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49bSapienza Università di Roma, I-00185 Roma, Italy
50Rutgers University, Piscataway, New Jersey 08855, U.S.A.

51Texas A&M University, College Station, Texas 77843, U.S.A.
52aIstituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, I-33100 Udine, Italy

52bUniversity of Trieste/Udine, I-33100 Udine, Italy
53University of Tsukuba, Tsukuba, Ibaraki 305, Japan

54Tufts University, Medford, Massachusetts 02155, U.S.A.
55University of Virginia, Charlottesville, Virginia 22906, U.S.A.

56Waseda University, Tokyo 169, Japan
57Wayne State University, Detroit, Michigan 48201, U.S.A.

EVIDENCE FOR t�t� PRODUCTION AND . . . PHYSICAL REVIEW D 84, 031104(R) (2011)

RAPID COMMUNICATIONS

031104-3



58University of Wisconsin, Madison, Wisconsin 53706, U.S.A.
59Yale University, New Haven, Connecticut 06520, U.S.A.

(Received 24 June 2011; published 31 August 2011)

Using data corresponding to 6:0 fb�1 of p �p collisions at
ffiffiffi
s

p ¼ 1:96 TeV collected by the CDF II

detector, we present a cross section measurement of top-quark pair production with an additional radiated

photon in the central region with 10 GeV or more of transverse energy t�t�. The events are selected by

looking for a lepton (‘ or �), a photon (�), significant transverse momentum imbalance ( 6ET), large total

transverse energy, and three or more jets, with at least one identified as containing a b quark (b). Using an

event selection optimized for the t�t� candidate sample, we also measure the cross section of t�t (�t�t). We

measure the t�t� cross section (�t�t�) to be 0:18� 0:08 pb, and the ratio of �t�t� to �t�t to be 0:024� 0:009.

We observe a probability of 0.0015 (3.0 standard deviations) of the background (non-t�t� events alone

producing 30 events or more.

DOI: 10.1103/PhysRevD.84.031104 PACS numbers: 13.85.Rm, 12.60.Jv, 13.85.Qk, 14.80.Ly

The standard model (SM) [1] of particle physics makes
successful predictions of the production rates of physics
processes that span many orders of magnitude. Data from
p �p collisions collected at the Tevatron have been used to
verify many of these predictions [2]. As a test of the SM,
we measure the ratio of production cross sections of t�t� to
t�t. The ratio allows for the cancellation of systematic
effects, and is a more sensitive test of the SM than the
measurement of the production cross section of t�t� alone.
While current data is not sufficient to study them in detail,
the t�t� coupling parameters are sensitive to some new
physics models [3], and will be better measured in the
future.

Top quarks are dominantly produced in pairs, with both
top quarks decaying to a W boson and a b quark nearly
100% of the time. Their decays are classified as dileptonic
if bothW bosons decay to leptons, semileptonic if only one
W boson decays to leptons, and hadronic if neither W
boson decays to leptons. Selection for the t�t� events in a
semileptonic channel (including � leptonic decays) was
performed using 6:0 fb�1 of integrated luminosity from
p �p collisions at

ffiffiffi
s

p ¼ 1:96 TeV collected using the CDF II
detector [4]. In order to isolate nonhadronic t�t� produc-
tion, we require a high-transverse-momentum (pT) [5]
lepton (‘) identifed as either an electron (e) or a muon
(�), a photon (�), a b-tagged jet (b), missing transverse
energy ( 6ET), large total transverse energy (HT), and three
or more jets. With these selection criteria, t�t� dominates
SM predictions [6]. The total transverse energy, HT , is the
scalar sum of the transverse energy of electrons, muons,
jets, photons, and 6ET identified in the event. Furthermore,
we select top-quark pair production (t�t) events by using
nearly the same selection as t�t�, but without the photon
requirement. Using similar event selection ensures that
many systematic uncertainties cancel when we measure
the cross section ratio of t�t� to t�t.

The semileptonic cross section of t�t� has been measured
to be 0:15� 0:08 pb using data corresponding to an inte-
grated luminosity of 1:9 fb�1 [6]. Using the branching

ratio of W decays to leptons (0.324) [7], this corresponds
to a production cross section of 0:34� 0:18 pb. The cross
section of t�t production is well measured at 7:70� 0:52 pb
[8]. However, a measurement of both t�t and t�t� cross
sections with similar event selection has not been
performed.
The CDF II detector is a cylindrically symmetric mag-

netic spectrometer designed to study p �p collisions at the
Fermilab Tevatron. Here we briefly describe the compo-
nents relevant for this analysis. Tracking systems are used
to measure the momenta of charged particles and to assist
lepton identification. A multilayer system of silicon strip
detectors [9] which identifies tracks in the r�� and r� z
views [5], and the central outer tracker (COT) [10], are
contained in a superconducting solenoid that generates a
1.4 T magnetic field. The COT is a 3.1 m long open-cell
drift chamber capable of making up to 96 measurements of
each charged particle in the pseudorapidity region j�j< 1
[5]. Sense wires are arranged in 8 alternating axial and�2�
stereo superlayers with 12 wires each. For high-momentum
tracks, the COT transverse momentum resolution is
�pT=p

2
T ’ 0:0015 GeV�1.

Segmented calorimeters with towers arranged in a pro-
jective geometry, each tower consisting of an electromag-
netic and a hadronic compartment [11], cover the region
j�j< 3:6. In this analysis, we select photons and electrons
from the central region, j�j & 1:0, where the central elec-
tromagnetic shower system (CES) makes profile measure-
ments at shower maximum with finer spatial resolution
than the calorimeter. Electrons are reconstructed in the
central electromagnetic calorimeter (CEM) with an ET

[5] resolution of �ðETÞ=ET ’ 13:5%=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ET=GeV

p � 1:7%.
Jets are identified using the hadronic and electromagnetic
calorimeter using a cone in ��� space of radius

R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið��Þ2 þ ð��Þ2p ¼ 0:4. The jet energy resolution is
approximately � ’ 0:1� ETðGeVÞ þ 1 GeV [12] (i.e.,
2.5 GeV for a 15 GeV jet).
Jets containing a hadron with a b quark (b hadrons)

are identified by exploiting the long b-hadron lifetime
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(c�b � 450 �m). The tracks originating from the resulting
displaced vertex are used by the SECVTX [13] algorithm to
identify the b hadron. The algorithm works in the region
j�j< 2, defined by the silicon system coverage. Jets that
are identified as coming from b hadrons are said to be b
tagged.

Muons (�) are identified using the central muon (CMU),
the central muon upgrade (CMP), and the central muon
extension (CMX) systems [14], which cover the detector
region j�j< 1.

Luminosity is measured using C̆erenkov luminosity
counters in the range 3:7< j�j< 4:7. The uncertainty in
the luminosity has been estimated to be 6%, where 4.4%
comes from the acceptance and operation of the luminosity
monitor, and 4% comes from the uncertainty on the inelas-
tic cross section of p �p [15].

A three-level online event selection system (trigger) [4]
selects events with a high-pT lepton in the central region.
The trigger system selects electron candidates from clus-
ters of energy in the central electromagnetic calorimeter.
Electrons are distinguished from photons by requiring a
COT track associated with the clusters. The muon trigger
requires a COT track that extrapolates to a track segment
(‘‘stub’’) in the muon detectors.

A muon candidate passing our selection criteria must
have a well-measured track in the COT, energy deposited
in the calorimeter consistent with minimum-ionization
expectations, a muon stub in both the CMU and CMP, or
in the CMX, consistent with the extrapolated COT track,
and COT timing consistent with a track from a p �p
collision.

An electron candidate passing our selection criteria must
have a high-quality track with pT > 0:5ET , unless ET >
100 GeV, in which case the pT threshold is set to 25 GeV, a
good transverse shower profile that matches the extrapo-
lated track position, a lateral sharing of energy in the two
calorimeter towers containing the electron shower consis-
tent with that expected for an electromagnetic (EM) shower,
and minimal leakage into the hadron calorimeter [16].

Photon candidates are required to have E�
T > 10 GeV,

no track with pT > 1 GeV and at most one track with pT <
1 GeV, pointing at the EM cluster, good profiles in both
transverse dimensions at shower maximum, and minimal
leakage into the hadron calorimeter [16]. The detected
tracks have a minimum pT of 0.35 GeV due to the mag-
netic field curling up lower pT particles. The photons are
only reconstructed in the CEM and have j�j< 1:0.

To reduce background from photons or leptons that
originate from decays of hadrons produced in jets, both
the photon and the lepton in each event are required to be
‘‘isolated.’’ The ET deposited in the calorimeter towers in a
cone in �� ’ space [5] of R ¼ 0:4 around the photon or
lepton position is summed, and the ET due to the photon or
lepton is subtracted. The remaining ET is required to be
less than 2:0 GeVþ 0:02� ðET � 20 GeVÞ for a photon,
or less than 10% of the ET for electrons or pT for muons. In

addition, for photons, the sum of the pT of all tracks in the
cone must be less than 2:0 GeVþ 0:005� ET .
Missing transverse energy, 6ET , is calculated from

the observed calorimeter-tower energies in the region
j�j< 3:6 [17]. Corrections are then made to the 6ET for
nonuniform calorimeter response [18] for jets with uncor-
rected ET > 15 GeV and �< 2, and for muons with
pT > 20 GeV.
Events for the analysis are selected by requiring a central

e or � with E‘
T > 20 GeV originating less than 60 cm

along the beam line from the detector center and passing
the criteria listed above. We further require events to have

at least one of the following objects: a jet with Ejet
T >

15 GeV, 6ET > 20 GeV, an additional lepton, or a central
� with ET > 10 GeV.
The first measurement we perform is in the t�t signal

sample, which requires an event to contain 6ET > 20 GeV,
a lepton, a b-tagged jet, HT > 200 GeV, Njets � 3 [19]

(including the b-tagged jet), and transverse mass of the
lepton and 6ET to be greater than 20 GeV for the electron
channel, and 10 GeV for the muon channel. Transverse
mass for the 6ET and lepton is defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE‘;T � 6ET � E‘;x � 6ETx � E‘;y � 6ETyÞ

q
. The selection

criteria is inclusive, so if an event contains an additional
lepton or a photon it is also accepted as a signal event. The
highest-pT lepton determines if the event is an electron or
muon event.
Events in the t�t� signal sample are selected by requiring

6ET > 20 GeV, a lepton, a b-tagged jet, HT > 200 GeV,
Njets � 3 (including the b-tagged jet), and a photon with

ET > 10 GeV. For all photons we require the�2 of the CES
shower profile be less than 20. To further suppress back-
grounds, photons with ET between 10 and 25 GeV must
have a �2 of the CES shower profile less than 6; we discuss
how �2 is calculated below. Similar to the t�t analysis, the
selection is inclusive. The selection criteria are identical to
the previous t�t� cross section measurement [6], with the
exception of the low-ET photon �2 requirements.
The primary difference between the t�t and t�t� selection,

other than the photon selection, is the requirement of a
transverse mass selection for t�t. In the t�t selection, the low-
transverse-mass region is not well-modeled with back-
ground estimation methods. The t�t� sample does not suffer
from this deficiency, and we do not use the transverse mass
selection criterion to keep acceptance of signal events high,
this behavior is also seen in the ‘� 6ET control sample

described below.
Control samples are identified by selecting events with a

lepton, a photon, and 6ET > 20 GeV (‘� 6ET), or two oppo-
sitely charged same-flavor central leptons, a photon, and a
three-body mass consistent with the Z boson (‘‘�). These
control samples are used to define the above CES �2

selection for photons.
The �2 value of photons is based on the lateral shower

shapes observed in the CES compared to that predicted
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from a sample of test-beam electrons. Using the control
samples, we identify an additional selection criterion on
photons [20]. It should be noted that the t�t� sample
contains 30 events and is a subset of the 8276 events
in the ‘� 6ET sample. The ‘‘� sample contains 1344
events. While the samples are not independent, optimizing
photon identification selection criteria using the ‘� 6ET

sample should be minimally affected by the presence of
t�t� events.

The dominant SM sources of events with a lepton,
photon, and significant 6ET , not including particle misiden-
tifications, are t�t� production and W�þ heavy flavor
(HF), in which a W boson decays leptonically (‘�) and a
photon is radiated from an initial-state or final-state quark,
the W boson, or a charged final-state lepton [21]. In this
paper, HF includes c �c, b �b, and c. Similarly, for events in
the t�t selection, the dominant source of events is due to t�t
production and W þ HF production.

The production of t�t� events with semileptonic and
dileptonic decays, as well as the SM background of
single-top events and associated production of a
W�þ HF is estimated from leading-order (LO) matrix-
element Monte Carlo (MC) simulations event generator
MADGRAPH [22]. Events for all production and decays of t�t,
WW, WZ, and ZZ signals are generated with PYTHIA [23].
The production of W þ HF, as well as Zþ b �b, and
Z ! �� decays are generated with ALPGEN [24]. Then
the events are processed with the same reconstruction
and analysis codes used for the data. Backgrounds from
ZZ are estimated to be negligible to the t�t� signature.

Initial-state radiation is simulated by the PYTHIA shower
MC simulation code tuned so as to reproduce the under-
lying event [25]. All of the generated samples are then
passed through a full simulation of the detector, then
reconstructed with the same reconstruction code used for
the data.

The expected contributions from t�t, W þHF, single-
top, Zþ b �b, and Z ! �� production to the t�t search are
given in Table I, and the expected contributions from t�t�
and W�þ HF production to the t�t� search are given in
Table II. Additional contributions from misidentification
backgrounds, described below, are also shown in the
Tables. Figure 1 shows kinematic distributions for the t�t
sample, and Figs. 2 and 3 show distributions for events in
the t�t� sample. There is good agreement between data and
SM predictions. We show the data and background pre-
dictions combined for both electron and muon events; there
is good agreement in both channels individually, as shown
in [20].

High pT photons are copiously produced in hadron jets
initiated by a scattered quark or gluon. In the t�t� sample,
the number of events in which a jet is misidentified as a
photon (jet faking photon) is estimated by removing the
isolation requirements on the photon. We fit the resulting
isolation distribution using signal and background

templates obtained from data. The signal template is con-
structed using electrons from Z0=�� ! ee events, and a
background template is made from a QCD-enriched sam-
ple [20,26].
The expected number of events in which an electron is

misidentified as a photon in the t�t� signature is determined
by measuring the electron ET spectrum in the ‘ 6ETbþ eþ
largeHT , and � 3 jets sample (events of this type are

TABLE I. Summary for predicted and observed events in the t�t
(‘ 6ETbþHT > 200 GeVþ Njets � 3) signal sample.

Predicted and Observed t�t Events

SM Source eb 6ET �b 6ET ðeþ�Þb 6ET

t�t 1420� 180 1080� 140 2500� 330
WW 29� 4 22� 3 51� 7
WZ 8:6� 1:1 6:5� 0:9 15:1� 2:0
ZZ 1:3� 0:2 1:0� 0:1 2:3� 0:3
Wbb 203� 34 146� 24 348� 58
Wcc 127� 23 94� 17 221� 40
Wc 85� 13 61� 9 147� 23
Single-top (s-ch.) 76� 10 59� 8 135� 18
Single-top (t-ch.) 66� 9 50� 7 116� 16
ðZ ! ‘‘Þb �b 31� 3 22� 2 53� 5
Z ! �� 6� 8 9� 8 14� 11
Mistags 358� 29 214� 17 572� 46
QCD 222� 38 20� 3 240� 40
Total Predicted 2630� 196 1790� 146 4420� 340
Observed 2720 1709 4429

TABLE II. Summary for t�t� (‘� 6ETbþHT > 200 GeVþ
Njets � 3). Monte Carlo samples listed in the table are given as

they were generated (e.g., WW was not generated with an
associated photon.) Backgrounds from ZZ are found to be
negligible.

Predicted and Observed t�t� Candidate Events

SM Source e�b 6ET ��b 6ET ðeþ�Þ�b 6ET

t�t� (semilep.) 5:98� 1:10 5:21� 0:97 11:19� 2:04
t�t� (dilep.) 1:47� 0:27 1:27� 0:24 2:74� 0:50
Wc� 0þ0:07

��0 0þ0:07
��0 0þ0:09

��0

Wcc� 0þ0:05
��0 0:05� 0:05 0:05� 0:07

Wbb� 0:15� 0:07 0:06� 0:05 0:21� 0:08
WZ 0:05� 0:05 0:05� 0:05 0:09� 0:06
WW 0:06� 0:03 0:06� 0:03 0:11� 0:03
Single-Top (s-chan) 0:09� 0:10 0� 0:10 0:09� 0:13
Single-Top (t-chan) 0:14� 0:14 0:13� 0:14 0:27� 0:19
� ! � fake 0:20� 0:08 0:10� 0:05 0:29� 0:09
Jet faking � 5:75� 1:76 1:79� 1:56 7:54� 2:53
Mistags 1:47� 0:37 1:02� 0:32 2:50� 0:51
QCD 0:38� 0:38 0:02� 0:02 0:40� 0:38
ee 6ETb, e ! � 0:94� 0:19 	 	 	 0:94� 0:19
�e 6ETb, e ! � 	 	 	 0:49� 0:11 0:49� 0:11
Total Predicted 16:7� 2:2 10:3� 1:9 26:9� 3:4
Observed 17 13 30
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created from dileptonic, ee or e�, t�t and diboson decays),
and then multiplying by the probability that an electron is
misidentified as a photon. The latter is measured in data
using Z0=�� ! ee events that are misreconstructed as
Z0=�� ! e�.

To estimate the number of b-tagged jets that are in
reality mistagged light-quark jets (mistags), each jet in

the ‘� 6ETþ � 3 jets and high-HT sample is weighted by
a mistag rate. The mistag rate per jet is measured using a
large inclusive-jet sample. For the t�t sample, a similar
procedure is used. Each jet in the signal samples has a
corresponding probability to be identified as a b-tagged jet.
In all cases, however, the resulting prediction is overesti-
mated because we count as mistags, events which have true
heavy flavor jets (i.e., events due to t�t events may be
mistagged, but they will be accounted for in the MC).
The fraction’s denominator is computed by finding the
total number of ‘� 6ET � 3 jets (or t�t analogue) events. Its
numerator is the difference between the denominator and
the number of events in the sample with b-tagged jets
predicted by MC simulations. The fraction is the amount
of events that have no true heavy flavor content relative to
the size of ‘� 6ET � 3 jets (or t�t analogue) sample; it is used
to scale our mistag estimate. This scaled background esti-
mate removes events which contain actual heavy flavor
content from the mistag total; the scale factor is nearly
60%.
The background due to events in which a jet is

misidentified as a lepton (QCD) is estimated using
‘‘nonelectrons.’’ Nonelectrons are jets which are kinemati-
cally similar to electrons, but which fail a pair of selection
criteria normally passed by electrons (regardless of energy)
such as EM shower-shape, energy over momentum, or
isolation. Nonelectrons play the role of leptons in our
model of the QCD background. The remaining object
selection is unchanged. In each signature, a template
of signal events in data with 6ET < 20 GeV are fit to
the sum of MC backgrounds and a scaled nonelectron
signal. The QCD background is the sum of the scaled
nonelectron events in the 6ET > 20 GeV region expected
from the fit.
To avoid double counting, the total background yields

are corrected by removing the predicted number of events
with two objects misidentified. Each of the aforementioned
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FIG. 1 (color online). The distributions for events in the t�t
sample (points) of (a) the ET of the lepton; (b) the missing
transverse energy 6ET ; (c) the ET of the highest ET jet; and (d) the
total transverse energy HT . The histograms show the expected
SM contributions from top production (t�t), and miscellaneous
backgrounds (Misc), which include diboson production, single-
top, W þ HF, and Zþ HF production as well as jets misidenti-
fied as leptons (QCD), and misidentified b tags.
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expected SM contributions from radiative top-quark pair pro-
duction (t�t�),W� production with heavy flavor (W�þ HF), and
miscellaneous backgrounds (Misc), which include SM WW and
WZ production as well as jets, � leptons, electrons, and jets
misidentified as photons, jets misidentified as leptons (QCD),
and misidentified b tags.
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FIG. 2 (color online). The distributions for events in the t�t�
sample (points) in (a) the ET of the lepton; (b) the missing
transverse energy, 6ET ; (c) the ET of the b jet; and (d) the ET of
the photon. The histograms show the expected SM contributions
from radiative top production (t�t�), W� production with heavy
flavor (HF), and miscellaneous backgrounds (Misc), which in-
clude WW and WZ production as well as jets, � leptons,
electrons, and jets misidentified as photons, jets misidentified
as leptons (QCD), and misidentified b tags.
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data-driven background estimates accounts for a back-
ground process where one object in the event is misidenti-
fied. Events with two misidentified objects would be
counted in a pair of background estimates. In the t�t sample,
double counting is accounted for by removing the QCD
background from the mistagging background, and vice
versa.

The background from tau leptons, which decay to had-
rons, which decay to photons is a background estimated
from the t�t MC sample by selecting � ! hadrons ! �
events using MC information.

The t�t event detection efficiency and acceptance are
calculated using the MC simulation which has all decays
of t�t. The uncertainty on the t�t cross section is dominated
by systematic uncertainties. The t�t� event detection effi-
ciency and acceptance are calculated using both semilep-
tonic, and dileptonic decays of the pair of top quarks in the
decay. The total t�t� cross section is then calculated assum-
ing that t�t� has the same branching ratio to semileptonic
and dileptonic decays as t�t pair production. The uncer-
tainty in the t�t� cross section measurement is dominated
by statistics.

Systematic uncertainties have been calculated by vary-
ing detector efficiencies and resolutions within known
uncertainties and evaluating the change in our measure-
ments. These uncertainties are added in quadrature
when independent, and summed when positively (or nega-
tively) correlated. The largest uncertainties, given in
descending order, are due to luminosity, b-hadron
tagging efficiencies and, for the t�t� sample, photon
identification.

We observe 30 t�t� candidate events compared to an
expectation of 26:9� 3:4. We observe 4429 t�t events,
with an expectation of 4420� 340. Assuming the differ-
ence between the non-t�t background estimate and the
number of observed events is due to SM t�t production,
we measure the t�t cross section to be 7:62� 0:20ðstatÞ �
0:68ðsysÞ � 0:46ðlumÞ pb. The theoretical production
cross section of t�t at the Tevatron is 7:08þ0:00þ0:36

�0:32�0:27 pb
[27]. The first uncertainty comes from scale uncertainty
around � ¼ mtop, and the second is due to parton distri-

bution function uncertainties.
If one assumes that t�t� is not allowed in the SM, and

there are no new physics processes contributing to this
sample, the probability that the background events alone
will produce 30 or more events is 0.0015 (3.0 standard
deviations). This is the first experimental evidence for t�t�
production. Assuming the difference between the back-
ground estimate and the number of observed events is
due to SM t�t� production, we measure the t�t� cross section
to be 0:18� 0:07ðstatÞ � 0:04ðsysÞ � 0:01ðlumÞ pb. The
t�t� event detection efficiency and acceptance are calcu-
lated using the MC sample requiring at least one W boson
decaying leptonically. The acceptance times efficiency,
using both semileptonic and dileptonic modes, for this

t�t� signal is 0:015� 0:002. The uncertainty on the mea-
sured cross section is dominated by the statistical uncer-
tainties associated with the small number of events
observed. A theoretical value for the nonhadronic decays
of t�t� (sum of all three lepton flavors) cross section �t�t� ¼
0:071� 0:011 pb is obtained from the leading-order (LO)
MADGRAPH semileptonic cross section �t�t� ¼ 0:0726 pb

multiplied by a K-factor to find the next to leading-order
(NLO); K-factor ¼ �NLO=�LO ¼ 0:977 [28]. The next to
leading-order theoretical total cross section for t�t� is thus
�total

t�t� ¼ 0:17� 0:03 pb.

The ratio between the production cross sections of t�t�
and t�t is measured to be < ¼ 0:024� 0:009 which agrees
with the SM prediction of < ¼ 0:024� 0:005, obtained
from theoretical predictions of the cross sections of t�t�
and t�t. When measuring < many of the systematic uncer-
tainties nearly cancel, such as those due to lepton identi-
fication, b hadron identification, jet energy scale, and
luminosity uncertainties. However, other systematic uncer-
tainties do not cancel out completely such as QCD system-
atic uncertainties, and photon identification and acceptance
uncertainties. The total systematic uncertainties combine
to less than 10%, however, the statistical uncertainty is the
dominant contribution to the total uncertainty.
In conclusion, we have performed a search for t�t�,

which is the dominant SM process that produces the event
signature of leptonþ photonþ ET þ b-jets with large to-
tal transverse energy and Njets � 3. We find that the num-

bers of events observed are consistent with SM predictions.
We obtain a t�t� cross section �t�t� ¼ 0:18� 0:08 pb, and

the ratio of production cross sections of t�t� to t�t ¼
0:024� 0:009.
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