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Two relativistic approaches are considered to evaluate the quasielastic double-differential and inte-

grated neutrino-nucleus cross sections. One, based on the relativistic impulse approximation, relies on the

microscopic description of nuclear dynamics using relativistic mean field theory, and incorporates a

description of the final-state interactions. The second is based on the superscaling behavior exhibited by

electron scattering data and its applicability, due to the universal character of the scaling function, to the

analysis of neutrino scattering reactions. The role played by the vector meson-exchange currents in the

two-particle two-hole sector is also incorporated and the results obtained are compared with the recent

data for neutrinos measured by the MiniBooNE Collaboration.
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I. INTRODUCTION

The data on muon neutrino charged-current quasielastic
(CCQE) cross sections recently obtained by the
MiniBooNE Collaboration [1], and its comparison with
several theoretical calculations, have led to an important
debate concerning the role played by various ingredients
entering in the description of the reaction: nuclear dynam-
ics [final-state interactions (FSI), low-lying nuclear exci-
tations, effects beyond the impulse approximation (IA),
etc. ], as well as possible modifications of the single-
nucleon form factors. Although no definitive conclusions
are yet in hand, a detailed study of modeling versus ex-
periment for inclusive quasielastic electron scattering and
its extension to neutrino processes can shed light on the
different interpretations of the discrepancy between theory
and experiment.

When a dipole shape is assumed for the axial form
factor, the nucleon axial mass MA can be considered to
be the only free parameter within the relativistic Fermi gas
(RFG) model, presently used in many Monte Carlo codes
employed in the analysis of the experimental data. When
compared with MiniBoone CCQE data, the RFG under-
estimates the total cross section unless an axial massMA of
the order of 1:35 GeV=c2 is employed in the dipole pre-
scription for the form factor. This value of the axial mass is
considerably larger than the accepted world average value
MA ¼ 1:026� 0:021 GeV=c2 [2], thus yielding a larger
axial form factor. This should be taken more as an indica-
tion of incompleteness of the theoretical description of the
MiniBooNE data based upon the RFG, rather than as a true
indication for a larger axial mass.

For instance, although the RFG incorporates a fully
relativistic treatment, required by the kinematics of the

experiment (mean neutrino energy flux, hE�i ¼
788 MeV, with values up to 3 GeV), its description of
the nuclear dynamics is clearly too crude to draw specific
conclusions on the value of the anomalous axial mass from
the departure of the RFG from experiment, but rather be
taken as a hint on the importance of nuclear effects in
describing these experimental data.
However, at the level of the impulse approximation, a

number of much more sophisticated descriptions of the
nuclear dynamics other than the one represented by the
RFG, based, for instance, on the use of realistic spectral
functions [3–5], when compared with the MiniBooNE
experimental data also underpredict the measured CCQE
cross section, in this respect not doing a better job than the
RFG. One important consideration that must be taken into
account is the fact that, even when these models provide a
much more realistic description of the nuclear dynamics
than the RFG, they are built on nonrelativistic approaches
that are likely questionable at the kinematics of the
MiniBooNE experiment.
Among the difficulties that one faces when comparing

models, is that the effect of the ingredients in the model,
such as interactions in the final state, may differ greatly
from model to model. For example in [4] the FSI are barely
seen, causing only a simple �10 MeV shift of the QE
peak. However, relativistic and semirelativistic models of
inclusive QE ðe; e0Þ reactions that included a relativistic
mean field, that is, described the FSI by means of strong
relativistic potentials or their semirelativistic equivalents,
have clearly shown the essential role played by FSI in order
to describe properly the behavior of data [6–10].
In addition to the relativistic treatment of the nuclear

excitations, in some regions of the wide range of neutrino
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energies where the neutrino flux for the experiment has
significant strength, the reaction may have sizable contri-
butions from effects beyond the IA. For instance, in [11,12]
when the theoretical results incorporated multiple knock-
out excitations, they were shown to be in accordance with
the total cross section data without the need to increase the
value of MA. However, no comparison with the experi-
mental double-differential cross section is shown in
[11,12]. Moreover, these calculations are based on non-
relativistic reductions whose reliability at MiniBooNE
kinematics may be doubtful. In fact, the kinematics of
the MiniBooNE experiment demands relativity as an es-
sential ingredient; not only relativistic kinematics should
be considered, but also the nuclear dynamics and current
operators should be described within a relativistic frame-
work [13–15]. Furthermore, the wide range of neutrino
energies, at least for some specific conditions, may also
require one to account for effects not included in models
devised for quasifree scattering. This is, for instance, the
situation at the most forward scattering angles where a very
significant contribution in the cross section may come from
very low-lying excitations in nuclei [16].

A systematic analysis of the world inclusive ðe; e0Þ data
has clearly demonstrated that, for sufficiently large mo-
mentum transfers, at energy transfers below the QE peak
the property of superscaling works rather well [17–20],
that is, the reduced cross section, when represented versus
the scaling variable [21], is largely independent of the
momentum transfer (first-kind scaling) and of the nuclear
target (second-kind scaling). Moreover, from the longitu-
dinal response a phenomenological scaling function has
been extracted that shows a clear asymmetry with respect
to the quasielastic peak (QEP) with a long tail extended to
positive values of the scaling variable (larger energy trans-
fers). Assuming the scaling function to be universal, i.e. ,
valid for electromagnetic and weak interactions, in [22,23]
CCQE neutrino-nucleus cross sections were evaluated by
using the scaling function extracted from ðe; e0Þ data and
multiplying it by the corresponding elementary weak cross
section. This approach, denoted simply as ‘‘SuSA,’’ pro-
vides nuclear-model-independent neutrino-nucleus cross
sections, but its reliability rests on a basic assumption:
the scaling function [extracted from longitudinal ðe; e0Þ
data] is appropriate for all of the various weak responses
involved in neutrino scattering (charge-charge, charge-
longitudinal, longitudinal-longitudinal, transverse and
axial), and is independent of the vector or axial nature of
the nuclear current entering the hadronic tensor. In particu-
lar, the SuSA approach assumes the electromagnetic lon-
gitudinal (L) and transverse (T) scaling functions to be
equal. This property, known as scaling of the zeroth kind,
is fulfilled by the RFG (by construction) and by most
models based on nonrelativistic descriptions that, in a
way, factorize the elementary lepton-nucleus amplitude
into a lepton-nucleon part and a part containing the nuclear

effects [24,25]. Within SuSA, this factorization in the
elementary amplitude propagates even to the cross section,
which is then proportional to the elementary lepton-
nucleon cross section and to the nuclear response, the latter
in this approach being a universal function.
However, from the analysis of the existing L/T

separated data, after removing inelastic contributions and
two-particle-emission effects one finds that the ‘‘purely
nucleonic’’ transverse scaling function is significantly
larger than the longitudinal one [26]. This has to be attrib-
uted to a breakdown of the elementary factorization men-
tioned before, so that the elementary lepton-nucleon vertex
inside the nucleus is no longer accurately described by the
one for free nucleons. One must resort to models such as
the relativistic mean field approach, denoted as RMF,
where the relativistic dynamics introduces significant de-
viations of the behavior of the elementary lepton-nucleon
vertex in the presence of strong scalar and vector potentials
[24]. This breakdown of zeroth-kind scaling present in
the RMF seems to be favored by the comparison with
data [26].
In a recent paper [16] SuSA predictions have been

compared with the MiniBooNE data for the double-
differential neutrino cross section showing a systematic
discrepancy between theory and experiment. Inclusion of
2p-2h meson-exchange current (MEC) contributions
yields larger cross sections and accordingly better agree-
ment with the data. However, this theory still lies below the
data at larger angles where the cross sections are smaller.
Before drawing definitive conclusions on the anomalous
axial mass, it is important to explore alternative approaches
that have been shown to be successful in describing in-
clusive QE ðe; e0Þ processes. As just mentioned, this is the
case for the RMF, where a fully relativistic description
(kinematics and dynamics) of the process is incorporated,
and FSI are taken into account by using the same relativ-
istic scalar and vector energy-independent potentials con-
sidered in the description of the initial bound states. The
RMF model applied to inclusive QE ðe; e0Þ processes has
been shown to describe scaling behavior, and more impor-
tantly, it gives rise to a superscaling function with a sig-
nificant asymmetry, namely, in complete accord with data
[7,27]. Moreover, contrary to SuSA, where scaling of the
zeroth kind is assumed, the RMF model provides longitu-
dinal and transverse scaling functions which differ by
typically 20%, the T one being larger.
The RMF approach has been applied to the description

of CCQE neutrino-nucleus cross sections [6,28–30] and it
has been investigated with respect to how scaling emerges
from neutrino reactions, and how the ‘‘theoretical’’ neu-
trino scaling functions compare with the corresponding
ones evaluated for electrons (L and T responses) and
with the data [29,30].
Even at the level of the impulse approximation, the

zeroth-kind scaling violation introduced by the RMF
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approach, as well as the different isospin character shown
by the electromagnetic and weak nucleon form factors, can
lead to significant discrepancies between the results pro-
vided by SuSA and RMF approaches. Furthermore, effects
beyond the IA give rise to additional scaling violations
in the transverse responses. Thus, a proper relativistic
description of these effects is needed in order to compare
with the data taken by the MiniBooNE Collaboration.

The paper is organized as follows: after this introductory
section, in the one following (Sec. II) we present an analy-
sis of the results obtained using three models for the CCQE
cross sections, while in Sec. III we end by making a few
concluding remarks.

II. ANALYSIS OF RESULTS

In this section we discuss the results obtained with the
different approaches considered and compare them with
the experimental data. Details on the various approaches
considered have been presented in previous works. In
particular, the SuSA approach and its extension to CC
neutrino reactions can be reviewed in [23], whereas the
basic ingredients entering in the RMF model applied to
inclusive electron and CCQE neutrino reactions are given
in [6,7,27,29–31].

We first show results for the CCQE ��-
12C double-

differential cross section averaged over the neutrino flux
�ðE�Þ, namely,

d2�

dT�d cos�
¼ 1

�tot

Z �
d2�

dT�d cos�

�
E�

�ðE�ÞdE�; (1)

where T� and � are the kinetic energy and scattering angle

of the outgoing muon, E� is the neutrino energy, and�tot is
the total flux. For each value of the neutrino energy, the
above cross section can be expressed in terms of seven
nuclear response functions as [23]

�
d2�

dT�d cos�

�
E�

¼ �0½V̂LR
VV
L þ V̂CCR

AA
CC þ 2 ^VCLR

AA
CL

þ V̂LLR
AA
LL þ V̂TðRVV

T þ RAA
T Þ

þ 2V̂T0RVA
T0 �; (2)

where V̂i are kinematic factors and the indices L, C, T, T0,
V, A refer to longitudinal, charge, transverse, transverse-
axial, vector, and axial-vector components of the nuclear
current, respectively.

In particular, in the SuSA approach each response func-
tion can be cast as

Riðq;!Þ ¼ mN

qkF
Rsn
i ðq;!Þfðc Þ; (3)

where q and ! are the transferred momentum and energy,
respectively, mN is the nucleon mass, kF is the Fermi
momentum, Rsn

i are the single-nucleon responses,
c ðq;!Þ is the RFG scaling variable (see, e.g. , [21] for

its definition), and fðc Þ is the so-called superscaling func-
tion, containing the dependence on the nuclear model. In
the SuSA model it is given by a fit to the experimental
longitudinal ðe; e0Þ reduced response function [32].
In the RMF case, the weak response functions are given

by taking the appropriate components of the weak hadronic
tensor constructed from the single-nucleon current:

hJ�Wi ¼
Z

dr ��FðrÞĴ�WðrÞ�BðrÞ; (4)

where�B and�F are relativistic bound-state and scattering

wave functions, respectively, and Ĵ�W is the relativistic one-
body current operator modeling the coupling between the
virtualW and a nucleon [33]. The bound nucleon states are
described as self-consistent Dirac-Hartree solutions, de-
rived within an RMF approach by using a Lagrangian
containing �, !, and � mesons [34–36]. The outgoing
nucleon wave function is computed by using the same
relativistic mean field employed in the initial state. This
incorporates the FSI between the ejected nucleon (proton)
and the residual nucleus.
Finally, concerning the description of MEC contribu-

tions, we use the fully relativistic model of [14,37,38].
In particular, in the 2p-2h sector we use the scheme
applied in[39] to electron scattering, where all many-
body diagrams containing two pionic lines were taken
into account. However, it is important to point out that,
within the present approach, only the pure vector trans-
verse response, RVV

T , is affected by MEC. Effects in the
axial-vector transverse response, as well as the contribu-
tion of the correlation diagrams [performed recently for
ðe; e0Þ in [40]], should be incorporated into the analysis
before definitive conclusions on the comparison with data
can be drawn. Work along this line is presently under way.
MEC contributions to �-12C reactions have been computed
within a somewhat different approach both for charged
and neutral currents, in [41,42], where the effect of MEC
in the cross section was found to be less than 10%.
In Fig. 1 we show the double-differential cross section

averaged over the neutrino energy flux as a function of the
muon kinetic energy T�. In each panel the results have

been averaged over the corresponding angular bin of cos�.
In all cases we use the standard value of the nucleon axial
mass, i.e. , MA ¼ 1:03 GeV=c2. We compare the theoreti-
cal results evaluated using the three approaches, SuSA
(green line), SuSAþMEC (blue), and RMF (red), with
the MiniBooNE data [1]. The case of the most forward
angles, 0:9< cos� < 1, has not been considered since, as
shown in [16], models based on quasifree scattering cannot
describe properly this kinematic situation where roughly
1=2 of the total cross section arises from excitation ener-
gies below �50 MeV.
The analysis of the results corresponding to SuSA and

SuSAþMEC approaches and their comparison with data
were already presented and discussed at length in [16]. We

RELATIVISTIC ANALYSES OF QUASIELASTIC . . . PHYSICAL REVIEW D 84, 033004 (2011)

033004-3



showed that the 2p-2h MEC increase the cross section,
yielding results that are closer to experiment, specifically,
for data up to cos�� 0:6. At larger angles, the discrepancy
with experiment becomes larger while, on the other hand,
the role of MEC is seen to be less significant, that is, the
difference between SuSA and SuSAþMEC becomes
smaller as the scattering angle increases.

Cross sections evaluated with the RMF model also yield
reasonable agreement with data for smaller angles, the
discrepancy becoming larger as � increases. However,
some differences emerge from the comparison between
the RMF and SuSA predictions. As observed, RMF cross
sections are, in general, larger than the SuSA ones. In
particular, in the region close to the peak in the cross
section, the RMF result becomes larger than the one ob-
tained with SuSAþMEC. This holds especially for large
scattering angles. On the contrary, SuSA and SuSAþ
MEC get more strength in the region of high muon kinetic
energies. This can be attributed to the breakdown of zeroth-
kind scaling in the RMF, in contrast to the other approaches
where it is assumed to be satisfied. An approach based on
RMF, but invoking zeroth-kind scaling, yields results that
are much more similar to the SuSA ones.

To make such a statement more transparent, we compare

the double-differential cross sections evaluated with the

three models, but for fixed values of the scattering angle

and muon kinetic energy. The results are presented against

the neutrino energy. We have selected as a representative

situation the case cos� ¼ 0:45 (panel in the middle of

Fig. 1) and two values of T�: 0:35 GeV that correspond

to the maximum in the neutrino-flux-averaged cross sec-

tion, and T� ¼ 0:65 GeV, located in the tail. Results are

presented in Fig. 2. As shown, for T� ¼ 0:35 GeV (left

panel) the three models produce roughly the same response

in the maximum at E� � 0:6 GeV. However, the strength
in the tail for higher neutrino energies is much more

significant for RMF, being reduced for SuSAþMEC and

much smaller for SuSA. This explains why the RMF

neutrino-flux-averaged cross section is significantly higher

at T� ¼ 0:35 GeV (see Fig. 1).

The situation is clearly different for T� ¼ 0:65 GeV

(right panel in Fig. 2). Here, SuSA and SuSAþMEC cross
sections are larger (compared with RMF) even in the
region where the cross section reaches its maximum. On
the contrary, for larger T� (located in the tail), RMF

becomes higher. However, notice that for these kinematics
the neutrino energies involved are much larger than in the
previous case, namely, E� � 0:8–0:9 GeV; this corre-
sponds to the tail in the experimental neutrino flux whose

FIG. 1 (color online). Flux-integrated double-differential cross section per target nucleon for the �� CCQE process on 12C evaluated
in the SuSA (green line), SuSAþMEC (blue), and RMF (red) models and displayed versus the muon kinetic energy T� for various

bins of cos�. The data are from MiniBooNE [1]. The uncertainties do not include the overall normalization error �N ¼ 10:7%.
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average neutrino energy is 788 MeV. Hence, the main
contribution in the averaged cross section comes from
the region with smaller values of E� where the difference
between SuSA (and SuSAþMEC) and RMF is larger. As
already mentioned, if one does an RMF calculation that
respects zeroth-kind scaling, the results would be essen-
tially in agreement with those of SuSA.

For completeness in Fig. 3 we show the flux-integrated
cross section averaged over the bin 0:4< cos� < 0:5 eval-
uated within the framework of the relativistic impulse
approximation, but with different descriptions for the
FSI. We have considered the relativistic plane wave im-
pulse approximation (RPWIA), that is, switching off FSI in
the RMF calculation, and the use of the real part of the
relativistic energy-dependent optical potential, denoted as
rROP. As already shown in previous works [7,29], these
two approaches fulfill scaling, but give rise to scaling
functions that lack the asymmetry shown by data.
Moreover, scaling of the zeroth kind is also highly re-
spected because of the minor role played in this case by
relativistic dynamics in the final state.

Results in Fig. 3 show that the RPWIA and rROP
approaches are very similar for all T� values, being also

in accordance with RMF, although here the maximum in
the cross section is slightly reduced while strength is
shifted to larger values of the muon kinetic energy. This
is a consequence of the differences introduced in the scal-
ing functions by the particular description of FSI and its
impact on the relativistic nuclear dynamics and the isospin
(third-kind) and zeroth-kind scaling violations [27].
In Fig. 4 we plot the neutrino-flux-averaged cross sec-

tion versus the scattering angle at fixed T� (averaged over

each bin). For low muon momenta the three models tend to
underestimate the data, improving the agreement as T�

increases. As observed, when added to the SuSA results,
the 2p-2hMEC yields an enhancement of the cross section
whose magnitude increases for more forward scattering
angles. This result holds for each bin in T�. With respect

to comparison with data, some general comments already
made for the SuSA and SuSAþMEC results [16] also
apply to RMF: the last also underestimates the data at
large muon scattering angles, particularly for small T�.

However, some important differences between RMF and
SuSA-based models also emerge. Let us comment on the
general trend followed by the RMF results as functions of
cos� that clearly differ from SuSA and SuSAþMEC. In
the six panels presented in Fig. 4 RMF cross sections are
the lowest for the smallest values of cos�. As we move to
more positive cos�, the RMF cross section grows faster,
lying above the results corresponding to SuSAþMEC in
the intermediate region. Finally, for smaller values of the
scattering angle, namely, cos� approaching 0.9, while
RMF inverts its behavior and decreases very rapidly,
SuSA and SuSAþMEC approaches to cos� ¼ 0:9 show
a much softer slope. In fact, this is the region where the
discrepancy between RMF and SuSA-based models can be
better appreciated. It is very illustrative to point out that the
general shape presented by the RMF cross section as a
function of cos� fits perfectly well the shape shown by
data, although RMF predictions fall below the data for

FIG. 3 (color online). As for Fig. 1 for the bin 0:4< cos� <
0:5, but now showing the results evaluated with RPWIA (green),
rROP (blue), and RMF (red).

FIG. 2 (color online). Double-differential cross section calculated for fixed values of the muon kinetic energy and scattering angle
and displayed versus the neutrino energy. Results presented for the three models: SuSA (green), SuSAþMEC (blue), and RMF (red).
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small muon momenta. The different behavior of the mod-
els is partly due to the fact that the RMF is better describing
the low-energy excitation region whereas, as already
pointed out, the SuSA model has no predictive power at
very low angles, where the cross section is dominated by
low excitation energies and the superscaling ideas are not
supposed to apply. For this reason we do not show results
for the highest cos� bin.

In Fig. 5 we present the results obtained by integrating
the flux-averaged double-differential cross sections over
cos� (upper panel) and T� (bottom panel), respectively. In

addition to the three models considered in previous graphs,
here we also include for reference the predictions given by
the RFG. It is interesting to remark that, in spite of the clear
differences shown by the RMF and SuSA predictions for
the double-differential cross sections (Figs. 1 and 4), the
integrated results almost coincide. On the contrary, the
2p-2h MEC effects produce a visible enhancement in
the cross section that is closer to the experimental data.
The RFG results lie somewhere between the SuSA/RMF
and SuSAþMEC predictions.

To conclude this section, in Fig. 6 we display the total
QE cross section per neutron obtained in the models dis-
cussed above as a function of the neutrino energy and
compared with the experimental data. Note that here the
integration is performed over all muon scattering angles
(�1< cos� < 1) and energies (0< T� < E�).

As observed in Fig. 5, the discrepancies between the
various models tend to be washed out by the integration,
yielding very similar results for the models that include FSI

(SuSA, RMF and rROP), all of them giving a lower total
cross section than the models without FSI (RFG and
RPWIA). We remind the reader that here the standard
value MA ¼ 1:03 GeV=c2 is used. A larger ‘‘effective’’
axial mass 1:35<Meff

A < 1:65 GeV=c2 would yield re-
sults for the RMF and SuSA models compatible with the
MiniBooNE data.
On the other hand, the SuSAþMEC curve, while being

closer to the data at high neutrino energies, has a somewhat
different shape with respect to the other models, in quali-
tative agreement with the relativistic calculation of [15]. It
should be noted, however, that the result is affected by an
uncertainty of about 5% associated with the treatment of
the 2p-2h contribution at low momentum transfers.

III. CONCLUDING REMARKS

Summarizing, in this paper we extend the previous work
presented in [16] where the focus was placed on the use of
the phenomenological SuSA model and its extension in-
corporating the role played by 2p-2h MEC contributions.
Here, our main interest resides in the predictions provided
by the RMF approach. This model has been successfully
applied to inclusive QE ðe; e0Þ processes where it has been
shown to be capable of reproducing the specific asymmet-
ric shape shown by the experimental scaling function. On
the other hand, and unlike the SuSA approach which
assumes scaling of the zeroth kind, i.e. , equal longitudinal
and transverse scaling functions, the RMF provides a
transverse scaling function that exceeds by about �20%
the longitudinal one. This result seems to be in accordance

FIG. 4 (color online). Double-differential �� CCQE cross section for 12C integrated over neutrino flux versus the outgoing muon
scattering angle for various bins of the muon kinetic energy T�. Results are given for RMF (red lines), SuSA (green), and SuSAþ
MEC (blue).
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with the most recent analyses of the L/T separated ðe; e0Þ
data. Thus, this violation of scaling of the zeroth kind has
visible effects when proceeding to studies of CCQE
cross sections. Furthermore, the different isospin content
(namely, violations of third-kind scaling) of the electro-
magnetic and CC weak nucleon form factors should also be
carefully considered [27].
In this work we apply the RMFmodel to CCQE neutrino

reactions on 12C corresponding to the kinematics of the
MiniBooNE experiment. Results for the flux-averaged
double-differential cross sections are compared with data
and the predictions given by SuSA and SuSAþMEC
models. Generally speaking, the RMF model underesti-
mates the data especially at large muon scattering angles
and low muon energies. This was already observed with
SuSA and to a somewhat lesser extent with SuSAþMEC.
However, the specific behavior shown by RMF clearly
differs from that of SuSA and SuSAþMEC; the maxi-
mum in d2�=d cos�dT� as a function of T� for various

bins of cos� gets higher for RMF, whereas the tail at high
T� is more pronounced for the SuSA-based models. Also,

the general trend shown by the curve corresponding to the
double-differential cross section as a function of the scat-
tering angle for bins of T� clearly differs for RMF and

SuSA (SuSAþMEC) approaches. Here, it is very inter-
esting to point out that the specific shape followed by RMF
predictions fits perfectly well the slope shown by data.
The single-differential cross sections shown in Fig. 5

where the three calculations yield very similar predictions,
with almost the same shape and underpredicting the data,
also show that it is very useful to compare double-
differential cross sections as in Fig. 4, where differences
among models may be more easily seen.
To conclude, let us note that, in spite of the discrepancies

introduced by the models in the double-differential cross
sections, RMF and SuSA approaches provide almost iden-
tical results for the single-differential cross section, this
being found to lie below the data. Although the inclusion of
2p-2h MEC contributions increases the differential cross
section without a significant change of the shape, and thus
seems to improve the agreement with the data as shown in
Figs. 2 and 5, it is also seen (in Fig. 2, but more clearly in
Fig. 4) that the shape of the cross section is best reproduced
by the RMF and does not improve with the inclusion of the
2p-2h MEC contributions in SuSA. It is tempting to hy-
pothesize that the addition of the 2p-2hMEC effects to the
RMF results would lead to reasonable agreement in both
magnitude and shape with the experimental double-
differential cross section.
Finally, as shown in Fig. 6, the impact of the 2p-2h

contribution on the total cross section increases with
the neutrino energy, suggesting that the data can be ex-
plained without the need for a large nucleon axial mass.
However, more refined calculations taking care of correla-
tion currents, MEC effects in the axial-vector channel, etc.,

FIG. 6 (color online). Total CCQE cross section per neutron
versus the neutrino energy. The curves corresponding to different
nuclear models (see text) are compared with the flux unfolded
MiniBooNE data [1].

FIG. 5 (color online). Results obtained with SuSA, SuSAþ
MEC, RMF, and RFG models. Upper panel: Flux-averaged
integrated cross section displayed versus the muon kinetic en-
ergy. Bottom panel: As for the upper one, but now for the flux-
averaged muon angular distribution.
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should be performed before definitive conclusions can be
drawn.
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