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G. Martinska,8 N. Piskunov,3 D. Protić,5 J. Ritman,5,6 P. von Rossen,5,6 J. Roy,11 A. Sibirtsev,1 I. Sitnik,3 R. Siudak,9

R. Tsenov,12 K. Ulbrich,2 J. Urban,8 and G. J. Wagner13

(The HIRES Collaboration)

1CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide SA 5005, Australia
2Helmholtz-Institut für Strahlen-und Kernphysik der Universität Bonn, 53115 Bonn, Germany

3Laboratory for High Energies, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow, Russia
4Fachbereich Physik, Universität Duisburg-Essen, Duisburg, Germany
5Institut für Kernphysik, Forschungszentrum Jülich, Jülich, Germany
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The reaction pp ! Kþ þ ð�pÞ has been measured at Tp ¼ 1:953 GeV and � ¼ 0� with a high

missing-mass resolution in order to study the �p final state interaction. Narrow S ¼ �1 resonances

predicted by bag model calculations are not visible in the missing-mass spectrum. Small structures

observed in a previous experiment are not confirmed. Upper limits for the production cross section of a

narrow resonance are deduced for missing masses between 2058 and 2105 MeV.
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I. INTRODUCTION

A high-resolution study of the reaction pþ p ! Kþ þ
ð�pÞ has been performed by the HIRES Collaboration
[1,2] using the proton beam of the cooler synchrotron
COSY [3] and the magnetic spectrograph BIG KARL
[4,5] at the Research Center Jülich. The aim of the experi-
ment was to study the �p final state interaction (FSI) and
to search for narrow strangeness S ¼ �1 resonances.
Concerning the FSI, first results have been published [1].
The present paper deals with the search for a narrow
strangeness S ¼ �1 resonance. We use only the missing-
mass data measured at 1.953 GeV beam energy [1] and
ignore a small portion of data below the �N threshold
taken at some higher beam energy [2].

Predictions of strange dibaryons are summarized in a
recent review by Gal [6]. A confined six-quark state ðQ6Þ1
with S ¼ �2, the so called H-dibaryon (from Hexaquark),
has been predicted to be the lowest-lying dibaryon state
[7]. It has been of prime interest both theoretically and

experimentally. In the strangeness-1 sector narrow
dibaryon resonances Ds and Dt are predicted to be located
at about 55 MeV and 95 MeV above the �p threshold
[8–11]. The width of the lowest resonance Ds is estimated
to be less than about 1 MeV.
Experimentally, the inclusive reaction pp !

Kþ þ ð�pÞ was first studied with a rather low missing-
mass resolution [12–14]. There were also exclusive mea-
surements of the reaction pp ! Kþ�p by the COSY-TOF
Collaboration [15–17] and total cross section measure-
ments by the COSY-11 [18] and COSY-ANKE
Collaboration [19,20]. The first high-resolution measure-
ment of pp ! Kþ þ ð�pÞ has been performed at
SATURNE II with proton beam energies of 2.3 and
2.7 GeV using the spectrometer SPES4 [21]. The outgoing
kaons were detected at forward angles with a high momen-
tum resolution in the focal plane of the SPES4 spectro-
meter. The missing-mass spectra show characteristic
enhancements near the �p and �N thresholds. At
2.3 GeV and � ¼ 10�, a sharp peak has been observed in
the missing-mass spectrum at 2096:5� 1:5 MeV above the
background which is due to the �p continuum. The peak
amounts to about 3.5 standard deviations. A similar peak
corresponding to a missing mass of 2098:0� 1:5 MeV has
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been observed at 2.7 GeV beam energy and 12.6�. The
statistical accuracies were not high enough to exclude an
accidental statistical fluctuation; however, the peak has
been observed twice under different experimental and
kinematical conditions, and the peak energies coincide
within the experimental error. It is also interesting to note
that the observed peaks were located near the predicted
mass of the lowest S ¼ �1 dibaryon Ds [8,9]. Therefore,
the reaction pp ! Kþ þ ð�pÞ has been studied with an
especially high accuracy in the missing-mass range be-
tween 2090 and 2110 MeV.

In Sec. II we give a short description of the experiment. In
Sec. III we sketch the predictions of narrow dibaryon reso-
nances. The effect of the lowest dibaryon Ds in the total
cross section of the free�p ! �p scattering is discussed in
Sec. IV. The formalism to describe a narrow resonance
embedded in the continuum of the reaction pp ! Kþ þ
ð�pÞ is presented in Sec. V. In Sec. VI we deduce upper
limits for the production cross section of the predicted
resonance Ds. Conclusion and discussion follow in
Sec. VII.

II. EXPERIMENT

Here, we give a short description of the experiment
which was already reported in [1]. The reaction pþ p !
Kþ þ ð�pÞ was measured at 0� using the proton beam
from the cooler synchrotron COSY, the magnetic spectro-
graph BIG KARL [5], and a 1.0 cm thick liquid hydrogen
target (see Fig. 1). The momentum of the incoming proton
beam was 2:735 GeV=c corresponding to a kinetic energy
of 1.953 GeV. The scattered particles in the momentum
range 930–1110 MeV=c were detected in the focal plane
using two stacks of multiwire drift chambers, two thresh-
old Cherenkov detectors [22], and two scintillator hodo-
scopes. The absolute beam momentum was found by
measuring simultaneously the tracks of Kþ particles and
deuterons from the reactions pþ p ! Kþ þ ð�pÞ and
pþ p ! dþ �þ at fixed BIG KARL momentum
1070 MeV=c and fitting the kinematic parameters. The
absolute precision of the beam momentum was
0:15 MeV=c. The ratio of beam momentum to scattered
particle momentum allowed for a measurement at 0�. In
the first dipole magnet of BIG KARL the beam was mag-
netically separated from the scattered particles and guided
through the side exit of the outer yoke into the beam dump.
Thus, the huge background from dumping the beam within
the spectrometer was avoided. Particle identification was
performed using the energy loss (�E) and time of flight
(TOF) information from the scintillator hodoscopes. In
addition two threshold Cherenkov detectors [22] were
used in order to achieve a very high pion suppression factor
of 105. The momentum of the kaon was measured and the
missing mass of the �p system was deduced. In order to
cover the missing-mass range 2050–2110 MeV the data
were taken using three overlapping settings of the spectro-

graph (mean momenta: 1070, 1010, and 960 MeV=c). The
incoming beam was not changed during those measure-
ments. The relative precision of the momenta of the three
settings was 0:1 MeV=c.
Acceptance corrections with respect to solid angle and

momentum were taken from Monte Carlo calculations.
The acceptance correction functions contained the mag-
netic spectrograph momentum acceptance around 0� with
cuts on the horizontal emission angle �x ¼ arctanðpx=pzÞ
and the vertical emission angle �y ¼ arctanðpy=pzÞ with
px and py transversal momentum components and pz the

longitudinal component. The cuts for a given missing-mass
bin corresponded to the measured solid angle d�. They
contained also the detector efficiency corrections. The
detector efficiency included efficiency of scintillator de-
tectors which determined trigger and particle identification
and magnetic spectrograph efficiency with field inhomo-
geneity at the edges of the acceptance. Acceptance
corrections as determined by Monte Carlo simulations
were checked by use of experimental distributions of
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FIG. 1 (color online). Top: Layout of the magnetic spectro-
graph BIG KARL. The charged particle tracks are detected in the
focal plane using two stacks of multiwire drift chambers, two
threshold Cherenkov detectors, and two scintillator hodoscopes.
Bottom: TOF spectrum with pion suppression by two Cherenkov
detectors.
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simultaneously measured pions. They are shown in Fig. 2.
The acceptance correction function of the 960 MeV=c
setting looks different due to a slightly different �x and
�y cut.

The kaon decay along flight path was taken into account
for each individual trajectory. Path lengths were obtained
from calculations of tracks in the magnetic field with the
computer code TURTLE[23]. They were checked by experi-
mentally deduced values from time of flight measurements
of pions and protons. The cross section error due to sur-
vival probability is less than 1%. The final kaon survival

probability averaged for a given missing-mass bin is pre-
sented in the bottom panel of Fig. 2.
The relative normalizations of the three different spec-

trograph settings were deduced from luminosity monitors
located in the target area which were independent of the
spectrograph settings. The relative normalization errors
due to the luminosity measurement were negligibly small.
The relative normalization errors due to the acceptance
corrections were estimated to be less than 2%.
The absolute cross section normalization was deter-

mined by measuring the luminosity as described in [5].
At the beginning of each beam period we calibrated two
luminosity monitors counting the left and right scattered
particles from the target as function of the number of beam
particles. To this end, the beam current was highly reduced
in order to count the beam particles individually with a fast
scintillator hodoscope in the beam dump. For the calibra-
tion, the dependence of the luminosity signal on the beam
intensity was fitted by a linear function. The resulting beam
intensity error amounted to about 5%. The density of the
bubble-free liquid hydrogen target (� ¼ 0:0775 g=cm3)
with 1 �m thick mylar foil windows was kept constant
by stabilizing the temperature to 15:0� 0:5 K using a
high-precision temperature control [24].
The target thickness, i.e. the distance between entrance

and exit window (nominal 1 cm) was precisely measured
with a calibrated optical telescope. The target thickness
error was about 5%. The overall systematic normalization
error was estimated to be 10%. The missing-mass spectrum
is shown in Fig. 4.
In view of the predicted narrow dibaryon resonances in

the �p system a high missing-mass resolution was re-
quired. The missing-mass resolution depends on the spread
of the beam momentum, the beam spot size at the target,
the target thickness, the momentum resolution of the mag-
netic spectrograph, and the 1 MeV bin width. The effective
resolution function fðM;M0Þ has been deduced in [1] by a
least-square fit to the sharply rising double differential
cross section d2�=ðd�KdM�pÞ near the ð�pÞ threshold,
see Fig. 4. It can be represented by a Gaussian density
distribution with a standard deviation of �M ¼ 0:84 MeV.
It should be noted that the width�M depends mainly on the
spread of the beam momentum and the 1 MeV bin width.
The contributions from the target thickness, the beam spot
size at the target (3 mm) and the momentum resolution of
the magnetic spectrograph are negligibly small. Since the
COSY beam has not been changed during the measure-
ments the resolution function fðM;M0Þ is constant in the
full range of missing masses.

III. PREDICTIONS OF NARROW DIBARYON
RESONANCES IN THE �p SYSTEM

Concerning the predictions of narrow S ¼ �1 dibaryon
resonances in the �p system we refer to calculations of
Aerts and Dover [8,9]. They studied the decay width of
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FIG. 2. Top: Acceptance correction functions. Bottom: Kaon
survival probability.
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strangeness S ¼ �1 six-quark bag states predicted by the
Nijmegen group [10,11] on the basis of the Massachusetts
Institute of Technology (MIT) bag model. The predicted
S ¼ �2 H dibaryon with quark structure ðQ6Þ1 is the
strongest bound dibaryon state [7]. In case of S ¼ �1
states the color-magnetic force is less strong, and hence
the lowest ðQ6Þ1 state is predicted to be about 120 MeV
above the �N threshold [11].

The lowest-lying S ¼ �1 resonances exhibit a quark
cluster structure Q4

N
Q2. The singlet state Ds (1P1) is

located at about 55 MeV above the �p threshold, and the
triplet states Dt (3P0;1;2) are located at about 95 MeV

above the �p threshold. This corresponds for the
lowest-lying dibaryon Ds to an invariant mass of
2109 MeV which is located between the �-proton and
�-nucleon thresholds. The resonance Ds is a singlet state
of a four quark-two quark cluster configuration ðQ4Þ3 �NðQ2Þ3� with angular momentum L ¼ 1, spin S ¼ 0,
total angular momentum and parity JP ¼ 1�. The isospin
is I ¼ 1=2. The only particle-decay channel is the 1P1

wave of the �p system. This decay is hindered by the
relative P-wave centrifugal barrier between the two clus-
ters and the stability of the ðQ4Þ3

NðQ2Þ3� configuration
against dissociation into two color singlet (Q3) clusters. In
other words, the �p channel represents only a small piece
of the Ds wave function. As a consequence, the total
width � of Ds is predicted to be less than about 1 MeV
[8,9]. In addition, the predicted width depends on the
resonance mass Mr, see Fig. 2 of [8]. We note that there
is a rather large uncertainty of the predicted resonance
masses Mr. Therefore, the production of the dibaryon Ds

has been studied theoretically in the invariant mass range
between 2.06 and 2:10 GeV=c2 [9]. In the present paper,
we consider the invariant mass range between 2.058 and
2:105 GeV=c2 which corresponds to resonance energies
Er between 4 MeV and 51 MeV.

We deduce from Fig. 2 of [8] � ¼ 26 keV for Mr ¼
2109 MeV (Er ¼ 55 MeV). Extrapolating to Mr ¼
2096:5 MeV (Er ¼ 42:5 MeV) yields � ¼ 15 keV. We
note that these total widths are lower limits. The decay
width calculation involves an integration of the dibaryon
wave function over the radial distance r. Such integrals
are dominated by the contributions from small radii r
which give a lower limit of �. Including the larger radii
gives an upper limit. Then, the lower limit has to be
multiplied by 64=3 to obtain an upper limit. In addition,
the width increases by about a factor of 2 if Hulthèn rather
then oscillator wave functions are used. Thus, an upper
limit is obtained if the lower limit is multiplied by a factor
128=3 [8]. We get the following ranges for the predicted
total width: � ¼ ½15; 640� keV for Mr ¼ 2096:5 MeV
(Er ¼ 42:5 MeV) and � ¼ ½26; 1109� keV for Mr ¼
2109 MeV (Er ¼ 55 MeV). As one can see, the predicted
widths depend strongly on the invariant mass of the
dibaryon.

We emphasize that a possible resonance Ds below the
�þn threshold (2128.935 MeV) can only decay into
�þ p. Therefore, the elastic width �el can be assumed
to be equal to the total width �, i.e. �el=� ¼ 1.

IV. SIMULATION OF A NARROW RESONANCE
IN THE TOTAL CROSS SECTION

OF �p ! �p SCATTERING

We first discuss the effect of a single isolated narrow
resonance in the total cross section of the�þ p ! �þ p
scattering, and we compare it with existing data from
bubble chamber experiments [25–30]. We start with the
ansatz

�tot ¼ �nr
tot þ �r

tot: (1)

Here, �nr
tot is the nonresonant part and �

r
tot the resonant part

of the total cross section. Assuming S waves and taking the
effective range approximation the nonresonant part of the
total cross section may be written [31]

�nr
tot ¼ 1

4

4�

k2 þ ð� 1
as
þ rsk

2

2 Þ2
þ 3

4

4�

k2 þ ð� 1
at
þ rtk

2

2 Þ2
: (2)

Here, as and at are the singlet and triplet scattering lengths,
rs and rt are the singlet and triplet effective ranges, and
k ¼ q=ℏ is the wave number corresponding to the c.m.
momentum q. We take the effective range parameters as ¼
�2:43 fm, rs ¼ 2:21 fm, at ¼ �1:56 fm, rt ¼ 3:7 fm as
determined in [1].
The resonant part of the total cross section can be

approximated by the Breit-Wigner resonance formula,

�r
tot ¼ 2Jr þ 1

ð2s1 þ 1Þð2s2 þ 1Þ
�

k2
�2

ðE� ErÞ2 þ ð�=2Þ2 : (3)

Here, E is the total kinetic energy in the c.m. system, k ¼
q=ℏ is the wave number corresponding to the c.m. mo-
mentum q, and we assume �el ¼ �. We take the narrow
resonance Ds as an example. The resonance is predicted to
occur in the partial wave 1P1. Therefore, we assume
Jr ¼ 1. As resonance energy we take Er ¼ 42:5 MeV
corresponding to

ffiffiffi
s

p ¼ 2096:5 MeV of the peak seen by
Siebert et al. [21]. At this energy, the nonresonant potential
scattering is dominated by the partial waves 1S0 and 3S1
and the nonresonant contributions of the P waves can be
neglected in Eq. (2). The same holds true for a possible
interference between the resonant and nonresonant 1P1

amplitude in Eq. (3). The Jülich hyperon-nucleon model
[32] yields for instance phase shift predictions with � < 5�
for 1P1 and

3P0;1;2.

In Fig. 3 we show the effect of the Ds resonance with
Jr ¼ 1 and Er ¼ 42:5 MeV for � ¼ 500 keV without tak-
ing the effect of a finite energy resolution into account. We
take � ¼ 500 keV as an example. A resonance with � ¼
15 keV would appear as a sharp needle in Fig. 3. The
maximum of the resonance signal at E ¼ Er is very large,
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�r
totðErÞ=�nr

totðErÞ ¼ 4:2. Such a resonance could be easily
observed provided the effective energy resolution would be
sufficiently high. Unfortunately, the bubble chamber ex-
periments suffer from low-energy resolution as well as
from low statistical accuracy. For instance data points
near the resonance exhibit bin widths of 50 MeV=c
(�Ecm ¼ 8:4 MeV) and 100 MeV=c (�Ecm ¼
16:8 MeV). These bin widths are so large that the effect
of a narrow resonance is completely diluted.

V. NARROW RESONANCE EMBEDDED IN THE
CONTINUUM OF pp ! Kþð�pÞ

The reaction pp ! Kþð�pÞ can be described by facto-
rizing the reaction amplitude in terms of a production
amplitude and a final state enhancement factor. The
method of parametrizing the FSI enhancement factor by
the inverse Jost function [31] is described in [1,33]. Taking
the spin statistical weights into account the nonresonant
double differential cross section may be written as

d2�nr

d�KdM�p

¼�3

�
1

4
jMsj2q

2þ�2
s

q2þ�2
s

þ3

4
jMtj2q

2þ�2
t

q2þ�2
t

�
: (4)

Here, jMsj2 and jMtj2 are the singlet and triplet production
matrix elements squared, q the internal c.m. momentum of
the �p system, �s, �s, �t, �t the singlet and triplet
potential parameters, and �3 the ratio of the three-body

phase space distribution and the incident flux factor. The
potential parameters � and � can be used to establish
phase-equivalent Bargmann potentials [34]. They are
related to the scattering lengths a and effective ranges r

of the low-energy S wave scattering, � ¼ ð1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2r=a

p Þ=r, � ¼ ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2r=a

p Þ=r. Thus, the shape
of the missing-mass spectrum (4) depends on jMsj2, jMtj2
and the effective range parameters as, rs, at, and rt. These
parameters have been deduced by a combined fit of the
pp ! Kþð�pÞ data and the total �p cross section data
[1]. In principle one could equally well take a fit with three
spin-averaged parameters j �Mj2, �a, and �r (see [1]) or an-
other three-parameter description of the missing-mass
spectrum as in e.g. [35].
A narrow resonance Ds embedded in the �p continuum

of the reaction pp ! Kþð�pÞ can be described using the
following equation:

d2�r

d�KdM�p

¼ d�r

d�K

2M�p

�

Mr�

ðM2
�p �M2

r Þ2 þM2
r�

2
: (5)

This equation corresponds to a formula derived by Pilkuhn
[36] in order to describe the reaction aþ b ! cþ d,
where d is a narrow resonance decaying into particles 1
and 2, d ! 1þ 2. Here, d�r=d�K represents the differ-
ential cross section for the production of the resonance Ds,
Mr the resonance mass, � the total width, and M�p the

invariant mass of the �p system. The relativistic Breit-
Wigner form ([5]) can be approximated by the correspond-
ing nonrelativistic Breit-Wigner form,

d2�r

d�KdM�p

¼ d�r

d�K

1

2�

�

ðM�p �MrÞ2 þ ð�=2Þ2 : (6)

In passing, we note that the integral over the Breit-Wigner
distribution is normalized to one,

Z 1

�1
1

2�

�

ðM�p �MrÞ2 þ ð�=2Þ2 dM�p ¼ 1: (7)

The double differential cross section including a possible
narrow resonance Ds in the �p system may be written by
combining (4) and (5),

d2�

d�KdM�p

¼ d2�nr

d�KdM�p

þ d2�r

d�KdM�p

: (8)

We mention again that possible P-wave contributions in
the �p interaction are negligibly small at low �p c.m.
energies [32]. Therefore, the effect of an interference with
the nonresonant 1P1 decay channel can be neglected. The
relative contribution of a narrow resonance Ds to the
double differential cross section depends on the production
cross section d�r=d�K for (pp ! KþDs). In the present

FIG. 3. Total �p ! �p cross section vs laboratory momen-
tum p�. Solid line: effective range approximation of �nr

tot.
Dashed line: Simulation of a resonance signal �r

tot without
folding with the effective resolution function for a resonance
in the 1P1 channel with Er ¼ 42:5 MeV and � ¼ 500 keV. The
data are from [25–30].
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paper, we deduce upper limits for the production cross
section.

VI. UPPER LIMITS FOR A NARROW RESONANCE

A narrow S ¼ �1 resonance Ds as predicted by [8,9] is
not visible in the data (see Fig. 4). There may be two
reasons for it. (i) The predicted narrow S ¼ �1 resonance
Ds does not exist at all in the invariant mass region below
2110 MeV. (ii) The production cross section
d�r=d�Kðpp ! KþDsÞ is too small. In the following,
we deduce upper limits for the production cross section
in the given invariant mass range.

A. Effective resolution function

We note that the theoretical expression for the double
differential cross section (8) must be folded with the ef-
fective resolution function fðM;M0Þ before comparing
with the data. The effective resolution function is repre-
sented by a Gaussian density distribution with a standard
deviation of �M ¼ 0:84 MeV. It was deduced in [1] by a
least-square fit to the sharply rising double differential
cross section d2�=ðd�KdM�pÞ near the ð�pÞ threshold,
see Fig. 4. As discussed in Sec. II the effective resolution
function is constant in the full missing-mass range between
2050 MeV and 2110 MeV.

B. �2 test

The compatibility of the experimental data with the
hypothesis of a narrow resonance in the invariant mass
region below 2110 MeV has been studied using a 	2 test.
Using this method we determine the upper limits of the
production cross section d�r=d�Kðpp ! KþDsÞ in the
�p invariant mass range between 2058 and 2105 MeV, see
Fig. 5. We only include the data measured within�4 MeV
around the assumed resonance mass Mr. The data are
binned in 1 MeV wide bins; thus nine data points are
used for the 	2 test. Including more data would dilute the
information, since an excursion with a width of about
�M ¼ 0:84 MeV is negligibly small for jM�p �Mrj �
5 MeV, see Fig. 4.
The 	2 obtained from a comparison of the hypothesis to

the data is subject to a standard 	2 test [37]. We assume
that the 	2 is statistically distributed according to a 	2

probability density function fð	2; ndÞ with the appropriate
number of degrees of freedom, nd. Thus, we can calculate
the confidence level (CL) with which we can support or
falsify the hypothesis. If the hypothesis is true, the proba-
bility P to obtain a larger 	2 than the observed one in an
infinite repetition of the experiment is given by

P ¼
Z 1

	2
fðz; ndÞdz: (9)

If P is very small, either the hypothesis is wrong or
the current measurement suffers from a very unlikely

FIG. 4. Missing-mass spectrum of the reaction pþ p ! Kþ þ
X with X ¼ ð�pÞ measured at Tp ¼ 1:953 GeV and �K ¼ 0�.
The upper axis indicates the c.m. momentum q of the�p system.
Solid line: FSI fit curve with resonance signal excluded by the
	2 test. Dashed line: Same resonance signal without folding with
the effective resolution function. Resonance parameters:
d�r=d�K ¼ 42 nb=sr, Mr ¼ 2096:5 MeV, � ¼ 500 keV.

FIG. 5. Upper limits with 99% confidence level of the produc-
tion cross section d�r=d�K (nb=sr) for � ¼ 100 keV (dotted
line), � ¼ 500 keV (dashed-dotted line), and � ¼ 1:0 MeV
(solid line).
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statistical fluctuation. The CL for excluding the hypothesis
of a narrow resonance with a certain production cross
section is given by 1-P. Thus, we have P ¼ 1% for a
confidence level of 99%, i.e. the probability to observe a
larger 	2 when repeating the experiment is only 1%.

We use the number of data points within the invariant
mass interval Mr � 4 MeV as the number of degrees of
freedom, nd. Thus, we neglect the degrees of freedom
introduced by fitting the �p missing-mass spectrum.
Three fit parameters, i.e. the spin-averaged parameters
�M2, �a, and �r, are sufficient in order to reproduce the
measured missing-mass spectrum. They cannot be consid-
ered as free parameters in the present hypothesis test. We
mention that there is no significant effect on the deduced
upper limits due to the errors of those parameters. Thus, we
have nd ¼ 9 and 	2=nd ¼ 2:41 for P ¼ 1%.

C. Upper limits for the production
cross section d�r=d�Kðpp ! KþDsÞ

The upper limits for the production cross section
d�r=d�Kðpp ! KþDsÞ are shown in Fig. 5 for � ¼
100 keV (dotted line), � ¼ 500 keV (dashed-dotted line),
and � ¼ 1:0 MeV (solid line). We note that the upper
limits depend slightly on the total width �. For very small
total widths, i.e. � � 100 keV one can take the upper
limits for � ¼ 100 keV. The differences between the upper
limits for �< 100 keV and � ¼ 100 keV are negligible.

The upper limits exhibit rather strong fluctuations due to
the statistical fluctuations of the data. In the lower part of
the missing-mass spectrum between 2058 and 2080 MeV,
the upper limit varies between 43 and 77 nb=sr for � ¼
100 keV, 50 and 86 nb=sr for � ¼ 500 keV, and 50 and
97 nb=sr for � ¼ 1:0 MeV. In the region between 2080
and 2105 MeV the upper limits are roughly a factor of 2
smaller. This is because four data points between 2080 and
2090 MeV are below the fit curve and that the missing-
mass region between 2090 and 2105 MeV has been mea-
sured with a much higher statistical accuracy. There, the
upper limit varies between 21 and 37 nb=sr for � ¼
100 keV, 23 and 42 nb=sr for � ¼ 500 keV, and 26 and
47 nb=sr for � ¼ 1:0 MeV.

VII. CONCLUSION AND DISCUSSION

The effect of a single isolated narrow resonance in the
total cross section of the free �p scattering has been
studied (see Fig. 3). A narrow strangeness S ¼ �1 reso-
nance in the 1P1 channel is predicted to be characterized by
a rather large resonance signal. Therefore, the free �p
scattering would be ideal to search for a narrow resonance.
However, the effective resolution and the statistical accu-
racy of existing �p scattering data are too low for a
stringent upper limit search.

The reaction pp ! Kþ þ ð�pÞ has been measured at
Tp ¼ 1:953 GeV and � ¼ 0� with a high missing-mass

resolution. A narrow strangeness S ¼ �1 resonance Ds as

predicted by [8,9] is not visible in the data (see Fig. 4). The
missing-mass range between 2090 and 2110 MeV has been
studied with an especially high statistical accuracy. The
apparent small enhancement near 2096.5 MeV (see Fig. 4)
corresponds to an excursion of only 1.5 standard devia-
tions. Upper limits of the production cross section
d�r=d�Kðpp ! KþDsÞ are deduced for resonance
energies between 2058 and 2105 MeV, see Fig. 5. In the
missing-mass region between 2090 and 2105 MeV the
upper limit varies between 21 and 37 nb=sr for � ¼
100 keV, 23 and 42 nb=sr for � ¼ 500 keV, and 26 and
47 nb=sr for � ¼ 1:0 MeV.
Unfortunately, there are no theoretical predictions of the

production cross section d�r=d�Kðpp ! KþDsÞ. Aerts
and Dover gave estimates of production cross sections of
strangeness S ¼ �1 dibaryon states Ds;t for the reactions

K� þ d ! �� þDt and K� þ3 He ! �þ þ n [9].
Differential cross sections of order 1 �b=srwere predicted.
The transition pp ! KþDs from the pp entrance chan-

nel requires orbital angular momentum transfer �l ¼ 0
and 2. Thus, the production cross section d�r=d�Kðpp !
KþDsÞ should peak at the scattering angle � ¼ 0�. The
reaction pp ! Kþð�pÞ has been measured at� ¼ 0�, i.e.
at the maximum of the angular distribution. Therefore, one
expects maximum sensitivity when searching for a narrow
strangeness S ¼ �1 resonance Ds with the reaction pp !
KþDs.
It is interesting to note that the upper limit of the

production cross section d�r=d�Kðpp ! KþDsÞ is nearly
independent of the total width � as long as �<�M. This is
due to the fact that the integral over the Breit-Wigner
distribution (6) is constant (equal to one), that means it
does not depend on �. Thus, folding a narrow Breit-Wigner
distribution (6) with a wider Gaussian distribution yields a
resonance signal which depends only on the production
cross section and the effective resolution width �M but not
on �. This is a great advantage when searching for an
extremely narrow resonance. The sensitivity in the search
for a narrow resonance can be increased substantially by
increasing the missing-mass resolution, i.e. by decreasing
the resolution width �M. Another less efficient way is to
increase the statistical and systematic accuracy.
In contrast to previous experiments, the present experi-

ment exhibits a rather high missing-mass resolution. In
previous experiments, the missing-mass resolution has
been very much lower. Hogan et al. [14] studied the
reaction pp ! Kþð�pÞ at bombarding energies between
2.5 and 3.0 GeV and scattering angles 20�, 30�, and 40�.
The momentum resolution of the detected kaons (�p=p)
ranged from 1.5% at 20� to 3% at 40�. The number of data
points per MeV=c and the effective missing-mass resolu-
tion was so low that they were not able to see the marked
FSI enhancement near the �p threshold. Reed et al. [13]
studied the reaction pp ! Kþð�pÞ at 2.40 and 2.85 GeV
and 0�, 17�, and 32�. The momentum resolution of the
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outgoing kaons at 0� corresponded to �p=p ¼ 1:5%. This
resolution was also too low to search for a narrow reso-
nance with � � 1 MeV. The same holds true for the ex-
clusive measurements of the reaction pp ! Kþ�p by the
COSY-TOF Collaboration [15–17].

As mentioned in the introduction, Siebert et al. [21]
performed the first high-resolution study of the reaction
pp ! Kþð�pÞ. Sharp peaks in the missing-mass spectra
seen there have not been confirmed by the present experi-
ment. In this context we note that the reaction pp !
Kþð�pÞ has been studied [21] at Tp ¼ 2300 MeV at

four scattering angles, 6�, 8.3�, 10.3�, and 12�. The peak
near 2096:5� 1:5 appeared only in the missing-mass spec-
trum measured at 10.3� but not at 6�, 8.3� and 12�. At
Tp ¼ 2700 MeV, the interesting missing-mass range has

been studied at two scattering angles, 12.6� and 20�. The

peak near 2098:0� 1:5 appeared only at �K ¼ 12:6� but
not at 20�. We therefore conclude that the peaks
near 2096:5� 1:5 and 2098:0� 1:5 MeV must be
attributed to a statistical fluctuation of the nonresonant
cross section.
Summarizing, the reaction pp ! Kþð�pÞ has been

measured with a high missing-mass resolution at Tp ¼
1:953 GeV and � ¼ 0�. A narrow strangeness S ¼ �1
resonance Ds is not visible in the missing-mass spectrum.
Upper limits for the production cross section of pp !
KþDs have been deduced.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with J.
Haidenbauer and C. Hanhart.

[1] A. Budzanowski et al. (HIRES Collaboration), Phys. Lett.
B 687, 31 (2010).

[2] A. Budzanowski et al. (HIRES Collaboration), Phys. Lett.
B 692, 10 (2010).

[3] R. Maier, Nucl. Instrum. Methods Phys. Res., Sect. A 390,
1 (1997).

[4] M. Drochner et al. (GEM Collaboration), Nucl. Phys. A
643, 55 (1998).

[5] J. Bojowald et al., Nucl. Instrum. Methods Phys. Res.,
Sect. A 487, 314 (2002).

[6] A. Gal, arXiv:1011.6322v2.
[7] R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977).
[8] A. T.M. Aerts and C. B. Dover, Phys. Lett. B 146, 95

(1984).
[9] A. T.M. Aerts and C. B. Dover, Nucl. Phys. B 253, 116

(1985).
[10] P. J. G. Mulders, A. T.M. Aerts, and J. J. de Swart, Phys.

Rev. D 19, 2635 (1979).
[11] P. J. G. Mulders, A. T.M. Aerts, and J. J. de Swart, Phys.

Rev. D 21, 2653 (1980).
[12] A. C. Melissinos et al., Phys. Rev. Lett. 14, 604 (1965).
[13] J. T. Reed et al., Phys. Rev. 168, 1495 (1968).
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