=2. Including one-loop gauge boson

contributions to this potential is straightforward and yields

Vð1Þ ¼ �2ðvÞ�2
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½m2
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�
�m4
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1þ �2
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��
; (6)

where now a ¼ t; u4; d4; ‘4; �4; W; Z and the field-
dependent squared masses for gauge bosons are given by
m2

Wð�Þ ¼ g22�
2=4 and m2

Zð�Þ ¼ ðg21 þ g22Þ�2=4, with g1
and g2 as theUð1Þ and SUð2Þ gauge couplings evaluated at
the scale v, respectively. Consequently, the degeneracies
per particle are the following: nW ¼ 6, nZ ¼ 3, nt ¼ nu4 ¼
nd4 ¼ �12, and n‘4 ¼ n�4

¼ �4.

From (6), one can see that the classical minimum
h�i ¼ 0 can be turned into a local maximum by the one-
loop corrections. A new minimum appears then at
h�i ¼ v � 0 and all particles in the model acquire a
mass ma ¼ maðvÞ. The only nontrivial solution to

@Vð1Þ=@�j�¼v ¼ 0 is

�2ðvÞ ¼ �X
a

nam
4
a

16�2v2

�
�2

m2
a

� ln

�
1þ �2

m2
a

��
; (7)

with �2ðvÞ> 0 for the inputs of the problem as required,
meaning that the tree-level scalar mass term is genuine and
symmetry breaking is entirely driven by one-loop effects.
The Higgs boson mass at the one-loop level can be iden-
tified as

m2
HðvÞ ¼

@2Vð1Þ

@�2

���������¼v

¼ �X
a

nam
4
a

8�2v2

�
ln

�
1þ �2

m2
a

�
� �2

m2
a þ�2

�
(8)
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and the fourth derivative of the effective potential eval-
uated at the scale v reads

@4Vð1Þ

@�4

���������¼v
¼ �X

a

3nam
4
a

8�2v4

�
ln

�
1þ �2

m2
a

�
þ 9

m2
a

m2
a þ�2

� 8
m4

a

ðm2
a þ�2Þ2 þ

8

3

m6
a

ðm2
a þ�2Þ3 �

11

3

�
:

(9)

The effective scalar self-interaction depends on the fer-
mion masses ma, the minimum of the effective potential v,
and the cutoff�, and it is worthy to study this dependence.
This is shown in Fig. 1 for v ¼ 246 GeV and heavy
fermion masses in the range given in Eqs. (1) and (2).

Notice that for given fermion masses, the specific value
of the effective self-interaction at the electroweak symme-
try breaking scale depends on the value of the unknown
scale �. Up to this point, a wide range of possible values
for the cutoff are eligible and one must take into account
the dependence of the parameters of the model on�, as we
will do in Sec. III. However, these values must be consis-
tent with the perturbative treatment we are using which
requires a small effective scalar self-interaction. From
Fig. 1 we can see that this narrows the range of values
for �, the allowed range depending on the specific masses
of the fourth generation. Interestingly, for given values of
the fermion masses, there are specific values of� such that
the effective self-interaction also vanishes. These specific
values are worthy to study in detail because in this case the
effects of scalar self-interactions in the EWSB at the next
order in perturbation theory also vanish and EWSB is still
driven by the Yukawa couplings at that order. Furthermore,
in this case the scale � is fixed by the electroweak scale v
and the values of the fermion masses.

There are two solutions to the equation

@4Vð1Þ

@�4

���������¼v
¼ 0; (10)

for heavy fermion masses in the range given in Eqs. (1) and
(2). One of them yields � around the electroweak symme-
try breaking scale v and we consider it as unphysical. The
other solution lies in the range

1600 GeV<�< 2500 GeV; (11)

depending on the input for the masses of the fourth gen-
eration fermions.
Once we have fixed the cutoff � for given masses of the

heavy fermions, we obtain from Eq. (8) the corresponding
Higgs mass as a function of the fourth generation quark and
lepton masses. In the numerical analysis we use

m‘4 �m�4
¼ 45 GeV; 100 GeV � m‘4 � 400 GeV;

mu4 �md4 ¼ 60 GeV; 350 GeV � mu4 � 500 GeV;

(12)

as suggested by Eqs. (1) and (2). Under these considera-
tions, the Higgs mass is a smooth function of mu4 and m‘4

and has a more pronounced dependence onmu4 as shown in

Figs. 2 and 3. More important, a modest Higgs mass of
�350 GeV is reachable and even a heavy Higgs of
�800 GeV would be consistent with electroweak preci-
sion data if EWSB is entirely driven by Yukawa forces of
the hypothetical fourth generation and the top quark.
Notice that, if fourth generation lepton masses are of

order 100–200 GeV, then the contribution of u4 and d4
almost determines completely the Higgs mass prediction,
as depicted in Fig. 2. Combining Eq. (8) and Eq. (1) with
condition Eq. (10), this fact is expressed as follows:
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FIG. 1 (color online). Effective Higgs self-coupling at the
electroweak scale v ¼ 246 GeV as a function of the cutoff �
for fixed values of the heavy fermions. The curves correspond to
mu4 ¼ 350, 400, 450, and 500 GeV with m‘4 ¼ 200 GeV and

mass splittings mu4 �md4 ¼ 60 GeV and m‘4 �m�4
¼ 45 GeV

from shallowest to deepest.
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FIG. 2 (color online). Higgs mass as a function of mu4 for
different values of m‘4 ¼ 400, 300, 200, 100 GeV from top

to bottom. The lowest line contains only the contribution of u4
and d4.
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m2
H � X

q¼u4;d4

4m4
q

�2v2

�
1� 3

m2
q

�2
þO

�
m4

q

�4

��
: (13)

Also in this case, the cutoff for new physics should be
within the range given in Eq. (11). A simple and good
approximation for this case is

mH � 1:89

�v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

u4 þm4
d4

q
; (14)

with � � 5mu4 .

It is important to remark that even for masses of the 4th
generation around 500 GeV, the corresponding Yukawa
couplings (gq4) are around 2–3 thus the loop expansion

parameter, given by g2q4=4�, is smaller than 1 and justifies

our perturbative approach.
Results contained in Figs. 2 and 3 are in agreement—

mutatis mutandis—with the analysis performed in the full
renormalized SM4 framework [8].

III. RG IMPROVED MODEL

It is important to check the consistency and stability of
our previous approach to take into account the running
of the Yukawa couplings as it is well known that these
couplings could reach the nonperturbative regime very
quickly. In this section, following the approach of [36],
we investigate the leading effects of the heavy fourth
generation quarks on the scalar sector with a special em-
phasis on the perturbative nature of the analysis and its
implications on the possible choices for the ultraviolet
cutoff. We use the renormalization group equation (RG)
to estimate the running of the couplings.

From the previous results, we learned that the contribu-
tion of gauge bosons, top quark and fourth generation
leptons to the one-loop effective potential is negligible
compared to that of the fourth generation quarks if we
assume that new leptons are relatively light. In a first
approximation we will consider only the effects of the

running in the fourth family of quarks. In order to incor-
porate these effects properly in the analysis of the
Higgs mass, we will use the pole mass for the Higgs.
Furthermore, the study of the perturbative regime will
require the running of the fermion masses which are dic-
tated by the running of the Yukawa couplings. Since we
will study the behavior of our observables as a function of
these masses, it is important to work with the fermion
masses as defined at the corresponding scale, i.e. mq4 ¼
mq4ð� ¼ mq4Þ. Finally, we will incorporate renormaliza-

tion effects of the vacuum expectation value of the scalar
field. All these effects are more easily handled using a
more conventional approach; thus, unlike the previous
section, here we start with the bare Lagrangian whose
sector of our primary interest is

Lð�Þ ¼ 1

2
@��@��� Vð0Þð�2; �Þ

þ X
a¼u4;d4

�
�c ai��@�c

a � gað�Þffiffiffi
2

p � �c ac a

�
; (15)

with

Vð0Þð�2; �Þ ¼ 1

2
�2ð�Þ�2 þ �ð�Þ

4!
�4: (16)

At the one-loop level we have

Vð1Þð�2;�Þ¼Vð0Þð�2;�Þ

� X
a¼u4;d4

4Na
c

32�2

Z �2

0
dk2Ek

2
E ln

�
1þg2að�Þ�2

2k2E

�
:

(17)

Again, if we insist on a dynamical SB triggered by fourth
generation quarks and we set �ð�Þ ¼ 0, the only nontrivial

solution to @Vð1Þ=@�j�¼h�i1 ¼ 0 is

�2ð�Þ¼ X
a¼u4;d4

g2að�ÞNc

8�2

�
�2�mð0Þ2

a ð�Þ ln
�

�2

mð0Þ2
a ð�Þþ1

��
;

(18)

with �2ð�Þ> 0 for the inputs of the analysis. This means
that we have an authentic scalar in the SB sector. Here

mð0Þ
a ð�Þ ¼ gað�Þh�i1ffiffiffi

2
p (19)

with h�i1 as the ‘‘bare’’ vacuum expectation value, where
the subscript denotes the fact that this is an approximation
with only the one-loop fourth generation quantum effects.
It is important to notice that our Lagrangian depends

now on the values of the coupling at the cutoff scale. In this
section the cutoff scale will be defined as the scale where
the perturbative regime for the Yukawa couplings is still
valid. Above this scale, the Yukawa couplings could get
strong enough to generate nonperturbative effects as con-
densate formation or others.
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FIG. 3 (color online). Higgs mass as a function of m‘4 for
different values of mu4 ¼ 350, 400, 450, 500 GeV from bottom

to top.
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In order to obtain predictions on physical quantities, we
must make an adequate choice of � taking special care in
the preservation of the perturbative expansion. The rela-
tions between the bare parameters of the model and the
physical parameters proceed as follows: The physical
(pole) mass MH of the scalar can be expressed in terms
of the effective potential as

M2
H ¼ d2Vð0Þ

d�2

���������¼h�i1
þ�HHðq2 ¼ M2

HÞ

¼ d2Vð1Þ

d�2

���������¼h�i1
��HHðq2 ¼ 0Þ þ�HHðq2 ¼ M2

HÞ;
(20)

where �HHðq2Þ stands for the scalar self-energy, that can
be approximated as the following truncated Green

function calculated with fourth generation one-loop effects
only:

�i�HHðq2Þ ¼ �i�u4u4
HH ðq2Þ � i�d4d4

HH ðq2Þ

¼ X
a¼u4;d4

�
gað�Þffiffiffi

2
p

�
2
Nc

Z d4k

ð2�Þ4

� Tr

�
i

ðk�mð0Þ
a ð�ÞÞ

i

ðkþ q�mð0Þ
a ð�ÞÞ

�
:

(21)

A straightforward calculation performing the Wick rota-
tion in Euclidean space and imposing a spherical cutoff on
the Euclidean quark momentum yields

�HHðq2Þ ¼ � X
a¼u4;d4

g2að�ÞNc

8�2

�
�2 þ

�
q2

2
� 3mð0Þ2

a ð�Þ
�
ln

�
�2

mð0Þ2
a ð�Þ

�
þ 2mð0Þ2

a ð�Þ � 7

12
q2 þmð0Þ2

a ð�Þ
�2

�
q2

2
� 5mð0Þ2

a ð�Þ
�

þmð0Þ4
a ð�Þ
�4

�
q2 þ 7

2
mð0Þ2

a ð�Þ
�
þO

�
ðq2;mð0Þ2

a ð�ÞÞm
ð0Þ6
a ð�Þ
�6

��
: (22)

In this framework, the relation among the bare VEV
h�i1 and its renormalized counterpart v � �ren is given by
the renormalization of the kinetic scalar term and can be
written as

Z�h�i21 ¼ v2; (23)

where

Z� ¼
�
1� d�HHðq2Þ

dq2

��������q2¼M2
H

�

¼ 1þ X
a¼u4;d4

4g2að�ÞNc

64�2

�
ln

�
�2

mð0Þ2
a ð�Þ

�
� 7

6
þmð0Þ2

a ð�Þ
�2

þ 2
mð0Þ4

a ð�Þ
�4

þO
�
mð0Þ6

a ð�Þ
�6

��
: (24)

In the matter sector, the running of the relevant Yukawa
couplings can be summarized in the following renormal-
ization group equations:

ð16�2Þ� @

@�
gu4 ¼

9

2
g3u4 þ

3

2
gu4g

2
d4

(25)

ð16�2Þ� @

@�
gd4 ¼

9

2
g3d4 þ

3

2
gd4g

2
u4 : (26)

In the approximation gu4 � gd4 , defining gu4 � gd4 � �g,

the previous equations reduce to

ð16�2Þ� @

@�
gu4 � 6g3u4 (27)

ð16�2Þ� @

@�
�g � 12g2u4�g (28)

and the solution can be written as

gu4ð�Þ �
�

1

g2u4ð�0Þ
� 6

16�2
ln

�
�2

�2
0

���1=2
(29)

�gð�Þ � �gð�0Þ
�
1� 3g2u4ð�0Þ

8�2
ln

�
�2

�2
0

���1
: (30)

The physical mass of the heaviest fourth generation quark
is defined as

mu4 �
gu4ðmu4Þvffiffiffi

2
p : (31)

The running of Yukawa couplings from E ¼ mu4 to

E0 ¼ � is given by

gu4ð�Þ �
�

1

g2u4ðmu4Þ
� 6

16�2
ln

�
�2

m2
u4

���1=2
(32)

�gð�Þ � �gðmu4Þ
�
1� 3g2u4ðmu4Þ

8�2
ln

�
�2

m2
u4

���1
: (33)

Inserting (22) into (20), the squared pole mass of the
scalar is
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M2
H ¼ X

a¼u4;d4

8g2að�ÞNcZ
�2
� v2

64�2

�
ln

�
�2

mð0Þ2
a ð�Þ þ 1

�

� �2

�2 þmð0Þ2
a ð�Þ

�
: (34)

In this case, maximum cutoff can be naturally defined as
the largest scale at which the model remains perturbative.
That scale is achieved when alpha-Yukawa becomes equal
to one:

g2u4ð�maxÞ
4�

¼ 1; (35)

which can be solved to yield

�max ¼ mu4e
½ð2�2v2Þ=ð3m2

u4
Þ�½1�ðm2

u4
=2�v2Þ�: (36)

In Fig. 4, �max is shown as a function of the heaviest
quark mass. Hence, for a quark with massmu4 ¼ 400 GeV

the maximum cutoff is �max � 1700 GeV; while for
mu4 ¼ 500 GeV we have �max � 860 GeV. Even in this

case, a Higgs mass between 350 and 650 GeV is compat-
ible with fourth generation quarks with masses between
350 and 500 GeV which are responsible for the EWSB in a
perturbative fashion with a physical cutoff �<�max.

Comparing with the previous section we can see that
perturbative effects indeed appear at a lower scale than the
naive scale for new physics. Still, taking the worst case,
e.g., � ¼ 2mu4 , the predicted Higgs mass lies in the same

range as before and the perturbative expansion is valid up
to mu4 � 480 GeV, where � � �max. This is shown ex-

plicitly in Fig. 5, where the curve represents the Higgs
mass that corresponds to the cutoff choice � ¼ 2mu4 as a

function of the mass of the heaviest quark mu4 with �m ¼
mu4 �md4 ¼ 60 GeV. Thus, the predictions of the pre-

vious model are not strongly modified by the RG
Yukawa couplings, but the interpretation of the cutoff scale
is different.

IV. DYNAMICAL SYMMETRY BREAKING
IN MSSM4

We now perform an analogous calculation in the context
of a low energy supersymmetric extension of the SMwith a
fourth generation of chiral matter. As is well known, in the
Higgs sector of MSSM there are two scalar doublets of
opposite hypercharge: Hd ¼ ðH0

d;H
�
d ÞT , Hu ¼ ðHþ

u ; H
0
uÞT .

Breaking supersymmetry softly, the tree-level scalar po-
tential for the CP-even neutral scalars H1 � ReHd and
H2 � ReHu is

Vð0Þ ¼ 1

2
ðH1H2Þ

m2
1 �m2

12

�m2
12 m2

2

 !
H1

H2

 !

þ ðg21 þ g22Þ
32

ðH2
2 �H2

1Þ2: (37)

The linear combination

�
’

� �
¼ cos� sin�

� sin� cos�

� �
H1

H2

� �
(38)

with tan2� ¼ 2m2
12=ðm2

2 �m2
1Þ diagonalizes the mass ma-

trix in Eq. (37) and the potential becomes

Vð0Þ ¼ �2

2
�2 þM2

2
’2

þ ðg21 þ g22Þ
32

½cos2�ð’2 ��2Þ þ sin2��’�2; (39)

where

�2;M2 ¼ 1
2

�
m2

1 þm2
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

2 �m2
1Þ2 þ 4m2

12

q �
: (40)

Here, as in Sec. II, the parameters of the Lagrangian are
identified as the physical ones evaluated at the electroweak
scale. If we demand �2 > 0, then only SUSY is broken at
tree level—leaving electroweak symmetry untouched—
and from Eq. (40) we have m2

1m
2
2 >m4

12. Also, if we
require the potential to be bounded from below, the pa-
rameters are constrained to satisfy m2

1 þm2
2 	 2m2

12.
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FIG. 4 (color online). �max as a function of the physical mass
of the heaviest quark mu4 .
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FIG. 5 (color online). Higgs (pole) mass as a function of mu4
with � ¼ 2mu4 for �m ¼ mu4 �md4 ¼ 60 GeV.
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As usual in this context, we work in the decoupling limit
where all SUSY partners of SM particles and all physical
scalars that emerge from the Higgs sector (except for �)
are heavy, with masses of the order of the global SUSY
breaking scale MS. From the analysis of the previous
section we know that the contribution of gauge bosons
and fourth generation leptons to the one-loop effective
potential are negligible; in the first case because of the
relative smallness of the gauge couplings compared to the
quark Yukawa couplings and in the second case because
the number of degrees of freedom per lepton is 1=3 that
of quarks. For simplicity, we also discard terms of the
form �’3, �2’2, and �3’ because their contribution is
also dictated by the gauge couplings. Under these simpli-
fications, the resulting effective potential is given by

Eq. (6) with a ¼ t; u4; d4;~t
1;2; ~u1;24 ; ~d1;24 and field-dependent

masses m2
t ð�Þ ¼ g2t sin

2��2=2, m2
u4ð�Þ ¼ g2u4 sin

2��2=2,

m2
d4
ð�Þ ¼ g2d4cos

2��2=2,

m2
~q1;2

ð�Þ ¼ 1
2

�
m2

~qL
ð�Þ þm2

~qR
ð�Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

~qL
ð�Þ �m2

~qR
ð�Þ�2 þ 4 ~A2

qm
2
qð�Þ

q �
;

(41)

where q ¼ t; u4; d4. In the above expression we have

m2
~tL
ð�Þ ¼ m2

Q3
þm2

t ð�Þ þD2
~tL
ð�Þ;

m2
~tR
ð�Þ ¼ m2

U3
þm2

t ð�Þ þD2
~tR
ð�Þ;

m2
~uL
4

ð�Þ ¼ m2
Q4

þm2
u4ð�Þ þD2

~uL
4

ð�Þ;
m2

~uR4
ð�Þ ¼ m2

U4
þm2

u4ð�Þ þD2
~uR4
ð�Þ;

m2
~dL4
ð�Þ ¼ m2

Q4
þm2

d4
ð�Þ þD2

~uL
4

ð�Þ;
m2

~dR4
ð�Þ ¼ m2

D4
þm2

d4
ð�Þ þD2

~dR4
ð�Þ;

(42)

with m2
Q3
, m2

U3
, m2

D3
, m2

Q4
, m2

U4
, m2

D4
as soft

supersymmetry-breaking mass parameters for the left-
and right-handed squarks and

D2
~qL
ð�Þ ¼ m2

Zð�Þ cos2�½T3Lð~qÞ �Qð~qÞsin2�W�;
D2

~qR
ð�Þ ¼ m2

Zð�Þ cos2�Qð~qÞsin2�W:
(43)

Note that the discussion about Yukawa couplings given in
the previous section applies in this case to the quantities
g
t ¼ gt sin�, g



u4 ¼ gu4 sin�, and g



d4

¼ gd4 cos� for fixed

�. In Eq. (41), the parameters ~Aq control the mixing

between squarks in each generation. We assume that there

is no mixing, taking ~At ¼ ~Au4 ¼ ~Ad4 ¼ 0. The degrees of

freedom per particle are n~q1 ¼ n~q2 ¼ 6, nq ¼ �12. Notice

also that in this case the tree-level scalar self-interactions
cannot be taken as zero.

The parameter � can be expressed now in terms of the
physical masses after the minimization of the effective
potential. At � ¼ v one obtains

�2 ¼ � 1

2
m2

Zcos
22�þX

q

3m2
q

8�2v2

�
m2

~q1
ln

�
1þ �2

m2
~q1

�

þm2
~q2
ln

�
1þ �2

m2
~q2

�
� 2m2

q ln

�
1þ �2

m2
q

��
; (44)

with �2 > 0 again for the present setup. For the Higgs
mass and the effective Higgs self-coupling at electroweak
scale, one has

@2Vð1Þ

@�2

���������¼v
¼ m2

H ¼ m2
Zcos

22�þX
q

3m4
q

4�2v2
ln

�m2
~q1
m2

~q2

m4
q

�

(45)

and

@4Vð1Þ

@�4

���������¼v
¼ 3m2

Zcos
22�

v2
þX

q

3m4
q

4�2v4

�
3 ln

�m2
~q1
m2

~q2

m4
q

�

� 4

�
m4

q

�
1

m4
~q1
þ 1

m4
~q2

�

� 3m2
q

�
1

m2
~q1
þ 1

m2
~q2

�
þ 4

��
; (46)

neglecting terms that vanish as � ! 1 because the soft
breaking terms for the squarks play the role of natural
regulators in this case.
Again, if we insist that electroweak SB is completely

produced by quark and squark loops, consistency requires
that Higgs self-interactions must remain small at least
at the scale of SB as in Eq. (10). Taking for all squarks
the same soft mass ms ¼ mQ3

¼ mU3
¼ mQ4

¼ mU4
¼

mD4
¼ 	mu4 �MS in Eq. (42), one can extract the maxi-

mum value of 	 allowed by @4Vð1Þ=@�4j�¼v ¼ 0. This is

shown in Fig. 6. The solution turns to be very stable and lies
in the range

2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

4
V 4

v

FIG. 6 (color online). Effective Higgs self-coupling at the
electroweak scale v as a function of 	 for fixed values of the
heavy fermion masses and � ¼ �=4. The curves correspond to
mu4 ¼ 350, 400, 450, and 500 GeV from left to right at zero.
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2:3<	< 2:8 ) 800 GeV<ms < 1400 GeV; (47)

for 0 � � � �=2 with fixed values of g
t , g
u4 , and g


d4
and

the relation Eq. (12) for the masses of the fourth generation
quarks. The results turn out to be weakly � dependent as
we will see in Fig. 7.

Finally, once we have determined the parameter 	,
Eq. (45) leads to the corresponding Higgs mass upper
bound in the limit � ! 1 as a function of � and mu4 as

shown in Fig. 7. The prediction for the Higgs mass is very
similar to that of the previous section, from 350 GeV to
about 750 GeV up to small corrections that would come
from gauge bosons, leptons, and sleptons in the loop, which
are expected to modify our results only a few percent. In
fact, even the contribution of top quarks is negligible (see
Fig. 7). From Eqs. (45), (46), and (10), the dominant con-
tribution to Higgs mass (taking � ¼ �=4 for simplicity,
which implies m2

~q ¼ m2
~q1
¼ m2

~q2
¼ m2

s þm2
q) is

m2
H � X

q¼u4;d4

4m4
q

�2v2

�
1� 3

2

m2
q

m2
~q

þ 1

2

m4
q

m4
~q

�
; (48)

with	 andms given by Eq. (47). Given the small difference
between mu4 and md4 , a good approximation to Eq. (48)

is simply

mH � 1:83

�v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

u4 þm4
d4

q
; (49)

which corresponds to 	 � 2:8 and 980 GeV<ms <
1400 GeV.

V. CONCLUSIONS

In this paper, we study the possibility of electroweak
symmetry breaking by radiative corrections [28] due to a
fourth generation in the standard model. We isolate the
effects of the fourth generation by taking a vanishing
scalar self-coupling at the classical level and maintaining
this condition valid at the one-loop level at the electro-
weak symmetry breaking scale. In such a scenario, elec-
troweak symmetry is broken by radiative corrections due
mainly to the fourth generation and Higgs masses of the
order of a few hundreds of GeV are consistent with
electroweak precision data. Furthermore, the theory is
valid only up to a scale �� 1–2 TeV. Such low cutoff
means that the effects of new physics needed to describe
electroweak interactions at energy above � should be
measurable at the LHC. We use the renormalization group
equation to study the impact of the running of the Yukawa
couplings in our results. We show that the predictions of
the model are not strongly modified by the running of the
Yukawa couplings, but a slightly lower cutoff related to
the breaking of the perturbative regime is expected in this
case.
As an example of models with new physics and therefore

containing a natural scale for the cutoff of the electroweak
interactions regime, we study a simplified minimal super-
symmetric standard model with four generations. We
obtain similar values for the Higgs mass with weak �
dependence. The natural scale for the cutoff of the electro-
weak regime is given by the mass of the fourth generation
squarks and EWSB by radiative corrections due predomi-
nantly to the fourth generation requires masses for the
squarks of the order ms � 1 TeV.
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