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A relativistic constituent quark model is applied to the �N ! Nð1535Þ transition. The Nð1535Þ wave
function is determined by extending the covariant spectator quark model, previously developed for the

nucleon, to the S11 resonance. The model allows us to calculate the valence quark contributions to the

�N ! Nð1535Þ transition form factors. Because of the nucleon and Nð1535Þ structure the model is valid

only for Q2 > 2:3 GeV2. The results are compared with the experimental data for the electromagnetic

form factors F�
1 and F�

2 and the helicity amplitudes A1=2 and S1=2, at high Q2.
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I. INTRODUCTION

The quark and gluon substructure of the hadrons is ruled
by quantum chromodynamics (QCD), and it is reflected in
the baryon sector by a set of bumps in the cross sections of
different probing processes, taken as functions of the cen-
ter of mass energyW. These bumps are identified as baryon
resonances characterized by spin, isospin, orbital angular
momentum, radial excitation and parity quantum numbers.
The lowest energy bump, the �ð1232Þ baryon, is clearly
isolated from the background as a state of spin and isospin
3=2 and positive parity. Heavier resonances are not so
clearly isolated from the background. This happens in the
so-called second resonance region, where the P11ð1440Þ,
D13ð1520Þ, and S11ð1535Þ resonances show up. Although
in quark models these resonances can be described as
three-quark systems confined by a potential like the
harmonic-oscillator potential [1–5], some properties, like
their decay width, can be better understood within a dy-
namical meson-baryon coupled-channel reaction model.
Also, in constituent quark models the baryon spectrum is
difficult to interpret since the negative parity partner of the
nucleon, the S11 state (JP ¼ 1

2
�) is lighter than the first

radial excitation of the nucleon (JP ¼ 1
2
þ), the Roper (or

P11 state) [3,6]. It was only recently that lattice QCD
simulations with very small pion masses [6], reconstructed
the natural order of the baryon spectrum (where the S11
state is heavier than the P11 state), suggesting a fundamen-
tal role of the quark-antiquark polarization, or meson cloud
dressing, in the baryon systems, as a correction to the
valence quark effects.

In this work, we will use the notation Nð1535Þ to repre-
sent theS11ð1535Þ nucleon excitation (N), andwewill focus
on the electromagnetic structure of this resonance, in par-
ticular, on the calculation of the �N ! Nð1535Þ transition
form factors, within a covariant constituent quark model.
Precise data for the �N ! Nð1535Þ amplitudes is available
at present [7–14]. Besides being one of the lightest nucleon
resonances, the Nð1535Þ baryon is particularly interesting
for several reasons: it is very well isolated in the spin 1=2

and negative parity configuration; it decays strongly to the
�N channel (with a branching ratio � 50%), allowing a
very precise determination of the electromagnetic structure,
and providing therefore an extra challenge for theoretical
models. Also, because of the strong coupling with the �N
channel (with a branching ratio � 50%), the Nð1535Þ is
crucial for the analysis of meson photoproduction from the
nucleon [14]. Another interesting aspect of the Nð1535Þ is
its vicinity to another S11 resonance with higher mass, the
S11ð1650Þ also called asNð1650Þ. The two resonances differ
in their decaymodes, and the differences in their structure is
yet to be explored.
Several formalisms have been used to describe the

Nð1535Þ system. They are based either on quark models
or on effective meson-baryon interaction models. In the
first case, there are nonrelativistic constituent quark models
[4,5,15–22], relativistic quark models [18,23–25], quark
models with explicit quark-antiquark contributions [26],
and QCD sum rules [27]. Alternatively, in the second case,
the Nð1535Þ is interpreted as a molecular-type state dy-
namically generated by the meson-nucleon interaction
[28–37] with a particular dominance of theK� quasibound
state [28,29,32]. A particular class of effective meson-
baryon interaction models are the dynamical coupled-
channel reaction models [8,22,38–42], where the baryon
bare core is parametrized phenomenologically and the
meson dressing is included non perturbatively. Thus,
Nð1535Þ does not only provide a crucial test for the meth-
ods just mentioned, but it is also a crucial resonant struc-
ture for the analysis of nucleon excitation reactions
[7,8,14,42–49].
Within a constituent quark model picture, the nucleon

excitation Nð1535Þ can be represented as a mixture of two
different configurations. Since the S11 excitation has total
angular momentum J ¼ 1=2 and orbital angular L ¼ 1
(P state excitation), its core spin may be either S ¼ 1=2
or S ¼ 3=2. Then, in the usual spectroscopic notation
[3,32], the S11 channel of the nucleon excitation is a
mixture of the jN2P1=2i and jN4P1=2i states, which have
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spin 1=2 and 3=2 respectively. This mixture of the two
core spin components is defined by a mixing angle �S
determined by a color hyperfine interaction between the
quarks, which may have distinct origins: one-gluon-
exchange [3–5], one-pion-exchange [32] or Goldstone-
boson-exchange [50]. In the classical Isgur-Karl model, it
turns out that the spin core spin 1=2 component domi-
nates in the Nð1535Þ, with a mixing angle given by
cos�S ¼ 0:85 [4,5].

In our work, we apply the covariant spectator quark
model, which is based on the covariant spectator theory
[51], to the Nð1535Þ system. The model describes the
nucleon [52–55], the Roper [56,57], the �ð1232Þ, and the
�ð1600Þ [54,57–63] experimental form factors, as well as
the lattice QCD simulations for the nucleon, the �N ! �
transition, and the baryon decuplet [54,60,64,65]. In our
framework the baryons are represented as a quark-diquark
system. The quark couples to the electromagnetic field by
means of a constituent quark current which is parametrized
by vector meson dominance, and the diquark is a spectator
during the electromagnetic interaction, and therefore is
taken on-mass-shell [52,59,62,64]. The model is phenome-
nological since it does not derive the structure of the
baryon from a dynamical wave function equation. In-
stead, the baryon systems are described effectively in terms
of their intrinsic properties (spin, flavor, angular orbital
momentum and parity)—which dictate the form of their
wave function—and the experimental value of their mass
MB. As in the previous applications of the model, in
particular, to the � and the Roper resonances, we are
focused on the role of the valence quarks for the electro-
magnetic transition. Because of this and also as a conse-
quence of the kinematics (the difference of mass between
the Nð1535Þ and the nucleon is 0.60 GeV), our model can
only be applied to the highQ2 region. As we will show, the
domain of validity of our calculations can even be estab-
lished more precisely and quantitatively, as the region
Q2 > 2:3 GeV2. In this region, the meson cloud effects
are expected to be small and valence quark degrees to
dominate. We use two additional assumptions: i) the
Nð1535Þ is represented exclusively by the spin 1=2 core
[no mixture with the Nð1650Þ excitation] ii) the diquark is
pointlike. With these assumptions, and taking the momen-
tum distribution of the diquark the same as for the nucleon,
we relate the nucleon and the Nð1535Þ wave functions.
These assumptions allow us to reduce the number of
degrees of freedom to a minimum, since no additional
parameters to the ones taken for the nucleon case are
needed to describe the spin 3=2 core contributions, or the
diquark internal structure. Our results are then true predic-
tions, with no new adjustable parameters. All parameters
were fixed in the previous applications by the quark current
and nucleon wave function, represented as S-wave system.
Both assumptions can be tested in the future, once the
structure of the nucleon is extended to the inclusion of

P- and D-states, which demand in turn a spin 3=2 core
and/or diquark with internal P-state structure [66].
This work will be organized as follows: In Sec. II, we

introduce the wave functions of the nucleon and the
Nð1535Þ (details in Appendix A). In Sec. III, we derive
the transition current for the �N ! Nð1535Þ transition
(with details presented in Appendix B). Explicit formulae
for the form factors and helicity amplitudes come in
Sec. IV. In Sec. V, we parametrize the momentum depen-
dence of the wave functions. The results and discussion are
presented in Sec. VI and the conclusions in Sec. VII.

II. SPECTATOR QUARK MODEL

When the momentum transfer exceeds the mass of the
constituent quarks, the electromagnetic excitation requires
necessarily a relativistic treatment. This is one of the
reasons for us to use the framework provided by the
covariant spectator quark model for baryons [52]. In this
formalism, the baryons are phenomenologically described
as constituent quark systems, and the covariant wave func-
tion has a form compatible with their symmetry properties
(flavor, spin, orbital angular momentum and parity) and a
totally antisymmetric color wave function [52,56,59,64].

A. Nucleon wave function

For the nucleon, the S-state approximation was made
and the spin, flavor and spatial wave function and is
represented by [52]

�NðP;kÞ¼ 1ffiffiffi
2

p ½�0
I uðPÞ��1

I ð"�PÞ�U�ðPÞ�c NðP;kÞ; (1)

where the nucleon and diquark four momenta are P and k
respectively, u is a Dirac spinor, "P the diquark polariza-
tion vector in the fixed-axis representation [53] and

U�ðPÞ ¼ 1ffiffiffi
3

p �5

�
�� � P�

M

�
uðPÞ; (2)

the spin 1=2 vector spin state [direct product of states 1
(diquark) and 1=2 (quark) for a total spin state of 1=2].M is
the nucleon mass. The wave function (1) is written in terms
of the states corresponding to a diquark composed by the

quark-pair (12) and the quark 3. The isospin functions �0;1
I

depend on the isospin projection �1=2 and are shown in
Table I. Note that the spin-0 (isospin-0) and the spin-1
(isospin-1) states are, respectively, antisymmetric and sym-
metric in the exchange of quarks 1 and 2.

TABLE I. Isospin states for the nucleon and S11 systems.

�0
I �1

I

p 1ffiffi
2

p ðud� duÞu 1ffiffi
6

p ½ðudþ duÞu� 2uud�
n 1ffiffi

2
p ðud� duÞd 1ffiffi

6
p ½2ddu� ðudþ duÞd�

G. RAMALHO AND M.T. PEÑA PHYSICAL REVIEW D 84, 033007 (2011)

033007-2



B. Nð1535Þ wave function
To write down the Nð1535Þ wave function, we applied

the SUð3Þ �Oð3Þ constituent quark model representation,
where the Nð1535Þ state is a member of the ½70; 1��
supermultiplet (dimension 70, with LP ¼ 1�), and part
of the 28 subset (octet with 2Sþ 1 ¼ 2) [1,3–5,15–17].
We have also followed very closely the notation estab-
lished in Refs. [3,14,67,68]. We use MS to label the
Nð1535Þ mass.

The Nð1535Þ is defined as the excitation of the nucleon
to the state IðJPÞ ¼ 1

2 ð12Þ�. This state has the same flavor

content and the same spin (1=2) of the nucleon, but has
negative parity. The negative parity defines a spatial sym-
metry implied by the excitation of internal relative angular
momentum L ¼ 1, and requires the presence of P waves at
least in one quark-pair. Consequently, the spin structure
also changes relatively to the one of the nucleon, in order to
accommodate a total symmetric form for the flavor-spin-
momentum space wave function.

To represent the wave function in a basis of momentum
states, one decomposes, as usual, the system into a pair
of quarks [or diquark labeled (12)], and a spectator quark
[labeled quark (3)], and one defines the momentum varia-
bles corresponding to those diquark and spectator quark
subsystems (the so-called Jacobi momenta). If the individ-
ual quark momenta are ki (i ¼ 1, 2, 3), the Jacobi momenta
are k�¼ 1ffiffi

2
p ðk1�k2Þ, the relative momentum of the quarks

in diquark (12), and k� ¼ 1ffiffi
6

p ðk1 þ k2 � 2k3Þ, the diquark

center of mass momentum with respect to quark (3). The
center of mass momentum is P ¼ k1 þ k2 þ k3. The mo-
mentum states that define our basis to represent the wave
function are the eigenvectors of the Jacobi momenta k� and
k�. They are called �-type and �-type states, with mixed

symmetry.1 Following the traditional notation (see e.g.
Ref. [18,20,38]), the labels � and � are used more gener-
ally, i.e., for combinations and angular momentum projec-
tions of momentum states, and also for spin and isospin
states, that are, respectively, antisymmetric and symmetric
under the exchange of quarks (12).

The starting point for the construction of the flavor-spin-
momentum-space wave function is to impose that it is
symmetric under the exchange of any pair (the color part,
which is omitted, makes it antisymmetric at the end, as
required). The second step is to write the nonrelativistic
limit of the wave function in terms of �-type and �-type
mixed-symmetric states, labeled X� and X�, that couple

orbital states L ¼ 1 (in principle in both k� and k� Jacobi

momenta) with total three-quark spin S ¼ 1=2 states, and
to multiply them with the adequate flavor states that make
the function symmetric. Next, we assume a pointlike di-
quark. In this approximation, effectively, one has k� � 0.

With this suppression of the diquark internal P states, the
orbital wave function is reduced to P-states in the momen-
tum k� of the quark-diquark motion only. Additionally, the
nonrelativistic wave function is calculated in the 3 body
center of mass frame, where k1 þ k2 þ k3 ¼ 0, and the
diquark three momentum becomes k ¼ k1 þ k2 ¼ �k3.
Then, the spin-orbital part of the nonrelativistic wave
function is, in our approximation, written as a function of

k� ¼
ffiffi
3
2

q
k only.

Finally, one makes the relativistic generalization of the
coupled spin-orbital states X� and X�. The corresponding

relativistic states, labeled respectively �� and ��, include

a �5 matrix, exhibiting the negative parity of the state
explicitly. All the details concerning the full nonrelativistic
wave function in the pointlike diquark limit, and its
relativistic generalization, are presented in Appendix A.
To conclude this section, we write in the pointlike diquark
approximation, the final expression for the covariant
structure of the spin-flavor-orbital wave function of the
Nð1535Þ. It depends on the baryon four-momentum P
and on the diquark four-momentum k, and is given by

�S11ðP; kÞ ¼ 1ffiffiffi
2

p ½�0
I�� ��1

I���c S11ðP; kÞ; (3)

where �0
I and �1

I are the flavor states, and

��ð�Þ¼��5N½ð"0 � ~kÞuSð�Þ� ffiffiffi
2

p ð"� � ~kÞuSð	Þ�
��ð�Þ¼þ�5N½ð"0 � ~kÞ"��U�

S ð�Þ� ffiffiffi
2

p ð"� � ~kÞ"��U�
S ð	Þ�:

(4)

In the last equations ~k ¼ k� P�k
M2

S

P and N ¼ 1=
ffiffiffiffiffiffiffiffiffi
�~k2

p
, the

four-momentum ~k can be interpreted as the diquark three

momentum in the Nð1535Þ rest frame [where ~k ¼ ð0;kÞ
and ~k2 ¼ �k2]. The spinors uS and U�

S have the same

meaning as u and U�, defined for the nucleon before
[52,58,59], as in Eq. (2), but are here associated with the
Nð1535Þ baryon.
The scalar wave function c S11ðP; kÞ will be discussed

later (see Sec. V). Here, it suffices to say that this function
carries all the information on the momentum distribution
of the quark-diquark relative motion, it is purely phenome-
nological and normalized to one.
We make two more notes about Eq. (3): The wave

function in our model does not contain the contribution
of three-quark states with total spin S ¼ 3=2, included in
other works [4,18,32]. Additionally, the minus sign for the
�-type spin-orbital in the wave function is needed to ensure
orthogonality between the Nð1535Þ and the nucleon wave
functions in the nonrelativistic limit [32].

1The Jacobi momentum k� is antisymmetric for the exchange
of quarks 1 and 2, while the Jacobi momentum k� is symmetric
for the same exchange. The Jacobi momenta k� and k� eigen-
vector basis states are, therefore, antisymmetric and symmetric,
respectively, under that exchange. For another particle exchange
i ! j, with ðijÞ � ð12Þ, those states are, however, states of
mixed symmetry.
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III. TRANSITION CURRENT

We can write the transition current in relativistic impulse
approximation [52,64] as

J	 ¼ 3
X
�

Z
k

��S11ðPþ; kÞj	I �NðP�; kÞ; (5)

where � ¼ fs; �Dg (scalar diquark s and vector diquark

polarization �D ¼ 0;�1) and
R
k �

R
d3k

ð2�Þ22ED
is the cova-

riant integration element in the diquark on-mass-shell mo-
mentum k (massmD and energy ED). The factor 3 accounts
for the contributions of all possible diquark pairs, since,
due to the symmetry of the wave function, pairs (13) and
(23) give the same contribution as pair (12). [The magni-
tude of the electron charge e was not included in the
current for simplicity]. In the previous equation, j	I is the
quark current

j	I ¼ j1

�
�	 � qq	

q2

�
þ j2

i
	�q�
2M

: (6)

To obtain the �N ! Nð1535Þ transition current, we
take the wave functions (1) and (3). To work the spin
algebra, one uses ji!ð�0

I Þyji�0
I and jðiþ2Þ ¼ ð�1

I Þyji�1
I ,

obtaining

ji ¼ 1

6
fiþ þ 1

2
f1��3 (7)

jðiþ2Þ ¼ 1

6
fiþ � 1

6
fi��3: (8)

The coefficients j1;2 and j3;4 follow the definitions in

Ref. [52]. Note that the result is a sum over the flavor of
the antisymmetric (j1 and j2) and symmetric components
(j3 and j4) as done in Refs. [55,64] for the SU(3) case. For
convenience, one introduces also the notation

�̂ 	 ¼ �	 � qq	

q2
: (9)

Using the definitions above, one can write

X
�

��S11j
	
I �N ¼ A

2

�
j1 ����̂

	�0
S þ j2 ���

i
	�q�
2M

�0
S

�

�A
2

�
j3 ����̂

	�1
S þ j4 ���

i
	�q�
2M

�1
S

�
;

(10)

whereA ¼ c S11c N. For the vector diquark contributions
(terms in �1

S), the sum in the diquark polarization �D is

implicit. The isovector components include a sum in the
diquark polarizations �D vectors associated with the

Nð1535Þ, "�Pþð�DÞ, and the nucleon, "�P�ð�DÞ. Those po-

larization vectors are functions of the Nð1535Þ mass (MS)
and the nucleon (M) mass, respectively, (see details in
Ref. [53] where this basis of states is explained and built).
By adding the diquark polarizations, one has [53,58]

�� � X
�D

"�Pþð�DÞ"�P�ð�DÞ

¼ �
�
g� � P��P�

Pþ � P�

�
� a

�
P� � Pþ � P�

M2
S

Pþ
�
�



�
Pþ � Pþ � P�

M2
P�

�

; (11)

where

a ¼ MSM

Pþ � P�ðMSMþ Pþ � P�Þ : (12)

The decomposition (10) reduces the determination of
the current (5) to the calculation of a few current elements.
The details are presented in Appendix B. The final result is

J	 ¼ 1

2
ð3j1 þ j3ÞI0 �uS�̂

	�5u

� 1

2
ð3j2 � j4ÞI0 �uS

i
	�q�
2M

�5u; (13)

where

I 0ðQ2Þ ¼
Z
k
Nð"0 � ~kÞc S11c N: (14)

The integral I0 is covariant and includes the dependence of
the form factors on the initial and final state scalar wave
functions. We call I0 the overlap integral.

IV. FORM FACTORS AND
HELICITYAMPLITUDES

The transition current can be written (suppressing the
charge factor e) as [20,27]:

J	 ¼ �uS

��
�	 � qq	

q2

�
F�
1 þ

i
	�q�
MS þM

F�
2

�
�5u; (15)

where F�
i defines the transition form factors. One should

note that there are alternative but equivalent conventions
for the two form factors [7,24,27].
From the Eqs. (13) and (15), we conclude that

F�
1ðQ2Þ ¼ 1

2
ð3j1 þ j3ÞI0 (16)

F�
2ðQ2Þ ¼ � 1

2
ð3j2 � j4ÞMS þM

2M
I0: (17)

The experimental data is usually presented in terms of
the helicity amplitudes in the final state (excited resonance)
rest frame. The helicity amplitudes are defined from the
projection of the current on the photon polarization states,
�
	
� and nucleon and resonance spin projections (in the

resonance frame). For a resonance N� with spin 1=2, there
are two independent amplitudes:

A1=2ðQ2Þ ¼ K
�
N�;þ 1

2

								"þ � J
								N;� 1

2



; (18)
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S1=2ðQ2Þ ¼ K
�
N�;þ 1

2

								"0 � J
								N;þ 1

2


 jqj
Q

: (19)

Considering N� ¼ Nð1535Þ, the multiplicative constant is

K ¼
ffiffiffiffiffiffiffiffiffiffi
2��

K

s
; (20)

with e ¼ ffiffiffiffiffiffiffiffiffiffi
4��

p
is the magnitude of the electron charge

with � ’ 1=137, and K ¼ M2
S�M2

2MS
. The variable jqj is the

photon three momentum in the excitation, in the Nð1535Þ
rest frame,

jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þQ2�

q
2MS

; (21)

where Q2� ¼ ðMS �MÞ2 þQ2, with Q2 ¼ �q2.
The helicity amplitudes can be represented in terms of

the form factors [20]:

A1=2 ¼ �2b

�
F�
1 þ

MS �M

MS þM
F�
2

�
(22)

S1=2 ¼
ffiffiffi
2

p
bðMS þMÞ jqj

Q2

�
MS �M

MS þM
F�
1 � �F�

2

�
; (23)

with � ¼ Q2

ðMSþMÞ2 and

b ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þ

8MðM2
S �M2Þ

s
: (24)

From Eqs. (16) and (17) one can make predictions for
the form factors and compare the obtained results with the
experimental data.

V. SCALAR WAVE FUNCTIONS

Our model is now completely defined, for the baryons
and for the current, except for the scalar function c S11,
which is part of the wave function.

In the spectator quark model, the scalar wave functions
depend on ðP� kÞ2 only, as the baryon and diquark are
taken on-mass-shell. That dependence can be rewritten in
terms of the adimensional variable

�B ¼ ðMB �mDÞ2 � ðP� kÞ2
MBmD

; (25)

whereMB is the baryon mass [nucleon orNð1535Þ] andmD

the diquark mass.
Within the S-wave approach, the scalar function in the

nucleon wave function is given by [52]:

c NðP; kÞ ¼ N0

mDð1 þ �NÞð2 þ �NÞ ; (26)

where N0 is the normalization constant and i are adimen-
sional parameters which measure the momentum scale of
the quark-diquark interaction. As 2 >1, 2 defines the

scale for the short distance range and 1 the long distance
range.
As the Nð1535Þ corresponds to a spin 1=2 quark core

with the same content of the nucleon, it is reasonable to
consider a form for the scalar wave function similar to the
one taken for the nucleon

c S11ðP; kÞ ¼ N1

mDð3 þ �S11Þð2 þ �S11Þ ; (27)

where N1 is the normalization constant and 3 a new range
parameter. To start with, the same parameter 2 (2 >3)
can be used for the two cases, theNð1535Þ and the nucleon,
if one assumes that the two baryons differ only in the
structure at large distances. Moreover, on the other hand,
and inspired by the relativistic quark models with an
harmonic-oscillator confinement [18,20], we consider
that the nucleon and the Nð1535Þ may as well have the
same momentum distributions at large distances—as ex-
pected for excitations of the same state—and we will thus
also take 3 ¼ 1. Then, the nucleon and the Nð1535Þ are
described by the same scalar wave functions in their rest
frame. We may say that this assumption is justified since in
the chiral limit the nucleon and the Nð1535Þ will have the
same mass and become two different parity states of the
same particle. The difference between the momentum dis-
tributions in the nucleon and the Nð1535Þ come from the
difference in the orbital angular momentum in their total
wave functions. In the nonrelativistic limit, this angular

dependence corresponds to Y00ðk̂Þ, a constant, for the

nucleon, and Y1mðk̂Þ, the P-state, for the Nð1535Þ.
An alternative parametrization for the scalar wave func-

tions would be to force the fit of 3 to the data and to
introduce a new parameter in our model. Since we will see
that our parameter-free description was surprisingly suc-
cessful, we did not face a good reason to assume different
scalar functions for the nucleon and the Nð1535Þ, and our
results can be considered true predictions, once the nucleon
is correctly described.

Overlap integral

The transition form factors depend on the orbital wave
functions through their overlap integral I0, defined by
Eq. (14). Terms that include integrations in kx or ky vanish

because of the symmetries of the scalar wave function (as
function of �B), as shown in Appendix B, and the integral
I0 carries the signature of the angular momentum depen-
dence of the nucleon and Nð1535Þ wave functions.
The overlap integral is covariant and it can be evaluated

in any frame. One of the simplest calculations is the one
that proceeds in the Nð1535Þ (final state) rest frame, (see
Appendix C), where

I 0ðQ2Þ ¼
Z
k

kz
jkj c S11ðPþ � kÞc N:ðP� � kÞ: (28)
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In the Nð1535Þ rest frame, all the angular dependence of
the wave functions is contained in c N , given by Eq. (26).
This dependence is expressed by

P� � k ¼ EED þ jqjkz; (29)

where jqj is the photon three momentum in the Nð1535Þ
rest frame, as defined in Eq. (21), E is the nucleon energy,
and ED the diquark energy. The numerical value of I0ð0Þ
depends, therefore, on the existing symmetries in the vari-
able kz. The properties of the overlap integral I0ðQ2Þ are
discussed in Appendix C. In particular, for small jqj,
one has

I 0ðQ2Þ / jqj: (30)

This result has important consequences and allows us to
define the domain of validity of our model.

In what follows, we will label jqj in the Q2 ¼ 0 limit
by jqj0. As the photon energy ! equals jqj0 at Q2 ¼ 0,

one has then jqj0 ¼ M2
S
�M2

2MS
, and according to Eq. (30),

I0ð0Þ ¼ 0, if MS ¼ M. The relation I0ð0Þ ¼ 0 is then
equivalent to the orthogonality condition between the
Nð1535Þ and the nucleon wave functions. However, if

MS � M, the integral I0ð0Þ will be proportional to jqj0 ¼
M2

S
�M2

2MS
. Consequently, I0ð0Þ � 0, and the Nð1535Þ and the

nucleon wave functions are not exactly orthogonal. This
result has a dramatic implication since the nucleon and the
Nð1535Þ should in fact be orthogonal. This is an artifact of
the construction of the wave function from its nonrelativ-
istic behavior, and of having imposed to it a covariant form
with multiplicative scalar functions that were not derived
from an ab-initio calculation. A simple picture of what
happens is that the nucleon orbital (S-state) wave function
(defined unambiguously only in the rest frame of the
nucleon) is distorted by the boost to the rest frame of the
Nð1535Þ, and therefore is not orthogonal to the Nð1535Þ
orbital (P-state) wave function. This implies that the over-
lap integral I0ð0Þ does not vanish. Still, if the masses of the
initial and final state are equal,Q2 ¼ 0 implies jqj0 ¼ 0, as
mentioned, and there is no problem since there is no boost.

The fact that the integral (28) is not zero for Q2 ¼ 0 is
therefore a limitation of our model when the initial final
and initial states have different masses. However, the rela-
tion (30) can be used to establish the range of application of
the model. The non orthogonality between the model wave
functions of the initial and final state decreases as MS

approaches M. If the mass difference is negligible there

is orthogonality to a certain extent. Then, jqj0 ¼ M2
S
�M2

2MS
is a

parameter that measures the quality of our model approx-
imations to the wave function. As jqj0 corresponds to the
photon energy at Q2 ¼ 0 (at the photon point the energy
equals the three momentum), it defines the natural momen-
tum scale of the reaction. In the regimeQ2 � jqj20, one has
I0ð0Þ � 0, meaning that the nucleon and the Nð1535Þ

states are almost orthogonal. As for the physical case
jqj0 ’ 0:48 GeV, I0ð0Þ ’ 0 for Q2 � 0:23 GeV2, and
therefore, one can say that Q2 > 2:3 GeV2 establishes
the threshold for the application of our model.
Summarizing, the present model has limitations in its

applications at low Q2, in particular, near Q2 ¼ 0, but can
be used in the high Q2 regime, for Q2 > 2 GeV2.

VI. RESULTS

With the model for the baryons and for the current
depicted in the previous sections, we have calculates the
�N ! Nð1535Þ transition form factors given by Eqs. (16)
and (17) and the helicity amplitudes given by Eqs. (22) and
(23). No parameters of our model were adjusted to these
observables.
We calculated only the positive isospin case (Iz ¼

þ1=2), corresponding to the excitation reaction from the
proton, where the data at finite Q2 for the helicity ampli-
tudes is available [7–13]. We did not consider the neutron
case (Iz ¼ �1=2), since there is data only for Q2 ¼ 0, and
our model is valid only for Q2 > 2:3 GeV2. The data from
DESY [10] and from Jefferson Lab [9,11–13] are restricted
only to the A1=2 amplitude, assuming that the amplitude

S1=2 was negligible. That assumption was contradicted by

the recent CLAS [7] and MAID [8] analysis. In the follow-
ing, we use Ref. [7,8] where A1=2 and S1=2 were determined

simultaneously. We will also compare our results with the
Dalton et al. data [9], for A1=2 at highQ

2 (Q2 > 5:4 GeV2),

which is determined under the assumption that S1=2 ¼ 0
[for large Q2 the approximation S1=2 ¼ 0 is better justified
due to the falloff of S1=2 at high Q2].

A. Transition form factors

The results for the �N ! Nð1535Þ form factors are
shown in Fig. 1. The data for F�

1 and F�
2 was obtained by

inverting the relations (22) and (23). In the figure, we
represent also the CLAS data from Ref. [7] and the
MAID analysis of Ref. [8], as well as the results from [9]
(where S1=2 ¼ 0). One can see that our model describes

well the F�
1 data for for Q2 > 1:5 GeV2, in particular,

that the model works in its regime of application Q2 >
2:3 GeV2. As for F�

2, our model fails completely when
compared with the experimental data. We predict positive
values for F�

2, contrarily to the data. Also, the magnitude
differs strikingly from the data: the CLAS data is very
close to zero for Q2 > 2 GeV2, in the region where our
model gives a strong positive contribution. This disagree-
ment can be interpreted in two ways. One possibility is that
our model is limited because the internal diquark P-states
were neglected in our model, and we will have to confirm
their effects in a future work. Another possible interpreta-
tion is that, for F�

2 the valence quark effects, the only ones
considered in our model are strongly canceled by the effect
of the meson cloud polarization, not included in our model.

G. RAMALHO AND M.T. PEÑA PHYSICAL REVIEW D 84, 033007 (2011)

033007-6



If this last interpretation is correct, one has to conclude that
meson cloud effects are very significant, even in the region
Q2 > 2 GeV2. This finding is at odds with what was ob-
served till now in similar systems, like the nucleon [52] and
the Roper [56]. Nevertheless, the �N ! � quadrupole
form factors reveal a strong contribution of the pion cloud
in the region 2–6 GeV2 [59,60].

To test the last interpretation, we compared our valence
quark model predictions with the calculations from a dif-
ferent framework, the EBAC dynamical coupled-channel
model based in Sato-Lee model [39]. In the EBAC analysis
[40], the effects of the meson cloud dressing are subtracted,
and the pure quark core contributions calculated from the
model. The EBAC data can then be directly compared with
our results, as shown also in Fig. 1 (upper triangles). As for
F�
1, the EBAC results overestimates (in absolute value) the

experimental data (CLAS and MAID) but seems to ap-
proach the data for Q2 � 2 GeV2. As for F�

2, the EBAC

results are surprisingly consistent with our own predic-
tions, both in sign and magnitude for Q2 � 1:5 GeV2,
near the threshold where our model starts to be applicable,
Q2 > 2:3 GeV2. Future EBAC determination of the
quark core contributions, already planed for higher Q2

[69], will be very important to test our predictions and

interpretations. An independent confirmation of the large
contribution of the valence quarks for F�

2 may also come
from lattice QCD at high Q2. We note that our covariant
spectator quark model was already successful in the de-
scription of lattice QCD simulations for the nucleon, Roper
[52,56,57] and � systems [54,60].
To summarize, our results for the form factor F�

1 are
consistent with the data forQ2 > 2 GeV2, in the domain of
validity of our model. As for F�

2, our model supports the

idea that meson cloud contributions are comparable with
the valence quark contributions, which is also validated by
the EBAC studies of the Nð1535Þ system [40].

B. Helicity amplitudes

Using our results for the form factors, we have also
calculated the helicity amplitudes in the Nð1535Þ rest
frame, corresponding to the transformations (22) and (23).
Some comments are necessary before showing the results.
The first note is that our quark model should be compared
with the data only in the region Q2 > 2:3 GeV2. A second
important note is that in our model F�

1ð0Þ � 0 because of
the violation of the orthogonality condition between the
nucleon and the Nð1535Þ wave functions. Therefore the
amplitude S1=2 in our model is singular for Q2 ¼ 0, in
opposition to the finite result expected from the data.
This effect was already reported in the relativistic quark
model of Ref. [23], where the quark current was modified
to restore gauge-invariance. With those limitations in
mind, we represent in Fig. 2 the amplitudes corresponding
to the form factors in Fig. 1, by the solid line. The dramatic
deviation from the data is not surprising, since our model
disagrees already with the F�

2 data. The disagreement is
evident for A1=2 where our large F�

2 contribution spoils a

excellent result that would be obtained if the F�
2 could

be neglected. The results obtained in that scenario
(F�

2ðQ2Þ�0) are represented by the dashed line. In that
case the agreement of our model with the data is excellent
for Q2 > 2 GeV2 for both amplitudes. It is moreover in-
teresting to note that the model (solid line) agrees well
with the EBAC results for S1=2. That comes from the F�

1

suppression in the S1=2 amplitude by the factor MS�M
MSþM [see

Eq. (23)].
We conclude that the helicity amplitudes are not the best

representation to test our model, since those amplitudes
amplify the limitations of our model, like F�

1ð0Þ � 0 or the
large magnitude of F�

2. Combining our results for F�
1 with

the assumption that F�
2 is negligible for Q

2 > 2 GeV2, as a
consequence of the meson cloud effect, which is substan-
tiated by the data and the EBAC results, one can achieve a
very good description of the helicity amplitudes data.

C. Comparison with the literature

The study of the �N ! Nð1535Þ electromagnetic struc-
ture was in the past based almost only on the representation
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FIG. 1 (color online). �p ! Nð1535Þ transition form factors.
CLAS data from [7], MAID data from [8]. The EBAC results
[40] corresponds to the transition when the meson cloud con-
tribution is suppressed. The solid line is the prediction of the
model. The data for A1=2ð0Þ is given by Particle Data Group [73].
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of the helicity amplitudes [in the Nð1535Þ rest frame].
Then, the comparison with other works has to be done in
this representation. From the previous section, we know
that the data corresponds to positive values for A1=2 and

negative values for S1=2.
Wewill start by discussing the constituent quark models.

Different quark model predictions, including nonrelativis-
tic [15,16,19–21] and relativistic [18,23–25] formulations,
agree qualitatively with the data for A1=2. In particular,

in Ref. [18], calculations based on the light-front formal-
ism give an excellent description of the A1=2 data for

Q2 > 2 GeV2 [7]. Also QCD sum rules [27] are consistent
with the A1=2 data for Q

2 > 1 GeV2.

In a nonrelativistic model with harmonic-oscillator con-
finement potential, the relative sign between A1=2ð0Þ and
S1=2ð0Þ is positive, and determined by the relative sign

between the �NN and the �NNð1535Þ coupling constants
[20]. For nonrelativistic models, we should expect then
positive values for S1=2 at low Q2. This feature is also

shared by light-front and relativistic quark models
[7,15,18,23,24], although sometimes negative results are
obtained for Q2 > 2 GeV2 [7,18,24]. Still, in general one

has the same sign for A1=2ð0Þ and S1=2ð0Þ. Exceptions to

this feature are obtained by the QCD sum rules [27] and
our model. QCD sum rules predict the sign but under-
estimate in absolute value the result for S1=2.
It has also been suggested that the state Nð1535Þ may

have a strong contribution from quark-antiquark states, or
even been dynamically generated by the meson-baryon
interaction. An and Zou [26] considered a quark model
with explicit quark-antiquark dressing, and concluded that
those effects can be of the order of 20% for low Q2.
Overall, the signs and magnitudes are consistent with the
data. In Ref. [22], the meson cloud dressing is calculated
within the cloudy bag model. In that case the quark core is
dominant at low Q2 and is consistent with the data for A1=2

(with � 25% of meson cloud), although the S1=2 data is

overestimated. For Q2 > 1:5, the model predictions are
suppressed compared with the data indicating that short
range behavior is not well simulated by the bag model [22].
The helicity amplitudes were also determined using a

chiral unitary approach [33,34]. The authors conclude that
the Nð1535Þ seems to be largely dynamically generated
from the interaction of mesons and baryons but also that
a genuine quark component is necessary particularly at
high Q2 [34]. Qualitatively, the meson dressing explains
roughly 50–60% of the A1=2 amplitude. Also, the calcula-

tions of the EBAC group sugest the importance of the
meson dressing at low Q2, although there is a dominance
of the quark core [40].
One may conclude that, in general, from quark models

and hadronic models with meson dressing, the meson
cloud can be important, but genuine valence quark contri-
butions are equally necessary to explain the data.

D. Large Q2 regime

The study of the asymptotic dependence of the �N !
Nð1535Þ transition form factors attracts some attention,
because pQCD predicts a very slow falloff for A1=2 [70]

and also because precise experimental data have been
extracted at high Q2, in particular, for Q2 � 4 GeV2 [11]
and Q2 ’ 5:7, and 7:3 GeV2 [9]. The estimate from pQCD
[70] for large Q2 is

Q3A1=2ðQ2Þ ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

M2
S �M2

s
; (31)

where  ¼ 0:58 GeV3, in the more optimistic estimate
(upper limit) [70]. As for the form factors, one expects
F�
1 � 1

Q4 and F�
2 � 1

Q6 , apart logQ
2 corrections. Then, for

large Q2, one has jF�
1j � jF�

2j, and, according to Eq. (22),

Q4F�
1ðQ2Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2Q2

ðMS þMÞ2 þQ2

s
: (32)

The asymptotic results from Eqs. (31) and (32) are pre-
sented in Fig. 3 for both F�

1 and A1=2. In the last case, we
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FIG. 2 (color online). �p ! Nð1535Þ helicity amplitudes.
CLAS data from [7], MAID data from [8]. The EBAC results
[7] corresponds to the transition when the meson cloud contribu-
tion is suppressed. Particle data group data from Ref. [73]. The
solid line is the prediction of the model. The dashed line is the
result under the assumption thatF�

2 � 0 (as supported by the data).
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show the result obtained by making F�
2 ¼ 0, as discussed

earlier. In the figure it is clear that the pQCD estimation
underestimates the data and our model for high Q2.

The asymptotic behavior of the form factors can be
better understood scaling the functions by a convenient
power of Q2 to check if the results converge to a constant,
apart the logarithm corrections. In this case, we should take
the functions Q3A1=2 and Q4F�

1. The results for F�
1 are

presented in Fig. 4. The representation of A1=2 would be

equivalent. In the figure, it is clear that pQCD estimation
fails the description of the data by a factor larger than 2.
The same was reported in Ref. [9] for A1=2. The pQCD

prediction differs then from the spectator quark model.
At Q2 ¼ 100 GeV2 the ratio is 2.3. Also, in the figure it
is clear a non constant slope for both pQCD and the
spectator quark model results in the region shown, indicat-
ing corrections for the 1=Q4 behavior. In the pQCD case,
the slope is a consequence of the Q2-dependent factor of
the r.h.s. of Eq. (32), which became a constant only for
Q2 � ðMS þMÞ2 ¼ 6:1 GeV2 [see the slow variation of
the dotted line in Fig. 4]. As for the spectator quark model,
the logarithm dependence at larger Q2, comes from the
parametrization of the nucleon wave functions by Eq. (26),
as product of two monopole factors in the variable
ðP� kÞ2. That choice was considered in the applications
to the nucleon electromagnetic structure [52] in order to
reproduce the expected pQCD behavior for the nucleon
form factors (Dirac F1 � 1

Q4 and Pauli F1 � 1
Q6 ), but also

contains logarithm corrections. See Appendix G from
Ref. [58] for details.
For Q2 > 20 GeV2, one can represent the spectator

quark model form factor F�
1 as

F�
1ðQ2Þ ’ � 0:144

Q4
log

Q2

�2
; (33)

where �2 ¼ 0:4982 GeV2.
In conclusion, our model reveals a scaling with the same

power as pQCD forQ2 � 100 GeV2, apart from logarithm
corrections. The scaling due to pQCD, if it is confirmed,
will be revealed only for much largerQ2 values than in our
model.

VII. CONCLUSIONS

In this work, we applied the covariant spectator quark
model to the Nð1535Þ system. We considered the simplest
case where Nð1535Þ is made of states with core spin 1=2,
and we neglected the effect of the core spin 3=2 state, as in
Ref. [20]. We took also the diquark as a pointlike particle
(no internal P-states). These approximations have the ad-
vantage of reducing the degrees of freedom of our model to
the minimum, and to allow us to perform calculations with
no adjustable parameters, since all parameters (in the quark
current and wave functions) were already fixed by the
study of the nucleon system [52]. Our results in this paper
are then true predictions. The extension of this work to
include spin 3=2 cores (which are also part of the nucleon
D-states) is in progress [66]. Once our model is calibrated
for the spin 3=2 component we will also be able of making
predictions for the Nð1650Þ form factors.
Our model takes contributions for the form factors from

thevalence quarks alone, and neglects possiblemeson cloud
effects (in principle dominated by � and � clouds).
This approximation involving the meson cloud suppression
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simplifies the construction of theNð1535Þwave function (as
a three-quark system). Another approximation, intrinsic to
the relativistic generalization that we make for the wave
function, is that the Nð1535Þ state is exactly orthogonal to
the nucleon state only in the case of equalmasses for the two
baryons MS ¼ M. However, as the orthogonal condition
can be written in powers of ðMS �MÞ, one can show that
our results are accurate for Q2 > 2:3 GeV2. In that region,
meson cloud effects are expected to be negligible, the
reason why one can make predictions for the form factors,
which otherwise would contain, apart from valence quark
effects, important meson cloud contributions.

For the F�
1 form factor our results are in excellent

agreement with the data in the domain of applicability of
our model. This is remarkable since there is no parameter
adjustment. Our results for F�

1 are also close to the EBAC

analysis of the quark core effects, although the EBAC
results are restricted to the region Q2 < 2 GeV2.

As for theF�
2 form factor, our predictions fail completely

to describe the experimental data in their sign and magni-
tude, which is consistent with F�

2 ’ 0 for Q2 > 2 GeV2.

Our results are however in good agreement with the esti-
mations of the EBAC group of the quark core contribution
to the F�

2 form factor near Q2 ¼ 2 GeV2. These two last

points suggest that our failure in describing F�
2 is caused by

a large negative contribution from the meson cloud which
cancels almost exactly the valence quark contribution.
Although meson cloud contributions are expected to de-
crease with increasing Q2, there are some exceptions to
that rule, as the observed for the �N ! � quadrupole
transition form factors [59,60], where pion cloud are in
fact the dominant effect. The other possible explanation for
the failure of our model in the description of the F�

2, is the

internal structure of the diquark which was not considered
here. But this explanation is excluded by the comparison of
our results with the EBAC result, which seems to indicate
that the pointlike diquark approximation is apparently
good, at least for F�

1.
A true test of the F�

2 suppression can come from the

extraction of the core contributions by EBAC model for
higher Q2, planned for the near future [69], and which can
confirm our results for the valence quark contributions.
That test will also be useful to assert and consolidate our
F�
1 results. A third independent test can be the direct

comparison with lattice QCD simulations, particularly for
large pion masses (say m� > 0:4 GeV), a regime where
quark-antiquark (� and� cloud) contributions are believed
to be very small. Lattice QCD simulations are nowadays
viable since they were performed previously for the
�N ! � and �N ! Nð1440Þ reactions [71,72]. Although
the comparison of phenomenological model results, at the
physical pion mass point, with lattice QCD can be prob-
lematic due to the necessity of extrapolating to the physical
limit; that is not a problem for the spectator quark model: it
is based on a vector meson dominance parametrization of

the current, and therefore can be extended successfully to
the lattice conditions, as was shown for the nucleon [54]
and Roper [56] reactions, for the �N ! � transition
[54,60] and also for the baryon decuplet form factors [64].
In addition to the form factors, we calculated as well the

helicity amplitudes A1=2 and S1=2. As in our calculations

the violation of the orthogonality condition between the
initial and final states, gives F�

1ð0Þ / I0ð0Þ � 0, implying
that the amplitude S1=2 diverges forQ

2 ! 0 and the results
for F�

2 differ from the data, we conclude that helicity
amplitudes are not the more convenient representation to
test our model, in particular, and quark models in general.
Combining our results with the hypothesis that F�

2 is neg-
ligible, because of the actual cancellation of valence quark
contributions and meson cloud contributions, which is
suggested by the successful comparison of the our results
and the EBAC quark core contribution, we obtain an ex-
cellent description of the helicity amplitudes data, A1=2 and

S1=2 (see dashed line in Fig. 2). As for A1=2 the agreement is

remarkable for Q2 > 1 GeV2, even before the region of
validity of our model is reached. As for S1=2, although
it is singular for Q2 ¼ 0, the model describes the data for
Q2 > 1:5 GeV2.
In summary, the �N ! Nð1535Þ reaction is very inter-

esting from the constituent quark model perspective. The
possibility of the F�

2 form factor to vanish at intermediate
Q2 values, in contrast to what happens with all other known
resonances, provides a unique challenge to theoretical
models, in order to understand the role of the valence
quarks, and their interplay with the meson cloud. All effort
from quarks models, dynamical coupled-channel reaction
models, chiral effective models and lattice QCD, are wel-
come in attempts that have to be harmonized and supple-
mented together, in order to interpret the �N ! Nð1535Þ
reaction data.
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APPENDIX A: Nð1535Þ WAVE FUNCTION

1. Nonrelativistic form

We consider now the normalization of the �S11 wave
function given by Eq. (A11) [non relativistic form]. To
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represent the Nð1535Þ state in a constituent quark model
framework we need to consider the momentum, spin, iso-
spin of each quark and relate it with the Nð1535Þ propri-
eties. We will follow the construction based on the
SUð6Þ �Oð3Þ as in Refs. [1,3–5,15–17].

a. Jacobi momenta

We label the momentum of quark i by ki. The center of
mass momentum P is then given by P ¼ k1 þ k2 þ k3.
At this point, we do not distinguish between nonrelativistic
and relativistic kinematics. The Jacobi momentum are

k� ¼ 1ffiffiffi
2

p ðk1 � k2Þ; (A1)

for the relative momentum of the quark in the quark-pair
(12), and

k� ¼ 1ffiffiffi
6

p ðk1 þ k2 � 2k3Þ; (A2)

to measure the relative momentum between the diquark
center of mass and the third quark. Note that k� is anti-

symmetric in the exchange of quarks 1 and 2, and that k�
remains unchanged (symmetric) in the same exchange.

We note that in the nonrelativistic limit and in the baryon
center of mass frame (k1 þ k2 þ k3 ¼ 0) one has k3 ¼
�ðk1 þ k2Þ. Therefore,

k � ¼
ffiffiffi
3

2

s
k; (A3)

where k ¼ k1 þ k2 is the diquark three momentum.
Wewill use the � and � labels to characterize the baryon

states, as it was defined in the main text, and as it is usual
practice in the literature, e.g. in Ref. [18,20].

b. Spin states

In the coupling of the spins of the 3 quarks, there are
different combinations for ðs12; sÞ ¼ ðjs1 þ s2j; sÞ, where
s12 is the sum of the spins of quarks (12) and s the spin of
quark (3). The possible combinations are

�� ¼
�
0;
1

2

�
; �� ¼

�
1;
1

2

�
; �S ¼

�
1;
3

2

�
;

respectively, the �-type (��) and the �-type (��) states
with mixed symmetry, and the state (�S) which is sym-
metric the change of any of the three quarks.

The spin states �� and �� are defined in terms of
combinations of two spin states [quark-pair (12)], antisym-
metric and symmetric, respectively, with the spin of the
quark 3. This construction is similar to what was done for
the nucleon [52,58]. One has for the spin projectionþ1=2:

��

�
þ 1

2

�
�

								12 ;þ 1

2



�
¼ 1ffiffiffi

2
p ð"# � #"Þ " (A4)

��

�
þ 1

2

�
�

								12 ;þ 1

2



�
¼ 1ffiffiffi

6
p ð2 ""# � "#" � #""Þ: (A5)

Identical expression hold for the isospin states. For ex-
ample, for the proton (isospin projection þ1=2), we write
the isospin states as

�0
I

�
þ 1

2

�
� 1ffiffiffi

2
p ðud� duÞu�1

I

�
þ 1

2

�

� 1ffiffiffi
6

p ð2uud� udu� duuÞ; (A6)

preserving the notation used in the nucleon wave function
[52]. Here the antisymmetric state in the pair is identified
by 0 and the symmetric state by 1.
For completeness, we represent also the state corre-

sponding to isospin and spin projections �1=2:

�0
I

�
� 1

2

�
� 1ffiffiffi

2
p ðud� duÞd

�1
I

�
� 1

2

�
� � 1ffiffiffi

6
p ð2ddu� udd� dudÞ;

(A7)

��

�
� 1

2

�
�

								12 ;� 1

2



�
¼ 1ffiffiffi

2
p ð"# � #"Þ # (A8)

��

�
� 1

2

�
�

								12 ;� 1

2



�
¼ � 1ffiffiffi

6
p ð2 ##" � #"# � "##Þ: (A9)

Later, we will write the spin states in a covariant form.
In the following, we suppress the isospin projection index

from �0;1
I [þ 1=2 as in the proton, and �1=2 as in the

neutron].

c. Nucleon wave function

With the previous notation, we write the nucleon wave
function for spin projection s ¼ � 1

2 as

�N ¼ 1ffiffiffi
2

p
�
�0

I

								12 ; s


�
þ�1

I

								1

2
; s



�

�
c N; (A10)

where c N is a scalar wave function for the quark momen-
tum distribution. See Ref. [52] for details about the nucleon
wave function.

d. Nð1535Þ nonrelativistic wave function
The Nð1535Þ state has the same isospin structure of the

nucleon. For the orbital angular momentum excitation of
that state, we consider L ¼ 1. We have then the form

�S11 ¼ Nffiffiffi
2

p f�0
IX� ��1

IX�gc S11; (A11)

with the states X� and X�, functions of s ¼ � 1
2 , to be

defined next. The minus sign in the �-type term is included
to ensure the orthogonality with the nucleon wave function
(A10). By construction, �S11 is antisymmetric [4,20,32].
The normalization constant N will be determined later.
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Here we take theNð1535Þ state to be composed by states
with core spin 1=2 only. The same approximation is used in
Ref. [20]. Alternative models, like the classical Karl-Isgur
model [4,18], where the baryons are confined quarks with
color hyperfine interaction, describe Nð1535Þ as a mixture
of states with core spin 1=2 and 3=2 [4,18,32].

The states X� and X� are combinations of the three-

quark system mixed-symmetric states, with total spin
1=2 (�� or ��) and orbital angular momentum L ¼ 1.
Those states are the direct product of orbital angular mo-
mentum L ¼ 1 with a spin 1=2 state. Considering the
product for the projection s, one has, for the mixed-
symmetric states X�:

X�ðsÞ¼
ffiffiffiffiffiffiffi
4�

p X
m

�
1m;

1

2
;þ1

2

								12 ;s


Y1;mðk̂�Þ

								12 ;s�m



�
:

(A12)

The factor
ffiffiffiffiffiffiffi
4�

p
was introduced by convenience. Possible

terms in Y1mðk̂�Þ, associated with P states in the diquark are

not considered here. This corresponds to a pointlike ap-
proximation for the diquark (k� � 0). Note that the inclu-

sion of structure in the diquark, which demands that a
dependence of the scalar wave function in k� is included

in general [4,18,20,32]. Here, the pointlike diquark is a first
approximation.

As for the X�ðsÞ states, one has

X�ðsÞ ¼
ffiffiffiffiffiffiffi
4�

p X
m

�
1m;

1

2
;þ 1

2

								1

2
; s



Y1;mðk̂�Þ

								12 ; s�m



�
:

(A13)

Once again, we took a pointlike diquark [no terms in

Y1mðk̂�Þ].
The spherical harmonics allows us to write the angular

momentum states as

jk�jY1;þ1ðk̂�Þ ¼
ffiffiffiffiffiffiffi
3

4�

s
k�þ (A14)

jk�jY1;0ðk̂�Þ ¼
ffiffiffiffiffiffiffi
3

4�

s
k�0 (A15)

jk�jY1;�1ðk̂�Þ ¼
ffiffiffiffiffiffiffi
3

4�

s
k�� (A16)

where k�0 ¼ k�z, and

k�� ¼ 	 1ffiffiffi
2

p ðk�x � ik�yÞ: (A17)

Replacing the Clebsch-Gordan coefficients, and using
the compact notation � to represent �1=2, one obtains:

X�ð�Þ ¼ 	N

�
k�0

								12 ;�


�
� ffiffiffi

2
p

k��
								1

2
;	



�

�
:

X�ð�Þ ¼ 	N

�
k�0

								12 ;�


�
� ffiffiffi

2
p

k��
								12 ;	



�

�
;

(A18)

where N ¼ 1=jk�j. These expressions reproduce the re-
sults from Refs. [20,32], in the pointlike diquark limit. In
that case only the normalization factor differs.

e. Normalization

The normalization of �S11 is given by Eq. (A11) [non-
relativistic form]. Details associated with parity will be
discussed later in the relativistic generalization.
The wave function (A11) must be normalized in order to

reproduce the Nð1535Þ charge:

QS11 ¼
X
�

Z
k
�y

S11ð �P; kÞð3j1Þ�S11ð �P; kÞ ¼ 1

2
ð1þ �3Þ:

(A19)

where � represents the scalar component (s) and the
vectorial component (polarizations �D ¼ 0, �1) of the
intermediate diquark, and �P ¼ ðMS; 0; 0; 0Þ [the momen-
tum configuration correspondent to the rest frame].
The operator 3j1 ¼ 1

2 þ 3
2 �3 is the quark charge operator,

where �3 acts on the Nð1535Þ isospin states. In the follow-
ing, we use the notation introduced in the paper with
calculations for the nucleon [52]. We project the states
into isospin components, for the caseQ2 ¼ 0, according to

j1 ! ð�0
I Þyj1�0

I ¼
1

6
þ 1

2
�3 (A20)

j3 � ð�1
I Þyj1�1

I ¼
1

6
� 1

6
�3: (A21)

Then, considering (A18), one can write

QS11 ¼ 1

2
N 2

Z
k
jc S11ð �P; kÞj2½3j1Xy

�X� þ 3j3X
y
�X��:
(A22)

From Eqs. (A18), and working the spin algebra, for
s ¼ �1=2, one concludes that

Xy
�ðsÞX�ðsÞ ¼ 1 (A23)

Xy
� ðsÞX�ðsÞ ¼ 1: (A24)

Then

QS11 ¼ N 2 3

2
ðj1 þ j3Þ

Z
k
jc S11ð �P; kÞj2

¼ 1

2
ð1þ �3ÞN 2

Z
k
jc S11ð �P; kÞj2; (A25)

because 3ðj1 þ j3Þ ¼ ð1þ �3Þ. Choosing
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Z
k
jc S11ð �P; kÞj2 ¼ 1; (A26)

and one reproduces the Nð1535Þ charge (A19), if we set
N ¼ 1.

2. Relativistic generalization

The relativistic generalization of k� is the diquark three

momentum in the rest frame ~k:

k� ! ~k ¼ k� P � k
M2

S

P; (A27)

where P is the Nð1535Þmomentum. The factor between k�
and k from Eq. (A3) was dropped. That factor is included

into the normalization of the states. As ~k2 ¼ �k2, where k
is the quark three momentum in the rest frame, one has

jk�j !
ffiffiffiffiffiffiffiffiffi
�~k2

p
: (A28)

The diquark momentum components can also be defined
in terms of the diquark polarization vectors:

k�0 ! �~k � "Pð0Þ
k�þ ! �~k � "PðþÞ
k�� ! �~k � "Pð�Þ:

(A29)

In the following, we will use "0 and "� for, respectively,
"Pð0Þ and "Pð�Þ.

To obtain the relativistic generalization of Eq. (A11),
one has to write the relativistic generalization of the spin
states states j 12 ; si�;�. We use the the covariant general-

izations, as in the applications to the nucleon system
[52,58]: 								12 ; s



�
! "suðP; sÞ (A30)

								12 ; s


�
! �ð"�PÞ�U�ðP; sÞ; (A31)

where

U�ðP; sÞ ¼ 1ffiffiffi
3

p �5

�
�� � P�

M

�
uðP; sÞ: (A32)

In the previous equations, "s is the scalar diquark polar-
ization "s ¼ 1ffiffi

2
p ð"# � #"Þ and "P the spin 1 polarization

vector in the fixed-axis polarization base [52,53,58]. As
"s is a scalar, it can replaced by 1 in the wave functions of
the nucleon and Nð1535Þ.

The expressions for X� and X� from Eqs. (A18) can now

be written in a relativistic form using Eqs. (A29)–(A31).

The states X� and X� are then functions of P, k (or P and ~k)

and s, but the momentum dependence will be suppressed in
our the notation. To avoid the dependence of the spin
polarization in Eqs. (A18) on the normalization factor, in

the relativistic generalization we replace the factor 	 by
�1, obtaining a unique expression for both polarizations.
The final expression is then

X�ð�Þ ¼ N½ð~k � "0ÞuSð�Þ � ffiffiffi
2

p ð~k � "�ÞuSð	Þ� (A33)

X�ð�Þ ¼ N½�ð~k � "0Þð"�PÞ�U�
S ð�Þ

þ ffiffiffi
2

p ð~k � "�Þð"�PÞ�U�
S ð	Þ�; (A34)

where we include the subindex S to label the Nð1535Þ
states. In the previous equations, we have replaced the
nonrelativistic constant N ¼ 1=jkj by a new constant

such that jNj ¼ 1=
ffiffiffiffiffiffiffiffiffi
�~k2

p
. The absolute value of N will

be fixed by the comparison with the experimental data and
is discussed later.

3. Nð1535Þ relativistic wave function
The final expression for the covariant Nð1535Þ wave

function, with respect to spin flavor, orbital angular mo-
mentum and parity, is then

�S11ðP; kÞ ¼ 1ffiffiffi
2

p �5½�0
IX� ��1

IX��c S11ðP; kÞ: (A35)

The operator �5 was introduced to represent the parity of
the state. The scalar wave functions were discussed in the
main text (see Sect. V). Equation (A35) reproduces also the
Nð1535Þ charge. With the form (A35), one has

P�S11 ¼ �MS�S11: (A36)

This relation (with the minus sign) is a consequence of the
introduction of the operator �5 required by parity. Note that
the Nð1535Þ Dirac equation, given by Eq. (A36), differs
from the equations corresponding to the previous applica-
tions of the spectator quark model [52,56,58–60] (nucleon,
�, and Roper).
In the following, we will use

�S11ðP; kÞ ¼ 1ffiffiffi
2

p ½�0
I�� ��1

I���c S11ðP; kÞ; (A37)

where �� ¼ �5X� and �� ¼ �5X�.

APPENDIX B: TRANSITION CURRENT

In this appendix, we calculate the electromagnetic tran-
sition current defined by Eq. (5), using the nucleon and
Nð1535Þ wave functions given by Eqs. (1) and (3).

1. Nð1535Þ states
The Nð1535Þ wave function is given by Eq. (A37)

with the spin states defined by (A33) and (A34). From

the relations ��� � �y
��0 ¼ � �X��5 and ��� � �y

��
0 ¼

� �X��5, one can write
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���ð�Þ ¼ �N½ð"0 � ~kÞ �uSð�Þ � ffiffiffi
2

p ð"�� � ~kÞ �uSð	Þ��5

���ð�Þ ¼ N½ð"0 � ~kÞ"� �U�
S ð�Þ � ffiffiffi

2
p ð"�� � ~kÞ"� �U�

S ð	Þ��5:

(B1)

In the previous equations,

�U �
S ¼ � 1ffiffiffi

3
p �uS

�
�� � P�

MS

�
�5: (B2)

2. Properties of the states

To reduce the transition current to the standard form, one
uses the properties of the nucleon and Nð1535Þ spin states
U�

S , uS, U
� and u:

P�uðP�Þ ¼ MuðP�Þ
P�U�ðP�Þ ¼ MU�ðP�Þ
PþuSðPþÞ ¼ MSuSðPþÞ
PþU�

S ðPþÞ ¼ MSU
�
S ðPþÞ:

(B3)

Also

ðPþÞ�U�
S ¼ 0 (B4)

ðP�Þ�U� ¼ 0: (B5)

3. Integration in k

In the following, we consider the symmetries in the k
integration. The evaluation of the transition current re-
quires the determination of the integrals

I �0 ¼
Z
k
Nð"�0 � ~kÞc S11c N; (B6)

where �0 ¼ 0, �. It is easy to prove that

I � ¼ 0; (B7)

for any value of Q2. The demonstration is trivial in the
Nð1535Þ rest frame, since the product of wave functions
can be written as a function of k2 and kz. ThenR
k Nkxc S11c N ¼ R

k Nkyc S11c N ¼ 0, because the inte-

grand function is odd in the integration variables kx;y. Then

only I0 survives the k integration for a given Q2. The case
Q2 ¼ 0 will be discussed in Appendix C. The important
point here, is that in the final state rest frame we have to

keep in the wave function only the terms in ~k � "0 ¼ �kz.

4. Current matrix elements

Considering the expression for the spin states and by
performing the integral for the current, one obtains, for
arbitrary (initial and final) spin projections:

�� ��̂
	�0

S ¼ Nð"0 � ~kÞ �uS�̂	�5u (B8)

�� �

i
	�q�
2M

�0
S ¼ �Nð"0 � ~kÞ �uS i


	�q�
2M

�5u (B9)

�� ��̂
	�1

S ¼ Nð"0 � ~kÞ½ �U�
S �̂

	�5U
��� (B10)

�� �

i
	�q�
2M

�1
S ¼ �Nð"0 � ~kÞ

�
�U�
S

i
	�q�
2M

�5U


�
��:

(B11)

In the previous equations,�� is given by Eq. (11). For the

terms i
	�q� one can use the generalized Gordon identity:

i
	�q� ¼ Pþ�	 þ �	P� � ðPþ þ P�Þ	: (B12)

5. Spin algebra

The following relations holds when multiplied by ��:

�U�
S �̂

	�5U
 ¼ � 1

3
�uS�

��̂	��5u (B13)

�U �
S

i
	�q�
2M

�5U
 ¼ 1

3
�uS�

� i

	�q�
2M

��5u: (B14)

Considering the results:

½���	��5��� ¼ �	�5 (B15)

½����5��� ¼ ��5; (B16)

one obtains

�U �
S �̂

	�5U
 ¼ 1

3
�uS�̂

	�5u (B17)

�U �
S

i
	�q�
2M

�5U
 ¼ � 1

3
�uS
i
	�q�
2M

�5u: (B18)

6. Final expressions

Using the formulas of the previous section one can write
the result of the integration in k for (B8)–(B11) including
also c S11ðPþ; kÞc NðP�; kÞ. In the integration the relations
with ð"0 � ~kÞ are replaced by I0, defined by Eq. (14). ThenZ

k
½ ����̂

	�0
S�c S11c N ¼ I0 �uS�̂

	�5u (B19)

Z
k

�
���

i
	�q�
2M

�0
S

�
c S11c N ¼ �I0 �uS

i
	�q�
2M

�5u

(B20)

Z
k
½ ����̂

	�1
S�c S11c N ¼ � 1

3
I0 �uS�̂

	�5u (B21)

Z
k

�
���

i
	�q�
2M

�1
S

�
c S11c N ¼ 1

3
I0 �uS

i
	�q�
2M

�5u:

(B22)
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Replacing the previous results in the expression for the
current, we obtain

J	 ¼ þ 1

2
ð3j1 þ j3ÞI0 �uS�̂

	�5u

� 1

2
ð3j2 � j4ÞI0 �uS

i
	�q�
2M

�5u: (B23)

The previous current defines the electromagnetic tran-
sition form factors given by Eqs. (16) and (17). The sign of

the normalization constant N with magnitude jNj ¼
1=

ffiffiffiffiffiffiffiffiffi
�~k2

p
has to be fixed by the experimental data. As the

data for F�
1 is negative near Q

2 ¼ 0, we choose

N ¼ � 1ffiffiffiffiffiffiffiffiffi
�~k2

p : (B24)

APPENDIX C: OVERLAP INTEGRAL I0

In this appendix, we consider the integral of Eq. (14):

I 0 ¼
Z
k
Nð"0 � ~kÞc S11ðPþ; kÞc NðP�; kÞ: (C1)

First, we derive an analytical expression for I0; next, we
explore the limit cases.

1. Analytical expression

Consider the expression for the overlap integral (C1), in
the Nð1535Þ rest frame

I 0 ¼
Z
k

kz
jkj c S11ðPþ; kÞc NðP�; kÞ; (C2)

where we used "0 � ~k ¼ �kz and Eq. (B24). In the same
frame one has Pþ ¼ ðMS; 0; 0; 0Þ, P� ¼ ðE; 0; 0;�jqjÞ
and q ¼ ð!; 0; 0; jqjÞ, with ! ¼ MS � E and

E ¼ M2
S þM2 þQ2

2MS

: (C3)

In this case, c S11 is independent of the azimuthal angle and
we can write, using kz ¼ kz:

I 0 ¼
Z þ1

0

k2dk

ð2�Þ22ED

c S11ðPþ � kÞIz; (C4)

where

Iz ¼
Z 1

�1
½zc NðP� � kÞ�dz: (C5)

In the previous equation we use the simplified notation for
the arguments of the wave functions, since they can be
represented as a scalar function of P� � k:

Pþ � k ¼ MSED; P� � k ¼ EED þ kzjqj: (C6)

The separation of the function that depends on z as c N

from the ones depending only of k, as c S11 is possible

because in the Nð1535Þ rest frame Pþ � k is angle indepen-
dent. As for c N, it is represented by the simple analytical
form (26). In these conditions one can evaluate Iz analyti-
cally using simple integration techniques. The result is

Iz¼ N0

mD

�
MmD

2kjqj
�
2 1

2�1


½ �2G2ðk;jqjÞ� �1G1ðk;jqjÞ�
(C7)

where

� i ¼ ði � 2Þ þ 2
EED

MmD

(C8)

Giðk; jqjÞ ¼ log

								
�i þ 2 kjqj

MmD

�i � 2 kjqj
MmD

								: (C9)

To obtain the final expression, one has to perform the
integration in k.

2. I0 in the limit jqj ! 0

The expression obtained for Iz from Eq. (C7) does not
help us to explore the limit Q2 ! 0. To have a clearer
idea of the Q2 or jqj dependence one considers the case
jqj ! 0. In that limit one case use

log

								1þ x

1� x

								¼ 2xþ 2

3
x3 þOðx5Þ; (C10)

to simplify Iz. Using the previous equation with

x ¼ 2k

MmD

jqj
�i

; (C11)

one can conclude that

Iz ¼ � 4

3

N0

mD

�
k

MmD

� �1 þ �2

�2
1
�2
2

jqj: (C12)

With this relation we prove that

I 0ðQ2Þ / jqj; (C13)

for small jqj.

3. Two different limits

For the equal mass case (MS ¼ M), where

jqj ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
Q; (C14)

using � ¼ Q2

ðMSþMÞ2 � Q2

4M2 , one can conclude that

I 0ðQ2Þ / Q; (C15)

implying that F�
1ðQ2Þ, F�

2ðQ2Þ / Q as Q2 ! 0. This de-
pendence is atypical and unexpected. Recall that the nu-
cleon to Roper form factors vanish for Q2 ! 0 with the
power Q2 (in that specific case, independently of the mass
difference).
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In Q2 ¼ 0 limit, and in the unequal mass case, one has

jqj ¼ jqj0 � M2
S �M2

2MS

: (C16)

In this situation, one concludes that

I 0ð0Þ / M2
S �M2

2MS

: (C17)

This last result implies that the S1=2ðQ2Þ amplitude di-

verges for MS � M. As that amplitude scales with 1=Q2,
for Q2 ! 0, if I0ð0Þ � 0, the amplitude diverges for
Q2 ! 0. For the form factors F�

1 and F�
2 there is no

divergence for Q2 ! 0.
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