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We revisit here a previous argument due to Wald showing the impossibility of turning an extremal

Kerr-Newman black hole into a naked singularity by plunging test particles across the black hole event

horizon. We extend Wald’s analysis to the case of near-extremal black holes and show that it is indeed

possible to destroy their event horizon, giving rise to naked singularities, by pushing test particles toward

the black hole as, in fact, it has been demonstrated explicitly by several recent works. Our analysis allows

us to go a step further and to determine the optimal values, in the sense of keeping to a minimum the

backreaction effects, of the test particle electrical charge and angular momentum necessary to destroy a

given near-extremal Kerr-Newman black hole. We describe briefly a possible realistic scenario for the

creation of a Kerr naked singularity from some recently discovered candidates to be rapidly rotating black

holes in radio galaxies.
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I. INTRODUCTION

There has been recently a revival of interest in the
problem of turning a black hole into a naked singularity
by means of classical and quantum processes, see, for
instance, [1,2] for references and a brief review with a
historical perspective. Such a problem is intimately related
to the weak cosmic censorship conjecture [3,4]. Indeed, the
typical facility in covering a naked singularity with an
event horizon and the apparent impossibility of destroying
a black hole horizon [5] have strongly endorsed the validity
of the conjecture along the years, albeit it has started to be
challenged recently.

The most generic asymptotically flat black hole solution
of the Einstein equations we can consider is the Kerr-
Newman black hole, which is completely characterized
by its mass M, electric charge Q, and angular momentum
J ¼ aM. The distinctive feature of a black hole, namely,
the existence of an event horizon covering the central
singularity, requires

M2 � a2 þQ2; (1)

with the equality corresponding to the so-called extremal
case. If (1) does not hold, the central singularity is exposed,
giving rise to a naked spacetime singularity, which should
not exist in nature according to the weak cosmic censorship
conjecture. All the classical results on the impossibility of
destroying black hole horizons were obtained by consid-
ering extremal black holes. The first work arguing that it
would be indeed possible to destroy the horizon of a near-
extremal black hole is quite recent and it was due to
Hubeny [6], which considered a Reissner-Nordström
(a ¼ 0) black hole. The physical possibility of destroying

the horizon of a near-extremal black hole by overspinning
or overcharging it with the absorption of test particles or
fields is nowadays a very active field of research and debate
[1,2,7–16].
The impossibility of destroying the event horizon by

plunging test particles into an extremal Kerr-Newman
black hole is clear and elegantly summarized in Wald’s
argument [17], which we briefly reproduce here. We con-
sider test particles with energy E, electric charge e, and
orbital angular momentum L. The test particle approxima-
tion requires E=M � 1, L=aM � 1, and e=Q � 1, assur-
ing, in this way, that backreaction effects are negligible.
The particle angular momentum L is assumed to be aligned
with the black hole angular momentum J, and bothQ and e
are assumed, without loss of generality, to be positive.
According to the laws of black hole thermodynamics
(see, for instance, Sec. 33.8 of [18]) after the capture of a
test particle, the black hole will have total angular momen-
tum aMþ L, charge Qþ e, and mass no greater than
Mþ E. In order to form a naked singularity, one needs

ðMþ EÞ2 <
�
aMþ L

Mþ E

�
2 þ ðeþQÞ2; (2)

which implies, for extremal black holes and in the test
particle approximation,

E<
QeMþ aL

M2 þ a2
: (3)

However, in order to assure that the test particle be indeed
plunged into the black hole, its energy must obey [18]

E � Emin ¼ Qerþ þ aL

r2þ þ a2
; (4)
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rþ ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2 �Q2

q
(5)

being the event horizon radius of the black hole. For an
extremal black hole, rþ ¼ M, and it is clear that (3) and (4)
will not be fulfilled simultaneously, implying that one
cannot turn an extremal Kerr-Newman black hole into a
naked singularity by plunging the test particle across its
event horizon. Wald presents also a similar argument for
the case of dropping spinning uncharged particles into a
Kerr (Q ¼ 0) black hole. Notwithstanding, de Felice
and Yunqiang [19] showed that it would be indeed possible
to transform a Reissner-Nordström black hole in a
Kerr-Newman naked singularity after capturing an electri-
cally neutral spinning body.

The purpose of this Brief Report is to extend Wald’s
original analysis [17] to the case of near-extremal Kerr-
Newman black holes and show explicitly that it is indeed
possible to overspin and/or overcharge near-extremal black
holes by plunging test particles across their event horizon
while keeping backreaction effects to a minimum. All the
recently proposed mechanisms to destroy a near-extremal
black hole by using infalling test particles are accommo-
dated in our analysis. Furthermore, we determine the opti-
mal values, in the sense that they keep backreaction effects
to a minimum, of the electrical charge and angular mo-
mentum of the incident test particle in order to destroy a
near-extremal Kerr-Newman black hole with given mass,
charge, and angular momentum. We show also that it is not
strictly necessary to plunge the particles across the black
hole horizon, but they can be thrown from infinity and
proceed toward the black hole following a geodesics,
minimizing in this way any backreaction effect associated
with the specific mechanism to release the particle near, or
push it against, the black hole horizon. As an explicit
example, we consider some recently discovered candidates
to be rapidly rotating black holes in radio galaxies and
show how it would be possible to create Kerr naked singu-
larities from them with minimal backreaction effects.

II. NEAR-EXTREMAL KERR-NEWMAN
BLACK HOLES

We call near-extremal a Kerr-Newman black hole for
which

�2 ¼ M2 � a2 �Q2 > 0;
�

M
� 1: (6)

For a near-extremal black hole, the condition (1) for the
creation of a naked singularity by absorbing a test particle
with energy E, electric charge e, and orbital angular
momentum L implies that

E< Emax ¼ QeMþ aL

M2 þ a2
� M3

2ðM2 þ a2Þ
�
�

M

�
2
: (7)

It is more convenient here to introduce a parametrization
for near-extremal black holes

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � �2

p
cos�; (8)

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � �2

p
sin�; (9)

with 0 � � � �=2. In this way, near-extremal black holes
are characterized by the triple ðM;�;�Þ. For instance, near-
extremal Kerr and Reissner-Nordström black holes corre-
spond, respectively, to ðM;�; 0Þ and (M, �, �=2). After
some straightforward algebra, it is possible to show that

Emax ¼ A�Mþ Asin2�

2þ 2cos2�

�
�

M

�
2
; (10)

where only terms up to second order in ð�=MÞ were kept,
and

A ¼ ðL=MÞ cos�þ e sin�

1þ cos2�
� 0: (11)

The event horizon for near-extremal black holes are
located at rþ ¼ Mþ �, which implies that the condition
(4) assuring that the particle is to be captured reads

E � Emin ¼ A� B

�
�

M

�
�

�ð2þ sin2�ÞA� 4B

2þ 2cos2�

��
�

M

�
2
;

(12)

where, again, only terms up to ð�=MÞ2 were kept and

B ¼ 2ðL=MÞ cos�þ esin3�

ð1þ cos2�Þ2 � 0: (13)

It is clear that for the extremal case (� ¼ 0) we have
Wald’s result Emax ¼ Emin, implying that (7) and (12)
cannot be fulfilled simultaneously. However, for � > 0 it
is indeed possible for a test particle to obey (7) and (12).
The intersection of Emax and Emin in the ð�; "Þ plane
corresponds to the straight line

2� cos�þ "sin3� ¼ 1þ cos2�

2
; (14)

where � ¼ L=M� and " ¼ e=�. No naked singularity is
formed in the region above this line.

Optimal test particles

In all derivations done so far, we have used the test
particle approximation. The idea of minimizing the values
of E, L, and e necessary to destroy the black hole is more
than a simple requirement of consistence. It helps to assure
that backreaction effects are negligible and, consequently,
that it will not be possible to restore the black hole event
horizon by means of any subdominant physical process.
The first, and maybe the more natural, criterium of opti-
mality we can devise here is to require minimal test particle
total energy E, which is given by Emin in (12). The test
particle minimal energy Eð�; "Þ necessary to destroy the
black hole corresponds to the minimum value of Emin,
subject to the restriction (14). This is a simple linear
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optimization problem [20], and the solution is known to
correspond to one of the points ð0; "Þ or ð�; 0Þ, i.e., the
minimal energy E will be given either by Eð0; "Þ ¼
�=2sin2� or Eð�; 0Þ ¼ �=4. It is clear that Eð�; 0Þ<
Eð0; "Þ for any value of �, suggesting that the best option
to turn a black hole into a naked singularity would be to
plunge an uncharged particle, irrespective of the value
of �. However, we see from (14) that � can increase
considerably for small �, despite Eð�; 0Þ being a mini-
mum. The minimization of Eð�; "Þ does not guarantee the
minimization of L and e, risking the validity of the test
particle approximation. In order to avoid theses problems,
we will require that �2 þ "2 be minimal for optimal test
particles. Such a requirement corresponds with selecting t
the nearest point of the straight line (14) to the origin in the
ð�; "Þ plane. From simple trigonometry, we have that a test
particle with angular momentum L and electrical charge e
obeying

eM

L
¼ sin3�

2 cos�
¼ ðQ=aÞ3

2þ 2ðQ=aÞ2 (15)

is the optimal test particle to turn a near-extremal Kerr-
Newman black hole with parameters ðM;�;�Þ into a naked
singularity.

It is clear from (15) that the optimal test particle to turn a
near-extremal Kerr black hole (� ¼ 0) into a naked singu-
larity should be electrically neutral (e ¼ 0). Moreover,
from Eq. (14), we see that the particle must have L=M �
�=2. The minimum particle energy is given by Eð�; 0Þ,
assuring the validity of the test particle approximation in
this case (E=M � 1 and L=aM � 1) provided the black
hole be near-extremal (�=M � 1). For the case of a
Reissner-Nordström black hole (� ¼ �=2), the optimal
test particle must be charged, with e > �=2, and have
vanishing orbital angular momentum (L ¼ 0). The mini-
mum particle energy for this case is given by E ¼ �=2.
The validity of the test particle approximation and the
minimization of any backreaction effect is assured also in
this case.

III. THROWING PARTICLES FROM INFINITY

The expression for Emin given by Eq. (4) corresponds to
the minimal energy that a test particle can have at the black
hole horizon. On the other hand, the minimal energy that a
particle can have anywhere on the equatorial plane
outside a Kerr-Newman black hole is given by the effective
potential [18]

VðrÞ ¼ �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � ��0

p
�

; (16)

where � ¼ ðLaþQerÞðr2 þ a2Þ � La�, �¼ðr2þa2Þ2�
a2�, and �0 ¼ ðLaþQerÞ2 � ðL2 þ�2r2Þ�, with �
being the particle rest mass and � ¼ r2 � 2Mrþ
a2 þQ2.

The event horizon rþ is the outermost zero of � and
Eq. (4) corresponds to the potential (16) evaluated on
r ¼ rþ. For r ! 1 one has V ! �, as it is expected for
any asymptotically flat solution. For a particle of energy E,
the points for which VðrÞ ¼ E are return points and delimit
the classically allowable region for the particle motion. In
order to assure that a particle with energy E thrown from
infinity reaches the horizon, we need to have E> VðrÞ in
the exterior region of the black hole. In some cases, one can
have that �> Emin, i.e., the energy necessary for the
incident test particle reach the horizon is smaller than its
rest mass. This is not a surprise in gravitational systems,
but, of course, this trajectory cannot start from infinity. To
follow this trajectory, a particle must be released near the
horizon by some external mechanism. This is an extra and
unnecessary complication in our analysis. The external
mechanism could be subject to some backreaction or sub-
dominant physical effect that could eventually prevent the
particle of entering the black hole. This can be avoided if
we adjust the particle rest mass � properly. An explicit
example can enlighten this point.
Let us consider the case of a Kerr black hole (Q ¼ 0).

(For a recent review on equatorial orbits in Kerr black holes
and naked singularities, see [21].) For a near-extremal Kerr
black hole, the effective potential (16) can be written as

VðrÞ ¼ ~VðrÞ þOðð�=MÞ2Þ; (17)

where ~VðrÞ stands for the effective potential for the ex-
tremal Kerr black hole, which can be calculated from
(16) with Q ¼ 0 and a ¼ M. Figure 1 depicts the effective
potential ~VðrÞ for different values of �. Typically,
the choice of �< Emin will allow the particle to
reach the horizon when thrown from infinity with energy
E � Emin.

r/M

min

V
(r

)/
M

~

(e)

(d)

(c)

(a)

(b)
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FIG. 1. The effective potential (16) for a test particle with
angular momentum L and rest mass � around an extremal
Kerr black hole with mass M. For this figure, L=M2 ¼ 10�5

and �=M ¼ 10�6 (a), 2:5� 10�6 (b), 5� 10�6 (c),
7:5� 10�6 (d), and 10�5 (e). The dotted horizontal line corre-
sponds to the value of the effective potential at the black-hole
horizon (Emin), which does not dependent on �.
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IV. FINAL REMARKS

We have shown that the Wald analysis [17] can be
extended to the case of near-extremal Kerr-Newman black
holes, allowing the accommodation of the recent proposals
to overspin or overcharge near-extremal black holes in a
single and simpler framework. Moreover, we could deter-
mine the optimal parameters for a test particle in order to
destroy a black hole while keeping backreaction effects to
a minimum. An explicit and realistic example here will be
valuable to enlighten these points.

There are some evidences of rapidly rotating black holes
in quasars [22] and radio galaxies [23]. These black holes
are very massive, having typically M � 108M�, and can
attain an angular momentum such that a=M * 0:9. Let us
suppose we have one of these black holes with �=M �
10�5. According to Sec. II, the capture of a test body
with L=M2 ¼ 10�5 is sufficient for the creation of a naked
singularity. For this case, Emin � 103M�. A test body with
mass comparable to the moon mass, � � 4� 10�8M�,
will certainly be able to reach the horizon if thrown from
infinity with angular momentum L=M2 ¼ 10�5 (see
Fig. 1). The minimal necessary energy for a test body to
reach the horizon with such orbital angular momentum is
given by (12), Emin=M ¼ 10�5ð1� 10�5Þ=2. On the other
hand, with this angular momentum, any test body captured
with energy E=M < Emax=M ¼ 10�5ð1� 10�5=2Þ=2

will destroy the black hole. Hence, any test body thrown
from infinity with angular momentum L=M2 ¼ 10�5 and
energy E such that Emin <E< Emax will produce a naked
singularity. Furthermore, the validity of the test particle
approximation is assured in this example. It is important
also to notice that the horizon radius of such rapidly
rotation black holes are of the order of 108 km, very large
when compared with the moon radius of 1:7� 103 km.
A body with mass and size comparable the moon would
be well described by the test particle approximation
even when crossing the horizon of such rapidly rotating
black holes. Indeed, it is very hard to devise any back-
reaction effect that could prevent the formation of a naked
singularity in this case. We close noticing that, probably,
the Thorne limit a=M � 0:998 [24] corresponds to the
most realistic near-extremal astrophysical Kerr black
hole. For such a case, �=M � 6% and we have analogous
results to the preceding example. However, in this case,
the validity of the test particle approximation could be
questioned and we could have appreciable backreaction
effects.
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