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I. INTRODUCTION

The purpose of this paper is to give a proposal on the
symmetry behind the correspondence between four-
dimensional N ¼ 2 supersymmetric quiver gauge theory
and two-dimensional conformal Liouville (Toda) system,
which was discovered by seminal papers by Seiberg-
Witten [1,2] and later has been deepened by recent break-
throughs [3,4].

In particular in [4], an explicit relation between the two—
Nekrasov’s partition function [5] for SUð2Þ quiver gauge
theories and the conformal block of Liouville theory [6]—
was given. It was then generalized to the SUðNÞ case, where
the Liouville theory is replaced by AN�1 Toda theory [7].

Such correspondence is interesting because (1) it implies
a nontrivial relation between two-dimensional and four-
dimensional physics which may be explained by the strong
coupling physics of M-theory 5-brane; and (2) it apparently
relates the formulas with very different mathematical
origin, i.e. one in the geometry of instanton moduli space
of the gauge theories and the other in the representation
theory of infinite dimensional Lie algebra such as Virasoro
algebra or WN algebra.

At this stage, this correspondence (called the
Alday-Gaiotto-Tachikawa [AGT] relation or the Alday-
Gaiotto-Tachikawa-Wyllard [AGT-W] relation for its
generalization), has two issues in different levels to be
fully explored. First, one needs to know the precise defi-
nition of the statement

ZNekrasov ¼ hV1 . . .Vni; (1)

where the left-hand side is the partition function of super
Yang-Mills theory and the right-hand side is the chiral
correlator of Liouville (Toda) field theory. While the left-
hand side is well-known for linear quiver gauge theories
[5], the corresponding chiral correlation function of the
Liouville (Toda) theory is only known in the special case
[8]. Furthermore, there remain some open issues for the
choice of vertex operators and intermediate states.

Second, one needs to understand more profound issues
about such correspondence exists. This is certainly much
more important for the future development but it is out of
reach of this paper since we would like to focus on the
symmetry of two-dimensional conformal field theory
(CFT).
Recently, a major step to understand the right-hand side

of Eq. (1) was undertaken [9–11]. The key issue here is
how to understand the factorized form of ZNekrasov from the
CFT viewpoint. For SUð2Þ quiver, the authors of [9] pro-
posed a basis with two Young diagram indices jY1; Y2i,
where the factors in Nekrasov’s partition function are
reproduced through the norm and three-point functions in
terms of them. When one of the Yi’s is null, the basis
coincides with the Jack symmetric polynomial [12]. They
also presented an algorithm to construct such a basis for
general cases. Later, for the simpler case (where the central
charge c ¼ 1 or Q ¼ 0), it was conjectured in [11] that the
state jY1; Y2i is given by the direct product of Schur poly-
nomials jY1; Y2i ¼ sY1

sY2
.

Other than these technical improvements toward the
proof of the AGT-W relation, these studies reveal the
importance of integration of somewhat mysterious ‘‘Uð1Þ
factor’’ [4] to construct these useful bases. This implies that
the original symmetry such as Virasoro orW algebra should
be properly enhanced to include the Uð1Þ factor. In this
paper, we propose that W 1þ1 algebra, whose representa-
tion was studied long ago [13–16], should be the proper
symmetry behind the AGT-W relation, at least for Q ¼ 0.
As its strange name implies, W 1þ1 algebra contains a

Uð1Þ current operator together with the infinite number of
higher spin generators. With appropriate choice of repre-
sentation, we will show that the algebra reduces to WN

algebra and Uð1Þ current as expected from above construc-
tions. It is known further that a Schur polynomial gives an
appropriate basis which diagonalizes all the commuting
charges. Therefore, it is very natural that this Uð1Þ current
corresponds to the Uð1Þ factor, and this discussion gives
some indirect evidences why W 1þ1 algebra is relevant to
the AGT-W relation.
This paper is organized as follows. In Sec. II, we

briefly review the definition of W 1þ1 algebra and its
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representation. In particular, we emphasize the importance
of ‘‘quasifinite’’ representation [13]. This section is a brief
summary of [16]. In Sec. III, we demonstrate explicitly
how the representation of W 1þ1 algebra with the central
charge C ¼ N reduces to that of WN algebra together with
Uð1Þ current. In Sec. IV, we discuss that the AGT-W
relation is reduced to the problem of computation of
three-point function of W 1þ1 algebra. After presenting
our conjecture, we show some evidences by generalizing
the computation of [11] to W3 cases. In [11], the proof of
the AGT-W conjecture was reduced to the so-called ‘‘chain
vector.’’ In Sec. V, we review what a chain vector is and
derive its explicit form for Virasoro and W3 cases.
Compared with [11], our novelty is the use of a free boson
variable from the beginning (this helps to simplify the
computation) and derivation of a W3 chain vector. After
this preparation, in Sec. VI, we combine the Uð1Þ factor as
predicted by W 1þ1 algebra and reproduce Nekrasov’s
formula. In Sec. VII, we illustrate future directions. In
the Appendix, we give a summary of our notation.

II. A BRIEFREVIEWOFW 1þ1ALGEBRAAND ITS
REPRESENTATION

In the following, we briefly review some relevant mate-
rial of the representation theory of W 1þ1 algebra. We
follow the description of [16].

A. W 1þ1 algebra

W 1þ1 algebra is a quantum realization of algebra
generated by higher order differential operators zmDn

(D :¼ z @
@z , m 2 Z, n ¼ 0; 1; 2; . . . ). We define a map

from the differential operators to quantum operators
through zmDn ! WðzmDnÞ. W 1þ1 algebra is most com-
pactly expressed in the following form:

½WðznexDÞ; WðzmeyDÞ� ¼ ðemx � enyÞWðznþmeðxþyÞDÞ
� C

emx � eny

exþy � 1
�nþm;0; (2)

where C is the central extension parameter and
WðznexDÞ :¼ P1

m¼0
xm

m!WðznDmÞ.
The algebra contains Uð1Þ current operators Jm ¼

WðzmÞ. There is some ambiguity in the choice of
Virasoro operators. One may take, for example,
�WðznDÞ, which satisfies Virasoro algebra with central
charge �2C. For this choice, however, the Uð1Þ currents
have anomalous transformation ½Jn;WðzmDÞ�¼�nJnþmþ
C
2nðn�1Þ�nþm;0. Then a better choice is

Ln ¼ �WðznDÞ � nþ 1

2
WðznÞ; (3)

with which Jn transforms as the primary field with spin 1.
This operator satisfies the Virasoro algebra with central
charge C. Together with these familiar ones, W 1þ1
algebra also contains an infinite number of higher spin

operators WðznDmÞ whose commutation relation with the
Virasoro operator is

½Ln;WðzmDlÞ� ¼ ðln�mÞWðzmþnDlÞ þ � � � : (4)

The first term implies that these operators transform as
spin lþ 1 fields, but the algebra contains extra terms � � �
which implies that they should be modified to be primary
fields. We will come back to this problem for the spin
3 case in Sec. III B.
The algebra has an infinite number of commuting

charges WðDnÞ (n ¼ 0; 1; 2; . . . ) and we need their eigen-
values to specify the representation. As usual, the highest
weight state (HWS) j�i is defined by

WðznDmÞj�i ¼ 0 ðn > 0; m � 0Þ
WðDnÞj�i ¼ �nj�i ðn � 0Þ; (5)

where �n (n ¼ 0; 1; . . . ) are complex number parameters
to specify the representation. They are more conveniently
expressed in the form of a generating function,

WðexDÞj�i ¼ ��ðxÞj�i; �ðxÞ :¼ � X1
n¼0

xn

n!
�n: (6)

The Hilbert space is generated from HWS by applying
Wðz�nDmÞ (n>0). Since ½L0;Wðz�nDmÞ�¼nWðz�nDmÞ,
the inner products of such states are block diagonal with
respect to the eigenvalue of L0 which we call ‘‘level’’ of the
state.

B. Quasifinite representation

Unlike the usual two-dimensional chiral algebra,W 1þ1
algebra contains an infinite number of statesWðz�nDmÞj�i
(m ¼ 0; 1; 2; . . . ) at each level n. It makes the handling of
Hilbert space quite difficult.
To make the situation better, we require a condition on

�ðxÞ (first discussed in [13]) such that most of the states
at each level except for a finite set become null. Such
representation is called ‘‘quasifinite representation.’’ It is
realized by requiring conditions of the form

Wðz�nbnðDÞÞj�i � 0; (7)

where bnðxÞ is a polynomial of x. If such a condition is
imposed, all operators of the form Wðz�nDmbnðDÞÞj�i
become null, thus there remain only a finite number of
operatorsWðz�nDlÞ with l< order ðbnðxÞÞ for each level n.
The polynomials bnðxÞ are determined from that for level 1
b1ðxÞ :¼ bðxÞ through the consistency with the algebra,

bnðxÞ ¼ lcmðbðxÞ; bðx� 1Þ; . . . ; bðx� nþ 1ÞÞ; (8)

where ‘‘lcm’’ means the least common multiple and bðxÞ is
the characteristic polynomial. In order to have such null
states, �ðxÞ needs to satisfy

b

�
d

dx

�
ððex � 1Þ�ðxÞ þ CÞ ¼ 0: (9)
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In particular, for bðxÞ ¼ Q
K
i¼1ðx� �iÞmi with �i � �j, the

solution to Eq. (9) is

�ðxÞ ¼
P

K
i¼1 piðxÞe�ix � C

ex � 1
; (10)

where piðxÞ is a polynomial of degree mi � 1 and satisfiesP
ipið0Þ ¼ C.
We note here that W 1þ1 algebra has a one-parameter

family of automorphism which is called ‘‘spectral flow.’’
The transformation rule is

~WðznexDÞ ¼ WðznexðDþ�ÞÞ � C
e�x � 1

ex � 1
�n0; (11)

where ~W satisfies the same algebra as W, but their eigen-
values for j�i are modified. For the representation (10),
this transformation is realized as a shift �i ! �i þ �. It
implies that the representation obtained by the shift of �i

by � has exactly the same property as the original one.
Unitary representations.—In order to make the Hilbert

space unitary, we need to impose further constraints on
�ðxÞ [14,15]. It may be summarized as follows.

First, the multiplicity indices mi in bðxÞ should be 1.
Then the solution (10) for mi ¼ 1 becomes

�ðxÞ ¼ XK
i¼1

Ci

e�ix � 1

ex � 1
;

XK
i¼1

Ci ¼ C: (12)

Second, the parameters Ci in Eq. (12) must be a positive
integer. In particular, for Ci ¼ 1 (for all i) and �i � �j �

integer (for all pairs i � j), we have a free fermion repre-
sentation

bðiÞðzÞ ¼ X
r2Z

bðiÞr z�r��i�1;

cðiÞðzÞ ¼ X
r2Z

cðiÞr z�rþ�i ;

bðiÞðzÞcðjÞðwÞ � �ij

z� w
;

bðiÞr j�i ¼ cðiÞs j�i ¼ 0 ðr � 0; s � 1Þ;
cðiÞys ¼ bðiÞ�s; (13)

and

WðznexDÞ ¼ XK
i¼1

� X
rþs¼n

exð�i�sÞEðiÞðr; sÞ � e�ix � 1

ex � 1
�n;0

�
;

EðiÞðr; sÞ ¼ ?
?b

ðiÞ
r cðiÞ?s ? ; (14)

where the normal ordering

? ?

? ?

is defined as ?
?b

ðiÞ
r cðiÞ?s ? ¼ bðiÞr cðiÞs if r � �1 and as �cðiÞs bðiÞr

if r � 0. Note that the parameter K in Eq. (12) equals C in
this case. The Hilbert space is the tensor product of free

fermions with fermion number ¼ 0 for each i. A conve-
nient basis of such states is labeled by K Young diagrams
~Y ¼ ðY1; . . . ; YKÞ. For example, for K ¼ 1 case, the state
associated with Y ¼ ½f1; . . . ; fr� (i.e. length of rows are
f1 � . . . � fr � 1) is given by1

jYi ¼ b� �f1
b� �f2

. . . b� �fr
j � ri;

�fi ¼ fi � i� 1;

j � ri ¼ c�rþ1 . . . c�1c0j�i:
(15)

The basis j ~Yi for general K is a tensor product of such
states. After bosonization, such basis is written as the
product of Schur polynomials, as we will see later. We
note that good characterization of such states is that they
are diagonal with respect to WðDnÞ action as shown in
Sec. 3.1 of [16].
We note that if some of the �i’s satisfy �i � �j ¼

integer, the free fermion basis does not give the Hilbert
space of W 1þ1 algebra. To see this, we should remember
the definition of the polynomial bnðxÞ. For �i � �j �

integer, bnðxÞ ¼ Q
n
i¼1 bðx� iÞ. If �i � �j ¼ integer, how-

ever, the order of polynomial bnðxÞ becomes lower, since
we have lcm in Eq. (8). It implies that we have extra null
states. Thus the Hilbert space of W 1þ1 becomes in gen-
eral smaller than those spanned by free fermions.

III. REDUCTION OF W 1þ1 TO WN ALGEBRA
AND Uð1Þ FACTOR

A. Explicit form of some unitary representations

Before we start, we explain the structure of representa-
tions with C ¼ 1; 2; . . . to some detail.

C ¼ 1.—In this case, �ðxÞ ¼ e�x�1
ex�1 . By using the spec-

tral flow, one may shift � ! 0, which means �ðxÞ ! 0.
In this sense, we have only one highest weight state. The
Hilbert space of W 1þ1 algebra coincides with that of one
free fermion pair with fermion number zero. Therefore, the
partition function becomes

ZðqÞ ¼ X
H

qL0 ¼ q�
2=2

Y1
n¼1

1

1� qn
: (16)

C ¼ 2.—In this case, the generating function of the
weights �n becomes

�ðxÞ ¼ e�1x � 1

ex � 1
þ e�2x � 1

ex � 1

¼ X
i¼1;2

�
�i þ 1

2
ð�2

i � �iÞx

þ 1

12
ð2�i � 1Þð�i � 1Þx2 þ � � �

�
; (17)

1For other representations, see for example Appendix B of
[16].
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which implies

J0j�i ¼ �ð�1 þ �2Þj�i;
L0j�i ¼ 1

2
ð�2

1 þ �2
2Þj�i; . . . :

(18)

The spectral flow may be used to set J0 eigenvalue to be
zero, and so one may put �1 ¼ �=2, �2 ¼ ��=2. Then the
conformal weight of j�i becomes �2=4, which looks like
the Virasoro conformal weight for the vertex operator of a

free boson e���=
ffiffi
2

p
. This will be confirmed in the next

subsection.
If � =2 Z, the partition function is that for two free

bosons,

Z ¼ Y1
n¼1

1

ð1� qnÞ2 : (19)

For � 2 Z, however, the Hilbert space is in general smaller
than that of fermionic representation, since bnðxÞ �Q

n
i¼1 bðx� iÞ for n > j�j. In particular for � ¼ 0,

�ðxÞ ¼ 0 with the characteristic polynomial bðxÞ ¼ x.
This implies that Wðz�1DmÞj�i ¼ 0 for m ¼ 1; 2; . . . .

More explicitly, Wðz�1Þj�i ¼ P
i¼1;2E

ðiÞð�1; 0Þj�i and

Wðz�1DÞj�i ¼ P
i¼1;2�iE

ðiÞð�1; 0Þj�i. They are not inde-
pendent if �1 ¼ �2, since the second state is a linear
function of the first one. Therefore, the partition function
for � ¼ 0 becomes

Z ¼ 1

1� q

Y1
n¼2

1

ð1� qnÞ2 : (20)

C> 2.—Up to spectral flow symmetry, the representa-
tion contains C� 1ð¼ N � 1Þ parameters. The vertex op-
erator of WN algebra has the same number of independent
parameters. In fact, we can identify them as we see in next
subsection.

B. Reduction from W 1þ1 to WN

In order to see the connection with the AGT-W relation,
we need to see the explicit relation with W N algebra. To
see it, we start from the free fermion realization (14) with
C ¼ K ¼ N. We introduce free fermion fields

bðiÞðzÞ ¼ X
n

bðiÞn z�n�1; cðiÞðzÞ ¼ X
n

cðiÞn z�n: (21)

We note that after replacing cn ¼ c n�1=2 and bn ¼
�c nþ1=2, this definition agrees with the standard Dirac

fermion c ðzÞ, �c ðzÞ in the Neveu-Schwarz (NS) sector.
We define a generating function of WðznexDÞ as

Wð�;xÞ :¼X
n

WðznexDÞ��n�1

¼XN
i¼1

X
r;s

�
exð�i�sÞ?

?b
ðiÞ
r ��r�1cðiÞs ��s?

?�e�ix�1

ex�1
��1

�

¼XN
i¼1

ex�i?
?b

ðiÞð�ÞexD� cðiÞð�Þ??���1�ðxÞ

¼XN
i¼1

ex�i?
?b

ðiÞð�ÞcðiÞðex�Þ??���1�ðxÞ; (22)

whereD� :¼ �@� . We apply the standard bosonization rule

to the fermions

bðiÞð�Þ ¼: e��ðiÞð�Þ:; cðiÞð�Þ ¼: e�
ðiÞð�Þ:; (23)

where :: refers to the normal ordering of bosonic oscillator
and

�ðiÞð�Þ ¼ xðiÞ þ �ðiÞ
0 log� �X

n

�ðiÞ
n

n
��n;

½�ðiÞ
n ; �ðjÞ

m � ¼ n�nþm�
ij: (24)

The fermionic normal ordering means

?
?bð�Þcðex�Þ?? ¼ bð�Þcðex�Þ � 1

�ðex � 1Þ ; (25)

then the generating function Wð�; xÞ can be written in a
simplified form as

Wð�; xÞ ¼XN
i¼1

ex�i
�1

�ðex � 1Þ ð:e
�ðiÞðex�Þ��ðiÞð�Þ:� 1Þ � 1

�
�ðxÞ

¼ �XN
i¼1

1

�ðex � 1Þ ð:e
�ðiÞðex�Þ��ðiÞð�Þþx�i :� 1Þ: (26)

Here the exponent function can be written as

�ðiÞðex�Þ��ðiÞð�Þþ x�i ¼ ð�ðiÞ
0 þ�iÞxþðoscillator partÞ;

(27)

so we can see that �i plays a role of shifting momentum

pðiÞ ¼ �ðiÞ
0 in free boson. Therefore, one may rewrite the

vertex operator part as

: e�
ðiÞðex�Þ��ðiÞð�Þþx�i : ¼ :e’

ðiÞðex�Þ�’ðiÞð�Þþx�i ::e’
Uðex�Þ�’Uð�Þ:;

(28)

where ’Uð�Þ :¼ 1
N

P
i�

ðiÞð�Þ and ’ðiÞð�Þ¼�ðiÞð�Þ�’Uð�Þ.
By using this expression, we can separate Wð�; xÞ intoWN

and Uð1Þ parts,

Wð�; xÞ ¼ � 1

�ðex � 1Þ ð�ð�; xÞ�Uð�; xÞ � NÞ; (29)
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�ð�; xÞ :¼ XN
i¼1

:e’
ðiÞðex�Þ�’ðiÞð�Þ:;

�Uð�; xÞ :¼ :e’
Uðex�Þ�’Uð�Þ::

(30)

Here the factor x�i is absorbed into the redefinition of

zero mode of ’ðiÞ field. Note that Eq. (29) tells us how to
decompose the operator into Uð1Þ factor and WN

generators.

Since�ð�Þ is invariant under Weyl reflection of ’ðiÞ, we
conjecture that the module generated by such operators

should be rewritten in terms ofWðmÞ
n (m ¼ 2; 3; . . . ; N). Let

us confirm it for N ¼ 2; 3. We expand Wð�; xÞ as
Wð�;xÞ¼X

n

��n�1WðznexDÞ

¼X
n

X1
m¼0

xm

m!
��n�1WðznDmÞ

¼Jð�Þ��xðTð�Þ�1

2
@�Jð�ÞÞþ1

2
�2x2 ~W3ð�Þþ��� ;

(31)

where Jð�Þ ¼ P
nJn�

�n�1, Tð�Þ ¼ P
nLn�

�n�2, and
~W3ð�Þ ¼ P

nWðznD2Þ��n�3. Now we write explicit form
of operators in terms of free bosons.

For N ¼ 2, we write ’ð1Þ ¼ 1
2 ð�ð1Þ ��ð2ÞÞ ¼: ’V and

’ð2Þ ¼ �’V . Then Eq. (29) gives

Jð�Þ ¼ �2@’UT

ð�Þ ¼ TVð�Þ þ ð@’UÞ2

~W3ð�Þ ¼ �2ð@’UÞTV � @TV � 1

�
TV � 2

3
ð@’UÞ3

� 2ð@2’UÞð@’UÞ � 2

3
ð@3’UÞ

� 1

�
ðð@2’UÞ þ ð@’UÞ2Þ; (32)

where TVð�Þ :¼ ð@’VÞ2. The Uð1Þ current operator and
Virasoro operator take the standard form with C ¼ 2.
The expression for ~W3 is complicated, but the dependence
on ’V can be written in terms of only TV and its derivative.
In this sense, we can expect that the Hilbert space
ofW 1þ1 algebra can be expressed in terms of the reduced
set, i.e. the Virasoro operator TV and Uð1Þ current
J ¼ �2@’U.

For N ¼ 3, we write

’ð1Þ ¼ 1

3
ð2�ð1Þ ��ð2Þ ��ð3ÞÞ ¼: � 1ffiffiffi

6
p ð’V

1 þ ffiffiffi
3

p
’V

2 Þ

’ð2Þ ¼ 1

3
ð��ð1Þ þ 2�ð2Þ ��ð3ÞÞ ¼: � 1ffiffiffi

6
p ð’V

1 � ffiffiffi
3

p
’V

2 Þ

’ð3Þ ¼ 1

3
ð��ð1Þ ��ð2Þ þ 2�ð3ÞÞ ¼

ffiffiffi
2

3

s
’V

1 : (33)

Then the expression for generators becomes

Jð�Þ ¼ �3@’U

Tð�Þ ¼ TVð�Þ þ 3

2
ð@’UÞ2

~W3ð�Þ ¼ �
ffiffiffi
2

3

s
WV

3 � ð@’UÞTV � 1

2
@TV � 1

2�
TV

� ð@’UÞ3 � 3ð@’UÞð@2’UÞ � @3’U

� 3

2�
ðð@’UÞ2 þ @2’UÞ; (34)

where

TVð�Þ :¼ 1

2
ð@’V

1 Þ2 þ
1

2
ð@’V

2 Þ2;

WV
3 ð�Þ :¼

1

6
ðð@’V

2 Þ3 � 3ð@’V
1 Þ2@’V

2 Þ:
(35)

The Uð1Þ current and Virasoro generator are again the
standard ones for C ¼ 3. In the expression of ~W3ð�Þ,
WV

3 ð�Þ is a spin 3 primary field with respect to TVð�Þ and
coincides with the W3 generator for the central charge
c ¼ 2. The other terms are written in terms of TVð�Þ,
@’U, and their derivatives. We conjecture that the higher
terms in Eq. (31) can be also written in terms of only
W3ð�Þ, TVð�Þ, @’U, and their derivatives. If it is true, the
Hilbert space for a C ¼ 3 system is described by the W3

operators and the Uð1Þ part.

IV. CONJECTURE AND SOME EVIDENCES

A. General strategy

We hope that we have convinced the readers who fol-
lowed Sec. II and III of the following fact: W 1þ1 algebra
contains an infinite number of two-dimensional chiral
fields with spin 1; 2; . . . ;1. When we limit ourselves to
the unitary quasifinite representations, the central charge C
must be a finite positive integer N and the independent
chiral fields must be limited to those with spin 1; 2; . . . ; N.
Among these fields, those with spin 2; 3; . . . ; N coincide
with the chiral fields of WN algebra. We have shown it
explicitly for N ¼ 2; 3 in Sec. III B, but its generalization
forN > 3would be clear through our arguments. A novelty
here is that we also have Uð1Þ current Jð�Þ. While we may
decouple it from WN generators in the Hilbert space, we
need it to realize the larger symmetry W 1þ1.
We may compare the situation in the AGT-W relation

[4,7]. In these works, the chiral symmetry in the two-
dimensional side is described by WN algebra with central
charge c ¼ N � 1þQ2NðN2 � 1Þ in order to be com-
pared with SUðNÞ quiver gauge theories. Here the parame-
ter Q ¼ bþ 1=b corresponds to a set of deformation
parameters �1;2 appearing in Nekrasov’s partition function

as Q ¼ �1þ�2ffiffiffiffiffiffiffi
�1�2

p . In order to compare the correlation function

of Liouville (more generally, Toda) field theory with
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Nekrasov’s partition function, we need extra anUð1Þ factor
for the former function [4].

In the W 1þ1 approach with the quasifinite unitary
representation, we need to restrict ourselves to Q ¼ 0
and C ¼ ðN � 1Þ þ 1, where the former N � 1 part is
described by WN algebra and the latter one is from a free
boson which describes the Uð1Þ factor. While it has limi-
tation to the background charge Q, it shows how to inte-
grate the Uð1Þ factor with WN algebra or Toda fields.

As we mentioned in the introduction, some efforts had
been made to integrate the Uð1Þ factor with Virasoro
current in [9,11] for the N ¼ 2 case. Let us briefly review
some relevant materials in [9].

In order to describe the chiral correlators, the authors
introduce two chiral algebras, i.e. Virasoro algebra de-
scribed by Ln and the Uð1Þ current described by a free
boson an. They use an additional free boson cn to describe
Ln as

Ln ¼ X
k�0;n

ckcn�k þ ið2P� nQÞcn;

L0 ¼ Q2

4
� P2 þ 2

X
k>0

c�kck;
(36)

where P is the momentum of the boson cn which describes
the vertex operator. Then they propose to introduce a

particular basis jPi ~Y with Young tableaux ~Y ¼ ðY1; Y2Þ
for the Hilbert space described by an and cn such that
(i) the inner product with vertex operator insertion coin-
cides with Zbf in [4] (the factor of Nekrasov’s partition
function for a bifundamental field),

~Y0hP0jV�jPi ~Y
hP0jV�jPi ¼ F ~Y0

~Y
ð�jP; P0Þ

¼ Q
i;j¼1;2

Q
s2Yi

ðQ� EYi;Y
0
j
ðPi � P0

jjsÞ � �Þ

� Y
t2Yj

ðEY0
j;Yi

ðP0
j � PijtÞ � �Þ; (37)

with ~P ¼ ðP;�PÞ, ~P0 ¼ ðP0;�P0Þ, and EX;YðPjsÞ :¼
P� bAYðsÞ þ b�1ðLXðsÞ þ 1Þ, where AðsÞ=LðsÞ is the
arm/leg length of a Young tableau; and (ii) the inner
product of these states is diagonal and equals 1=Zvec in
[4] (the inverse of the factor of Nekrasov’s partition func-
tion for a vector field),

~Y 0hPjPi ~Y ¼ N ~Y� ~Y; ~Y0 ; N ~Y ¼ F ~Y
~Y
ð0jP;PÞ: (38)

Once one finds such basis, one may decompose any corre-
lator as

h�1 . . .�ni ¼ h�1j�2

X
~Y1

j ~P1i ~Y1

� 1

N ~Y1

~Y1
hP1j�3 . . .�n�2

X
~Yn�3

j ~Pn�3i ~Yn�3

� 1

N ~Yn�3

~Yn�3

hPn�3j�n�1j�ni; (39)

which coincides with Nekrasov’s partition function by
construction after replacing �i to vertex operators.
In [9], the authors gave the explicit form of the basis

jPi ~Y when one of Yi is null (;). For such cases, it is given

as the Jack symmetric polynomial JacYðx1; . . . ; xjYjÞ with
its coupling constant �b2 or �1=b2. Here the power
symmetric polynomials of arguments x1; . . . ; xjYj are

given in terms of linear combination of oscillatorsP
nðxnÞk / a�k � c�k, where � depends on which Yi is

null. For generic ~Y, the explicit construction of the states
jPi ~Y is difficult and the authors gave the algorithm for the

construction.
Later in [11], Belavin and Belavin found that the con-

struction of the basis is simplified when Q ¼ 0. Namely,
the basis can be defined by the product of two Schur
polynomials

jPi ~Y ¼ sY1
ðxð1ÞÞsY2

ðxð2ÞÞ; (40)

where the power symmetric polynomials of x and y are

xð1Þk / a�k þ c�k; xð2Þk / a�k � c�k: (41)

Now let us compare their construction with ours. It is
well-known that a Schur polynomial can be interpreted as
the natural diagonal basis of free fermion system (see, for
example, Appendix B in [16], where a concise review is
given). Therefore, the state (40) is a basis of two-fermion
system. It is natural to compare it to N ¼ 2 case in our
setup.
In [9,11], the authors did not provide why particular

combinations (41) are needed to construct the basis. On
the other hand, in our approach, this exactly corresponds to
how Virasoro symmetry is obtained from W 1þ1 when
Uð1Þ factor is separated,

�ð1Þ ¼ ’U þ ’V; �ð2Þ ¼ ’U � ’V; (42)

where ’U gives an and ’V gives cn. In Sec. V, we give a
detailed study to derive the chain vector by using free
fields.
While such coincidence might seem to be accidental,

one can proceed to consider the N > 2 case as well. The
next nontrivial case is N ¼ 3, where the Fock space of W3

algebra is generated by L�n and W�n. In our description,

the orthogonal basis �ðiÞ (i ¼ 1; 2; 3) are provided from
free bosons as
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�ð1Þ ¼ 1ffiffiffi
3

p ~’U þ 1ffiffiffi
2

p ’V
1 þ 1ffiffiffi

6
p ’V

2 ;

�ð2Þ ¼ 1ffiffiffi
3

p ~’U � 1ffiffiffi
2

p ’V
1 þ 1ffiffiffi

6
p ’V

2 ;

�ð3Þ ¼ 1ffiffiffi
3

p ~’U �
ffiffiffi
2

3

s
’V

2 ;

(43)

where we have changed normalization of the free boson
for the Uð1Þ part ’U ! 1ffiffi

3
p ~’U compared with Eq. (33). In

this normalization, the operator product expansion be-
comes ~’UðzÞ~’Uð0Þ � lnz, as those for ’V

1;2. Therefore,

we would like to see such linear combinations give a
generalization of the diagonal basis as

j ~Pi ~Y � sY1
ðxð1ÞÞsY2

ðxð2ÞÞsY3
ðxð3ÞÞ; (44)

where xð1;2;3Þ are the polynomial representation of �ð1;2;3Þ.
In the following sections, we show that the chain vector,
once expanded by this basis, have coefficients which will
reproduce Nekrasov’s formula correctly as the AGT-W
conjecture predicts.

V. CHAIN VECTORS

Definition of level n chain vector.—Let H n be the level
n states generated from highest weight state j�i by the
action of generators of a chiral algebra. For example, for
W3 algebra, it is generated by L�n and W�n from j ~pi.

Let juii be a basis of H n (i ¼ 1; . . . ; dimH n). We
define a projector onto level n states as

�ðnÞ
�

:¼ X
i;j

juiiS�1
ij hujj; (45)

where Sij ¼ huijuji is Shapovalov matrix. It satisfies

On�
ðNÞ
� ¼ �ðN�nÞ

� On for any element On in the chiral

algebra. Then the chain vector at level n is defined as

jni�;�1;�2
:¼ �ðnÞ

� V�1
ð1Þj�2i; (46)

where the expression on the right-hand side should be
determined by the conformal Ward identities.

We note that with the chain vector, one can express the
four-point function as their inner product,

h�1jV�2
ðzÞV�3

ð1Þj�4i ¼
X
�

X1
n¼0

zn�;�2;�1
hnjni�;�3;�4

: (47)

For the higher correlator, one has to define a generalization
of chain vector as

�ðnÞ
�1
V�2

ð1Þ�ðmÞ
�3

¼: Oðn;mÞ�1;�2;�3
(48)

and compute the productX
n1;...;nr

X
�

hn1jOðn1; n2Þ . . .Oðnr�1; nrÞjnri; (49)

where we omit the weight� in the operators/vectors. Since
this kind of correlator corresponds to instanton contribu-
tion of Nekrasov’s partition function, the chain vector gives
a building block to prove the AGT conjecture.

A. Chain vector for free boson

In this case, the highest weight state is jpi and chiral
algebra is generated by a�n. Since the basis of the oscil-
lator Hilbert space fa�n1 . . . a�nr jpig is orthogonal, the

projector becomes very simple: for example, �ð1Þ
p ¼

a�1jpihpja1.
Therefore, the evaluation of Eq. (46) involves the cal-

culation of correlators of the form hpjan1 . . . ansVrð1Þjqi,
but they are also very simple: for example,
hpjaInVrð1Þjqi ¼ rhpjVrð1Þjqi. By solving the recursion
formula anjNip;r;q ¼ rjN � nip;r;q which can be proved as
anjNip;r;q ¼ an�

ðNÞ
p Vrð1Þjqi ¼ �ðN�nÞ

p anVrð1Þjqi
¼ r�ðN�nÞ

p Vrð1Þjqi ¼ rjN � nip;r;q; (50)

one may obtain a generating function of chain vectors in a
closed form,

X1
n¼1

jnip;r;q�n ¼ er
P1

n¼1
ð1=nÞaI�n�

n jpi; (51)

from which one may extract jnip;r;q, for example,

j1ip;r;q ¼ ra�1jpi; j2ip;r;q ¼ 1

2
ðra�2 þ ðra�1Þ2Þj ~pi:

(52)

We note that a chain vector for a free boson depends only
on the momentum of Vrð1Þ. This is the characteristic
feature for a free boson which is not shared by the chain
vector for Virasoro or W3.

B. Virasoro algebra

The recursion formula for the chain vector is

LkjNi�;�1;�2
¼ ð�þ k�1 ��2 þ N � kÞjN � ki�;�1;�2

:

(53)

It may be derived by combining Lk�
ðNÞ
� ¼ �ðN�kÞ

� Lk and a

conformal Ward identity

hujLkV�1
j�2i ¼ ð�þ N � k��2 þ k�1ÞhujV�1

j�2i;
which holds for any level N � k state huj from h�j.
The chain vector may be derived in terms of Virasoro

operators. However, in order to do it, we need to invert the
Shapovalov matrix which is complicated. Therefore, in-
stead of doing so, one may solve it more directly in terms
of a free boson. For the c ¼ 1 case, we have

Ln ¼ 1

2

X
k

:an�kak:; (54)
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where ½an; am� ¼ n�nþm;0. Then we write

a�n ¼ nxn; an ¼ @xn ðn > 0Þ (55)

and express the bosonic Fock space as the polynomials of
variables xn (n ¼ 1; 2; 3; . . . ). For example, we rewrite
a�n1 . . . a�nr jpi as n1xn1 . . . nrxnr . Using this correspon-

dence, we denote �NðxÞ to represent the chain vector
jNi�;�1;�2

. We use the vertex operator representation for

primary fields with

� ¼ p2

4
; �1 ¼ r2

4
; �2 ¼ q2

4
; (56)

which corresponds to V� ¼ ep�=
ffiffi
2

p
, V�1

¼ er�=
ffiffi
2

p
, and

V�2
¼ eq�=

ffiffi
2

p
. As a result, the recursion relation (53) is

written as the differential equation for �N ,

�X1
r¼1

rxr@xkþr
þ pffiffiffi

2
p @xk þ

1

2

Xk�1

s¼1

@xs@xk�s

�
�N

¼ ð�þ k�1 � �2 þ N � kÞ�N�k: (57)

Starting from �0 ¼ 1, one may solve it recursively. For
example,

�1 ¼ ðp2 � q2 þ r2Þx1
2

ffiffiffi
2

p
p

; �2 ¼ �1x
2
1 þ �2x2; (58)

where

�1¼ðp2�q2þr2Þ2�4r2

16ðp2�1Þ
�2¼3p4�2p2ðq2�3r2þ2Þ�ðq�rÞðqþrÞðq2�r2�4Þ

8
ffiffiffi
2

p
pðp2�1Þ :

(59)

Readers may wonder why the chain vector for Virasoro
is rather complicated compared with that of the free boson.
Actually if one of the momentum conservation conditions

p ¼ �qqþ �rr ð�q; �r ¼ �1Þ (60)

is satisfied, the chain vector is reduced to that of a free
boson,

X1
n¼0

�n�
n ! exp

�
� �rrffiffiffi

2
p X1

n¼1

xn�
n

�
: (61)

If the conservation is violated, we need some screening
currents to define the correlator. It explains why such
simplification does not generally occur.

C. W3 algebra

We can derive the chain vector forW3 algebra similarly,

namely, by combiningOk�
ðNÞ
��

¼ �ðN�kÞ
��

Ok withOk ¼ Lk

or Wk and the Ward identity for W3 algebra. We use the

label �� to represent the eigenvalues ð�; wÞ for the highest
weight representation.
The recursion formula for Lk is the same as Eq. (53). For

the Wk generators, we use Eqs. 38 and 39 of [17]

WkjNi ��; ��1; ��2
¼

�
kðkþ 3Þ

2
w1 � w2

�
jN � ki ��; ��1; ��2

þ k�ðN�kÞ
��

ðW�1V ��1
Þj ��2i

þ ð�ðN�kÞ
��

W0ÞV ��1
j ��2i: (62)

In order to make it a closed recursion formula, we need to
impose the level 1 null state condition for V ��1

,

W�1V ��1
¼ 3w1

2�1

L�1V ��1
: (63)

Then the second term of Eq. (62) can be evaluated by
the Ward identity for Virasoro. The third term should be
left as it is. To summarize, the recursion formula for Wk is
given as

WkjNi ��; ��1; ��2

¼
�
kðkþ 3Þ

2
w1 � w2

þ 3kw1

2�1

ðN � kþ �� �1 � �2Þ
�
jN � ki ��; ��1; ��2

þW0jN � ki ��; ��1; ��2
: (64)

Again, we would like to solve these recursion formulas
by free boson representation. If we write

@�1 ¼ p1z
�1 þ X1

k¼n

xnz
n�1 þ X1

n¼1

z�n�1

n

@

@xn
;

@�2 ¼ p2z
�1 þ X1

k¼n

ynz
n�1 þ X1

n¼1

z�n�1

n

@

@yn
;

(65)

the oscillator representation for generators Lk, Wk (k � 0)
becomes

Lk ¼
X1
r¼1

rxr@xkþr
þ p1@xk þ

1

2

Xk�1

s¼1

@xs@xk�s
þ X1

r¼1

ryr@ykþr

þ p2@yk þ
1

2

Xk�1

s¼1

@ys@yk�s
; (66)
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6Wk ¼
Xnþm<k

n;m¼1

�
@3

@yn@ym@yk�n�m

� 3
@3

@xn@xm@yk�n�m

�
þ 3

� X
n;m¼1
nþm<k

ðnþm� kÞ
�
ynþm�k

@2

@yn@ym
� 2xnþm�k

@2

@xn@ym

� ynþm�k

@2

@xn@xm

��
þ 3

� X
n;m¼1

nm

�
ynym

@

@ynþmþk

� 2xnym
@

@xnþmþk

� xnxm
@

@ynþmþk

��

� 3

�Xk�1

n¼1

�
�p2

@2

@yn@yk�n

þ p2

@2

@xn@xk�n

þ p1

@2

@xn@yk�n

��
þ 6

X1
n¼1

n

�
p2yn

@

@ynþk

� p2xn
@

@xnþk

� p1xn
@

@ynþk

� p1yn
@

@xnþk

�
þ 3

�
ðp2

2 � p2
1Þ

@

@yk
� 2p1p2

@

@xk

�
ð1� �k0Þ þ ðp3

2 � 3p2
1p2Þ�k0: (67)

For level 1, the recursion formula is

L1j1i ¼ ð�þ �1 ��2Þj0i
W1j1i ¼

�
2w1 � w2 þ wþ 3w1

2�1

ð�� �1 � �2Þ
�
j0i:

(68)

If we write j1i ¼ �1x1 þ �2y1, we obtain

L1j1i ¼ �1p1 þ �2p2;

2W1j1i ¼ ðp2
2 � p2

1Þ�2 � 2p1p2�1:
(69)

We assign the momentum ð0; mÞ for V1ð1Þ and ðq1; q2Þ for
jV0i. We note that V1 must have a level 1 null state and the
assignment for V1 is one possibility for it.

By comparing these formulas, one can determine �1;2,

�1 ¼ A1

6ðp2
1 � 3p2

2Þ
; �2 ¼ � A2

6ðp2
1 � 3p2

2Þ
; (70)

where

A1 :¼ 3p4
1 � 3ð2p2

2 þ q21 þ q22Þp2
1 þm3p2

þ 3m2ðp2
1 � p2

2Þ þ 3mp2ðp2
1 þ p2

2 � q21 � q22Þ
� p2ðp2 þ 2q2Þðp2

2 � 2q2p2 � 3q21 þ q22Þ
A2 :¼ m3 þ 6p2m

2 þ 3ðp2
1 þ p2

2 � q21 � q22Þm
þ 2ðp2 � q2Þð4p2

2 þ 4q2p2 � 3q21 þ q22Þ: (71)

The denominator factor p3
1 � 3p1p

2
2 vanishes when

p1 ¼ 0 or p1 ¼ � ffiffiffi
3

p
p2. This is precisely the correct

momentum to have a level 1 null state. Another consis-
tency check is that it reduces to the free boson chain vector
once we impose the momentum conservation law

p1 ¼ q1; p2 ¼ mþ q2 ! �1 ¼ 0; �2 ¼ m:

(72)

VI. COMBINATION WITH THE Uð1Þ PART:
COMPARISON WITH GAUGE THEORY

The claim in [11] is that once the chain vector is com-
bined with the Uð1Þ part and reexpanded in terms of a
Schur polynomial, its coefficients of expansion implies
Nekrasov’s formula.

The chain vector for the Uð1Þ part is written in the form

�U
p ð�Þ ¼

X1
n¼0

�U
p;n�

n ¼ ep
P1

s¼1
tn�

n

: (73)

We mix it with the chain vector as

�ð�Þ ¼ �Uð�Þ�Vð�Þ; or �N ¼ XN
n¼0

�U
n�

V
N�n; (74)

where�Vð�Þ is the generating function for Virasoro orW3

algebra. Let us first reproduce the results of [11] for
Virasoro case.

A. Virasoro vs SUð2Þ gauge theory
We have already given the explicit form of chain vector

for Virasoro algebra in Eq. (58). We have computed the
result up to level 3 but do not write it here, since it is
complicated and not illuminating.
For��;�1;�2

with�¼p2=4,�1¼ r2=4, and�2 ¼ q2=4,

we choose the Uð1Þ part to be �U
r=

ffiffi
2

p . In W 1þ1 represen-

tation, it implies that we need to use the representation
ð�1; �2Þ ¼ ðr; 0Þ in Eq. (10) for Ci ¼ 1 and K ¼ 2. After
the combination as Eq. (74) and the change of variables as

xn ¼ ð~xn � ~ynÞ=
ffiffiffi
2

p
; tn ¼ ð~xn þ ~ynÞ=

ffiffiffi
2

p
; (75)

we get an expansion of the form

�N ¼ X
jY1jþjY2j¼N

CðY1; Y2ÞsY1
ð~xÞsY2

ð~yÞ; (76)

where sYðxÞ is the Schur polynomial in terms of a power
sum polynomial. For example, up to level 3,

s;ðxÞ ¼ 1; s½1�ðxÞ ¼ x1; s½2�ðxÞ ¼ x21
2
þ x2;

s½12�ðxÞ ¼
x21
2
� x2; s½3�ðxÞ ¼ x31

6
þ x1x2 þ x3;

s½13�ðxÞ ¼
x31
6
� x1x2 þ x3; s½2;1�ðxÞ ¼ x31

3
� x3:

(77)
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The coefficient CðY1; Y2Þ is written in the form

CðY1; Y2Þ ¼ zðY1; pþ qþ rÞzðY1; p� qþ rÞzðYt
2; pþ q� rÞzðYt

2; p� q� rÞ
Dð ~Y; pÞ ; (78)

where

zðY; xÞ ¼ Y
ðk;lÞ2Y

ðx=2þ k� lÞ

Dð ~Y; pÞ ¼ Y2
i;j¼1

Y
s2Yi

ðai � aj þ AiðsÞ þ LjðsÞ þ 1Þ
(79)

and a1 ¼ p=2, a2 ¼ �p=2. s ¼ ðk; lÞ denotes the position of the box in a Young tableau (i.e. the box in k-th column and
l-th row). AðsÞ=LðsÞ is the arm/leg length of a Young tableau, respectively. In particular, for the level N ¼ 1; 2; 3,

Dðð½1�;;Þ; pÞ ¼ p; Dðð;; ½1�Þ; pÞ ¼ �p;

Dðð½2�;;Þ; pÞ ¼ 2pðpþ 1Þ; Dðð½12�;;Þ; pÞ ¼ 2pðp� 1Þ;
Dðð½1�; ½1�Þ; pÞ ¼ �ðpþ 1Þðp� 1Þ; Dðð;; ½2�Þ; pÞ ¼ 2pðp� 1Þ;
Dðð;; ½12�Þ; pÞ ¼ 2pðpþ 1Þ; Dðð½3�;;Þ; pÞ ¼ 6pðpþ 1Þðpþ 2Þ;

Dðð½2; 1�;;Þ; pÞ ¼ 3pðpþ 1Þðp� 1Þ; Dðð½13�;;Þ; pÞ ¼ 6pðp� 1Þðp� 2Þ;
Dðð½2�; ½1�Þ; pÞ ¼ �2pðp� 1Þðpþ 2Þ; Dðð½12�; ½1�Þ; pÞ ¼ �2pðpþ 1Þðp� 2Þ;

..

.

(80)

Therefore, we can confirm that the coefficients (78)
exactly correspond to Nekrasov’s partition function with
�1=�2 ¼ �1.

B. W3 vs SUð3Þ gauge theory
We note that, as in the Virasoro case, the chain vector is

constructed out of the free boson ~’V
1;2. Now we need to

combine it with theUð1Þ part ~’U and rewrite the combined

chain vector in terms of �ðiÞ. The relation between them is
given in Eq. (43) as

~’V
1 ¼ 1ffiffiffi

2
p ð�ð1Þ ��ð2ÞÞ;

~’V
2 ¼ 1ffiffiffi

6
p ð�ð1Þ þ�ð2Þ � 2�ð3ÞÞ;

~’U ¼ 1ffiffiffi
3

p ð�ð1Þ þ�ð2Þ þ�ð3ÞÞ:

(81)

We also rewrite the momentum by those for the orthogonal
basis,

p1 ¼ 1ffiffiffi
2

p ða1 � a2Þ; p2 ¼ 1ffiffiffi
6

p ða1 þ a2 � 2a3Þ; p3 ¼ 1ffiffiffi
3

p ða1 þ a2 þ a3Þ;

q1 ¼ 1ffiffiffi
2

p ðb1 � b2Þ; q2 ¼ 1ffiffiffi
6

p ðb1 þ b2 � 2b3Þ; q3 ¼ 1ffiffiffi
3

p ðb1 þ b2 þ b3Þ;

r1 ¼ 1ffiffiffi
2

p ðc1 � c2Þ ¼ 0; r2 ¼ 1ffiffiffi
6

p ðc1 þ c2 � 2c3Þ ¼ m; r3 ¼ 1ffiffiffi
3

p ðc1 þ c2 þ c3Þ;

(82)

where p3, q3, r3 are momenta for the Uð1Þ factor. ai, bi, ci are momenta for orthogonal basis �ðiÞ. We need to impose
r1 ¼ 0 for the corresponding vertex to a level 1 null state which is necessary to solve conformal Ward identity.

The chain vector is written as

c 1 ¼ c V
1 þ c U

1 ; c V
1 ¼ �1x1 þ �2x2; c U

1 ¼ r3t; (83)
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where t is the variable forUð1Þ boson. Then we need to use
the following assignment to proceed:

c1 ¼ c2 ¼ 0; c3 ¼ 3c: (84)

From the viewpoint of W 1þ1 representation, this assign-
ment is equivalent to impose �1 ¼ �2 ¼ 0 in Eq. (12)
while leaving �3 arbitrary. We note that such assignment
was also used for SUð2Þ case. We guess that similar assign-
ment will be necessary also for higher cases N > 3.

Another comment is that we also need to impose p3 ¼
q3 ¼ 0 in the W3 chain vector to give the correct formula.
This is natural since these parameters are momenta for
Uð1Þ which is irrelevant in the representation of W3

algebra.
We need to rewrite the oscillator similarly,

x1 ¼ 1ffiffiffi
2

p ðX1 � X2Þ;

x2 ¼ 1ffiffiffi
6

p ðX1 þ X2 � 2X3Þ;

t ¼ 1ffiffiffi
3

p ðX1 þ X2 þ X3Þ:

(85)

In terms of this basis, the level 1 chain vector has following
factorized form:

c 1 ¼ �1X1 þ �2X2 þ �3X3; (86)

with

�1 ¼ ða1 � b1 þ cÞða1 � b2 þ cÞða1 � b3 þ cÞ
ða1 � a2Þða1 � a3Þ

�2 ¼ ða2 � b1 þ cÞða2 � b2 þ cÞða2 � b3 þ cÞ
ða2 � a1Þða2 � a3Þ

�3 ¼ ða3 � b1 þ cÞða3 � b2 þ cÞða3 � b3 þ cÞ
ða3 � a1Þða3 � a2Þ :

(87)

This again takes the expected form, i.e. the denominator
factor corresponds to the factor of Nekrasov’s partition
function for a vector field and the numerator takes the
form of that for fundamental or antifundamental matter
fields.

We conclude that W 1þ1 symmetry seems to play a
critical role in how to recombine free fields. It also seems
to be essential in choosing the momentum for the inter-
mediate vertex operator in the form ð0; . . . ; 0; �Þ. Also, the
denominator factor vanishes when the weight � has the
form �i � �j ¼ integer, which is exactly the null state

condition suggested from Eq. (8).

VII. CONCLUSION

In this paper, we argue that W 1þ1 algebra explains the
correct inclusion of the Uð1Þ factor to the symmetry of

Toda fields. It also gives any WN symmetry in the same
footing, namely, it reduces to choosing correct quasifinite
unitary representations. In this sense, it should be regarded
as the correct symmetry behind the AGT-W relation.

The reader may have some criticism of our identification

of the Uð1Þ factor as merely the enhancement of SUðNÞ to
UðNÞ. We would like to argue, however, that W 1þ1
algebra automatically contains infinite commuting charges

WðDnÞ which would be helpful to understand the exactly

solvable system behind such correspondence.
Of course, the computation made here still depends

heavily on the original W symmetry. In this sense, we
have not utilized the full machinery of the symmetry. For
example, in the computation of the chain vector made in
Secs. V and VI, we cannot use W 1þ1 algebra directly. A
direct proof in [10], where a Selberg integral is performed,
might be helpful.
Since W 1þ1 has much simpler structure than WN alge-

bra, it is easy to convince ourselves that factorization of
Nekrasov’s formula may directly come from W 1þ1 sym-
metry. So far, we have not achieved it since we do not know
how to define the three-point functions which seemed not
to be studied in the literature.
Such computation would be also useful to give us some

inspiration to understand non-Lagrangian strong coupling
theories which were conjectured by Gaiotto [3]. In the case
of WN , it was difficult to calculate a corresponding corre-
lation function since the conformal Ward identity could not
be solved. For the W 1þ1 case, however, it has much
higher symmetry and one may have some hope to define
the correlator.
Another material which we cannot study so far is the

general case Q � 0. Since W 1þ1 algebra is limited to
describe C ¼ N, we need some sort of deformation.
Judging from the observation in [9], it will be natural
consider the interacting system (Calogero-Sutherland), to
guess the symmetry behind it. A generalization of an
exactly solvable system in the Appendix of [9] would be
a promising direction. We note that the Jack polynomial
has an interpretation of null states of WN algebra [18]. See
also the work [19], where general CFT was studied in the
context of W 1þ1 algebra.
For the extension of the AGT conjecture to SUðNÞ linear

quiver gauge theory, we have conjectured that general
level 1 null state describes the general puncture [3,20].
This correspondence seems to have some subtleties as
found later [17]. In [21], the authors gave a proposal which
would be a possible solution to the problem. However, the
Uð1Þ seems to be involved if we examine levels higher
than 2. We hope thatW 1þ1 symmetry provides some hints
to this issue.
Moreover, the discussion on the surface operator in

SUðNÞ gauge theory is also an interesting topic. For the
SUð2Þ case, it is already known that the corresponding
operator in Liouville theory is related to level 2 null states
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[22,23]. Then it is natural to expect that the corresponding
operator in Toda theory is related to higher level null states.
It is very complicated to classify them in WN algebra, but
from the viewpoint of W1þ1 algebra, this discussion may
become much simpler.

W 1þ1 symmetry has been applied to many topics, for
example, the quantum Hall effect [24], the matrix model
[25] (see also a recent development in the context of AGT
[26]), topological string [27], and crystal melting [28]. We

hope that it is a good time now to develop the representa-
tion theory, such as the correlation function, to more detail.
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APPENDIX: SUMMARY OF CONVENTION

Free fields and vertex:

�IðzÞ�JðwÞ � �IJ logðz� wÞ; @z�
I ¼ X

n

aInz
�n�1; ½aIn; aJm� ¼ n�nþm;0�

IJ; aI0 	 p̂I;

@�IðzÞV ~pð0Þ � pI

z
V ~pð0Þ; lim

z!0
V ~pðzÞj0i ¼ j ~pi; p̂j�i ¼ �j�i:

(A1)

Noether currents of Virasoro and W3:

TðzÞ ¼ 1

2
:ð@�1Þ2:þ 1

2
:ð@�2Þ2:; WðzÞ ¼ 1

6
ð:ð@�2Þ3:� 3:ð@�1Þ2@�2:Þ: (A2)

Conformal and W3 weight:

L0j ~pi ¼ �ð ~pÞj ~pi; W0j ~pi ¼ wð ~pÞj ~pi; �ð ~pÞ ¼ 1

2
ððp1Þ2 þ ðp2Þ2Þ; wð ~pÞ ¼ 1

6
ððp2Þ3 � 3p2ðp1Þ2Þ: (A3)
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