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Using the AdS/CFT correspondence, we probe the scale dependence of thermalization in strongly

coupled field theories following a sudden injection of energy via calculations of two-point functions,

Wilson loops, and entanglement entropy in d ¼ 2, 3, 4. In the saddle-point approximation these probes are

computed in AdS space in terms of invariant geometric objects—geodesics, minimal surfaces, and

minimal volumes. Our calculations for two-dimensional field theories are analytical. In our strongly

coupled setting, all probes in all dimensions share certain universal features in their thermalization:

(1) a slight delay in the onset of thermalization, (2) an apparent nonanalyticity at the endpoint of

thermalization, (3) top-down thermalization where the UV thermalizes first. For homogeneous initial

conditions the entanglement entropy thermalizes slowest and sets a timescale for equilibration that

saturates a causality bound over the range of scales studied. The growth rate of entanglement entropy

density is nearly volume-independent for small volumes, but slows for larger volumes.

DOI: 10.1103/PhysRevD.84.026010 PACS numbers: 11.25.Tq, 12.38.Mh

I. INTRODUCTION

A. Motivation

The observed nearly inviscid hydrodynamic expansion
of the hot QCD matter produced in nuclear collisions at the
Relativistic Heavy Ion Collider (RHIC) indicates that mat-
ter produced in these nuclear reactions is strongly coupled
[1–3]. The inability of perturbation theory to account for
this phenomenon has motivated studies of nonequilibrium
dynamics in analytically tractable, strongly coupled gauge
theories. The prototype of such theories is the maximally
supersymmetric Yang-Mills theory in the large-Nc, large ’t
Hooft coupling limit, which is holographically dual to the
classical limit of a superstring theory on the anti–de Sitter
space AdS5 � S5 background [4]. Hydrodynamical evolu-
tion with a minimal shear viscosity emerges naturally as
late-time behavior in the longitudinal expansion of a ther-
mal gauge plasma in this model [5,6]. In the dual super-
gravity theory, the thermal state of the gauge theory is
represented by a black brane in the asymptoticAdS5 space,
and the near-equilibrium dynamics of the gauge theory
giving rise to hydrodynamic behavior is mapped onto the
dynamics of perturbations of the AdS5-black brane metric.
A nice recent review on the holographic study of hot
QCD matter, focused on equilibrium and near-equilibrium
aspects, is [7].

While the near-equilibrium dynamics of the strongly
coupled super–Yang-Mills (SYM) theory is well studied,

the process of thermalization itself is still poorly under-
stood. The RHIC data demand that the time scale for
equilibration of matter is considerably shorter than ex-
pected in the framework of perturbative approaches to
thermalization [8,9]. The dearth of other nonperturbative
tools for the description of the short prehydrodynamic
stage of the nuclear collision motivates the use of the
AdS/CFT correspondence to study thermalization of
strongly coupled plasmas. Phenomenologically, the central
rapidity region of a high energy collision turns out to be
boost-invariant to a good approximation, so it is natural to
consider boost-invariant configurations [6,10–12]. One in-
teresting question is how thermal equilibrium is reached in
such systems. This is the question we will address in the
present paper, albeit in the case of translationally invariant
plasmas.
We investigate the thermalization process not only in the

strongly coupled ð3þ 1Þ ¼ 4-dimensional super–Yang-
Mills theory, but also in the analogous lower (2 and 3)
dimensional field theories. This has several motivations.
The first reason is that the 2-dimensional version, which is
dual to classical (super-)gravity on AdS3 space, admits
analytical solutions and thus allows us to explore thermal-
ization over a wide range of parameters. A second moti-
vation is that some version of the 2-dimensional dual
theory, (1þ 1) dimensional super-Yang-Mills theory, can
be formulated on a lattice and solved nonperturbatively
[13,14]. Finally, the comparison of theories in different
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dimensions makes it easier to distinguish generic aspects
of thermalization of strongly coupled quantum field theo-
ries from aspects that are special features of 4-dimensional
field theories.

B. Holographic models of thermalization

1. Thermalization scenarios

What is appropriately called the thermalization time
may not only depend on the probe of the state of the field
but also on the initial field configuration that evolves
toward thermal equilibrium. Here one can distinguish be-
tween two broad classes of scenarios. The first class con-
siders small perturbations around thermal equilibrium and
asks how equilibrium is reached. For a gauge theory with a
holographic dual, this approach amounts to studying the
decay of small perturbations of an AdS-black brane ge-
ometry. This is conveniently studied in terms of the quasi-
normal modes of fields propagating in the black brane
background [15]. The imaginary parts of the eigenvalues
of these modes describe the thermal relaxation rates of
various excitations, such as anisotropic perturbations of
the stress-energy tensor. In the context of relativistic
heavy-ion collisions, this approach is relevant for the study
of viscous corrections to hydrodynamics and other trans-
port processes in the presence of a thermal gauge theory
plasma (see, e.g., [16] for a review).

The second class of scenarios considers the thermal-
ization of an initial field configuration, which is generally
far from equilibrium. Through the AdS/CFT correspon-
dence, the approach to thermal equilibrium in the bound-
ary gauge theory is related to the process of black hole
formation in the bulk. In early work, before the motiva-
tion from RHIC experiments, the goal was to understand
how black hole formation from a gravitational collapse of
a shell of matter would be encoded in the field theory in
the boundary [17–20]. Also, in more recent work, the
initial conditions have usually been defined directly in
the dual gravity theory—in most, if not all, of these cases
the precise form of the initial condition is not known in
terms of gauge theory excitations. Examples of such
configurations are colliding gravitational shock waves
[21], sheets of fundamental strings that may provide an
AdS model of densely packed flux tubes [22], and sudden
perturbations of the metric near the boundary that propa-
gate into the bulk [11,23]. Motivated by the properties of
the initial state of a relativistic heavy-ion collision, which
contains two highly energetic nuclei, these scenarios have
injecting energy into the AdS geometry at high momen-
tum or short distance scales in common.

Some of these recent studies of gravitational collapse in
AdS5 started from translation invariant, but locally aniso-
tropic perturbations of the metric near the boundary and
followed their propagation into the bulk, ultimately result-
ing in the formation of an event horizon [11]. The initial
anisotropy of the metric is dissipated by the black brane,

asymptotically resulting in viscous, boost-invariant scaling
hydrodynamics on the boundary [12,24]. Gravitational
collapse in AdSdþ1 induced by a scalar field perturbation
was studied in [23], most explicitly for the case of AdS4,
where the bulk equations of motion for gravity coupled to a
massless scalar field were solved perturbatively for a
small-amplitude scalar perturbation that propagates in
from the AdS boundary. The perturbation was taken to
be translationally invariant along the spatial directions of
the boundary and to vanish outside of a short time interval.
An interesting technical result is that for this translationally
invariant collapse in AdS4, the metric outside the infalling
shell of matter coincides with a black brane metric to first
nontrivial order in the perturbation [23]. This has the
consequence that expectation values of local observables
thermalize essentially instantaneously in the field theory
dual to the infalling shell background.
Similarly to the approach of [23], in [25] the equilibrat-

ing field configuration was modeled by a homogeneous,
infalling thin mass shell. The motivation for choosing such
a configuration was that it naturally arises in the AdS dual
description of the asymptotic limit of a transversely ex-
tended ensemble of flux tubes. Hence, in distinction to the
matter shells in early work, the shell has tension which in
part contributes to the collapse dynamics. The flux tubes
represent the energy density deposited by the colliding
leading gauge charges (i.e. the valence quarks of the col-
liding nuclei), and the AdS description involves a suffi-
ciently simple geometry to admit analytic or semianalytic
solutions. Our model does not allow us to study the ap-
proach to local isotropy and hydrodynamical behavior, but
it enables us to investigate the approach of the field to a
thermal configuration in momentum space and to measure
the growth of its entanglement entropy, as discussed in
Secs. II C and III C. In this sense, our present study is
complementary to those mentioned above which focus on
the approach to the hydrodynamical limit. Note that the
work [25] considered a quasistatic approximation with
metrics that correspond to stationary ‘‘snapshots’’ of the
dynamic geometry containing the infalling mass shell.
Here we study both the dynamic and the quasistationary
geometries and show that there are some significant dif-
ferences in the pictures that they yield of thermalization.
Various aspects of the dynamic case of a thin infalling shell
have been investigated in [26–28]. The effect of a dynami-
cal boundary condition has also been studied in the back-
ground of a moving mirror [29]. New techniques for the
evaluation of various Green functions in nonequilibrium
backgrounds have been developed in [30], in addition to
the complex contour approach by [31]. The counterpart to
the Chandrasekhar limit for a gravitational collapse of a
degenerate star to a black hole in AdS/CFT has been
investigated in [32]. Finally, thermalization after a quan-
tum quench (a sudden change in the parameters of the
Hamiltonian) in gauge theory has also been modeled by
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a sudden change in couplings or other background fields
than the bulk metric [33,34]. In the probe brane approach
such a change then can manifest as time dependence in the
induced metric on the brane.

Concretely, we focus on the (dþ 1)-dimensional infal-
ling shell geometry described in Poincaré coordinates by
the Vaidya metric

ds2 ¼ 1

z2
½�ð1�mðvÞzdÞdv2 � 2dzdvþ dx2�; (1)

where v labels ingoing null trajectories and we have set the
AdS radius equal to 1. The boundary spacetime is located
at z ¼ 0 and x ¼ ðx1; . . . ; xd�1Þ correspond to the spatial
coordinates on the boundary. For constant mðvÞ ¼ M, the
coordinate transformation

dv ¼ dt� dz

1�Mzd
(2)

brings the metric (1) in the form

ds2 ¼ 1

z2

�
�ð1�MzdÞdt2 þ dz2

1�Mzd
þ dx2

�
: (3)

On the boundary, the coordinates v and t coincide. We take
the mass function of the infalling shell to be

mðvÞ ¼ M

2

�
1þ tanh

v

v0

�
; (4)

where v0 parametrizes the thickness of the shell falling
along v ¼ 0. We will often be interested in the zero thick-
ness limit v0 ! 0. The Vaidya metric describes a shell
composed of tensionless null dust, which represents an
analytical simplification of the tensionful shell models
studied in [25] and of the model of [23].

The geometry outside the infalling shell (which corre-
sponds to v > 0 in the zero thickness limit) is identical
to that of an AdS-black brane geometry with Hawking

temperature T ¼ dM1=d=4�, while the geometry inside
the shell (v < 0 when v0 ! 0) is the same as that of pure
AdS geometry. The causal structure of the Vaidya space-
time is shown in Fig. 1.

2. Probes of thermalization

In order to probe the dynamics of the thermalization
process, one can study a variety of observables of
the boundary gauge theory. Expectation values of local
gauge-invariant operators, such as the energy-momentum
tensor and its derivatives provide valuable information
about the applicability of viscous hydrodynamics, but
they cannot be used to explore deviations from thermal
equilibrium in detail. Nonlocal observables such as pair
correlation functions, Wilson loop expectation values, and
entanglement entropy provide much more information
about progress towards thermalization. (They are also
relevant to the physics probed in relativistic heavy-ion
collisions, e.g., through the jet quenching parameter q̂
[35,36] and the color screening length.)
To illustrate, consider spatially homogeneous states

of a weakly interacting massless scalar field. The energy-
momentum tensor can be expressed as

T�� ¼
Z dk

k0
k�k�nðkÞ; (5)

where nðkÞ ¼ haykaki denotes the occupation number of a

momentum mode of the scalar field. (There is no spatial
dependence of the stress tensor because the field configu-
ration is homogeneous here.) It is obvious from (5) that this
observable contains only limited information about the
particle distribution. In particular, T�� cannot inform us
whether thermal equilibrium has been reached; it only tells
us whether the pressure is locally isotropic. This is not even
a sufficient condition for the matching of the field theory to
hydrodynamics, because the equation of state relies on the
assumption of thermal occupation numbers for the various
modes. It is also insufficient to answer many other ques-
tions, e.g., about the expected spectrum of radiation emitted
by collisions among the scalar particles. The equal-time
two-point function, on the other hand, is given by

GðxÞ ¼
Z dk

k0
½nðkÞ þ 1� expðik � xÞ; (6)

which allows us to extract detailed information about the
particle distribution and thus probe its closeness to a ther-
mal distribution in detail. Note that even the two-point
function is insufficient to probe for the phase relationship
between the occupation amplitudes of different fieldmodes.
This information can, however, be obtained by an analysis
of the four-point function of the field.
In an interacting quantum field theory, the two-point

function is determined not only by the mode occupation
numbers nðkÞ but also by the spectral density function
�ðk0;kÞ. For the free field, �ðkÞ ¼ 2��ðk2 �m2Þ, but

FIG. 1. The causal structure of the Vaidya spacetime (in the
v0 ! 0 limit) shown in the Poincaré patch of AdS space. In this
presentation, the asymptotic boundary (vertical line on the right
hand side) is planar and the null lines on the left hand side of the
diagram represent the Poincaré horizon.
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more generally the spectral function is determined by the
exact self-energy �ðk0;kÞ as follows:

�ðk0;kÞ¼ 2Im�ðk0;kÞ
½ðk0Þ2�k2�m2�Re�ðk0;kÞ�2þ Im�ðk0;kÞ2 :

(7)

Since the self-energy is a function of the temperature, so is
the spectral density function. For a weakly coupled field,
the medium dependence is reflected, e.g., in medium mod-
ifications of particle masses and widths. In the strongly
coupled gauge theory, the vacuum spectral function has the
generic form [37]

�ðk0;kÞ � ððk0Þ2 � k2Þ��ððk0Þ2 � k2Þ; (8)

where the exponent � depends on the dimension of the
considered field. This becomes a sigmoidal function at
finite temperature. The mode occupation number nðkÞ
and the spectral function �ðk0;kÞ combine multiplica-
tively to yield the true, physical excitation probability of
a momentummode k. The time evolution of the equal-time
two-point function probes the approach of this excitation
probability to thermal equilibrium.

In the AdS/CFT correspondence there is a geometric
intuition for why expectation values of local gauge-
invariant operators are insensitive to details of the progress
towards thermalization—they are only sensitive to phe-
nomena near the AdS boundary. Thus, they do not probe
the details of phenomena occurring near the thermal scale.
By contrast, nonlocal objects, such as two-point correlators
of gauge-invariant operators and expectation values of
Wilson loops, are dual to AdS quantities that probe deeper
into the spacetime and further away from the boundary. For
example, at strong ’t Hooft coupling, it is possible to
approximate the path integral for the connected two-point
correlator as a sum over all possible AdS geodesics con-
necting the two endpoints, which are placed on the AdS
boundary [38]. (For certain subtleties regarding this state-
ment, see [39–41].) The geodesics probe the interior of
AdS space, which is dual to the statement that they are
sensitive to a wide range of energy scales in the boundary
field theory. As wewill see, Wilson loop expectation values
[42] and entanglement entropy [26,43,44] are also related
to minimal lengths, surfaces, and volumes of various kinds
in AdS. These also extend into the bulk of AdS and hence
probe a range of energy scales.

C. Overview of this work

We consider two-, three-, and four-dimensional field
theories dual to gravity in asymptotically AdS3, AdS4,
and AdS5 spacetimes, respectively. The motivation for
studying all these cases (rather than only the case of
four-dimensional field theories potentially relevant for
heavy-ion collisions) is that we are interested in generic
conclusions on strongly coupled field theories with gravity
duals. Lower dimensional theories are technically much

simpler: analytic computations are possible in AdS3.
Furthermore, our basic methods are similar in all dimen-
sions—we calculate field theory observable that can be
related to invariant geometric objects—minimal lengths,
surfaces, and volumes—in AdS spacetimes of different
dimensions. Our results show that many conclusions are
not sensitive to the dimension.
Section II discusses three measures of thermalization—-

two-point functions, Wilson loop expectation values, and
entanglement entropy. We compute these observables at
thermal equilibrium, and, in Sec. III we use deviations
from these results as probes of incomplete thermalization
by examining the duals to these observables in gravity
backgrounds with infalling shells of matter in AdS3,
AdS4, and AdS5. The infalling shells of matter collapse
to form black branes, representing the process of equili-
bration and thermalization in the dual field theory after a
sudden injection of energy. In these dynamical back-
grounds we compute nonlocal observables as a function
of time and track the rate at which thermalization pro-
gresses for each observable at different spatial scales in the
field theory. Section IV concludes the paper by summariz-
ing our findings. An Appendix describes how the results
would differ in a quasistatic approximation. A brief
account of this work has appeared in [45].
One broad finding is that these models exhibit a ‘‘top-

down’’ thermalization mechanism, see also [25]. Wewould
like to stress that this is very much in contrast with the
standard ‘‘bottom-up’’ paradigm [8] based on perturbative
gauge theory. In the ‘‘bottom-up’’ scenario, hard quanta of
the gauge field do not equilibrate directly by randomizing
their momenta in two-body collisions, but they do so by
radiating softer quanta, which gradually fill up the thermal
phase space and equilibrate by collisions among them-
selves. In other words, infrared modes are the first to
thermalize, and the thermalization proceeds gradually
(‘‘from the bottom-up’’) to more energetic modes of the
gauge field. The bottom-up scenario is closely linked to the
infrared divergence of the splitting functions of gauge
bosons and fermions in the perturbative gauge theory.
This contrasts with the ‘‘democratic’’ splitting properties
of excitations in the strongly coupled SYM theory, which
favor an approximately equal sharing of energy and
momentum [46,47]. We should therefore expect that the
thermalization process proceeds quite differently in the
strongly coupled gauge theory. The phase space for radia-
tion and, at strong coupling, also the spectral weight (8)
is largest for the most energetic quanta. They then divide
their energy and momentum approximately equally
among their siblings, leading to a rapid cascading down
to a thermal distribution. This consideration suggests that
the thermalization process more closely resembles a
‘‘top-down’’ scenario in which energetic gauge field modes
equilibrate first and soft modes last. Further broad conclu-
sions appear in Sec. IV.
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It is appropriate here to comment on the differences and
overlap between the current work and the recent related
work in the literature. In [26,27], geodesics (or equiva-
lently, entanglement entropy) in AdS3 Vaidya were studied
numerically for a thin but finite shell. In contrast, we also
study geodesics in AdS3 Vaidya analytically for an infini-
tesimally thin shell. In [28], Wilson loops (or equivalently,
entanglement entropy) were studied in AdS4 Vaidya, for
the case of circular and rectangular loops. We do not only
confirm their results but also study geodesics in AdS4
Vaidya, which have not been closely investigated in the
context of holographic thermalization as far as we know.
Moreover, we study AdS5 Vaidya geometries for the first
time by computing geodesics, circular and rectangular
Wilson lines, and entanglement entropy for spherical vol-
umes on the boundary.

II. PROBES OF THERMALITY

We are interested in processes where energy is injected
into a strongly coupled field theory and equilibrates over
time. Thus we need probes that take instantaneous snap-
shots of the state of the system which can be compared
to the thermally equilibrated state. As discussed above,
expectation values of local gauge-invariant operators are
insufficient. Thus, in this section we describe three non-
local probes—two-point functions, Wilson loop expecta-
tion values, and entanglement entropy—which can be
elegantly computed using geometric techniques in the
AdS/CFT correspondence. We will show how these quan-
tities computed in strongly coupled theory at thermal equi-
librium differ from the corresponding quantities in the
vacuum. In Sec. III we will use the same quantities as
probes of thermalization following a sudden injection of
energy, by comparing the instantaneous values of the
probes with the values at thermal equilibrium.

A. Equal-time two-point functions

We begin our exploration with the equal-time two-point
functions, which can be analytically calculated in two-
dimensional conformal field theories at thermal equilib-
rium. We first remind the reader how the thermal occupa-
tion probabilities of momentum modes enter into the two-
point function and how they are related to the spatial form
of the equal-timeWightman function. We then explain how
we generalize this approach to higher dimensional theo-
ries, where we can easily calculate the Wightman function
in the saddle-point approximation.

1. Two-dimensional free scalar field
in thermal equilibrium

We would like to understand how we can extract infor-
mation about the thermalization process from the time
dependence of the Wightman function

G>
Oðt;x; t0;x0Þ ¼ hOðt;xÞOðt0;x0Þi; (9)

whereO is a local operator of dimension �. As a warm-up
exercise we consider the free massless scalar field in two
dimensions with mode expansion

�ðt; xÞ ¼ �ðx�; xþÞ

¼
Z
kþ�0

dkþ

2�

�
1

kþ
e�ikþx�ay

kþ þ cc

�

þ
Z
k��0

dk�

2�

�
1

k�
e�ik�xþ ~ayk� þ cc

�
:

(10)

We defined the operators aþk as dimensionless, which

implies the commutation relation ½akþ ; ayk0þ � ¼ kþ�ðkþ �
k0þÞ, etc. Employing the free spectral function �0ðkÞ ¼
2��ðk2Þ ¼ 2��ðkþk�Þ, this can be written as

�ðx�; xþÞ ¼
Z d2k

ð2�Þ2 �0ðkÞeikþx�þik�xþbkþ;k� ; (11)

where for kþ, k� � 0: bkþ;0 ¼ akþ , b�kþ;0 ¼ ay
kþ , b0;k� ¼

~ak� , b0;�k� ¼ ~ayk� . Consider the dimension one operators

@þ� or @��. The vacuum two-point function of @�� is
time and space translation invariant, so we consider

G>�ðx�Þ ¼ h@��ð0Þ@��ðx�Þi

¼
Z
k��0

d2k

ð2�Þ2 ðk
�Þ2�0ðkÞe�ikþx��ik�xþ

¼
Z
k��0

dk�

2�
kþe�ik�x� � 1

ðx�Þ2 : (12)

For nonzero temperature, the spectral function of the free
field remains unchanged, and we find

G>þðx�;TÞ ¼
Z
kþ>0

dkþkþðe�ikþx�ðnðkþÞ þ 1Þ
þ eik

þx�nðkþÞÞ; (13)

where nðkÞ ¼ ðe�k � 1Þ�1 is the standard (Bose) thermal
occupation number. This can be rewritten as

Z
kþ

dkþe�ikþxþ
e�k

þ

e�k
þ � 1

kþ � 1

�2sinh2ð�xþ� Þ : (14)

This is exactly the result expected from conformal invari-
ance. The finite temperature computation is a computation
on a Euclidean cylinder, which can be mapped to the
complex plane using the exponential map, and we already
know the answer on the plane. Undoing the coordinate
transformation leads to the above two-point function.

2. Strongly interacting scalar field theory
in equilibrium from AdS/CFT

For an interacting field theory the spectral function
changes with temperature. As a preparatory example of
an interacting two-dimensional thermal field theory de-
fined by a gauge-gravity duality we consider the AdS3
case, i.e., the Banados-Teitelboim-Zanelli (BTZ) black
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hole, and make use of the results presented in [48]. Writing

! ¼ ðkþ þ k�Þ= ffiffiffi
2

p
and k ¼ ðkþ � k�Þ= ffiffiffi

2
p

, the thermal
Wightman function for a scalar field in such a theory is [48]

G>ðkÞ ¼ i

�
1� coth

!

2T

�
ImGRðkÞ ¼ �2i

e!=T � 1
ImGRðkÞ;

(15)

where GR is the retarded Green’s function and �2 ImGR

yields the spectral function. The precise form of the ther-
mal retarded Green function depends on the dimension �
of the field in the operator. For � ¼ 1, we have [48]

GRð!; kÞ ¼ 1

2�

�
c

�
1

2
� i

!� k

4�T

�
þ c

�
1

2
� i

!þ k

4�T

��
:

(16)

Using Imc ð12 þ iyÞ ¼ �
2 tanh�y gives the spectral density

of states as

�ð!; kÞ ¼ �2 ImGRð!; kÞ ¼ sinh!
2T

cosh!
2T þ cosh k

2T

: (17)

What can we learn from the equal-time Wightman func-
tion? One strategy is to use the vacuum subtracted
Wightman function which at thermal equilibrium depends
only on �t ¼ t0 � t

G>
subð�t; k;TÞ
¼ G>ð�t; k;TÞ �G>ð�t; k;T ¼ 0Þ
¼

Z d!

2�
e�i!�t½G>ð!; k;TÞ �G>ð!; k;T ¼ 0Þ�:

(18)

Using the Bose occupation number density nBð!Þ¼
ðe!=T�1Þ�1, the equal-time Wightman function (�t¼0)
is then

G>
subð0;k;TÞ¼ i

Z 1

�1
d!

2�
nBð!Þ�ð!;k;TÞ

þ i
Z 1

�1
d!

2�
�ð�!Þ�ð!;k;0Þ

¼2i
Z 1

0

d!

2�
nBð!Þ�ð!;k;TÞ

þ i
Z 1

0

d!

2�
½�ð!;k;TÞ��ð!;k;0Þ�:

(19)

Inserting the explicit expressions, we obtain after some
manipulations

G>
subð0; k;TÞ ¼ i

Z 1

0

d!

2�

��
2

e!=T � 1
þ 1

�

� sinh!
2T

cosh!
2T þ cosh k

2T

� 1

�
þ i

Z k

0

d!

2�

¼ �i
Z 1

0

d!

2�

cosh k
2T

cosh!
2T þ cosh k

2T

þ i
k

2�
:

(20)

Introducing the notation cosha ¼ cothðk=2TÞ, and using
the integral identity

Z 1

0

d!

2T

�
sinha cosh

!

2T
þ cosha

��1

¼ 1

2
ln

��������1þ cosha

1� cosha

��������¼ k

2T
; (21)

the final result reads

G>
subðk; TÞ ¼ G>ð0; k;TÞ �G>ð0; k;T ¼ 0Þ

¼ � i

2�

k

ek=T � 1
: (22)

Having derived the functional form of the equal-time
Wightman function for a thermally equilibrated state in
AdS3, we ask what we could learn from the same function
at nonequilibrium background. In that case time translation
invariance is lost. As in the above,we could define a vacuum
subtractedWightman functionG>

subðt; kÞ now depending on

the equal time t ¼ t0 and expect that thermalization implies
G>

subðt; kÞ ! G>
subðk;TÞ. This gives us a way to estimate

equilibration times for different momentum scales k by
analyzing how this limiting behavior is approached. The
result (22), that the thermal contribution to the equal-time
Wightman function of the two-dimensional field theory is
proportional to the Bose distribution justifies a more com-
plete investigation of the equilibration properties of the
Wightman function in two and more dimensions. For this
purpose, we now turn to the methods made available by the
holographic duality between strongly coupled supersym-
metric gauge theories and gravity theories. We will also
analyze thermalization times at different scales, in the
spirit of the above motivation, but the details will differ
somewhat.

3. The geodesic approximation

While the approach described above would give detailed
information regarding scale-dependent thermalization,
there is a technical challenge for strongly coupled field
theories, even if they have a dual description in terms of
gravity in an AdS space. The easiest case is the two-
dimensional field theory with a three-dimensional gravity
dual. In this case, the thermal Wightman function in mo-
mentum space is known in closed form for operators of
general conformal dimension � (� ¼ 1 was analyzed
above) [48]. However, the integral with respect to ! that
is needed to compute the equal-time Green function is
sensitive to the ultraviolet completion of the theory and
thus requires careful regulation. Thus, it would-be more
convenient to directly compute the equal-time thermal
Wightman function from the AdS3 theory. The next sim-
plest case involves three-dimensional field theories with an
AdS4 dual. In this case there is not even a closed form
expression for the thermal Wightman function. Thus, we
cannot pursue the approach discussed above analytically.
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Furthermore, we are really interested in computing the
equal-time Wightman function in a nonequilibrium setting
in which matter collapsing in AdS to form a black hole
models the thermalization of energy injected into the
strongly interacting field theory. In this situation, there
are no known analytic solutions for the Green functions
in any dimension, and we have to resort to approximation
schemes and/or numerical analysis.

An insightful approach is to probe the nonequilibrium
state of the strongly coupled field theory with a very
heavy operator whose Wightman function can be approxi-
mated in terms of AdS geodesics as described below.
According to the AdS/CFT dictionary, a massive scalar
field’ðz; t;xÞwith massm in (dþ 1) dimensions is dual to
an operator Oðt;xÞ of conformal dimension �ðm; dÞ ¼
1
2 ðdþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ 4m2
p Þ [4]. In coordinates where the boundary

of AdS is at z ¼ 0, the scalar field ’ behaves like

’ðz;t;xÞ¼ zd���ð0Þðt;xÞþ . . .þz��ð1Þðt;xÞþ . . . ; (23)

where the ellipsis corresponds to subleading terms in the z
expansion. In conformal field theory (CFT) language
we interpret the non-normalizable mode �ð0Þðt;xÞ as the

source to whichOðt;xÞ couples and the normalizable mode
�ð1Þðt;xÞ as the vacuum expectation value of the renormal-

ized operator Orenðt;xÞ [49],
�ð1Þðt;xÞ � hOrenðt;xÞi: (24)

The bare operator Oðt;xÞ and the renormalized operator
Orenðt;xÞ are related to each other by

O ðt;xÞ ¼ z�0 O
renðt;xÞ; (25)

where z0 represents an IR bulk cutoff. Working with re-
normalized operators, instead of bare operators, ensures
finite expressions when the cutoff z0 is removed, since
renormalized operators do not depend on the cutoff z0. A
useful heuristic treatment can be found in, e.g., [50]. The
two-point function hOðt0;xÞOðt;x0Þi is often computed
using the on-shell (supergravity) action for ’, when the
action is explicitly given and solutions to the wave equa-
tion can be readily computed.

However, for our purposes it is more convenient to
follow [38] and to observe that the equal-time Green
function can be computed via a path integral as

hOðt;xÞOðt;x0Þi ¼
Z

DPei�LðP Þ 	 X
geodesics

e��L: (26)

The first expression sums over all paths that begin and end
at the boundary points ðt;xÞ and ðt;x0Þ, with LðP Þ being the
proper length of the path [LðP Þ is imaginary for spacelike
trajectories]. The second expression is a saddle-point ap-
proximation to the path sum as a sum over geodesics [38]
(here L is the real length of the geodesic between the
boundary points). The latter approximation is effective
when the probe operator is heavy so that � 
 1. It is

easy, to check, for example, that in the zero temperature
theory modeled by empty AdS space, this formula gives
the correct conformally invariant equal-time two-point
function of the renormalized operator [38]

hOrenðt; 0ÞOrenðt; x0Þi ¼ 1

x2�0
: (27)

Some care is necessary in evaluating Lorentzian correla-
tors using the geodesic approximation, because careful
consideration of steepest descent contours of integration
is generally necessary [39–41].
The geodesic length L diverges due to contributions

near the AdS boundary. Therefore, we define a renormal-
ized length �L � Lþ 2 lnðz0=2Þ, in terms of the cutoff z0,
by removing the divergent part of the geodesic length in
pure AdS [see Eq. (51) below]. The renormalized equal-
time two-point function is

hOðt;xÞOðt;x0Þiren � e���L: (28)

The geodesic approach to computing equal-time corre-
lators gives a clear indication for how thermalization
proceeds in a strongly coupled theory with an AdS dual
(Fig. 2). Consider injecting energy homogeneously into the
field theory—we model this in the AdS theory by dropping
in a shell of matter from infinity. As the shell progresses
inward into AdS space, the spacetime outside the shell will
be well described by the AdS-black brane metric (except
within the shell itself), while the metric inside the shell will
be well described by the empty AdS metric. Now consider
the two-point function calculation using geodesics. If the
two points are close together on the boundary, the associ-
ated geodesic will not penetrate very much into the bulk
space, and thus will not cross the matter shell. Thus, at
these separations the correlation function should look ther-
mal, because a thermal field theory is modeled by a black
brane background in AdS. At larger boundary separations,
the associated geodesic will penetrate the shell and be
‘‘refracted’’ by it (Fig. 2) leading to deviations from ther-
mality. As time passes, the shell will penetrate deeper into
the bulk and thus an ever larger range of spatial scales in
the field theory will have associated geodesics that do not
penetrate the shell and hence have thermal correlators.
Thus, we can come to a qualitative conclusion that ther-
malization proceeds top-down in this setup—ultraviolet,
i.e., short distance, degrees of freedom thermalize first. In
subsequent sections we will calculate the rates at which
different spatial scales thermalize.

4. Two-point function for two-dimensional field theories
in equilibrium: Analytic computation

In order to gain intuition for the two-point function in
the geodesic approximation, we return to the case of two-
dimensional boundary field theories. In order to obtain the
thermal boundary-to-boundary Wightman function, we
need to study spacelike geodesics in the thermal black
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brane geometry in three dimensions. The metric is obtained
by setting mðvÞ ¼ M in (1), and is given by

ds2 ¼ �ðr2 � r2HÞdt2 þ
dr2

r2 � r2H
þ r2dx2; with

t ¼ v� 1

2rH
ln
jr� rHj
rþ rH

; r � 1

z
: (29)

This is a black brane geometry with a horizon at rH � ffiffiffiffiffi
M

p
[51]. The Vaidya geometry in three dimensions with a
constant mðvÞ ¼ M can be put in this form.

Parametrizing the geodesic by the geodesic length 	, the
geodesic equations in the geometry (29) are

� rHE ¼ �ðr2 � r2HÞ _t; (30)

rHJ ¼ r2 _x; (31)

1 ¼ �ðr2 � r2HÞ _t2 þ
_r2

r2 � r2H
þ r2 _x2; (32)

where E, J are constants and _� d=d	. Plugging (30) and
(31) into (32) and solving for _r,

_r ¼ � 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ ð�1þ E2 � J2Þr2Hr2 þ J2r4H

q
: (33)

Integrating this, we obtain

rð	Þ2 ¼ r2H
4
½e	�	0 þ Bþe�ð	�	0Þ�½e	�	0 þ B�e�ð	�	0Þ�

(34)

or, equivalently,

rð	Þ2 � r2H ¼ r2H
4
½e	�	0 þ Aþe�ð	�	0Þ�

� ½e	�	0 þ A�e�ð	�	0Þ�: (35)

Here, 	0 is an integration constant which we will hence-
forth set to zero, 	0 ¼ 0, by absorbing it into the definition
of the parameter 	. Also, we defined the combinations

A� � J2 � ð1� EÞ2; B� � ðJ � 1Þ2 � E2: (36)

The geodesic reaches the boundary r ¼ 1 (or z ¼ 0) as
	 ! þ1.
As we can see from (34) and (35), the signs of A�, B�

determine the behavior of the geodesic. The relation be-
tween the values of the parameters E, J and the signs of
A�, B� is shown in Fig. 3. Note that not all possible
combinations of signs occur. We discuss different cases
(A)–(D) shown in Fig. 4 in turn below.

(i) If A�, B� > 0, the geodesic is entirely outside

the horizon. rð	Þ takes its minimum value r ¼
rH½1þ ðA1=2

þ þ A1=2� Þ2=4�1=2 > rH at 	min ¼ ð1=4Þ
lnðAþA�Þ while rð	Þ ! 1 as 	 ! �1. One sample
profile of this case is shown in Fig. 4(a).

(ii) If AþA� < 0 and BþB� < 0, the geodesic crosses
the horizon r ¼ rH and reaches the singularity
r ¼ 0. Since in this case

_rð	Þ ¼ rH
2

e2	 � AþA�e�2	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðe	 þ Bþe�	Þðe	 þ B�e�	Þp > 0 (37)

FIG. 2 (color online). (A) An example spacelike geodesic that starts and ends on the boundary of AdS (z ¼ 0) with a separation x0.
Outside the shell, the geodesic propagates in a black brane geometry, while inside it propagates in an empty AdS geometry. The shell
refracts the geodesic. The Wightman function at scales associated to geodesics that do not penetrate the shell of matter will be
thermalized. (B) The minimal surface in AdS space associated to a circular Wilson loop. The shell of matter (indicated in light green)
refracts the surface. Loops with associated surfaces that never penetrate the shell of matter will be thermalized. Both figures illustrate a
quasistatic situation where the geodesic or minimal surface lies entirely at a fixed time. When the shell is dynamically falling into AdS,
the geodesic or minimal surface, while remaining spacelike, may not lie entirely within an equal-time surface. In both figures we are at
late-time when the shell is close to where the event horizon would be, so that the ‘‘refraction’’ at the shell is clearly visible.

V. BALASUBRAMANIAN et al. PHYSICAL REVIEW D 84, 026010 (2011)

026010-8



(recall that we have set 	0 ¼ 0), rð	Þ is a mono-
tonically increasing function of 	 and the geodesic
crosses the horizon only once. One sample plot of
this behavior is presented in Fig. 4(b).

(iii) If A� < 0 and B� > 0, the geodesic crosses the
horizon twice at

	H� ¼ 1
2 lnð�A�Þ (38)

but does not reach the singularity. One sample plot
of this behavior is presented in Fig. 4(c).

(iv) If A�, B� < 0, the geodesic crosses the horizon
twice at (38) and furthermore hits the singularity
twice at

	O� ¼ 1
2 lnð�B�Þ: (39)

r is pure imaginary between 	Oþ and 	O�. One
sample plot of this behavior is presented in Fig. 4(d).

If one is interested in geodesics that start and end on the
boundary of the BTZ black brane geometry (29), the only
relevant cases are (i) and (iii). However, if one is interested
in geodesics in the Vaidya geometry (1) for which the BTZ
geometry (29) is only a part of the entire spacetime, then
one should also consider cases (ii) and (iv) since they can
appear as a part of geodesics in the full spacetime.

Substituting (34) into (30) and (31) and integrating the
two equations, we find the expressions for t and x:

tð	Þ ¼ t0 þ 1

2rH
ln

��������e
	 þ Aþe�	

e	 þ A�e�	

��������; (40)

xð	Þ ¼ x0 þ 1

2rH
ln

�
e	 þ B�e�	

e	 þ Bþe�	

�
; (41)

where t0, x0 are constants of integration corresponding the
values of t, x at 	 ¼ þ1. Comparing (40) with (35), it can
be seen that the quantity inside the absolute value of (40)
vanishes or diverges at the horizon r ¼ rH and thus tð	Þ
diverges there. This is due to the well-known fact that the
Schwarzschild time t is not well-defined at the horizon.
Note that tð	Þ ! �1 as 	 ! 	H� and therefore
	Hþ (	H�) corresponds to the past (future) horizon.
On the other hand, the Eddington-Finkelstein coordinate

v defined by

vð	Þ ¼ tð	Þ þ 1

2rH
ln
jrð	Þ � rHj
rð	Þ þ rH

(42)

[see (29)] is well-defined across the future horizon 	 ¼
	H�, because the log divergence in tð	Þ gets canceled by
the second term of (42) and vð	Þ is finite across the future
horizon. On the other hand, the divergence at the past
horizon 	 ¼ 	Hþ is not canceled and vð	Þ diverges across
the past horizon. The argument of the logarithm in (41), on
the other hand, is always positive for r > 0; see (34).
The above parametric expression of r, t, x, v in terms of

	 is useful for understanding the behavior of the geodesic,
but for computational purposes it is useful to eliminate 	
andwrite t, x, v as functions of r. Inverting the relation (34),
we obtain the following two branches for 	ðrÞ:

	�ðrÞ ¼ 1

2
ln

�
�1þ E2 � J2 þ 2r2

r2H
� 2

r2H

ffiffiffiffiffiffiffiffiffiffi
DðrÞp �

;

DðrÞ � r4 þ ð�1þ E2 � J2Þr2Hr2 þ J2r4H:

(43)

Note that we have been setting 	0 ¼ 0. Substituting (43)
into (40)–(42) and setting x0 ¼ 0, we get

tðrÞ� ¼ t0 þ 1

2rH
ln

��������r
2 � ðEþ 1Þr2H � ffiffiffiffiffiffiffiffiffiffi

DðrÞp
r2 þ ðE� 1Þr2H � ffiffiffiffiffiffiffiffiffiffi

DðrÞp
��������; (44)

FIG. 3 (color online). The values of E, J and the signs of A�,
B�. The signs of A�, B� are written in the form ðAþA�; BþB�Þ.
See text for the behavior of geodesics in each regime of
parameters.

FIG. 4 (color online). Sample profiles of rð	Þ (in blue) in the AdS3 black brane background. The event horizon rH ¼ 1 is shown as a
red horizontal line in all four plots. The integration constant 	0 appearing in (34) has been set to 	0 ¼ �1=4 lnðjAþj=jA�jÞ.
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xðrÞ� ¼ 1

2rH
ln

�
r2 � Jr2H � ffiffiffiffiffiffiffiffiffiffi

DðrÞp
r2 þ Jr2H � ffiffiffiffiffiffiffiffiffiffi

DðrÞp �
; (45)

vðrÞ� ¼ t0 þ 1

2rH
ln

�
r� rH
rþ rH

r2 � ðEþ 1Þr2H � ffiffiffiffiffiffiffiffiffiffi
DðrÞp

r2 þ ðE� 1Þr2H � ffiffiffiffiffiffiffiffiffiffi
DðrÞp �

:

(46)

Wewill refer to the branch given by ðtðrÞþ; xðrÞþ; vðrÞþÞ as
branch 1 and the one given by ðtðrÞ�; xðrÞ�; vðrÞ�Þ as
branch 2. Only by combining both branches can we recover
the full geodesic described by (34), (40), and (41).

From (40) and (41), we can compute the coordinate
difference between the two boundary points on which the
geodesics end:

�t � tð	 ¼ �1Þ � tð	 ¼ 1Þ ¼ 1

2rH
log

Aþ
A�

¼ 1

2rH
log

J2 � ð1þ EÞ2
J2 � ð1� EÞ2 ;

(47)

‘ � xð	 ¼ �1Þ � xð	 ¼ 1Þ ¼ 1

2rH
log

Bþ
B�

¼ 1

2rH
log

ðJ þ 1Þ2 � E2

ðJ � 1Þ2 � E2
: (48)

We see that geodesics connecting endpoints at the same
time (�t ¼ 0) correspond to taking E ¼ 0. If one is inter-
ested in such geodesics in the pure BTZ geometry, then we
have only to consider the E ¼ 0 case. However, in Sec. III,
we will be interested in geodesics in the Vaidya geometry,
which are composed of two pieces stretching, respectively,
in AdS and BTZ, and glued together at the shell location. In
this case, one should also consider E � 0 geodesics since
they can appear as part of geodesics between equal-time
endpoints in the full spacetime.

Now let us focus on the equal-time geodesics with
E ¼ 0 and compute the relation between the spatial bound-
ary separation ‘ and the geodesic length Lthermal in the
black brane background. By setting E ¼ 0 in (48), ‘ is
computed as

‘ ¼ 1

rH
ln
J þ 1

J � 1
; or J ¼ coth

rH‘

2
: (49)

On the other hand, the geodesic lengthLthermal is computed
from (43) as

Lthermal ¼ 	þðr ¼ r0Þ � 	�ðr ¼ r0Þ

¼ 2 ln
2r0

rH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijJ2 � 1jp ¼ 2 ln

2r0 sinh
rH‘
2

rH
;

(50)

where r0 ¼ 1=z0 is the bulk IR cutoff and we dropped the
Oð1=r0Þ quantity that vanishes as r0 ! 1. In the last
equality, we used (49).

As discussed in Sec. II A 3, the geodesic length (50) is
divergent in the r0 ! 1 limit and should be regularized by
subtracting the corresponding divergent part of the quantity
in pure AdS geometry. Because the pure AdS geometry can
be obtained by setting M ! 0 or rH ! 0 in the BTZ
geometry (29), we can simply send rH ! 0 in various
quantities to obtain the corresponding quantities for pure
AdS. By sending rH ! 0 in (50), we obtain the geodesic
length in pure AdS:

L pure AdS ¼ 2 lnð2r0Þ þ ðfiniteÞ: (51)

Subtracting the divergent part of this from (50), we obtain

�Lthermalð‘Þ � Lthermal � 2 lnð2r0Þ ¼ 2 ln
sinhrH‘2
rH

; (52)

which allows us to compute the thermal renormalized two-
point function defined in (28). Observe that the two-point
function result computed in the geodesic approximation
coincides with the weak coupling result (14) for � ¼ 1.
Actually this is a consequence of conformal invariance,
because the boundary CFT lives in noncompact space
(namely, the x direction is not compactified in our setting).
We can also obtain the expression for the equal-time

geodesic in pure AdS geometry by sending rH ! 0 in (45).
In doing this, we should send J ! 1 at the same time
because (49) becomes J ¼ 2=ðrH‘Þ. In this limit, (43) and
(45) give

	ðrÞ� ¼ �cosh�1 ‘r

2
; (53)

xðrÞ� ¼ � ‘

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
2

‘r

�
2

s
¼ � ‘

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
2z

‘

�
2

s
; (54)

where we dropped constants. The second equation (54)
says that the equal-time geodesic is a semicircle on the
z-x plane,

z2 þ x2 ¼
�
‘

2

�
2
: (55)

Note that the pure AdS results (51) and (53)–(55) are
correct not only for d ¼ 2 but for general dimensions,
because it is only the z-x plane that is relevant for such
geodesics.

5. Two-point function for d � 2-dimensional field
theories in equilibrium: numerical computation

In any dimension we can consider a Vaidya-type back-
ground (1) with constant mass function mðvÞ ¼ M. This is
a (dþ 1)-dimensional black brane geometry, and in
the special case of three dimensions it can be put in the
form (29). We consider spacelike geodesics connecting
the boundary points ðt; x1Þ ¼ ðt0;�‘=2Þ and ðt0; x01Þ ¼ðt0; ‘=2Þ of such black brane geometries [for d ¼ 3, we
also have x2 ¼ x02 and for d ¼ 4, ðx2; x3Þ ¼ ðx02; x03Þ]. If we
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parametrize the geodesic in terms of the coordinate x1,
which we will simply denote x in the rest of the section,
the solution will be given by the profiles v ¼ vðxÞ and
z ¼ zðxÞ. Inserting the IR bulk cutoff z0, the boundary
conditions read

zð�‘=2Þ ¼ z0 ¼ zð‘=2Þ; vð�‘=2Þ ¼ t0 ¼ vð‘=2Þ;
(56)

and are symmetric with respect to the z and v axes. The
geodesic length reads

Lthermal¼
Z ‘=2

�‘=2
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2z0ðxÞv0ðxÞ�ð1�MzðxÞdÞv0ðxÞ2p

zðxÞ ;

(57)

with 0 � d=dx. The action is not explicitly dependent on x,
which implies the existence of a conserved quantity. The
conservation equation reads

1� 2z0v0 � ð1�MzdÞv02 ¼
�
z�
z

�
2
; (58)

where z� is the value of zðxÞ at the midpoint. Notice also
that v is a cyclic coordinate, implying a conserved mo-
mentum. From Eq. (2), it follows

v ¼ t0 �
Z z

z0

d~z

1�M~zd
: (59)

Inserting the relation between v and z of Eq. (59) into
the conservation equation (58) yields a first-order differ-
ential equation in terms of zðxÞ only. We take the derivative
of this equation with respect to x and solve the resulting
second-order differential equation

z00 ¼ � z2�
z3

þ 2� d

2
Mzd�3z2� þ d

2
Mzd�1; (60)

starting form the midpoint, where zð0Þ ¼ z� and z0ð0Þ ¼ 0.
We can then read off the boundary separation ‘ corre-
sponding to a specific midpoint value z� via zð‘=2Þ ¼ z0.
By substituting the conservation equation into the
expression for the geodesic length, we can simplify
the expression to

L thermal ¼ 2
Z z�

z0

dz

z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�MzdÞð1� z2

z2�
Þ

q : (61)

The renormalized length �Lthermal is

�Lthermalð‘Þ � Lthermal þ 2 ln

�
z0
2

�
; (62)

from which one obtains the renormalized equal-time two-
point function through (28). We plot the renormalized
length �Lthermal as a function of the spatial scale ‘ in Fig. 5.

B. Space-like Wilson loops

Above we examined the Wightman functions for field
theories at finite temperature in order to get a sense of what
thermal equilibrium looks like according to this measure.
A second nonlocal probe that can be used to discuss the
thermality of field theories is the (expectation value of the)
Wilson loop. The Wilson loop is a gauge-invariant observ-
able, constructed as the path-ordered contour integral over
a closed loop C of the gauge field

WðCÞ ¼ 1

N
TrðP e

H
C
AÞ: (63)

Wilson loops contain useful information about the non-
perturbative behavior of (nonabelian) gauge theories, but
are, in general, hard to calculate. In the AdS/CFT corre-
spondence, the expectation value for the Wilson loop is
related to the string partition function with a string world
sheet � extending in the bulk and ending on the loop C at
the boundary

hWðCÞi ¼
Z

D�e�Að�Þ; (64)

where we integrate over all inequivalent string surfaces �
such that @� ¼ C at the AdS boundary and where Að�Þ
corresponds to the string action. In the strongly coupled
limit, we can consider a saddle-point approximation for the
string partition function and reduce the calculation of the
Wilson loop expectation value to determining the minimal
area surface of the (classical) string world sheet whose
endpoints trace out the desired Wilson loop C on the AdS
boundary

hWðCÞi � e�ð1=
0ÞAð�0Þ: (65)

Að�0Þ represents the area of the minimal area surface �0

with boundary C. The surface �0 is a solution to the
equations of motion arising from the bosonic action of

1 2 3 4 5

4

2

0

2

4

thermal

FIG. 5 (color online). �Lthermal as a function of spatial scale ‘
for d ¼ 2 (red, dot-dashed line), d ¼ 3 (green line), and d ¼ 4
(purple, dashed line) for a black brane geometry with M ¼ 1.
The results for d ¼ 2 agree with the analytical results of
Sec. II A 4 in the limit of a shell of zero thickness.
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the string. Thus, the expectation value of a Wilson loop in
the AdS/CFT correspondence is given by the area of a
minimal surface in AdS space which is bounded by the
loop C [42].

In this section, we will compute spacelike Wilson loop
expectation values in the vacuum and in the thermally
equilibrated theory (the black brane background) for d �
3-dimensional field theories. In Sec. III, we will compute
Wilson loops in a strongly coupled theory following a
sudden injection of energy and compare them to the ther-
mal results to assess progress towards thermalization. We
will study two loop shapes—circles and strips as sketched
in Fig. 6—to test how and whether the shape of the loop
affects the rate of thermalization.

1. Circular Wilson loops

We first examine the circular spacelike Wilson loop in a
strongly coupled d � 3-dimensional field theory at finite
temperature. At zero temperature the dual geometry is pure
AdSdþ1, and the associated minimal surface in AdS is
simply a hemisphere [52]. This surprisingly simple solu-
tion to a complicated second-order nonlinear equation of
motion was obtained by taking an infinite straight Wilson
line on the boundary, and applying a special conformal
transformation to map this straight line to a circle. Since
the conformal group of the boundary corresponds to
reparametrizations of AdS we can apply the appropriate
reparametrization to the AdS space, and it maps the origi-
nal world sheet—which was flat and extended straight into
the AdS—to the hemisphere. This trick only works in pure
AdS space where conformal invariance is preserved, so we
are obliged to use numerical methods of solving the equa-
tions of motion when we want to calculate the Wilson loop
for thermal or out-of-equilibrium states.

For now, we want to study the minimal hemisphere
surface in a thermal black brane background, with the
metric given by (1) with mðvÞ ¼ M, where M is the

constant tension of the black brane. On the boundary we
choose a two-dimensional plane ðx1; x2Þ in which the cir-
cular Wilson loop is set. To parametrize the Wilson loop
we introduce polar coordinates ð�;’Þ. The minimal space-
like surface with the circular Wilson loop as its basis also
has an azimuthal symmetry. The tip of the surface occurs at
ðv; z;xÞ ¼ ðv�; z�; 0Þ. The cross section at fixed z and v is a
circle, and thus the surface is conveniently parametrized in
terms of the radii � of these circles. The Nambu-Goto
action for the string with circular symmetry in the
(dþ 1)-dimensional AdS-black brane background is

ANG¼ 1


0
Z R

0
d�

�

zð�Þ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1�Mzð�ÞdÞv0ð�Þ2�2z0ð�Þv0ð�Þ

q
; (66)

where we integrated out the ’ factor as both z and v are
independent of ’ due to the circular symmetry. This action
has an explicit � dependence, implying that the second-
order differential equation in zð�Þ cannot be integrated to a
first-order differential equation. The coordinate v is still a
cyclic coordinate, which implies that the associated mo-
mentum is conserved. To solve for an equal-time Wilson
loop, we set the conserved energy to zero, which implies a
relation between v and z as given in Eq. (59). Inserting this
relation in the action,

ANGðRÞ ¼ 1


0
Z R

0
d�

�

z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

1�Mzd

s
; (67)

the resulting equation of motion reduces to a second-order
differential equation in zð�Þ

z00 ¼ �
�
2

z
þ z0

�

1

1�Mzd

�
ð1�Mzd þ z02Þ � d

2

Mzd�1z02

1�Mzd
:

(68)

One can easily check that the hemisphere is an analytic
solution in pure AdS (obtained by setting M ¼ 0 in the
above). It is given by

zð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2� � �2

q
: (69)

In case of a black brane background (M � 0) we have to
resort to numerical means. We impose boundary conditions
at the midpoint assuming reflection symmetry along the
z axis

zð0Þ ¼ z�; z0ð0Þ ¼ 0; (70)

and read off the boundary radius zðRÞ ¼ z0. Note that
because the second term in the first bracket of (68) causes
numerical issues at � ¼ 0 (the numerator and denominator
both go to zero, but the ratio should take a fixed value), we
cannot construct the solutions starting from the midpoint.
Therefore we choose to solve (68) in the neighborhood of
the midpoint by expanding around � ¼ 0 to quadratic
order (odd powers vanish by the symmetry)

FIG. 6 (color online). Two Wilson loop shapes with their
minimal string surface: the circular Wilson loop (left) and the
rectangular Wilson loop (right).
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zpð�Þ ¼ z� � 1�Mzd�
2z�

�2: (71)

The boundary conditions for the numerical solution are
obtained by matching at a point �p close to the midpoint;

zð�pÞ ¼ zpð�pÞ and z0ð�pÞ ¼ z0pð�pÞ.
The logarithm of the expectation value of Wilson loop

operators is approximated by the area (Athermal ¼ 
0ANG)
of the minimal surface. The largest contributions to the
area are coming from the near-boundary region, because of
the diverging AdS volume there. We subtract the divergent
piece, which is proportional to the UV-cutoff 1=z0. This
procedure is interpreted in the dual CFT as removing the
UV divergence of the Coulomb self-energy of a point
charge. Subtraction of R=z0 gives the regularized area

�AthermalðRÞ ¼ AthermalðRÞ � R

z0
: (72)

The regularized area is depicted for AdS4 and AdS5 in
Fig. 7.

2. Infinite rectangular strips

A less symmetric Wilson loop is the rectangular strip
parametrized by the boundary coordinates ðx1; x2Þ. Assume
that the strip is translationally invariant along the x2 axis,
such that the profile of the associated minimal surface in
AdSdþ1 is described by zðx1Þ and vðx1Þ. In the following,
we again denote x � x1. We impose the boundary
conditions

zð�‘=2Þ¼ z0¼ zð‘=2Þ; vð�‘=2Þ¼ t0¼vð‘=2Þ: (73)

As for the circular Wilson loop, the equation of motion for
the minimal surface is obtained by minimizing the Nambu-
Goto action. In this case, because of the symmetries, the
analysis closely resembles that of geodesics with some
small differences in the action and the equations of motion.
The Nambu-Goto action for a segment stretching between

x2 2 ð0; RÞ in Eddington-Finkelstein coordinates is given
by

ANG¼ R

2�
0
Z ‘=2

‘=2
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1�MzðxÞdÞv0ðxÞ2�2z0ðxÞv0ðxÞp

zðxÞ2 :

(74)

The action does not exhibit an explicit x or v depen-
dence, hence we can use the existence of two conserved
quantities to simplify: these can be taken to be the midpoint
of zðxÞ, z�, and the momentum conjugate to vðxÞ. The z�
conservation equation reads

1� ð1�MzdÞv02 � 2z0v0 ¼
�
z�
z

�
4
; (75)

while the conservation of the momentum conjugate to vðxÞ
implies the same relation as in Eq. (59). Inserting this
relation in the conservation equation gives a first-order
differential equation in zðxÞ. We then take the derivative
with respect to x to obtain a second-order differential
equation in zðxÞ

z00 ¼ �2
z4�
z5

þ 4� d

2
Mzd�5z4� þ d

2
Mzd�1: (76)

We impose the boundary conditions z0ð0Þ ¼ 0, zð0Þ ¼ z� at
the midpoint, and read off the boundary separation ‘ via
zð‘=2Þ ¼ z0. Inserting the conservation equation in the
Nambu-Goto action we get the following formula for the
area (Athermal ¼ 
0ANG) of the minimal surface

A thermal ¼ R

�

Z z�

z0

dz

z2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� z4�
z4
Þð1�MzdÞ

q : (77)

The regularized area reads

�Athermalð‘; RÞ ¼ Athermal � 1

z0

R

�
; (78)

and is plotted in Fig. 8 for a four- and five-dimensional
background. We have chosen to plot the results after
dividing out R=� as we are concerned purely with the
dependence of the area on the boundary separation ‘.

C. Entanglement entropy

It is still an open question whether a suitable notion of
‘‘local entropy’’ density exists which is valid out-of-
equilibrium and which satisfies some basics physical prop-
erties; in particular, it must be a nondecreasing function of
time. To define a local entropy density using gauge/gravity
duality, one typically employs horizons since their area
increases in time, and it has been suggested in [11,53]
that apparent horizons provide more compelling notions
of local entropy density then global horizons do. In our
case, the entropy associated to the apparent horizon instan-
taneously thermalizes, in the limit of a zero thickness shell,
and does not provide a useful probe of thermalization.

0.5 1.0 1.5 2.0 2.5
R

1.0

0.5

0.0
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1.0

thermal

FIG. 7 (color online). �Athermal against the boundary radius R.
The curves represent the string surface areas in a black brane
background with unit mass for d ¼ 3 (green line) and d ¼ 4
(purple, dashed line).
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Skepticism against the identification of entropy with ap-
parent horizon area in full generality has also been raised in
a number of other papers, including [27,53,54].

Another way of assessing thermalization at different
spatial scales in an out-of-equilibrium theory is by mea-
suring the entanglement entropy associated with volumes
of different sizes and shapes. To review, consider dividing a
quantum mechanical system in a state j�i into two spa-
tially disjoint parts A and B. The density matrix of the
system restricted to A and its entropy are computed by
taking the traces

�A ¼ trBj�ih�j; SðAÞ ¼ �trAð�A ln�AÞ: (79)

In a (1þ 1)-dimensional conformal field theory, where A is
an interval of length ‘, the entanglement entropy can be
calculated analytically, yielding the universal result
[55,56]:

vacuum: S0ð‘Þ ¼ c

3
ln

�
‘

a

�
;

thermal equilibrium: STð‘Þ ¼ c

3
ln

�
�

�a
sinh

�‘

�

�
:

(80)

Here a is the UV cutoff of the field theory, c is the central
charge, and � ¼ T�1 denotes the inverse temperature.

The entanglement entropy SðAÞ describes the amount of
information loss associated with the restriction of an ob-
server to the volume A. In the vacuum state for d > 2
dimensions, S0ðAÞ is proportional to the surface area of A
[57,58]; in d ¼ 2 dimensions, as Eq. (80) shows, S0 de-
pends logarithmically on the length of the interval ‘. At
nonzero temperature, SðAÞ receives an additional contribu-
tion, which can be interpreted as thermal entropy [43,44].
In the limit T ! 1, the thermal contribution is propor-
tional to the volume of the region A, just like the statisti-
cally defined thermal equilibrium entropy. Computing the

time-dependent entanglement entropy as a function of
spatial scale and studying its approach to STð‘Þ thus will
provide a probe of scale-dependent thermalization.
There is a precise proposal for computing entanglement

entropy in strongly coupled field theories with AdS duals
[26,43,44], where we think of the field theory as living on
the boundary of an AdS space. Specifically, consider the
boundary @A of a connected region in the field theory
whose entanglement entropy we wish to compute. For a
two-dimensional field theory, @A is a pair of points, for a
three-dimensional field theory @A is a closed curve, and for
a four-dimensional theory a surface. Now construct the
minimal surface �A in AdS space that meets @A on the
AdS boundary. For a two-dimensional field theory, �A is a
geodesic in AdS3 that approaches the boundary points @A,
while for a three-dimensional field theory, �A is a minimal
surface in AdS4 with boundary @A. For a four-dimensional
field theory, �A is a minimal volume in AdS5 which ends
on the surface @A on the AdS boundary. The entanglement
entropy of the region A of the field theory is then given by

SA ¼ Areað�AÞ
4GN

; (81)

where GN denotes Newton’s gravitational constant (and
‘‘Area’’ stands for the length of geodesics, the area of
2-surfaces, and the volume of 3-surfaces). The authors of
[26,43,44] showed that this formula precisely reproduces
the universal entropy formula of two-dimensional confor-
mal field theories in thermal equilibrium [55,56]. The
restriction of the entanglement entropy to a finite spatial
volume can be understood as a kind of coarse graining by
the discretization of the available momentum space modes
of the information contained in the quantum state [59].
Thus, to measure entanglement entropy in two-

dimensional field theories, we need to calculate spacelike
geodesics in the dual asymptotically AdS3 background.
This means there is an intimate relation between two-
dimensional entanglement entropy and the equal-time
Wightman functions computed in the geodesic approxima-
tion. Indeed, the two quantities can be interpreted in terms
of each other, as was also observed in [27]. For three-
dimensional field theories, we need to compute spacelike,
two-dimensional minimal surfaces in a dynamical, asymp-
totically AdS4 background. These coincide precisely with
classical spacelike worldsheets of fundamental strings with
a fixed boundary, as previously studied in [28]. As we
discussed above, the exponential of the action of such
objects (essentially the area) is known to give the expec-
tation value of Wilson loops in the field theory [42]. Thus,
in these three-dimensional field theories, there is an inti-
mate relation between entanglement entropy and Wilson
loop expectation values, as we explore in this article.
For four-dimensional field theories, the proposed mea-

sure of entanglement entropy for spherical regions involves
minimal volume hypersurfaces whose cross sections with
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FIG. 8 (color online). �Athermal=ðR=�Þ as function of the
spatial scale ‘. The curves represent the string surface areas in
a black brane background with unit mass. The base of the surface
is a rectangular strip at the AdS boundary. The green curve
corresponds to d ¼ 3 and the purple, dashed curve to d ¼ 4.
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respect to the AdS radial coordinate are spheres. In par-
ticular, in AdS5 we can look for a 3-dimensional volume
with 2-sphere cross section which terminates on the AdS
boundary. This allows us to examine the thermalization of
the entanglement entropy in the 4-dimensional field theory.
The methods used to compute these volumes are very
similar to those for the circular Wilson loop described in
Sec. II B 1, with only some powers changing with the
dimension. Briefly, the action for the general spherically
symmetric p volume in AdSd (p  d� 1) black brane
background is

V thermal ¼ ASp�1

Z R

0
d�

�p�1

zð�Þp

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1�Mzð�ÞdÞv0ð�Þ2 � 2z0ð�Þv0ð�Þ

q
;

(82)

where ASp�1 is surface area of a unit Sp�1. Things con-
tinue to proceed as for the Wilson loops: the solution in the
pure AdS (M ¼ 0) background is now a hemi-hypersphere
and still obeys (69). What changes is the volume evaluated
on the solution, which we evaluate with a cutoff near the
boundary and subtract to renormalize as before. The result
in the vacuum (M ¼ 0) is

V AdS ¼ 4�R
Z �ðz0Þ

0
d�

�2

ðR2 � �2Þ2

¼ 2�

�
R2

z20
þ log

z0ffiffiffi
2

p
R

�
þ ðfiniteÞ: (83)

The regularized volume is calculated analogously to pre-
vious cases by subtracting the divergent part of the volume
of a pure AdS 3-surface with terminates on the same sphere
on the boundary,

�V thermalðRÞ ¼ V thermal � 2�

�
R2

z20
þ log

z0ffiffiffi
2

p
R

�
: (84)

We plot the regularized volume �V thermal as a function of
the radius R of the sphere on the boundary in Fig. 9.

III. SCALE-DEPENDENT THERMALIZATION
FROM ADS/CFT

In the previous section we discussed how the equal-time
Wightman function (related to geodesics in AdS space) and
Wilson loops (related to minimal surfaces in AdS space)
and entanglement entropy (related to minimal lengths,
surfaces and volumes in different dimensions) can probe
thermal equilibrium. In this section we will use the same
probes to study the dynamics of equilibration in strongly
coupled field theories. The basic setup is to drop a shell of
matter with vanishing rest mass (‘‘null dust’’) into AdS
space to form a black hole. This is dual to the homoge-
neous injection of energy into the dual field theory and its
subsequent thermalization. We want to probe the rates at
which thermalization occurs on different spatial scales. To
this end we consider dynamical Vaidya-type backgrounds,
again given by Eq. (1), but this time using the continuous
mass-function of Eq. (4). This dynamical background con-
tinuously interpolates between pure AdS and AdS with a
Schwarzschild black brane. Recall that the parameter v0 in
the mass-function (4) dictates how ‘‘thick’’ the shell is.
v0 ! 0 is the step-function limit corresponding to an
infinitely thin shell. In this limit, the infalling shell repre-
sents a shock wave.

A. Equilibration of the two-point function

1. Two-dimensional field theories: Analytic treatment

We first consider the d ¼ 2 case where analytic compu-
tations are possible. In this case, the Vaidya metric (1)
becomes

ds2¼�½r2�mðvÞ�dv2þ2drdvþr2dx2; r�1

z
: (85)

In order to have analytic control over the solution, let us
consider the thin-shell limit v0 ! 0 of the mass profile (4),
which gives

mðvÞ ¼ r2H�ðvÞ; rH � ffiffiffiffiffi
M

p
; (86)

where �ðvÞ is the step function.
Outside the shock wave, v > 0, the metric is the stan-

dard planar black brane metric (29)

ds2out ¼ �ðr2 � r2HÞdt2 þ
dr2

r2 � r2H
þ r2dx2;

t ¼ v� 1

2rH
ln
jr� rHj
rþ rH

;
(87)

which we studied in detail in the previous section. Inside
the shock wave, v < 0, the metric is the Poincaré AdS3:
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FIG. 9 (color online). Regularized volume �V thermal as a
function of the spatial scale R for d ¼ 4.
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ds2in ¼ �r2dt2 þ dr2

r2
þ r2dx2; t ¼ vþ 1

r
: (88)

We would like to study geodesics in the AdS3 Vaidya
geometry which is (87) and (88) glued together across the
infalling shell atv ¼ 0. In particular, we focus on the equal-
time geodesic which starts and ends at the same time t ¼ t0
on the boundary r ¼ 1. There are two possible cases: (i) the
geodesic does not reach the shell and is entirely outside of it,
and (ii) the geodesic crosses the shell. Because case (ii) is
more involved than case (i), let us first discuss case (i)
briefly and then turn to the discussion of case (ii).

In case (i), the geodesic is given by the equal-time
geodesic in the pure black brane geometry, namely, by
(44)–(46) with E ¼ 0. Therefore, the relation between
the (renormalized) geodesic length �Lthermal and the
boundary separation ‘ is given by (52).

Now let us turn to case (ii). In this case, the part of the
geodesic that is inside the shell is given by the equal-time
geodesic in the pure AdS geometry, namely, by (54), which
we write in the following form:

xðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2�

p
r�r

; (89)

where we set r� � 2=‘. On the other hand, the part of the
geodesic that is outside the shell is given by the geodesic in
the pure black brane geometry, namely, by (44)–(46). In the
present case, we should not set the parameter E to zero,
because the geodesic gets refracted at the shell and it does
not have to be in a constant t slice.

The two parts of the geodesics, the inside part and the
outside part, should be connected so that the total geodesic
length is minimized. Just like Snell’s law, this can be stated
as a refraction law for the angles entering and exiting the
shell, as follows. Let us write the metric (87) and (88) as

ds2 ¼ �fðrÞ2dv2 þ 2drdvþ r2dx2; (90)

where

fðrÞ2 ¼
�
finðrÞ2 ¼ r2 v < 0
foutðrÞ2 ¼ r2 � r2H v > 0

; (91)

and focus on the region very close to the shell at v ¼ 0.
Consider a point Pin (Pout) just inside (outside) the shell
and let the coordinate difference between Pin and Pout be
�X ¼ ð�v;�r;�xÞ. Take another point M on the shell
v ¼ 0, and let the coordinate difference between Pin

(Pout) and M be �Xin ¼ ð�vin;�rin;�xinÞ [�Xout ¼
ð�vout;�rout;�xoutÞ], so that �Xin þ �Xout ¼ �X. Then
the distance from Pin to Pout via M is

�s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�f2in�v

2
inþ2�rin�vinþr2�x2in

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�f2out�v

2
outþ2ð�r��rinÞ�voutþr2ð�x��xinÞ2

q
:

(92)

Wewant to find the pointM thatminimizes�s. Extremizing
this with respect to �rin, �xin, we find

�rin
�vin

¼�rþ 1
2ðf2in�f2outÞ�vout

�v
;

�xin
�vin

¼�x

�v
; (93)

and therefore

�rout
�vout

¼�rþ 1
2ðf2out�f2inÞ�vin

�v
;

�xout
�vout

¼�x

�v
: (94)

From these we obtain the following refraction law as
required:

dr

dv

��������in
� dr

dv

��������out
¼ r2H

2
;

dx

dv

��������in
¼ dx

dv

��������out
: (95)

By plugging the inside solution, (89), and the outside
solution, (44)–(46), into the refraction condition (95),
we obtain the relation between the parameters of the
geodesic:

E ¼ � rH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2sw � r2�

p
2r2sw

and J ¼ � r�
rH

; (96)

where rsw is the value of r at which the geodesic intersects
the shell, and how to determine it will be explained below.

The first sign combination applies to branch 1 for rsw 
rH=

ffiffiffi
2

p
and branch 2 for rsw � rH=

ffiffiffi
2

p
, while the second

sign applies to branch 1 for rsw � rH=
ffiffiffi
2

p
and branch 2 for

rsw  rH=
ffiffiffi
2

p
. Recall that branches 1 and 2 were defined in

Sec. II A 4, below Eq. (46).
It is possible that the geodesic crosses the horizon

(r ¼ rH) before reaching the shell (v ¼ 0). When this
happens, let us require that the geodesic goes to the bound-
ary r ¼ 1 at 	 ¼ 1 and, as we decrease 	, it enters the
horizon with v staying finite. In the previous section, we
saw that the geodesic crosses the horizon at 	 ¼ 	H� and,
below (42), we observed that v is finite across 	 ¼ 	H�
but not across 	 ¼ 	Hþ. Therefore, we need that 	Hþ <
	H� which means that E< 0. So, we choose the second
sign combination in (96):

E ¼ � rH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2sw � r2�

p
2r2sw

and J ¼ r�
rH

: (97)

This leaves branch 1 for rsw � rH=
ffiffiffi
2

p
and branch 2 for

rsw  rH=
ffiffiffi
2

p
.

Equation (97) depends on rsw which is where the geo-
desic hits the shell. Because the shell is at v ¼ 0, the value
of rsw is determined by
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0 ¼ vðrswÞ ¼ 1

2rH
log

2
4rsw � rH
rsw þ rH

r2sw � ð1þ EÞr2H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4sw � ð1þ J2 � E2Þr2Hr2sw þ J2r4H

q
r2sw � ð1� EÞr2H �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4sw � ð1þ J2 � E2Þr2Hr2sw þ J2r4H

q
3
5þ t0; (98)

where in the second equality we used (46) and the� signs correspond to branch 1 and 2, respectively. If we rewrite E, J in
favor of rsw, r� using the relation (97), this becomes

0 ¼ 1

2rH
log

2
42r2swðrsw � rHÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2sw � r2�

p ð2r2sw � 2rswrH þ r2HÞ
2r2swðrsw þ rHÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2sw � r2�

p ð2r2sw þ 2rswrH þ r2HÞ

3
5þ t0: (99)

Note that the two possible signs in (98) lead to the same
condition (99). To solve this, let us make the convenient
definitions

� � rsw
rH

; � sin� � r�
rH

; a � e2rHt0 : (100)

The range of the parameters is � 2 ½0; �2�, � � 0, and
a � 1. In terms of these, the relation (99) becomes

4�ð1þ cÞ
cþ 2�ð1þ �Þð1þ cÞ ¼ 1� 1

a
; (101)

with c � cos�. This can be solved for �, giving two
branches of solutions:

�ða; cÞ� ¼ aþ 1

2ða� 1Þ �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
aþ 1

a� 1

�
2 � 2c

cþ 1

s
: (102)

We can see that only �þ is allowed, as follows. First, we
can show that, for fixed c, the derivative of �ða; cÞ� with
respect to a is always negative (positive) in the range a 2
ð1;1Þ, c 2 ð0; 1� [60], so that �ða; cÞ� monotonically
decreases (increases) as we increase a. Furthermore,

�ða; cÞ� ! 1

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� c

1þ c

s �
as a ! 1 ðor t0 ! 1Þ:

(103)

Therefore, for any finite values of t0,

�ða; cÞ� <
1

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� c

1þ c

s �

 1

2
 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� c

1þ c

s �
< �ða; cÞþ:

(104)

For rsw � rH=
ffiffiffi
2

p
(i.e. � > 1=

ffiffiffi
2

p
), this means that we

should take the �þ branch. The case with rsw < rH=
ffiffiffi
2

p
(i.e. � < 1=

ffiffiffi
2

p
) needs some more work. We only need to

consider geodesics that do not reach r ¼ 0, since otherwise
we cannot glue branch 1 to branch 2 at 	min before the

geodesic reaches the singularity. Thus, when rsw < rH=
ffiffiffi
2

p
,

we need A� < 0 and B� > 0, that is J < 1þ E, for E< 0
and 0< J < 1. Using (97), the last condition translates into
the following condition for �:

8>>><
>>>:

1
2

�
1�

ffiffiffiffiffiffiffi
1þc
1�c

q �
<�1

2

�
1�

ffiffiffiffiffiffiffi
1þc
1�c

q �
<�< 1ffiffi

2
p for c2

�
0; 1ffiffi

2
p
�

1
2

�
1þ

ffiffiffiffiffiffiffi
1�c
1þc

q �
<�< 1ffiffi

2
p for c2

�
1ffiffi
2

p ;1

� :

(105)

This means that we should take �þ in (102) for all
c 2 ½0; 1�.
In Figs. 10 and 11, geodesics in the ðv; rÞ plane are

plotted for different values of t0 and ‘. The geodesics start
from the boundary at ðr; vÞ ¼ ð1; t0Þ, plunge in the bulk in
the planar BTZ geometry, eventually refract at the shell at

FIG. 10 (color online). Geodesics in the ðv; rÞ plane for fixed
t0 ¼ 2 and ‘ 	 3:0 (brown, top), ‘ 	 4:6 (orange, middle),
‘ 	 68:2 (red, bottom). In black dashed, the apparent horizon.

FIG. 11 (color online). Geodesics in the ðv; rÞ plane for fixed
‘ 	 21:3 and, from left to right, t0 ¼ 0:1 (brown), t0 ¼ 1
(orange), t0 ¼ 4 (red), t0 	 10:6 (blue). In black dashed, the
apparent horizon.
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v ¼ 0, and propagate in pure AdS. All profiles are sym-
metric under x ! �x. The curve in black dashed is the
apparent horizon.

In Figs. 12 and 13, we display the boundary time and
spatial separation dependence of the geodesics in the
Carter-Penrose diagram of Vaidya spacetime. The trans-
formations to the ðU;VÞ coordinates are given by

U � 2

�
tan�1

�
rH
2

�
tþ 1

r

��
; V � 2

�
tan�1

�
rH
2

�
t� 1

r

��
;

(106)

for v < 0,

U � 2

�
tan�1

�
tanh

�
rH
2

�
tþ 1

rH
coth�1 r

rH

���
;

V � 2

�
tan�1

�
tanh

�
rH
2

�
t� 1

rH
coth�1 r

rH

���
; (107)

for v > 0 and r > rH, and

U � 2

�
tan�1

�
coth

�
rH
2

�
tþ 1

rH
tanh�1 r

rH

���
;

V � 2

�
tan�1

�
tanh

�
rH
2

�
t� 1

rH
tanh�1 r

rH

���
; (108)

for v > 0 and r < rH. In these coordinates, the singularity
is located at Uþ V ¼ 1 and is depicted by a wavy line in
Fig. 12 and 13, the shell is at V ¼ 0 and the horizon is at
U ¼ 1=2 (dashed line).
With all the relations above in hand, we can compute the

geodesic length and spatial boundary separation in terms of
the parameters of the geodesic. The geodesic length is the
sum of the geodesic length for the inside part, which can be
computed from (53), and the one for the outside part,
which can be computed from (43). The result is

�L ¼ 2 ln
rsw þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2sw � r2�
p
r�

� ln

2
44r4swð2r2sw � r2� � r2HÞ þ r4Hðr2sw � r2�Þ þ 4r3swð2r2sw � r2HÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2sw � r2�

p
4r4sw

3
5: (109)

Here, just as in (52), �L has been renormalized by subtracting an IR divergent quantity 2 lnð2r0Þ. The spatial boundary
separation can also be computed by summing the contribution from the inside part (89) and the outside part (45), the result
being

‘ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2sw � r2�

p
r�rsw

þ 1

rH
ln

2
42rswðr2sw þ r�rHÞ þ ð2r2sw � r2HÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2sw � r2�

p
2rswðr2sw � r�rHÞ þ ð2r2sw � r2HÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2sw � r2�

p
3
5: (110)

Although �L and ‘ are written in terms of rsw and r� in the above expressions, we can write them in terms of t0 and

s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
using the definitions (100) and plugging in the solution � ¼ �ða; cÞþ of Eq. (102)

FIG. 12 (color online). Geodesics in the spacetime Carter-
Penrose diagram for fixed t0 ¼ 2 and ‘ 	 3:0 (brown, bottom),
‘ 	 4:6 (orange, middle), ‘ 	 68:2 (red, top). Surfaces of
constant r are plotted in gray.

FIG. 13 (color online). Geodesics in the spacetime Carter-
Penrose diagram for fixed ‘ 	 21:3 and t0 ¼ 0:1 (brown, bot-
tom), t0 ¼ 1 (orange, middle), t0 ¼ 4 (red, top). Surfaces of
constant r are plotted in gray. We do not display in the diagram
the geodesic with t0 	 10:6 (in blue in Fig. 11) because it would
cover the horizon.
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2� ¼ cothðrHt0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coth2ðrHt0Þ � 2c

cþ 1

s
: (111)

Explicitly,

�Lðt0; ‘Þ ¼ 2 ln

�
sinhðrHt0Þ
rHsð‘; t0Þ

�
; (112)

where sð‘; t0Þ 2 ½0; 1� is parametrically defined by

‘ ¼ 1

rH

�
2c

s�
þ ln

�
2ð1þ cÞ�2 þ 2s�� c

2ð1þ cÞ�2 � 2s�� c

��
: (113)

2. d � 2 dimensional field theories: Numerical analysis

As in the AdS3 case, we consider a four- or five-
dimensional dynamical metric which interpolates between
pure planar AdS at early times and a Schwarzschild black
brane at late times. The transition is induced by an infalling
shell of null dust. The metric in (dþ 1) dimensions was
given in Eq. (1). We again consider the mass function (4),
where the profile parameter is set to v0 ¼ 0:01 in the
remainder. We consider geodesics with a boundary sepa-
ration along x1, denoted x in the following, while the
(d� 2) coordinates (x2; . . . ; xd�2) of both endpoints are
the same. This implies that z and v only depend on x, i.e.,
z ¼ zðxÞ and v ¼ vðxÞ. We assume that x runs between
�‘=2 and þ‘=2. Then the length of the geodesic is given
by

L ¼
Z ‘=2

�‘=2
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1�mðvÞzdÞv02 � 2z0v0p

zðxÞ ; (114)

where 0 � d=dx. We notice that the integrand has no ex-
plicit x dependence, implying the existence of a conserved
quantity, similar to the black brane case. The conservation
equation reads

1� ð1�mðvÞzdÞv02 � 2z0v0 ¼
�
z�
z

�
2
: (115)

The two equations of motion following from (114) are

zv00 þ 2z0v0 � 1þ v02 þ d� 2

2
mðvÞzdv02 ¼ 0; (116)

z00 þ ð1�mðvÞzdÞv00 � _mðvÞ
2

zdv02 � dmðvÞzd�1z0v0 ¼ 0;

(117)

where _mðvÞ ¼ dmðvÞ=dv. It is possible to show that (115)
and (116) imply (117) after taking the derivative of (115)
with respect to x. Therefore, we restrict ourselves to solv-
ing (115) and (116). We construct solutions zðxÞ and vðxÞ
with the x ! �x symmetry which is already present in
the equations of motion, and which satisfy the boundary
conditions

zð0Þ ¼ z�; vð0Þ ¼ v�; v0ð0Þ ¼ 0 ¼ z0ð0Þ: (118)

After constructing a geodesic for a specific choice of
values ðz�; v�Þ, information about the boundary separation
and boundary time at which the geodesic is inserted
follows from

zð‘=2Þ ¼ z0; vð‘=2Þ ¼ t0: (119)

The on-shell length is obtained from Eq. (114), upon use of
the conservation equation (115),

L ð‘; t0Þ ¼ 2
Z ‘=2

0
dx

z�
zðxÞ2 : (120)

This length should be regularized by subtracting the cut-off
dependent part 2 lnð2=z0Þ, yielding �Lð‘; t0Þ.

3. Thermalization

Having collected the geodesic lengths in the infalling
shell backgrounds in AdS3;4;5, we can use these to describe
the process of thermalization following a sudden injection
of energy. To this end, we measure the approach to thermal
equilibrium by comparing �L at any given time with the
late-time result �Lthermal. In any dimension, this compares
the logarithm of the two-point correlator at different spatial
scales with the logarithm of the thermal correlator.

However, we find it more revealing to consider ~L �
�L=‘, where we divide by the spatial separation on the
boundary (we will discuss the significance of this later in
Sec. III C where we deal with entanglement and
Kolmogorov-Sinaı̈ entropies). In Fig. 14 we plot this mea-
sure for two-, three-, and four-dimensional field theories.
In all three cases we observe a delay in the onset of
thermalization. The reason for this delay is simply that
the effect of the medium only becomes fully apparent at
distances of the order of the thermal screening length ‘D �
ð�TÞ�1. Although a very small volume of linear dimension
‘ � ‘D would appear fully thermalized after a time t0 ¼
‘=2, its contribution to the entropy of a large volumewould
be disproportionately small because it does not support the
momentum modes that constitute the thermal medium at
large. As a consequence, the rapid linear increase of the
logarithm of the two-point function seen in Fig. 14 thus
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FIG. 14 (color online). � ~L� � ~Lthermal (
~L � L=‘) as a func-

tion of boundary time t0 for d ¼ 2 (left), d ¼ 3 (middle), and
d ¼ 4 (right) for a thin-shell (v0 ¼ 0:01). The boundary sepa-
rations were taken to be ‘ ¼ 1, 2, 3, 4 (from top to bottom
curve). All quantities are given in units of M. These numerical
results coincide with our analytical expressions in AdS3 (d ¼ 2)
in the limit v0 ! 0.
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only sets in after some delay. Obviously, this effect is more
pronounced in higher dimensions.

From the curves in Fig. 14 we can extract different
thermalization times for any spatial scale:

(1) The critical time �crit at which the tip of the geodesic
grazes the middle of the shell at v ¼ 0. This can be
computed by asking when a geodesic with a given
boundary separation in the black brane geometry
outside the infalling shell just grazes the latter:
�critð‘Þ ¼

R
z�
z0

dz
1�Mzd

, where z� is determined by the

boundary separation ‘.
(2) The half-thermalization time �1=2: time that mea-

sures the duration for the curves to reach half of their
equilibrium value.

(3) The time �max: time at which thermalization pro-
ceeds most rapidly, thus for which the curves in
Fig. 14 are steepest.

For two-, three-, and four-dimensional field theories all
these times are plotted in Fig. 15. In d ¼ 2 we can analyti-
cally derive the linear relation �crit � ‘=2, as also observed
in [27].

The linearity of �critð‘Þ in two dimensions is expected
from general arguments in conformal field theory [56], and
the coefficient is as small as possible under the constraints
of causality following a quantum quench. The thermaliza-
tion time scales �1=2 and �max for three- and four-

dimensional field theories (Fig. 15, middle and right) are
sublinear in the spatial scale. In the range we study, the
complete thermalization time �crit deviates slightly from
linearity, and is somewhat shorter than ‘=2. These obser-
vations pose the question whether a rigorous causality
bound for thermalization processes exists or not. We will
come back to this question below, after examining other
probes than two-point functions. One of the issues here is
that the initial conditions are homogeneous—thus different
domains will be independently coming to equilibrium at
the same temperature possibly leading to apparent viola-
tions of causality.

General arguments for a sharp quench in a 2-
dimensional field theory [27,56] predict a nonanalytic
feature where thermalization at a spatial scale ‘ is com-
pleted abruptly at �critð‘Þ. This is evident in Fig. 14 (left) as
a sudden change in the slope at �crit, smoothed out only by
the small nonzero thickness of the shell, or equivalently, by
the intrinsic duration of the quench. We find a similar
(higher-order) nonanalyticity for d ¼ 3, 4 (Fig. 14, middle
and right) and expect this to be a general feature for
quantum quenches in all dimensions.
Figure 15 shows that complete thermalization of the

equal-time correlator is first observed at short length
scales, or large momentum scales (see also [25]), in con-
trast with the behavior of weakly coupled gauge theories.
In the ‘‘bottom-up’’ scenario [8] applicable to that case,
hard quanta of the gauge field do not equilibrate directly by
randomizing their momenta, but gradually degrade their
energy by radiating soft quanta, which fill up the thermal
phase space and equilibrate by collisions among them-
selves. This bottom-up scenario is linked to the infrared
divergence of the splitting functions of gauge bosons and
fermions in perturbative gauge theory. It contrasts with the
democratic splitting properties of excitations in strongly
coupled SYM theory that favor an approximately equal
sharing of energy and momentum [46]. One might, there-
fore, have expected that thermalization proceeds funda-
mentally differently (‘‘top-down’’) in strongly coupled
gauge theories, and this is evident within the AdS/CFT
paradigm with the natural initial conditions used here.

B. Equilibration of Wilson loops

Another nonlocal probe of thermalization is the Wilson
loop expectation value. As we discussed in Sec. II B, this
quantity is related in the AdS/CFT correspondence to the
area of a minimal surface in AdS space that bounds
the desired loop on the AdS boundary. In this section
we compute such minimal areas in the infalling shell
background.

1. Circular Wilson loops

We first consider minimal surfaces corresponding to
circular Wilson loops in the Vaidya background. The
corresponding minimal surfaces were analyzed for the
vacuum (pure AdS) and finite temperature equilibrium
(AdS-black brane) situations in Sec. II B 1. This setup
was also analyzed in [28] in the context of studying en-
tanglement entropy. The parameterization of the surface
and boundary conditions are as given in Sec. II B 1, the
only difference being that the mass function mðvÞ is now
given by (4). The area functional is a slight modification of
(66) (A¼
0ANG) given by

Aðt0;RÞ¼
Z R

0
d�

�

z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1�mðvÞzdÞv02�2z0v0

q
; (121)
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FIG. 15 (color online). Thermalization times (�crit, top line;
�max, middle line; �1=2, bottom line) as a function of spatial scale

for d ¼ 2 (left), d ¼ 3 (middle), and d ¼ 4 (right) for a thin
shell (v0 ¼ 0:01). All thermalization time scales are linear in ‘
in two dimensions, and deviate from linearity in ‘ in three and
four dimensions.
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where 0 � d=d�. The explicit � dependence again means
there is no conservation equation. The equations of motion
become quite involved and we omit them here.

We solve the equations of motion numerically and
although we want our output as a function of the boundary
radius R, for practical purposes we have to input boundary
conditions at the tip of the surface at � ¼ 0 where z ¼ z�
and v ¼ v�. For each value of v� we consider, we find
numerical solutions for the functions zð�Þ and vð�Þ for
various values of z�, each of which reaches the boundary
(which is cut off at z0) at �0ðz�Þ. We then make an inter-
polation of �0ðz�Þ, which allows us to find the exact value
of z� such that �0ðz�Þ ¼ R. For each value of v�, we now
know the value of z� giving the surface with boundary
radius R, and we calculate the area (using the functional
above) and the boundary time t0 ¼ vðRÞ. These are the
quantities we finally plot. There are further numerical
challenges with a divergence as � ! 0 and with integrating
our solutions near the AdS boundary, where contributions
to the area are weighted much higher. Thus, we used an
expansion around � ¼ 0, and different techniques to deal
with a separate integral near the boundary, as necessary.

As in (72) we regulate the boundary by subtracting the
cut-off dependent piece of the AdS area,

�Aðt0; RÞ ¼ Aðt0; RÞ � R

z0
: (122)

We define � ~A � �A=ð�R2Þ dividing by the area of the
region on the boundary bounded by the loop. We then plot

� ~A� � ~Athermal as a function of the boundary time, sub-
tracting the black brane value to show the approach to
thermalization. This is shown in Fig. 16 for AdS4 and
AdS5 for a series of values of R.

Repeating the analysis performed for Wightman func-
tions, we calculate the three thermalization times defined
earlier (see Sec. III A 3) as a function of the loop diameter
(Fig. 17). We use the diameter rather than the radius here as
it is the analogue of the separation ‘ that we plotted for the
geodesics. The complete thermalization time �critðDÞ is
close to being a straight line of slope 1=2 for three-
dimensional theories over the range of scales that we study
(also see [28]) (it would be unit slope as a function of the

radius). But in four dimensions �critðDÞ deviates somewhat
from linearity and is shorter than D=2. Overall, our ther-
malization times for Wilson loop averages are remarkably
similar to those for two-point correlators. This suggests
that higher-order correlators thermalize similarly to the
basic Green function in these strongly coupled theories,
so that any of these nonlocal probes fairly assesses progress
towards thermalization.

2. Infinite rectangular strips

As a second example we consider an infinite strip,
similarly to [28]. A key difference between the strip and
the Wilson circle is that the size of the latter is set by a
single scale, the radius. The strip could be regarded as a
limit of a ellipsoidal loop with a highly elongated semi-
major axis. Thus, there are, in effect, two scales involved in
the Wilson strip—the width and the (infinite) length. As
before, at early times the background is AdS4, but evolves
to a black brane at late times due to an infalling shell of null
dust. The metric is at all times given by (1) with d ¼ 3 or 4.
Again, the mass function mðvÞ determining the evolution
of the metric as a function of the bulk light-cone time v
is modeled by the expression (4). We set the parameter
v0 ¼ 0:01. At theAdS4 boundarywe consider a rectangular
strip parametrized by the coordinates x1 and x2, such that

x1 2 ð�‘=2; ‘=2Þ; x2 2 ð0; RÞ; (123)

where R will be taken to infinity. The coordinate x1 is
denoted x in the rest of the section. The area of the string
surface with this rectangular base is given by

Aðt0; ‘; RÞ ¼ R

2�

Z ‘=2

�‘=2
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1�mðvÞzdÞv02 � 2z0v0p

z2
;

(124)

when we consider the following embedding profile for the
string:

v�vðxÞ; z�zðxÞ; zð�‘=2Þ¼z0; vð�‘=2Þ¼ t0: (125)

We notice that z and v only depend on x and that x itself
does not appear in the action, similarly to the geodesic
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FIG. 16 (color online). � ~A� � ~Athermal (
~A � A=ð=�R2Þ)

as a function of t0 for circular Wilson loop radii R ¼ 0:5, 1, 1.5,
2 (top curve to bottom curve) and mass shell parameters v0 ¼
0:01, M ¼ 1, in three-dimensional (left panel) and four-
dimensional (right panel) field theories.
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FIG. 17 (color online). Wilson loop thermalization times (�crit,
top line; �max, middle line; �1=2, bottom line) as a function of the

diameter for circular Wilson loop operators in three-dimensional
(left) and four-dimensional (right) field toheories.
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length in a dynamical Vaidya background. There exists a
conserved quantity corresponding to the maximum value of
z denoted as z�. The conservation equation then reads

1� ð1�mðvÞzdÞv02 � 2z0v0 ¼
�
z�
z

�
4
: (126)

From the action (124) we obtain the following two equa-
tions of motion:

zv00 þ 4z0v0 � 2þ 2v02 þ d� 4

2
mðvÞzdv02 ¼ 0; (127)

z00 þ ð1�mðvÞzdÞv00 � _mðvÞ
2

zdv02 � dmðvÞzd�1z0v0 ¼ 0:

(128)

One can show that taking the derivative of (126) with
respect to x and combining with (127) leads to (128). This
it is sufficient to solve (126) and (127). In order to do this
numerically we use the symmetry of the string surface, i.e.,
we construct one half of the solution zðxÞ and vðxÞ and then
use the reflection symmetry to construct the other half.
Our boundary conditions are zð0Þ ¼ z�, vð0Þ ¼ v�, v0ð0Þ ¼
0 ¼ z0ð0Þ. After constructing a string surface satisfying
these boundary conditions, we read off the boundary
separation and the boundary time using zð‘=2Þ ¼ z0,
vð‘=2Þ ¼ t0.

Using the symmetries of the embedded string surface
and the conservation equation (126), we obtain the on-shell
area as

A ðt0; ‘; RÞ ¼ R

�

Z ‘=2

0
dx

z2�
z4

: (129)

We regulate the area by subtracting the cut-off dependent
part

�Aðt0; ‘; RÞ ¼ Aðt0; ‘; RÞ � 1

z0

R

�
: (130)

We then compare the area in the shell background
with the area in a thermalized background at different
times for fixed scales in Fig. 18, where we defined

� ~A � �A=ðR‘=�Þ. In four dimensions (d ¼ 3) it turns
out that there is a range of times t0 and Wilson strip
widths ‘ for which there are three different minimal sur-
faces in AdS4. Thus, in this case, we observe a ‘‘swallow
tail’’ in the Wilson loop thermalization curve for large
enough boundary separations, as was also noted in [28].
However, in five dimensions (d ¼ 4) the thermalization
curves do not exhibit the swallow tail.
In Fig. 19 we plot the three different thermalization

times �crit, �1=2 and �max for d ¼ 3 and d ¼ 4 dimensional

field theories. In three and four dimensions, the time for
complete thermalization, �crit (dashed green curve), ex-
ceeds the linear relation ‘=2. The halftime �1=2 (orange

curve) is sublinear. The time �max (dot-dashed blue curve)
exhibits a different behavior in three and four dimensions.
The time for complete thermalization for a strip of width ‘
is slower than the thermalization time of a circular loop of
radius R. This may be because the long direction of the
strip provides a second, larger scale.

C. Equilibration of the entanglement entropy

Finally, we consider how the entanglement entropy
equilibrates following a sudden injection of energy.
Because it measures all contributions to the information
loss caused by the restriction of the field theory to a finite
volume, this quantity provides for a more comprehensive

0. 1. 2. 3.
0.8

0.6

0.4

0.2

0.

t0
th

er
m

al

2.6 2.7 2.8
0.1

0.05

0.

0.05

0.1

t0

th
er

m
al

0. 1. 2. 3.
0.8

0.6

0.4

0.2

0.

t0

FIG. 18 (color online). � ~A� � ~Athermal (
~A � A=ðR‘=�Þ) as a function of boundary time t0 for d ¼ 3 (left) and d ¼ 4 (right) for

a thin shell (v0 ¼ 0:01). The boundary separations were taken to be ‘ ¼ 1, 2, 3, 4 (from the top to the bottom curve). All quantities are
given in units of M. The middle panel shows a zoomed-in version of the swallow tail for ‘ ¼ 4, where we plot ‘ð� ~A� � ~AthermalÞ to
amplify the effect.
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FIG. 19 (color online). Wilson strip thermalization times (�crit,
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spatial scale for d ¼ 3 (left) and d ¼ 4 (right) for a thin shell
(v0 ¼ 0:01). All thermalization times deviate from linearity in
the spatial scale.
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measure of equilibration than either the two-point function
or the Wilson loop expectation value. The entanglement
entropy can be considered as a special case of the standard
coarse grained entropy of equilibrating quantum systems
[59]. As discussed in Sec. II C, the entanglement entropy in
a two-dimensional field theory is related to geodesic
lengths in AdS3, while in three-dimensional field theory
entanglement is related to minimal surface areas in AdS4.
Both of these quantities have been computed above in the
infalling shell background in the process of studying two-
point functions and Wilson loops. It is interesting that the
Wightman function in 2 dimensions and the Wilson loop in
3 dimensions are so closely related to entanglement.

For 4-dimensional theories, to study the entanglement
entropy in spherical regions, we need to compute the
volume of minimal three-surfaces with the S2 cross section
in the asymptotically AdS5 infalling shell geometry. As
with the pure AdS and black brane cases we discussed in
Sec. II C, the method is a straightforward generalization of
the circular Wilson loop case, so we do not repeat the
details of Sec. III B 1. We replace the black brane tension
M in Eq. (82) with the dynamical mass function [Eq. (4)].
We can regulate the resulting volumes by subtracting the
divergent part of the 3-volume of the 3-surface of the same
boundary radius in pure AdS, which is given analytically in
(83). We call this regulated volume �V . However, as in
previous cases, to illustrate the thermalization process we
find it more instructive to subtract the renormalized

3-volume of the solution of the same radius in the black

brane background, �V thermal. We ultimately plot � ~V �
� ~V thermal against the boundary time in the left panel of

Fig. 20. ~V is defined as V divided by the volume of the
region that it bounds on the boundary. As in previous cases
we can also calculate the three thermalization times we
defined earlier for the 3-volume, at different values of the
diameter D ¼ 2R. These are shown in the right panel of
Fig. 20.
Our thermalization times for Wilson loop averages and

entanglement entropy seem remarkably similar to those
for two-point correlators. Slightly ‘‘faster-than-causal’’
thermalization, possibly due to the homogeneity of the
initial configuration, seems to occur for the probes that
do not correspond to entanglement entropy in each dimen-
sion. For the latter, the thermalization time is linear in the
spatial scale and saturates the causality bound. As the
actual thermalization rate of a system is set by the slowest
observable, our results suggest that in strongly coupled
theories with a gravity dual, thermalization occurs ‘‘as
fast as possible’’ at each scale, subject to the constraint
of causality.
The average growth rate of the coarse grained entropy in

nonlinear dynamical systems is measured by the
Kolmogorov-Sinaı̈ (KS) entropy rate hKS [61], which is
given by the sum of all positive Lyapunov exponents. For a
classical SU(2) lattice gauge theory in 4 dimensions, hKS
has been shown to be proportional to the volume [62]. For a
system starting far from equilibrium, the KS entropy rate
generally describes the rate of growth of the coarse grained
entropy during a period of linear growth after an initial
dephasing period and before the close approach to equi-
librium [63]. Here we observe similar linear growth of
entanglement entropy density in d ¼ 2, 3, 4 (leftmost
panels Figs. 14, 16, and 20). For small boundary volumes,
the growth rate of entropy density is nearly independent of
the boundary volume (almost parallel slopes in the leftmost
panels of Figs. 14, 16, and 20 and nearly constant maximal
growth rate in Fig. 21, left). Equivalently, the growth rate
of the entropy is proportional to the volume—suggesting
that entropy growth is a local phenomenon. However, in
d ¼ 2 where our analytic results enable study of large
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boundary volumes ‘, we find that the growth rate of the
entanglement entropy density changes for large ‘, falling
asymptotically as 1=‘ (Fig. 21 middle panel). Equivalently,
the entropy has a growth rate that approaches a constant
limiting value for large ‘ (Fig. 21 right panel) and thus
cannot arise from a local phenomenon. This behavior
suggests that entanglement entropy and coarse grained
entropy have different dynamical properties.

In summary, we have investigated the scale dependence
of thermalization following a sudden injection of energy in
2-, 3-, and 4-dimensional strongly coupled field theories
with gravity duals. We found that the entanglement entropy
sets a time scale for equilibration that saturates a causality
bound. Our results raise interesting questions about the
relationship between the entanglement entropy growth
rate and the KS entropy growth rate defined by coarse
graining of the phase space distribution.

IV. DISCUSSION

In this work, we explored the approach to thermal
equilibrium of simple nonlocal observables in strongly
coupled conformal field theories with a gravity dual. In
particular, we investigated the behavior during the ther-
malization of equal-time two-point functions, Wilson
loops and entanglement entropy in boundary field theories
holographically represented by asymptotically AdS ge-
ometries. The thermalization process was modeled in the
bulk by the collapse of a spatially homogeneous thin shell
of null dust that eventually forms a black hole. The thick-
ness v0 of the shell is related to the duration of the process
of energy deposition in the boundary field theory. In the
limit v0 � z0, where z0 parametrizes the effective UV cut
off of the field theory, the energy deposition can be con-
sidered as instantaneous.

As null dust does not obviously appear in supergravity
theories, one may ask what is the relevance of our Vaidya
model to honest AdS/CFT models. One answer to this
question was given in [23], where it was shown that
Vaidya geometries appear at leading nontrivial order in a
small-amplitude expansion in models that can be em-
bedded in AdS/CFT. More generally, our main qualitative
conclusion (namely that thermalization is not instanta-
neous but proceeds top-down) only depends on the metric
approaching that of a black brane outside the shell and
not inside, which seems more general than our specific
model.

Our observables were calculated in a semiclassical ap-
proximation appropriate for high-dimension operators, in
which they correspond to geodesics or minimal surfaces in
the bulk. For the AdS3 case, where the thermal limit is
represented by the planar BTZ black hole, we were able to
solve the problem analytically. Not only did this provide a
check on our numerical approach, which is required for
higher dimensional cases, it also allowed us to obtain
results in regimes beyond reach of our numerical analysis.

In all cases we found that the thermal limit is reached
after a finite time �crit, which is a function of the geometric
size of the probe in the boundary field theory, e.g., the
separation ‘ of the two points of the equal-time Wightman
function or the radius R of the circular Wilson loop. For
those cases where the logarithm of the correlation function
is proportional to the entanglement entropy of the enclosed
area on the boundary, i.e., for geodesics in AdS3, minimal
surfaces bounded by a circle in AdS4, and minimal codi-
mension two surfaces bounded by a spherical shell in
AdS5, we found that �crit ¼ ‘=2 (AdS3) and �crit ¼ D=2
(AdS4;5), in the regimes we were able to study. Our result

confirms a general rule for two-dimensional conformal
field theories implied by causality (as also observed in
[27]) and generalizes it to higher dimensions (as also
done in [28] for AdS4).
The conclusion we can draw from these results is that the

decoherence and equilibration of instantaneously depos-
ited energy generally propagates at the speed of light in the
conformal field theory. This makes sense, because the
process can be qualitatively understood as a cascade of
gauge boson splittings, which transfers energy from all
momentum scales into the infrared until all energy is
distributed thermally. The speed by which this process
evolves is determined by the speed of propagation of the
gauge quanta, i.e., the speed of light. Alternatively, if the
initial energy deposition were spatially inhomogeneous,
one would expect the dissipation of the local inhomogene-
ities in the initial energy density to be constrained by the

speed of sound, which is equal to c=
ffiffiffi
3

p
in a conformal field

theory. This argument invites the conjecture that local
equilibration of energy, in the sense of hydrodynamics, is
controlled by the speed of light in conformal field theories,
whereas global equilibration requiring hydrodynamic
transport of energy is governed by the speed of sound.
On the other hand, we found that the naive causality argu-
ment does not hold for the two-point function in 3d and 4d
field theories and for Wilson loops in 4d field theories,
which do not have an interpretation as entanglement en-
tropy. In this case we obtained �crit < ‘=2. This is not as
surprising as it might sound: we already know of other
observables that thermalize faster than the entanglement
entropy, for instance one-point functions.
We also found that the transition to full thermal equilib-

rium is abrupt and nonanalytic, as expected from the
causality argument. This nonanalyticity will presumably
disappear once we go to finite gs and N, since we do not
expect infinitely thin shells to exist at finite gs and N. One
might have objected that the nonanalyticity of the transi-
tion to full thermal equilibrium is probably due to the
geodesic approximation and will be smoothed out once
we consider the exact Wightman function. Corrections to
the geodesic approximation can be worked out by consid-
ering the exact first-quantized path integral representation
of the propagator, whose saddle points are given by
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geodesics. Possible corrections are then due to fluctuations
around the saddle point. However, if the geodesic saddle
point lies entirely within the AdS Schwarzschild geometry
and does not graze the shell, such higher-order corrections
will not be sensitive to the presence of the shell, since the
shell is invisible in perturbation theory around the geode-
sic. This remains valid when we couple the heavy bulk
scalar field to other bulk degrees of freedom. At best, there
could possibly be nonperturbative corrections due to other
complex saddle points which are sensitive to the existence
of the shell, but it is unclear how to detect those in time-
dependent situations. For finite-dimension operators, there
could therefore be corrections that are invisible in an
expansion in the inverse dimension. Their computation
would be interesting but is beyond the scope of the present
paper.

The nonanalyticity is probably a consequence of our
treatment of the endpoints of the Wightman function,
which are both located at the same bulk variable z0. The
origin of a similar problem has been studied in the theory
of boundary critical phenomena, where one typically in-
troduces an extrapolation length �0 to tame the sharp UV
cutoff of the conformal field theory [64,65]. This corre-
sponds to the introduction of a smooth UV cutoff of the
form expð�E�0Þ, where E is the energy. The sharp cusp in
the asymptotic result is then rounded over a region
jt� ‘=2j � �0. In our holographic setting, a similar ap-
proach would smear the two endpoints of the correlation
function independently over some range of values z0. We
have not studied the consequences of such a prescription.

One may wonder whether our results are in tension with
those of [66], where instantaneous thermalization was
found for two-point functions related to Brownian motion
of a ‘‘quark’’ represented by a string stretching from the
boundary to the horizon of an AdS3-Vaidya spacetime.
While the two-point functions studied in [66] did not
involve high-dimension operators, so that there is no rea-
son to expect a geodesic approximation to be valid, one can
get some intuition by computing geodesics in the induced
geometry on the string world sheet. We have done so, and
find that geodesics connecting two points on the string
outside the shell never cross the shell. So within a geodesic
approximation, this would explain why the observable
considered in [66] thermalizes instantaneously, in contrast
to the observables studied in the present paper.

The fact that correlation functions of a small geometric
size thermalize earlier than those of a large size implies
that high momentum modes in the boundary field theory
approach thermal equilibrium faster than long wavelength
modes. In other words, the boundary field theory thermal-
izes first in its ultraviolet domain and later in the infrared
or, as one might say, thermalization proceeds from the top-
down. In part, this is a consequence of the fact that the
specific energy injection mechanism considered here has
support in the UV: the energy shell is injected into the

geometry near the boundary and then falls into the deeper
regions of the AdS space, which represent IR modes of the
boundary field theory. While this appears natural when
viewed from the gravity side, it represents a radical devia-
tion of the thermalization behavior of the dual field theory
from that known in weakly coupled non-Abelian gauge
theories, where thermalization occurs from the bottom-up,
independent of how the energy is injected into the field
theory. For the reader unfamiliar with heavy-ion collision
phenomenology, we point out that the scale at which
energy is deposited in the collision—the parton saturation
scale Qs of the colliding nuclei—is higher by an inverse
power of the coupling constant 
s than the thermal scale T
after thermalization. Thus, while the energy is not injected
in the extreme UV in a nuclear collision, it is certainly not
injected in the infrared. We also note that the difference in
thermalization behavior is closely related to the observa-
tion that highly localized excitations in the strongly
coupled gauge theory do not evolve into jets as is com-
monly found in weakly coupled, asymptotically free gauge
theories that permit a perturbative treatment.
It is tempting to speculate to which extent our

results may apply to the thermalization of QCD matter
that is produced in relativistic heavy-ion collisions.
Phenomenologically, it is known that the thermalization
has to occur fast, allowing the matter to expand according
to the laws of nearly ideal hydrodynamics. If the relevant
length scale for thermalization is given by the thermal
scale ‘� ℏ=T, our results suggest that �crit � 0:5ℏ=T if
the matter is strongly coupled. For initial temperature value
T 	 300–400 MeV at heavy-ion collider energies, we
obtain the estimate �crit � 0:3 fm=c, comfortably short
enough to account for the experimental observations. We
know that such a short thermalization time applies to all
momentum scales, because jets are created in the nuclear
collisions, albeit at suppressed levels. However, as already
mentioned, the relevant momentum scale for energy dep-
osition is the parton saturation scale Qs of the colliding
nuclei, i.e.,the transverse momentum below which most
partons in the colliding nuclei are found. For achievable
energies and large nuclei, Qs  3 GeV; in this range of
momenta QCD may well be considered as a strongly
coupled gauge theory.
Though this was not the emphasis in this paper, the rapid

thermalization studied in this paper may also be of rele-
vance for black hole physics. It has been suggested that
black hole creation is the fastest possible form of thermal-
ization that exists in nature [67] and it would therefore be
of particular interest to more directly link the causality
bound to this conjecture.
We also encountered phenomena that do not appear to

have a simple explanation. For example, for long rectan-
gular Wilson loops in the boundary gauge theory of AdS4,
the area of the minimal surface exhibits a swallow tail
behavior: the transition to the thermal limit proceeds via
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a discontinuous succession of shapes of the minimal sur-
face. It is unclear why this phenomenon occurs for the
rectangular Wilson loop but not for the two-point function,
as the differential equation for the stationary surface is
quite similar to that for the geodesic curve.

Finally, we briefly comment on the difference between
dynamically collapsing shells and quasistatic shells that
adiabatically approach the event horizon. As we show in
the Appendix, the swallow tail behavior is ubiquitous for
quasistatic shells close to the horizon, leading to significant
differences between dynamical and quasistatic shells for
large boundary separations.
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APPENDIX: A THE QUASI-STATIC
APPROXIMATION

In the main text we considered a dynamical shell of
matter falling into AdS space as a model of thermalization.
An adiabatic approximation to the process of thermaliza-
tion can be constructed by treating the computation of
correlation functions and Wilson loops in a quasistatic
manner. To do this we observe that the dynamical shell is
falling into AdS space on a null trajectory. Then, at any
given time, we imagine a shell located statically at the
corresponding location on the null trajectory and compute
Wightman functions, Wilson loops, and entanglement
entropy via the geodesic and minimal surface methods
described in the previous section. In this quasistatic
approximation the geodesics and minimal surfaces with
endpoints at a given boundary time remain localized on the
equal-time surface in the bulk of AdS space (Fig. 2).

As we will see, in the quasistatic approximation, there
are generically multiple geodesics connecting a pair of
endpoints on the AdS boundary. We demonstrate this ex-
plicitly for AdS3 and have found similar results for AdS4
(not shown). There can also be multiple minimal surfaces
that trace out a given loop on the AdS4 boundary. This
‘‘swallow tail phenomenon’’ was also described in the full
dynamical setting for the strip Wilson loop (see [28] and
above). When multiple geodesics or minimal surfaces are
present in a dynamical setting, it will generally be neces-
sary to analyze which of these saddlepoints lie within
steepest descent integration contours in the path integral.
Here, for completeness, we document the situations we

have found where multiple saddlepoints exist (see below
and Table I). Note that in a quasistatic setting the saddle
point of minimal action will dominate.

1. Geodesics in the quasistatic approximation

We study the equal-time geodesic in the shell back-
ground in the quasistatic approximation for d ¼ 2. In the
quasistatic approximation, the AdS3 geometry with a shell
at a fixed radial coordinate r ¼ rs can be written as

ds2 ¼ �fðrÞ2dt2 þ dr2

fðrÞ2 þ r2dX2;

fðrÞ2 ¼
�
finðrÞ2 ¼ r2 r < rs

foutðrÞ2 ¼ r2 � r2H r > rs
; (A1)

where rH (< rs) is the position of the would-be horizon.
Outside the shell, r > rs, the metric (A1) is the planar
black brane metric that we studied in the text in II A 4,
while inside the shell, r > rs, it is the empty AdS3 we
discussed around (53)–(55). Therefore, for studying the
equal-time geodesic in the shell spacetime (A1), we can
use our previous results. Outside the shell, the relevant
expressions are found in (34), (35), (41), and (45). The
outside geodesics are parametrized by two parameters E
and J which correspond to the energy and angular momen-
tum, respectively. We take E ¼ 0 so that they describe
equal-time geodesics [see below (48)]. Also, we can take
J � 0 without loss of generality, because flipping the sign
of J just corresponds to the reverse parametrization of
the same geodesic. Inside the shell, the expressions for
geodesics are found in (53), (54), and (89). The inside
geodesics are parametrized by r� � 2=‘. As is clear
from (89), r� is the minimum value of r on the geodesic.
The geodesic in the entire shell background space-

time (A1) is obtained by gluing outside and inside geo-
desics across the shell using a refraction law so that the
geodesic length is extremized. In the current situation
the refraction law can be derived in very much the same
way as it was in the shockwave background around (95),
and the result is

fin
dX

dr

��������r¼rs

¼ fout
dX

dr

��������r¼rs

: (A2)

By substituting the expression for the outside geodesic (45)
and the inside one (89) into (A2), we see that the para-
meters in the inner and outer regions are related by

TABLE I. Overview: swallow tail (!); no swallow tail (�).

Holographic probe Quasistatic Dynamical

Geodesics in AdS3 ! �
Geodesics in AdS4 ! �
strip in AdS4 ! !
Circular loop in AdS4 ! �
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r� ¼ rHJ: (A3)

Just as we did in the main text for the shockwave
geometry, we can compute the renormalized geodesic
length �L and spatial boundary separation ‘ in terms of
the parameters J, r� of the geodesic. The geodesic length is
the sum of the geodesic length for the inside part, which
can be computed from (53), and the length for the outside
part, which can be computed from (43) with E ¼ 0. The
result is

‘ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s � r2HJ

2
q
rHrsJ

þ 2

rH
ln

�
rsðJ þ 1Þ

J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s � r2H

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s � r2HJ

2
q �

;

�L ¼ 2 ln

� rs þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s � r2HJ

2
q

rHJð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s � r2H

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s � r2HJ

2
q

Þ

�
: (A4)

Here, we regularized L by subtracting the divergent quan-
tity 2 lnð2r0Þ just as we did in the main text. Note that (A4)
is valid if the geodesic is partly inside the shell, which is
the case if J  rs=rH. In this case, (A4) gives implicitly the
relation between ‘ and �L through the parameter J [note
that J and r� are related by (A3)].

If J � rs=rH, instead, the entire geodesic is outside the
shell and the relation between ‘ and �L is given by (52).
In Fig. 22, we plotted �L versus ‘ for different values of

rs=rH. We see that the curve has more nontrivial structure
for rs=rH 	 1. So, let us focus on this case. If rs=rH 	 1,
then from (A4) one can derive that, depending on the value
of J, the relation between ‘ and �L has the following
regimes:

ðiÞ J 
 1: ‘ � 1

rH
; �L 	 2 ln

‘

2
;

ðiiÞ J � rs
rH

and J � 1:
1

rH
� ‘  1

rH
ln
rs þ rH
rs � rH

;

�L 	 rH‘� 2 lnð2rHÞ;
ðiiiÞ J  rs

rH
and J � 1:

1

rH
� ‘  1

rH
ln
rs þ rH
rs � rH

;

�L 	 rH‘� 2 lnð2rHÞ;

ðivÞ 1

rH

 J > 0: ‘ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s � r2H

q
r2H

;

�L 	 2 ln
‘

2
þ 2 ln

2rs

rs þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s � r2H

q : (A5)

FIG. 22 (color online). The �L versus ‘ curves (solid lines) for the values of rs=rH (A) sufficiently larger than 1 and (B) sufficiently
close to 1. We set rH ¼ 1. For comparison, we plotted �Lð‘Þ for pure AdS3 in dotted black lines and for AdS3 Vaidya in dashed yellow
lines. Note that most of the Vaidya curves (dashed yellow) are overlapping with quasistatic curves (solid, in various colors). For the
values of t0 used for the Vaidya curves, see text [Eq. (A6)]. In (B), we used (partly) different colors for the different regimes (i)–(iv)
explained in the text in Eq. (A5). In the insets are the actual shapes of the geodesics for some selected values of ‘, in different colors
corresponding to different branches, in the ðX; z ¼ 1=rÞ coordinates (actual values of the coordinates not shown). The two horizontal
lines in each inset represent the boundary (z ¼ 0) and the shell (zs ¼ 1=rs).
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The geodesic does not cross the shell in regimes (i) and
(ii) while it crosses the shell in regimes (iii) and (iv). In
regime (i), the ‘-�L relation is the same as the one for
empty AdS3, because the geodesic is near the boundary of
the AdS space where the background metric is same as the
empty AdS metric. In regime (ii) the geodesic length �L
grows linearly with the boundary separation ‘ because the
geodesic extends almost parallel to the shell just above it.
This happens because the shell at r ¼ rs is very close to the
would-be horizon at r ¼ rH. Regime (iii) is similar to
regime (ii) except that a small middle part of the geodesic
dips into the inside geometry. In regime (iv), the ‘-�L
relation is the same as the one for empty AdS, up to a
constant shift. This is because most of the geodesic is
inside the shell where the metric is equal to the empty
AdS metric. However, the part of geodesic outside the shell
still sees the BTZ metric and leads to the constant shift that
survives even for ‘ ! 1.

So, if rs=rH 	 1, within a certain range of the spatial
separation ‘, there are three possible geodesics and three
corresponding values of �Lð‘Þ; see Fig. 22. The upper
bound of the range is ‘max¼ð1=rHÞln½ðrsþrHÞ=ðrs�rHÞ�
while the lower bound can be computed from the condition
@‘=@J ¼ 0 and is given in the rs ! rH limit by ‘min 	
3:7=rH. As rs ! rH, we can make the upper bound ‘max

arbitrarily large and the ‘‘spike’’ in Fig. 22 arbitrarily long.
In general, in the presence of multiple geodesics in

Lorentzian signature, which geodesic makes the dominant
contribution to the correlation function is a subtle issue
[39–41]. However, in the present approximation where the
spacetime is static, it is simply the shortest geodesic that
contributes most to the correlation function. Therefore, in
spite of the existence of the peculiar ‘‘linear’’ regimes (ii)
and (iii), it is (i) and (iv) that determine the correlation
function.

For comparison, in Fig. 22, we also plotted �Lð‘Þ for
the Vaidya geometry we studied in III A 1. The relevant
expressions are found in (102) and (112). The Vaidya
geodesics are parametrized by t0, the time at which the
boundary operators are inserted. In the plot, we determined
the value of t0 in terms of rs so that the shock wave in
the Vadiya geometry is at r ¼ rs at time t0 just as in the
quasistatic metric (A1). Namely, because the shock wave is
at v ¼ 0, by setting v ¼ 0 in (29), we obtain the relation
between t0 and rs:

t0 ¼ 1

2rH
ln
rs þ rH
rs � rH

: (A6)

Note that, in the large ‘ limit with rs fixed, the quasistatic
computation (A4) gives the asymptotic behavior:

�L	2ln
‘

2
þ2ln

2rs

rsþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s�r2H

q ¼2ln
‘

2
þ2ln

�
coshðrHt0Þ
cosh2ðrHt02 Þ

�

ðquasi-staticÞ; (A7)

where in the second expression we used (A6). In the same
limit [which corresponds in (112) to c ! 1, r�=rH ! 0
with fixed t0], the Vaidya result (112) gives the following
asymptotic behavior:

�L 	 2 ln
‘

2
� ln

16a

ð ffiffiffi
a

p þ 1Þ4 ¼ 2 ln
‘

2
þ 4 ln

�
cosh

rHt0
2

�

ðVaidyaÞ; (A8)

where we used a ¼ e2rHt0 . These lead to the difference in
the ‘ ! 1 behavior of the quasistatic and Vaidya curves
that we can observe in Fig. 22.

2. Wilson loops in the quasistatic approximation

In four dimensions the entanglement entropy is related
to the area of the spacelike string surface whose base is a
Wilson loop at the AdS boundary. In [28] it was noticed
that there can exist three different string surfaces for the
same boundary time and the same boundary separation in a
dynamical background with a thermal quench (see also
III B 2). In this subsection we will investigate whether the
quasistatic approximation for Wilson loops and Wilson
strips exhibits multiple string surfaces for the same
boundary.

a. Circular loops

Similar to the geodesic analysis, the four-dimensional
background can be divided into a black brane part (outside
the shell) and a pure AdS part (inside the shell). However,
we cannot solve the differential equations analytically and
instead we rely on numerical methods. Outside the shell
the solution satisfies the differential equation (68) in the
black brane background (with d ¼ 3), while inside the
shell we must find a minimal surface in pure AdS (i.e.
we set the massM to zero in Eq. (68). The minimal surface
in pure AdS consists of a hemisphere. In the thin-shell
limit, at the position of the shell z ¼ zs, the minimal
surface should satisfy the refraction condition

dzout
d�

��������zs

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Mz3s

q dzin
d�

��������zs

: (A9)

This is derived analogously to the geodesic case (A2) in
which case it agrees with numerical results obtained by
minimizing the path of the geodesic. Note that in the
dynamical case we do not use such a condition and solve
the equations of motion in the whole space with mass
function (4). However, here, taking advantage of this sim-
ple relation allows to use much less computationally in-
tensive numerics in the limit of a thin shell (where the mass
function is a step-function). We start by constructing a
hemispherical string surface whose tip is given by zð0Þ ¼
z� > zs and z0ð0Þ ¼ 0, thus lying inside the shell. For this
solution we can determine the intersection point �1 with
the shell and the gradient at that point analytically. We can
then use the refraction condition to generate the rest of the
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solution in the black brane background, using the boundary
condition zð�1Þ ¼ zs and z0ð�1Þ ¼ z0out. Where this part of
the solution intersects the boundary (cut off at z0) gives us
the boundary radius R of the Wilson loop. We can also
construct surfaces wholly outside the shell, which are just
the thermal Wilson loops from Sec. II B 1. Thus we get
Rðz�Þ for any shell position zs.

As with the geodesics case we can get multiple surfaces
with the same boundary radius and shell position (such as in
Fig. 22). An easy way to check whether these multiple
solutions exist before calculating any areas (see also [28])
is to invert our numerical data appropriately so that we can
plot it on a graph of z� against boundary time t0, the
boundary time being obtained as a function of the shell
position zs:

t0 ¼
Z zs

z0

dz

1�Mz3
: (A10)

The multiple solutions will show up as multiple possible
values of z� for the same t0. We see this in Fig. 23(a) where
we have plotted for three different boundary radii.

The area of the minimal surface consists of three parts:
we add the areas of the piece in empty AdS (inside the
shell) and of the piece in the black brane background
(outside the shell) and subtract the area of the solution in
empty AdS with the same boundary radius,

�AðR; t0Þ ¼
Z �1ðt0Þ

0
d�

�

z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

p

þ
Z R

�1ðt0Þ
d�

�

z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

1�Mz3

s
�

�
R

z0
� 1

�
:

(A11)

In Fig. 23(b), we plot �AðR; t0Þ as a function of R for a
fixed shell position. The three branches appear in a very
similar fashion to those for geodesics in AdS3 shown in
Fig. 22. Figure 23(c) then shows �AðR; t0Þ as a function of
the boundary time t0 for three different boundary radii. The

appearance of the three branches gives a swallow tail as
found in [28] in the dynamical case for the infinite rectan-
gular strip, and as we also find in Sec. III B 2. However,
there are no such multiple solutions in the dynamical
Wilson loop case as shown in [28] and Sec. III B 1. This
can be taken as an indication of the limits of the quasistatic
approximation in accurately capturing the behavior as the
shell gets closer to the horizon (recall that to get the three
branches in Fig. 23(b) we have to wait till the shell ap-

proaches the would-be horizon, here M1=3zs ¼ 1=1:001).
The appearance of three branches does not, however, sig-
nify that something is unphysical. As mentioned, they also
appear in the dynamical case for the infinite strip. What it
does mean is that since we are using a saddle-point ap-
proximation to calculate field theory quantities and our
spacetime is Lorentzian, when there are multiple geodesics
we should carefully follow a steepest descent procedure.
The numerics are hard to pursue around the earliest time

where the three branches occur in Fig. 23(c) and we see
some noise around one corner of the swallow tail. Here the
tip of the sphere at z�, which is our initial condition, is very
close to the shell, and very small variations in z� give rise to
large variations in R and hence �A.

b. Strip

We can perform a similar analysis for the Wilson strip in
a quasistatic background. Eq. (76) is now the differential
equation we solve numerically in the black brane back-
ground (with d ¼ 3). Considering a similar boundary setup
for the strip as in section II B 2, we follow a similar
procedure to construct solutions as for the quasistatic
Wilson loops. Also the refraction condition through the
shell (in the thin-shell approximation) is the same as for
circular Wilson loops. Hence, we will not work this case
out explicitly will immediately give the results. The string
surface area consists of three different pieces: the part of the
solution inside the shell (empty AdS)AAdS, the part of the
solution outside the shell (black brane background) ABB,
and a subtracting part corresponding to the full solution in
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FIG. 23 (color online). (A) z� against t0 for R ¼ 1:4, 1.6, 1.8 (from bottom curve to top curve). Three z� values for a certain range of
t0 make it clear we have multiple branches. (B) �A against R forM1=3zs ¼ 1=1:001. We have multiple solutions for the same radius in
the region with the spike. (C) �A against t0 for R ¼ 1:4, 1.6, 1.8, (from bottom curve to top curve) we have three branches and the
behavior of the curve there is complicated.
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empty AdS with the same boundary separation ‘. The full
area in the shell background is given by

�Að‘; t0Þ ¼ AAdSðzsðt0Þ; ~xÞ þABBð~x; ‘Þ
�AAdSðz0; ‘Þ; (A12)

where ~x represents the spacelike separation of the part in-
side the shell. The area formula in emptyAdS is given by the
relation

A AdSðz; yÞ � R

�

�
1

z
þ 1

2y

��ð�1=4Þ�ð3=4Þ
�ð1=4Þ2

�
; (A13)

where R corresponds to the height of the Wilson strip at the
boundary (see II B 2) and the black brane area is given by

A BBðy1; y2Þ � R

�

Z y2

y1

dx
1

zðxÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0ðxÞ2

1�Mz3

s
: (A14)

In Fig. 24(a), we plot the midpoint of zðxÞ, namely z�, as
a function of the boundary time t0. In the middle panel of
Fig. 24, we plot the area �Að‘; t0Þ (with R=� divided out)
as a function the boundary separation ‘ for a fixed shell
position zs (thus for a fixed boundary time t0). On the right
panel of Fig. 24 we plot the area �Að‘; t0Þ (with R=�
divided out) as a function of the boundary time t0 for three
fixed boundary separations. As in the dynamical case, we
have three branches of solutions appearing, but here they
show up already for smaller values of the radius.
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