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In the framework of the induced matter theory of gravity, we derive a five-dimensional solution of the

field equations that can describe a four-dimensional cosmological scenario where the dark fluid (dark

matter plus dark energy) equation of state has a geometrical origin. There is not a natural separation of the

dark sector into different components, and so the model may provide a geometrical explanation for the

existence of a dark degeneracy in cosmological scenarios.
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I. INTRODUCTION

The idea of the existence of exotic components in the
Universe, namely, dark matter and dark energy, comes
basically from three pieces of observational evidence:
supernovae of the type Ia, surveys of clusters of galaxies,
and observations of anisotropies in the cosmic microwave
background radiation [1]. Observations of high redshift of
type Ia supernovae suggest that the expansion of the
Universe is accelerating [2–4]. Surveys of clusters of gal-
axies indicate that the energy density of matter is less than
the critical density of the Universe [5], whereas observa-
tions of the temperature anisotropies of the cosmic micro-
wave background show evidence that our Universe is
spatially flat, and so the total energy density parameter is
very close to the critical one [6].

In obtaining these observational constraints, it has been
considered the model assumption that there are two sepa-
rated dark components: dark matter, responsible for the
formation of cosmological structure, and dark energy, re-
sponsible for the accelerated expansion of the Universe.
From this arises the so-called standard cosmological
model, also known as �CDM, where dark matter is a
(cold) pressureless fluid and the dark energy is described
by a cosmological constant [1,6].

However, the observations through which these two
components have been detected are gravitational in nature,
and these kinds of measurements are unable to provide
information about a unique decomposition of the dark
sector into these components [7]. As clearly argued in
[8], when we are in a state of total ignorance about the
nature of a single one of the dark components, we can also
not completely measure the others.

In this case, the separation into dark matter and dark
energy can be seen as a convenient parametrization without
experimental reality. In models where this split is assumed,
it is necessary to impose some additional conditions upon
the models in order to make the assumption well-defined.

These conditions can be that the dark energy vanishes at
high redshift, or that the dark energy constitutes the
nonclustering part of the dark energy-momentum tensor.
The lack of guidance of gravity observations leads to the
so-called dark degeneracy [8].
Theoretically, a great effort has been made to construct

models to explain dark energy. In the literature, we can find
proposals, among others, like quintessence models, inter-
acting models of dark energy, k-essence models, and pro-
posals coming from modified theories of gravity [9] (see
also[10–12] and references therein). Other alternatives are
models based in theories with extra dimensions, like the
induced matter (IM) theory of gravity [13,14] and brane
world (BW) scenarios [15].
In BW scenarios, the four-dimensional (4D) universe is

viewed as a hypersurface called the brane, which is em-
bedded in a higher dimensional spacetime called the bulk.
In this context, ordinary matter is confined to the brane by a
variety of different mechanisms, while gravity can propa-
gate freely through the bulk.
Parallel to BW scenarios we have the IM theory.

This theory can be considered as an extension of 4D
general relativity to 5D. In this approach, our Universe is
described by a 4D hypersurface embedded in a 5D

Ricci-flat (ð5ÞRab ¼ 0) spacetime. The extra dimension is

considered as noncompact, and classical sources of
matter in 4D are identified with the curvature of the 4D
hypersurface. This curvature is a consequence of the
embedding [14].
The IM theory is mathematically supported by the

Campbell-Magaard theorem, which states that any analyti-
cal solution of the n-dimensional Einstein equations can be
embedded in a (nþ 1)-dimensional Ricci-flat manifold
[16–18]. Both the BW and the IM theory have different
physical motivations; an equivalence to each other has
been shown by Ponce de Leon in [19]. In spite of such
an equivalence, the requirement in IM theory of starting
from a 5D Ricci-flat spacetime makes the task of finding
solutions easier than in the BW theories.
The purpose of this paper is to derive a particular solu-

tion to the 5D field equations of the IM theory capable
of describing not just the dark energy component of the
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Universe, but the full dark sector (dark matterþ
dark energy) as a single dark fluid component. An exact
solution is found from the expected behavior of the dark
fluid equation of state in the standard �CDM model. The
solution also unifies previous works in which dark matter
and dark energy were studied separately in IM theory.

The paper is organized as follows. In Sec. II, we obtain
the geometrical equation of state for the induced matter,
from a class of 5D solutions, and we establish the effective
4D field equations. In Sec. III, we obtain a particular
solution that describes, in the sense of induced matter,
the 4D cosmological dark fluid. Finally, in Sec. IV, we
give some final comments.

II. 5D SOLUTIONS AND 4D INDUCED MATTER

Let us start by considering a 5D Ricci-flat spacetime
ðM5; gÞ. In order to describe neutral matter in the local
coordinates f�ag ¼ fx�; c g, we choose a coordinate gauge
that allows us to write the 5D line element in the form

dS25 ¼ g��ðx; c Þdx�dx� þ �gc c ðx; c Þdc 2; (1)

where c is the spacelike and noncompact extra coordinate,
and parameter � ¼ �1 accounts for the signature of the
extra coordinate. Our conventions are Latin (Greek) indi-
ces take values 0, 1, 2, 3, 4 (0, 1, 2, 3), and the metric
signature is ðþ;�;�;�;�Þ, and we use units in which
c ¼ 1.

In IM theory the 4D field equations are in general
constructed as follows. From the 5D field equations
ð5ÞRab ¼ 0, and by means of the Gauss-Codazzi-Ricci

equations for the embedding, we write the conventional

4D Ricci tensor ð4ÞR��. With the help of ð4ÞR�� together

with the induced metric h��ðxÞ ¼ g��ðx; c 0Þ on a generic

hypersurface�: c ¼ c 0 ¼ constant, we also write the 4D

scalar of curvature, ð4ÞR.
We can form the 4D Einstein tensor ð4ÞG�� ¼ ð4ÞR�� �

ð1=2Þð4ÞRh��, leaving all remaining terms grouped to-

gether to form an effective (induced) energy-momentum

tensor TðIMÞ
�� . The resulting field equations are then of the

form ð4ÞG�� ¼ 8�GTðIMÞ
�� , where the energy-momentum

tensor of induced matter is purely geometrical in nature,
and has the explicit form [13,14]

8�GTðIMÞ
�� ¼ �;�;�
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where �2 ¼ gc c , the comma denotes a partial derivative,

the semicolon denotes a 4D covariant derivative, and the

star ð?Þ denotes a partial derivative with respect to the extra
coordinate c .
In order to derive a cosmological scenario in which a

combined dark fluid may be described, let us use the class
of 5D solutions [20–22]

dS25 ¼ ½ _A2ðt; c Þ=�2ðtÞ�dt2 � A2ðt; c Þðdr2 þ r2d�2Þ
� dc 2; (3)

with

A2ðt; c Þ ¼ ½�ðtÞ2 þ k�c 2 þ 2�ðtÞc þ �ðtÞ2 þ K

�ðtÞ2 þ k
; (4)

where the dot denotes a derivative with respect to the
timelike coordinate t, �ðtÞ and �ðtÞ are arbitrary metric
functions, and k is the 3D curvature constant. ConstantK is
related to the Kretschmann scalar, namely,

I ¼ RabcdR
abcd ¼ 72K2

Aðt; c Þ8 ; (5)

which shows that a non-null K determines the Riemannian
curvature of the 5D manifold [23].
Assuming that the 5D spacetime can be foliated by

a family of hypersurfaces �, defined by the equation
c ¼ constant, the geometry of each hypersurface, say, at
c ¼ c 0, will be then determined by the induced metric

dS2� ¼ ½ _A2ðt; c 0Þ=�2ðtÞ�dt2 � A2ðt; c 0Þðdr2 þ r2d�2Þ:
(6)

The Friedmann-Robertson-Walker (FRW) metric for a
4D flat universe, as supported by the observational
evidence [6],

dS2jFRW ¼ dt2 � a2ðtÞðdr2 þ r2d�2Þ; (7)

where aðtÞ is the scale factor of the Universe, can be
recovered from the induced metric (6) by demanding
the continuity of the metric across �. A comparison of
Eqs. (6) and (7) indicates that the metric functions can be
written as

�ðtÞ ¼ aH; (8a)

�ðtÞ ¼ �ðaHÞ2c 0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�K þ a4H2

p
; (8b)

where H ¼ _a=a is the cosmological Hubble parameter,
and we have set k ¼ 0. The double sign in Eq. (8b) appears
because Eqs. (4) and (8a) lead to a quadratic equation for
the metric function � when the continuity of the 5D metric
is imposed. Physically, both solutions for � induce the
same energy density and pressure in 4D [see Eq. (9)],
leading to the same 4D effective dynamics, and there is
no dynamical reason to choose any sign.
As is usually done in the IM theory, after the identifica-

tion of the induced matter on � with a perfect fluid, we
obtain, with the help of Eqs. (2), (3), and (8), that the total
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effective energy density and isotropic pressure, measured
by 4D comoving observers, is given by [20]

8�G	eff ¼ ð4ÞG0
0 ¼

3�2

a2
; (9a)

8�Gpeff ¼ �ð4ÞG1
1 ¼ � 2� _�

a _a
��2

a2
; (9b)

with ð4ÞG1
1 ¼ ð4ÞG2

2 ¼ ð4ÞG3
3. By means of Eqs. (8) and (9),

we can define the effective equation of state

weff � peff

	eff

¼ � 1

3

�
1þ 2

_�

�H

�
¼ � 1

3

�
1þ 2

€aa

_a2

�
; (10)

which will give us information about the 4D physical
sources of matter that are induced geometrically upon the
hypersurface modeling our 4D universe �. The last equal-
ity in Eq. (10) can be recognized as the typical one between
the effective equation of state and the scale factor in a flat
FRW universe.

III. INDUCING THE DARK FLUID

In the �CDM model, the evolution of the total dark
sector equation of state is given explicitly as

wdarkðaÞ � � 	�

	CDM þ 	�

¼ � a3

a3 þ �3
; (11)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��;0=�CDM;0

3

q
is the ratio of the present val-

ues of the dark energy and dark matter density parameters.
In deriving Eq. (11), we have considered the convention for
the normalization of the present value of the scale factor,
a0 ¼ 1, that we will use hereafter.

In order to give a geometrical interpretation in the con-
text of IM theory of the dark fluid described by Eq. (11), we
implement its formal identification with the geometrical
equation of state [see Eq. (10)] so that

1

3

�
1þ 2

€aa

_a2

�
¼ a3

a3 þ �3
: (12)

A full integration gives the known functional form of the
scale factor aðtÞ in a �CDM model,

aðtÞ ¼ �sinh2=3
�
3

2

H0tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �3

p
�
: (13)

This time, however, the matter contents only account for
cold dark matter and the cosmological constant. The sub-
stitution of the result (13) into Eq. (8) allows us to find the
functional form of the metric functions,

�ðtÞ ¼ �5=2H0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �3

p
�
cosh
ðtÞ
sinh1=3
ðtÞ

�
; (14a)

�ðtÞ ¼ � �5H2
0

1þ �3

�
coth2
ðtÞ
sinh1=3
ðtÞ

�
c 0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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sinh2=3
ðtÞcosh2
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s
; (14b)

where we have used the auxiliary function 
ðtÞ ¼ ð3=2Þ�
½H0t=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �3

p
�.

Our results enclose some limiting cases already dis-
cussed in the literature. On one hand, when H0t � 1, we
find from Eq. (14a) that

aðtÞ / t2=3 ) �ðtÞ ’ �

�
H0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �3

p
�
2=3

�
3t

2

��1=3
; (15)

which corresponds to the cold 3D flat model studied within
the IM framework in Ref. [20]. It can be seen that the
effective equation of state [see Eq. (10)] corresponds to
dust, peff ¼ 0. Furthermore, we would like to point out that
our solution gives a full integration of the general case
discussed in [20] for a Universe containing dust and a
cosmological constant.
On the other hand, when H0t � 1, Eq. (14a) yields

aðtÞ � � exp

�
H0tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �3

p
�
) �ðtÞ ’ �H0 exp

�
H0tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �3

p
�
:

(16)

This limiting solution corresponds to a 3D flat universe
dominated by a cosmological constant, which has been
extensively used in Refs. [22,24] to derive inflationary
scenarios from a noncompact Kaluza-Klein theory of
gravity.

IV. FINAL COMMENTS

We have studied, within the context of an IM theory of
gravity, a cosmological scenario where the dark sector
(dark matter plus dark energy) can be geometrically in-
duced upon our 4D universe from a 5D Ricci-flat space-
time, as one single dark fluid.
We were able to find a complete solution of the 5D

metric functions that covers both the matter and cosmo-
logical constant dominated epochs in the evolution of the
Universe. The result contains, as limiting cases, solutions
that have been derived and used by other authors also in the
context of IM theory. The central point of the geometrical
description relies on the formal identification of the geo-
metrical equation of state with the physical one, whose
functional form is given by the dynamics of the standard
�CDM model. It should be stressed that only the dark
matter and the dark energy components were considered.
Other matter components, such as photons, baryons, and
neutrinos, are not part of the geometrical induced matter.
However, these components can be included if we extend
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our model to the context of hybrid models, in which the
ideas of the IM theory are combined with those of brane
world cosmology [19]. This is research in progress that we
expect to report elsewhere.

It can be seen from our results that the phenomenology
associated with a single dark fluid, for which there is no
natural separation between its components, can be given a
geometrical interpretation from the point of view of a
noncompact Kaluza-Klein theory of gravity. This fact
may help to explain the existence of a dark degeneracy
which is supported by (gravitational) observations.
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