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For type IIB supergravity with a running axio-dilaton, we construct bulk solutions which admit a

cosmological background metric of Friedmann-Robertson-Walker type. These solutions include both a

dark radiation term in the bulk as well as a four-dimensional (boundary) cosmological constant, while

gravity at the boundary remains nondynamical. We holographically calculate the stress-energy tensor,

showing that it consists of two contributions: The first one, generated by the dark radiation term, leads to

the thermal fluid of N ¼ 4 SYM theory, while the second, the conformal anomaly, originates from the

boundary cosmological constant. Conservation of the boundary stress-tensor implies that the boundary

cosmological constant is time-independent, such that there is no exchange between the two stress-tensor

contributions. We then study (de)confinement by evaluating the Wilson loop in these backgrounds. While

the dark radiation term favors deconfinement, a negative cosmological constant drives the system into a

confined phase. When both contributions are present, we find an oscillating universe with negative

cosmological constant which undergoes periodic (de)confinement transitions as the scale of three-space

expands and recontracts.

DOI: 10.1103/PhysRevD.84.026004 PACS numbers: 11.25.Tq

I. INTRODUCTION

Gauge/gravity duality [1] has proved to be extremely
successful in describing strongly coupled systems. This
applies, in particular, to confining theories which can be
modeled, for instance, using nontrivial dilaton flows [2–4].
In these models, the Wilson loop displays an area law.
Moreover, gauge/gravity duality has also proved useful in
describing deconfined finite temperature field theories
which are naturally assumed to be dual to asymptotically
Anti-de Sitter (AdS) black holes.

Both confinement and horizon formation also arise in
quantum field theories on curved space backgrounds, in
Anti-de Sitter and de Sitter geometries, respectively. In the
gauge/gravity duality context, this has been investigated,
for instance, in [5–12] by considering a boundary cosmo-
logical constant � in the four-dimensional boundary quan-
tum field theory. Holographic studies of strongly coupled
quantum field theories in curved backgrounds are, how-
ever, not only interesting in their own right (e.g. in order to
verify the properties of particle production phenomena
such as the Unruh effect at strong coupling), but also
from the point of view of Anti-de Sitter/conformal field
theories (AdS/CFT) (dualities for time-dependent back-
grounds. In particular, standard cosmological evolution in
the presence of a cosmological constant can yield de Sitter
or Anti-de Sitter geometries. Thus, from studying gauge
theories in these backgrounds, we expect to learn about the

properties of matter in the early universe (e.g. during
inflation). With this situation in mind, in this paper we
consider gravity duals of field theories on cosmological
backgrounds where in the dual gravitational description a
bulk radiation term is present in addition to a boundary
cosmological constant. This term has first been considered
in brane-world models in [13–16]. Because of its sche-
matic form C=a4, with a being the scale factor, it corre-
sponds to a relativistic radiation contribution to the energy
density. We discuss the interplay between this radiation
and the boundary cosmological constant in the boundary
energy-momentum tensor, as well as their effects on the
temporal Wilson loop. We find that the combined effect of
the dark radiation term and the boundary cosmological
constant introduces an effective dynamics into the dual
field theory, triggering (de)confinement transitions for the
Wilson loop. For vanishing boundary cosmological con-
stant and flat horizon topology, the dark radiation term
gives just the Stefan-Boltzmann contribution �� T4 to
the boundary energy density. In the other cases, the relation
to the temperature is more involved due to the time-
dependence of the background geometry, as we discuss.
As a further ingredient, we consider a running axio-

dilaton similarly to the model of Liu and Tseytlin [4].
The axio-dilaton introduces a finite gluon condensate
which on flat space leads to confinement.
Our main results are explicit evaluations for Wilson

loops in the field theories dual to the gravity solution
with dark radiation term for the three cases of positive,
vanishing, and negative boundary cosmological constant.
The general intuition arising from the static quark-
antiquark potential is that the dark radiation term always
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drives the system into a deconfined phase (with the Wilson
loop displaying a perimeter law), since it acts similarly to a
temperature in flat space. We find an interesting pattern for
the (de)confining behavior of the Wilson loop, depending
on the sign of the boundary cosmological constant:

(1) For positive cosmological constant, the theory is
always in a deconfined state, even for vanishing
dark radiation term, which is in accordance with
the general expectation that de Sitter-like expansion
tends to destabilize bound states.

(2) For vanishing cosmological constant, our bulk met-
rics are diffeomorphism equivalent to topological
AdS black holes [17,18]. In this case, the running
axio-dilaton as in [4] is crucial for determining the
confinement properties. The Wilson loop shows
confinement if the dark radiation constant is vanish-
ing and deconfinement otherwise, both for flat and
hyperbolic horizons. As discussed further below and
in Sec. V, the nontrivial dilaton flow is essential for
the Wilson loop confinement in this case, as in the
absence of the running dilaton the quark-antiquark
potential would be screened for a gravity dual
with hyperbolic topological black hole [19] at all
temperatures.

(3) For negative cosmological constant, we find an in-
teresting (de)confinement transition which occurs
due to the competition between the deconfining
dark radiation term and the confining nature of
Antide Sitter-like contraction: For small scale fac-
tors, the Wilson loop is deconfined, while for large
scale factors it is confined. Intuitively, this can be
thought of as the Wilson loop probing the (holo-
graphically defined) field theory vacuum whose
energy-momentum VEV now has two compo-
nents—the conformal anomaly component due to
the boundary cosmological constant, and the dark
radiation component which, in essence, behaves like
thermal relativistic radiation, getting diluted by the
scale factor as a�4ðtÞ.1 Hence, close to the singular-
ity the dark radiation component dominates, driving
the system to deconfinement, while away from it the
confining nature of the negative cosmological con-
stant dominates.

In this work we mainly focus, for simplicity, on the
Wilson loop as a measure of quark-antiquark (de)confine-
ment. On curved space-times, other measures of

confinement such as the density of states or the mass gap
criterion do not necessarily coincide with the Wilson loop
criterion: For example, in [22,23] it was argued that the
Wilson loop confines on AdS spaces at any temperature,
while [12] showed that Neumann boundary conditions on
the boundary of AdS space allow for a large N deconfine-
ment transition at finite temperature, with the deconfined
phase being characterized by a OðN2Þ density of states at
low energies. We thus leave a thorough investigation of the
subtleties involved in relating these different criteria for
confinement for future work, and rather focus on the
Wilson loop as a criterion to characterize our holographic
backgrounds. The reader should also consult Sec. V for a
more in-depth discussion of the case of vanishing cosmo-
logical constant and hyperbolic horizon: In this case, the
Wilson loop and the density of states measure indeed do
not agree, due to the presence of the gluon condensate (i.e.
the running dilaton) and since the thermodynamical
contributions of the axio-dilaton cancel each other in the
Liu-Tseytlin ansatz.
On the technical side, we decouple the axio-dilaton

dynamics from the five-dimensional metric in the same
way as in [4]. We then solve the Einstein equations of five-
dimensional Einstein-Hilbert gravity with a cosmological
Ansatz for the metric already used in [15] in the context of
brane-world cosmology. The Friedmann equation arises
from the constraint equation of the bulk Einstein equations,
and we include the dark radiation term into our analysis.
By imposing the usual Dirichlet boundary conditions of
holography, the four-dimensional boundary gravity re-
mains nondynamical, as there is no four-dimensional
Einstein-Hilbert action on the boundary. Besides the dark
radiation term, we also allow for a boundary cosmological
constant in our Friedmann equation. We find that requiring
boundary diffeomorphism invariance leads to a time-
independent boundary cosmological constant.
The remainder of this paper is structured as follows: In

the next section, the holographic background is given and
we discuss how the boundary cosmological constant arises.
In Sec. III, the holographic interpretation of the dark radia-
tion term in our approach is illuminated using the specific
example of vanishing boundary cosmological constant.
Section IV discusses the solution for finite boundary cos-
mological constant, and how boundary diffeomorphism
invariance (i.e. conservation of the boundary stress-energy
tensor) forces the cosmological constant to be actually time-
independent. Section V then derives the main result of this
paper: The Wilson loop expectation values are calculated
and their (de)confinement properties are classified.
Summary and discussions are given in the final Sec. VI.

II. THE BACKGROUND GEOMETRY

In this section, we first review the reduction of ten-
dimensional type IIB supergravity to a five-dimensional
dilaton gravity by a Freund-Rubin ansatz, which allows for

1This interpretation of the dark radiation constant has also
been given in the gauge/gravity context in [17,18,20].
Furthermore, the works [17,18] write the AdS-Schwarzschild
black hole (without a running dilaton) in a cosmological folia-
tion, which is possible in our construction as well. However, our
setup is more involved due to the presence of the boundary
cosmological constant and the running dilaton (see Sec. V).
Finally, a related study [21] for k ¼ 0 and without dark radiation
found an interplay between boundary cosmological constant and
the tension of an IR brane sourcing the geometry.
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a nontrivial axio-dilaton. This ansatz, first employed in
[3,4,24], links the axion with the dilaton in a way which
allows to describe 1=4 supersymmetric D3-D(-1) solutions.
Supersymmetry can then be broken by introducing finite
temperature. In IIb, we then solve the five-dimensional
Einstein equations with a time-dependent ansatz for the
metric along the lines of [15] and find holographic back-
grounds describing a cosmological evolution at the bound-
ary. In this course, we identify the boundary cosmological
constant, driving the cosmological evolution of the bound-
ary metric, when solving the constraint equations in the
bulk.

A. Five-dimensional dilaton gravity from IIB
Supergravity

We start from the ten-dimensional type IIB supergravity
retaining the dilaton �, axion �, and self-dual five form
field strength Fð5Þ,

S¼ 1

2�2

Z
d10x

ffiffiffiffiffiffiffi�g
p �

R�1

2
ð@�Þ2þ1

2
e2�ð@�Þ2� 1

4�5!
F2
ð5Þ

�
;

(1)

where other fields are consistently set to zero, and � is
Wick rotated [24]. Under the Freund-Rubin ansatz for Fð5Þ,
F�1����5

¼ � ffiffiffiffi
�

p
=2��1����5

[3,4], and for the 10d metric

taken as M5 � S5,

ds210 ¼ gMNdx
MdxN þ gabdx

adxb;

M;N ¼ 0; . . . ; 4; a; b ¼ 5; . . . ; 9;

the equations of motion of the noncompact five-
dimensional part M5 become2

RMN ¼ 1

2
ð@M�@N�� e2�@M�@N�Þ ��gMN (3)

1ffiffiffiffiffiffiffi�g
p @Mð ffiffiffiffiffiffiffi�g

p
gMN@N�Þ ¼ �e2�gMN@M�@N�; (4)

@Mð ffiffiffiffiffiffiffi�g
p

e2�gMN@N�Þ ¼ 0 (5)

These equations have a supersymmetric solution when the
following ansatz is imposed for the axion � [3,24]:

� ¼ �e�� þ �0: (6)

In this case, using the ansatz (6) in (3)–(5) gives rise to the
two equations:

RMN ¼ ��gMN (7)

and

@Mð ffiffiffiffiffiffiffi�g
p

gMN@Ne
�Þ ¼ 0; (8)

where (4) and (5) now may be shown to coincide using (8).
The latter set of equations is also useful for finding finite
temperature solutions in which supersymmetry is broken.

B. Solution with dark radiation

We examine here time-dependent solutions which in-
clude a ‘‘dark radiation’’ term [15,16] (also known as
‘‘mirage energy density’’ [20]). To find this term, we
change the radial coordinate r to y, where r=R ¼ �r ¼
e�y and� ¼ 1=R ¼ ffiffiffiffi

�
p

=2, and we consider the following
Einstein frame metric,

ds2E ¼ �n2ðt; yÞdt2 þ aðt; yÞ2�i;jdx
idxj þ dy2;

i; j ¼ 1; . . . ; 3:
(9)

In this metric, we obtain from the Einstein equation for the
tt and yy components [15]�

_a

na

�
2 þ k

a2
¼ ��

4
þ

�
a0

a

�
2 þ C

a4
; (10)

where _a ¼ @a=@t and a0 ¼ @a=@y. Note that this is a first-
order equation, integrated from the second-order Einstein
equations (see [15] for their explicit form). It then turns
out that without any additional matter in the bulk, the
integration constant C must be a constant with respect to
both y and t in order to satisfy both the tt and yy compo-
nents of Einstein’s equations. This constant C appears in
the Eq. (10) in the form C

a4
, which is usually referred to as

‘‘dark radiation’’ term, since it behaves exactly as a com-
ponent of relativistic radiation which, in the context of
brane-world models, leaks from the bulk into the uv
brane [16].
It also needs to be checked whether the Bianchi identi-

ties and the ij and ty components of Einstein’s equations
are satisfied with the above ansatz. As shown in [15], the
first two are satisfied upon the use of Eq. (10), while the
latter relates the free function nðt; yÞ to aðt; yÞ up to a time-
dependent integration constant,

0 ¼ n0

n

_a

a
� _a0

a
: (11)

This last equation is solved by setting the following ansatz
[15,16],

nðt; yÞ ¼ _aðt; yÞ
_a0ðtÞ ; a ¼ a0ðtÞAðt; yÞ: (12)

Then, the equation for Aðt; yÞ is obtained from (10) as�
_a0
a0

�
2 þ k

a20
¼ ��

4
A2 þ ðA0Þ2 þ C

a40A
2
; (13)

2The five-dimensional part M5 of the solution is obtained by
solving the following reduced Einstein frame 5d action,

S ¼ 1

2�2
5

Z
d5x

ffiffiffiffiffiffiffi�g
p �

Rþ 3�� 1

2
ð@�Þ2 þ 1

2
e2�ð@�Þ2

�
: (2)

The opposite sign of the kinetic term of � is due to the fact that
the Euclidean version is considered here [24].
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where A0 ¼ @A=@y. Looking at Eq. (13), we recognize its
left-hand side as part of the Friedmann equation from
standard cosmology. More precisely, it is the part of
Friedmann’s equation without the cosmological constant
term. In particular, since the left-hand side of Eq. (13) is a
function of time only, the right-hand side of (13) must also
be only a function of time, i.e. independent of the radial
coordinate y. The right-hand side of (13) thus effectively
acts as a time-dependent vacuum energy ‘‘source term’’ for
the cosmological evolution at the boundary, described
by the left-hand side. Introducing a time-dependent bound-
ary cosmological ‘‘constant’’ �ðtÞ, we can thus separate
Eq. (13) into its left and right-hand sides, yielding two
independent equations. This procedure is similar to sepa-
ration of variables when solving differential equations: For
general time-dependent �ðtÞ the above replacement of
Eq. (13) by the two Eqs. (14) and (15) does not affect the
solution space, since every solution of (14) and (15) will be
a solution of (13), and vice versa. Doing so, the left-hand
side of (13) then becomes the four-dimensional Friedmann
equation with a four-dimensional boundary cosmological
term �ðtÞ,

�
_a0
a0

�
2 þ k

a20
¼ �ðtÞ; (14)

where k ¼ �1 or 0. From standard cosmology, (14) only
yields universes with spherical (k ¼ þ1) topology for
� > 0, while for k ¼ 0 the allowed choices are sgn� ¼
0, þ1, and for negative spatial curvature k ¼ �1 even a
spatially homogeneous and isotropic universe of constant
negative curvature is allowed, i.e. sgn� ¼ �1, 0, þ1 are
possible choices.

For any �ðtÞ, Aðt; yÞ can then be solved for by the
following first-order differential equation in the variable y,

�ðtÞ ¼ ��

4
A2 þ ðA0Þ2 þ C

a40A
2
; (15)

using the solution a0ðtÞ of (14). In the above treatment of
Eq. (13) we introduced an a priori time-dependent function
�ðtÞ. In an evolving universe, a time-dependent cosmologi-
cal constant, however, would have to be sourced by addi-
tional energy-momentum sources at the boundary or in the
bulk, which generate the relevant piece in the energy-
momentum tensor that ensures energy-momentum conser-
vation. Since in the holographic context with standard
Dirichlet boundary condition, gravity at the boundary is
not dynamical (i.e. the background metric for the dual field
theory is a fixed background field), no boundary matter
source can influence the boundary metric. The holographic
energy-momentum tensor itself thus has to be conserved.
We will calculate the holographic energy-momentum ten-
sor in Sec. IV, but quote the result here already and argue
that stress-energy conservation forces the cosmological
constant to actually be time-independent.

The general solution of Eq. (15), which will be analyzed
in more detail in Sec. IV, is

A ¼ r

R

��
1� �ðtÞR2

4

R2

r2

�
2 þ CR2

4a40ðtÞ
R4

r4

�
1=2

: (16)

Using standard holographic techniques (for details see
Sec. IVD 2), the vacuum expectation value of the boundary
stress-energy tensor is found to be of perfect fluid form,

hT�
� i ¼ diagð��; p; p; pÞ; 	 ¼ 4R3

16
Gð5Þ
N

; (17)

� ¼ 3	

�
C

4R2a40ðtÞ
þ �ðtÞ2

16

�
;

p ¼ 	

�
C

4R2a40ðtÞ
� 3�ðtÞ2

16

�
:

(18)

If we now impose the holographic stress-energy tensor to
be conserved, r�hT�

�i ¼ 0, we actually require a con-

tinuity equation for pressure and energy density,

0 ¼ _�þ 3Hð�þ pÞ: (19)

In order to satisfy this continuity equation, the boundary
cosmological constant �ðtÞ then has to be a constant,

_�ðtÞ ¼ 0: (20)

Physically speaking, requiring the stress-energy tensor to
be conserved amounts to requiring the holographically
defined generating functional to be invariant under
boundary diffeomorphisms. The conservation equation
r�hT�

�i ¼ 0 then is the one-point function diffeomor-

phism Ward-Takahashi identity. In holographic renormal-
ization, this is a natural outcome since both the regularized
on-shell action as well as the counterterms are constructed
in a manifestly boundary diffeomorphism invariant way. A
possible nonconservation of the bulk part of hT��i can then
only be cancelled by additional boundary terms which
change the chosen boundary conditions from Dirichlet to
Neumann or mixed ones [25], hence inducing additional
dynamical degrees of freedom into the boundary theory.
We thus conclude that to constitute a physically mean-
ingful holographic background, the boundary cosmologi-
cal constant must be an actual constant in time. One should
note that restricting the solution space of Eqs. (13) or (14)
and (15) does not influence the argument given above
concerning the equivalence of the (restricted) solution
space of both sets of equations.
We will show in the following (in particular, in

section V) that the solution Aðt; yÞ of this equation encodes
important dynamical properties of the gauge theory in a
Friedmann-Robertson-Walker universe. As will be shown
in Sec. V, the behavior of Wilson loop expectation values
as calculated from a minimal string world sheet, and hence
the (de)confinement properties of the vacuum show an

JOHANNA ERDMENGER, KAZUO GHOROKU, AND RENÉ MEYER PHYSICAL REVIEW D 84, 026004 (2011)
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interesting competition between the dark radiation con-
stant C> 0, and the boundary cosmological constant �.

Finally, we would like to comment on the physical
situation concerning the dark radiation term and the bound-
ary cosmological constant in brane-world models [26,27],
which is slightly different. In these models, due to the fact
that the uv brane sits at a finite cutoff and due to the chosen
boundary conditions, an energy exchange between the bulk
and the brane is possible. In particular, the value of � is
always tuned by the bulk metric and the five-dimensional
cosmological constant�, and the dark radiation term C

a4
0
A2 is

considered to be an energy flux between brane and bulk. In
the holographic setup we consider here, due to the standard
Dirichlet boundary conditions chosen in holography, no
bulk-boundary energy exchange is possible, and the
boundary cosmological constant can be freely tuned. The
holographic setup is thus less rigid compared to the brane-
world models.

III. HOLOGRAPHIC INTERPRETATION
OF DARK RADIATION

Above, we have shown how to obtain a consistent back-
ground solution describing a boundary metric undergoing
cosmological evolution under the influence of both a
boundary cosmological constant and a dark radiation
term in the bulk. Here, we concentrate on the holographic
interpretation of the dark radiation term for the simplest
case, i.e. the case of vanishing boundary cosmological
constant. We find that the dark radiation term introduces
a temperature for the boundary N ¼ 4 field theory.

A. Solution for vanishing boundary
cosmological constant

For the case of vanishing boundary cosmological con-
stant, a solution of (14) is given by � ¼ 0, k ¼ 0, and
a0ðtÞ ¼ 1, and Aðt; yÞ ¼ AðyÞ is obtained by solving (15)
with � ¼ 0. This gives

A ¼ e�yð1þ ~c0e
�4�yÞ1=2; (21)

where ~c0 ¼ C=ð4�2a40Þ ¼ C=ð4�2Þ since a0 ¼ 1. From

Eq. (12), we obtain

n ¼ A� 1

A

2C

�
e�2�~y ¼ e�y 1� ~c0e

�4�yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~c0e

�4�y
p : (22)

Then, using r=R ¼ e�y, the full Einstein metric is given by

ds210 ¼
r2

R2
ð� �n2dt2 þ �A2ðdxiÞ2Þ þ R2

r2
dr2 þ R2d�2

5; (23)

�A ¼
�
1þ ~c0

�
R

r

�
4
�
1=2

; �n ¼ 1� ~c0ðRrÞ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~c0ðRrÞ4

q : (24)

For the dilaton (8) we find, using the above metric,

e� ¼ 1þ q

2~c0R
4
log

1þ ~c0ðR=rÞ4
1� ~c0ðR=rÞ4

: (25)

Here, the integral constant q corresponds to the gauge
condensate htrF2i, and the boundary condition e� ! 1
for r ! 1 is imposed. For ~c0 ¼ 0, this solution reduces
to the supersymmetric one used in [28], and e� diverges at
r ¼ 0 if ~c0 > 0.

B. Holographic interpretation of dark radiation

In order to give an interpretation to dark radiation con-
stant C, we rewrite the solution Eq. (23) as a planar AdS-
Schwarzschild black hole. The five-dimensional part of the
metric in the Einstein frame can be brought into that form,

ds2ð5Þ ¼
~r2

R2
ð�fð~rÞdt2þðdxiÞ2ÞþR2d~r2

~r2fð~rÞ ; fð~rÞ¼1�~r40
~r4
;

(26)

by the coordinate redefinition

~r ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R4

r4
~c0

s
) ~r0 ¼ ðCR6Þ1=4: (27)

Thus, the dark radiation constant C has to be positive, and
sets the horizon radius of the AdS-Schwarzschild black
hole. The dark radiation constant is nothing but the mass of
the AdS-Schwarzschild black hole and, applying standard
holographic renormalization [29–31] we find the dual
stress-energy tensor to be of perfect fluid form

hTð0Þ
��i ¼ CR

16
Gð5Þ
N

diagð3; 1; 1; 1Þ: (28)

We thus conclude that in holography the dark radiation
constant defines a temperature for the fields of the dual
field theory. For a nonexpanding cosmology (k ¼ � ¼ 0 as
in this case) this directly leads to a field theory (in this case
N ¼ 4 with gluon and instanton condensate) at finite
(Hawking) temperature

TH0
¼ ð4~c0Þ1=4


R
: (29)

Using this temperature and the energy-momentum tensor
IIIb, we can, in particular, confirm the Stefan-Boltzmann
law for the energy density3 � ¼ �hT0

0i,

� ¼ 4R3

16
Gð5Þ
N

�
3
~c0
R4

�
¼ 3N2

8

2T4

H (30)

where we used Gð5Þ
N ¼ 8
3	04g2s=R5 and R4 ¼ 4
N	02gs.

This expression reproduces the known results of [32,33]. In
brane-world models, the dark radiation term has been
interpreted as the radiation of the bulk gravitons which

3The background metric in this special case is just the flat
Minkowski metric ��� ¼ diagð�1; 1; 1; 1Þ.
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transfer the energy of the fields in the brane to the bulk. In
[16,34] it was noted that the dark radiation constant cor-
responds to the mass of the bulk AdS-Schwarzschild
black hole. In their contexts, gravity is dynamical on the
UV brane, and the dark radiation term appears in the
Friedmann equation on the brane. As noted already in
Sec. II, the holographic setup considered in this work is
different due to the Dirichlet boundary conditions imposed.
Here, gravity is not dynamical at the boundary of space-
time. Instead, in our case the dark radiation term is dual to
the energy density of the N ¼ 4 UðNÞ SYM fields in a
thermal state, as evident from the Stefan-Boltzmann law
(30). The dark radiation constant C, which appears as an
integral constant when solving Einstein’s equations [15],
sets the temperature of the dual field theory. To the best of
our knowledge, such a holographic interpretation of the
bulk radiation term has not yet been given in the literature
before. This interpretation will qualitatively also hold in
the time-dependent cosmologies considered in Secs. IV
and V: We find that in all cases the dark radiation constant
contributes in a thermal manner to the holographic stress-
energy tensor of the system, with a time-dependent pre-
factor a0ðtÞ�4 associated with the dilution of relativistic
radiation due to expansion or contraction of the (boundary)
universe. On the other hand, the boundary cosmological
constant yields a conformal anomaly contribution to the
stress-energy tensor. We will see that both contributions
can compete, giving rise to interesting dynamics.

IV. HOLOGRAPHY FOR BOUNDARY
ðAÞdS4 SPACE-TIMES

Above, we saw that for vanishing boundary cosmological
constant, the dark radiation constant corresponds to a tem-
perature for the N ¼ 4 fields. In this section, we treat the
case of finite boundary cosmological constant, and discuss,
in particular, the boundary stress-energy tensor. We show
that the dark radiation term induces a relativistic radiation
contribution to the boundary stress-energy tensor, varying
in time with the well-known a0ðtÞ�4 dependence during
cosmological expansion. Furthermore, we find that stress-
energy conservation in the boundary theory forces the
boundary cosmological constant to be time-independent.

A. Solution for finite boundary cosmological constant

A solution of (15) for finite �ðtÞ is

A ¼ e�y

��
1� �ðtÞ

4�2
e�2�y

�
2 þ ~c0ðtÞe�4�y

�
1=2

; (31)

where ~c0 ¼ C=ð4�2a0ðtÞ4Þ. Here, we have chosen asymp-
totic boundary conditions

Aðy ¼ 1Þ ¼ e�y ¼ r=R; (32)

where � ¼ 1=R, i.e. we require the asymptotic form of the
metric to be AdS5. We find that A has time-dependence

through a0ðtÞ in ~c0 and also �ðtÞ. This point is important to
determine the structure of the metric below.
From Eq. (12), we obtain

n ¼ e2�y

Aðt; yÞ
��

1� �ðtÞ
4�2

e�2�y

�
2 � ~c0ðtÞe�4�y

�
: (33)

With r=R ¼ e�y, the full Einstein frame metric is then
given by

ds210¼
r2

R2
ð� �n2dt2þ �A2a20ðtÞ�2ðxÞðdxiÞ2ÞþR2

r2
dr2þR2d�2

5;

(34)

where

�A ¼
��

1� �

4�2

�
R

r

�
2
�
2 þ ~c0

�
R

r

�
4
�
1=2

;

�n ¼
ð1� �

4�2 ðRrÞ2Þ2 � ~c0ðRrÞ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �

4�2 ðRrÞ2Þ2 þ ~c0ðRrÞ4
q :

(35)

The above metric has no naked singularities for time-
independent �, as we checked by calculating R, R��R

��

and the Kretschmann scalar R����R
����.4 We will see in

Sec. IVd that � also needs to be time-independent in order
to ensure boundary energy-momentum conservation. Note
that we use a coordinate system in which the constant
curvature three-space has the metric

d�2
k ¼

d~x2

ð1þ k ~x2=4Þ2 : (36)

These are simply the standard spherical coordinates on the
isotropic and homogenous three-space, with a conformal
factor.

B. Almost constant scale factor and adiabatic expansion

Quantum fields in an expanding space usually are not in
thermal equilibrium, not even locally, unless the expansion
rate is slow compared to the equilibration time of the
system. This should be the case for very small but nonzero
boundary cosmological constant �, in which case the scale
factor a0ðtÞ would still be changing with time, but with a
very slow rate. In other words, the Hubble rate H ¼ _a0=a0
is small. In this case, we can still make statements about the
‘‘slowly varying’’ temperature of the system, correspond-
ing to the adiabatic regime.5We find the horizon as the zero
of the gtt metric coefficient in (34), which is at

4Recently, it was noted in a similar but not identical construc-
tion [35] that naked singularities might appear when deviating
from pure dS expansion. Their singularity so far cannot be
shielded by a horizon. In contrast, the Einstein frame curvature
singularities in the backgrounds considered here are always
behind the horizon gtt ¼ 0, and coincide with the cosmological
singularities a0ðtÞ ¼ 0.

5The system evolves adiabatically, starting from t0, roughly for
a time span

ffiffiffiffiffiffij�jp jt� t0j � 1.
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rH ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~c1=20 þ �

4�2

s
(37)

for � >�ð4�2Þ~c1=20 ¼ �c. If the scale factor a0 is slowly
changing, it is possible to approximately satisfy (14) with
a time-independent a0, by taking k ¼ 1 for � > 0 and
k ¼ �1 for � < 0 in the Friedmann Eq. (14),

a0 � 1=j�j1=2; �ðxÞ ¼
�
1þ k

x2i
4

��1
: (38)

In this case, @
rH � 0, and from the near-horizon
geometry

ds2 ’ 8

�
rH
R

�
2
�2d
2 þ R2d�2 þ � � � : (39)

a (slowly varying) Hawking temperature can be found for
� >�ð4�2Þ ffiffiffiffiffi

~c0
p

, reading

TH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð2�2Þ þ ð4~c0Þ1=2

q

R

: (40)

We thus find that negative (positive) � decreases (in-
creases) the effective temperature for the dual field theory.
Furthermore we observe that the regime � <�ð4�2Þ ffiffiffiffiffi

~c0
p

is special: Formally, the Hawking temperature calculation
does not apply to that case even if dark radiation is present,
since gtt has no real zero any more, i.e. there is no horizon.
We will see in Sec. V that in this regime the Wilson loop
shows a confining area law behavior. The situation is thus
similar to the Sakai-Sugimoto model [36], where the grav-
ity dual of the confined phase is a cigar-shaped geometry
which smoothly caps off instead of admitting a black hole
horizon.

C. Dilaton solution

In addition to the metric considered above, the other
important field in our system is the running dilaton, whose
exponential is related to the gauge coupling in the dual
field theory. The solution to the dilaton equation of motion
reads

e�¼ q

2~c0ð1þ �2

16~c0�
4Þ

�
�
log

1þ~c0ðR=rÞ4þð�R=ð4�2rÞÞ2ððR=rÞ2�8�2=�Þ
1�~c0ðR=rÞ4þð�R=ð4�2rÞÞ2ððR=rÞ2�8�2=�Þ

þ �

2~c1=20 �2

�
tan�1�þ tanh�1��1� i

2



��
þ�; (41)

where q and � are the integration constants and

� ¼ ðr=RÞ2 � �=ð4�2Þ
~c1=20

(42)

We notice the following points for the above
solution (41):

(1) The above expression (41) seems to be complex due
to the factor 1�i

2 
 in the second line of (41).

However, this is necessary to cancel the imaginary
part of tanh�1�, which has a constant imaginary
part i
=2 for �> 1. The condition of �> 1 is

realized for r > rH (all r > 0) in the case of � >

�4�2~c1=20 (� <�4�2~c1=20 ), and hence we only give

the solution of e� in this regime, and explicitly
display the factor 1�i

2 
. As a result, the above ex-

pression (41) is real.
(2) The factor arctanh ð�Þ diverges for � ! 1, which is

realized for r ! rH ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~c1=20 þ �

4�2

q
. The same

logarithmic divergence comes from the first loga-
rithmic term in the Eq. (41). This divergence can be
seen in case (c) of Fig. 1.

(3) For the case of � � �4�2~c1=20 , the solutions extend

to r ¼ 0 and there is no divergence at any point in
radial direction. The value at r ¼ 0 is given by

e�ð0Þ ¼�þ 8q�4

�2þ16�4~c0

�
log

�2þ16�4~c0
�2�16�4~c0

þ �

2~c1=20 �2

�
�
tan�1�0þ tanh�1�0�1� i

2



��
; (43)

where �0 ¼ �=ð4~c1=20 �2Þ. The important point is

that e�ð0Þ is finite. We plot its numerical value in
Fig. 2 for an appropriate parameter set as a function
of j�j.

a

b

c

0.5 1.0 1.5 2.0 2.5 3.0
r

1

1

2

3

4

5

6

FIG. 1 (color online). Plots of e� vs r for

(a) � ¼ �1� 4�2~c1=20 , (b) � ¼ �4�2~c1=20 and (c) � ¼ 1�
4�2~c1=20 . Cases (a) and (c) are taken as examples for � <

�4�2~c1=20 and � >�4�2~c1=20 , respectively. Other parameters

are set as 1=� ¼ R ¼ 1, q ¼ 2, and ~c0 ¼ 0:1. In the case of (c),

e� diverges at the horizon rH ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~c1=20 þ �

4�2

q
, which is 0.5 in

this case. Note that in general, ~c0 is explicitly time-dependent,
these curves represent snapshots of the dilaton solution at
constant time.
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It is interesting to note that the asymptotic value of

e�ð0Þ at � ¼ �1 is given by �. Thus, in the limit of
asymptotically large positive or negative cosmologi-
cal constants, there is no running of the coupling due
to the gluon condensate, but only due to the confor-
mal anomaly induced by the background. It would
be interesting to further investigate this fact from a
field-theoretic point of view.

(4) Further, if we set � ¼ 1, we obtain the following
asymptotic form

e� ’ 1þ q=r4 þ � � � (44)

as r ! 1. This is the standard AdS/CFT expansion
for a scalar dual to a � ¼ 4 operator, which in this
case is the gluon condensate TrF2. The integration
constant � corresponds to the nonnormalizable
mode, while q encodes the vacuum expectation
value hTrF2i.

Thus, while the ultraviolet behavior of e� does not
depend on �, the behavior near the infrared region is
very sensitive to the boundary cosmological constant.
For � >�ð4�2Þ ffiffiffiffiffi

~c0
p

, e� diverges at the horizon of the
black hole configuration. On the other hand, for � �
�ð4�2Þ ffiffiffiffiffi

~c0
p

, e� approaches a constant at r ¼ 0, and
@re

�jr¼0 ¼ 0. In this case, then, the Yang-Mills coupling
constant reaches at an ir fixed point for � � �ð4�2Þ ffiffiffiffiffi

~c0
p

.
We should, however, note that conformal invariance of the
boundary theory is still broken due to the gravity contri-
bution to the conformal anomaly. However, this will not

affect on the renormalization group equation for the
Yang-Mills part.6 We thus would naively expect quark
confinement for � >�ð4�2Þ ffiffiffiffiffi

~c0
p

due to the strong infrared
coupling. However, in this case theWilson loop calculation
of Sec. V shows that the quarks are not confined: The
Wilson loop deconfines due to the presence of the horizon
at gtt ¼ 0. We find confinement for � � �ð4�2Þ ffiffiffiffiffi

~c0
p

in-
stead, where the coupling constant is finite and not so large,
but where the horizon is absent. We thus conclude that
similarly to the situation in the Sakai-Sugimoto model
[36], the main factor controlling the confinement dynamics
in this setup is not the coupling constant (i.e. the running
dilaton) but the presence of a horizon in the bulk. The
dilaton running is, however, important at zero temperature
(C ¼ 0) and leads to Wilson loop confinement e.g. in the
hyperbolic case k ¼ �1, as will be discussed in Sec. V.

D. Boundary energy-momentum tensor
and boundary diffeomorphism invariance

1. The VEV of the boundary energy-momentum tensor

Next, we calculate the four-dimensional stress-tensor
from holography. The Fefferman-Graham expansion of
the metric (34) reads

ds2¼d�2

4�2
þg��ð�;x�Þdx�dx�

�
; �;�¼0; . . . ;3; (45)

g��ð�; x�Þ ¼ gð0Þ�� þ gð2Þ���þ �2ðgð4Þ�� þ h1ð4Þ�� log�

þ h2ð4Þ��ðlog�Þ2Þ þ � � � ; (46)

gð0Þ�� ¼ ðgð0Þ00; gð0ÞijÞ ¼ ð�1; a0ðtÞ2�ijÞ;
gð2Þ�� ¼ � �

2R2�2
gð0Þ��;

(47)

and

gð4Þ00¼48~c0��2=�2

16R4
; gð4Þij¼16~c0þ�2=�2

16R4
gð0Þij: (48)

Then, by using the general formula [29]

2 4 6 8 10

2

4

6

8

10

12

14

0

FIG. 2 (color online). Plot of e�ð0Þ vs j�j, where the parame-

ters are set as in Fig. 1, yielding 4�2~c1=20 ¼ 1:265. We notice

that e�ð0Þ is real for j�j> 4�2~c1=20 ¼ 1:265, which corresponds

to case (a) in Fig. 1, with no horizon present. For j�j<
4�2~c1=20 ¼ 1:265, case (c) of Fig. 1, the dilaton becomes

complex in the region hidden behind the horizon. Moreover,
e�ð0Þ ! 1 for j�j ! 1. Note that since in general ~c0 is
explicitly time-dependent, this curve should be understood at
a given instance in time.

6More exactly, the RG equation for the effective action � reads

�
@

@�
�þX

i

�i@i� ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ðcC����C
����

� a���	������R����R	���Þ:
The right-hand side vanishes since the Euler density
���	������R����R	��� is topological and vanishes when inte-
grated over space-time, and the Weyl tensor C���� ¼ 0 since the
cosmological backgrounds are conformally flat. Hence, if no
operators except the gluon condensate are present and �YM ! 0
in the ir, the theory approaches an ir fixpoint when the dilaton
approaches a constant in the infrared. This is the case in the Liu-
Tseytlin like backgrounds considered here, since [37] there the
beta function vanishes in spite of the presence of a gluon
condensate.

JOHANNA ERDMENGER, KAZUO GHOROKU, AND RENÉ MEYER PHYSICAL REVIEW D 84, 026004 (2011)
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hT��i ¼ 4R3

16
GN

�
gð4Þ�� � 1

8
gð0Þ��ððTrgð2ÞÞ2 � Trg2ð2ÞÞ

� 1

2
ðg2ð2ÞÞ�� þ 1

4
gð2Þ�� Trgð2Þ

�
; (49)

we find the holographic stress-energy tensor

hT��i ¼ h ~Tð0Þ
��i þ 4R3

16
Gð5Þ
N

��3�2

16
gð0Þ��

�
; (50)

h ~Tð0Þ
��i ¼ 4R3

16
Gð5Þ
N

~c0
R4

ð3; gð0ÞijÞ; (51)

where h ~Tð0Þ
��i is the ‘‘thermal’’ stress-tensor contribution,

i.e. the contribution which would be thermal for the N ¼
4 SYM fields if the universe was not expanding. The
second term, which depends on �, comes from the loop
corrections of the SYM fields in a curved space-time, and
is the conformal anomaly contribution. The first term does
not contribute to the conformal anomaly as in the usual
finite temperature case. The conformal anomaly then reads

hT�
� i ¼ � 3�2

8
2
N2; (52)

where we used Gð5Þ
N ¼ 8
3	04g2s=R5 and R4 ¼ 4
N	02gs.

The conformal anomaly precisely matches the free field
theory result which can be easily obtained using the gen-
eral formulas given in [38,39]. This is expected, since the
conformal anomaly is one-loop exact, and hence trivially
interpolates from weak to strong coupling.

2. Time-independence of the boundary cosmological
constant from diffeomorphism invariance

The stress-energy tensor (50) has, in flat space (k ¼ 0),
the form of a perfect fluid stress-energy tensor. As such, it
obeys the continuity equation

_�þ 3Hð�þ pÞ ¼ 0; (53)

where �, p and H represent the energy density, pressure
and the Hubble constant H ¼ _a0=a0, and dot denotes the
time derivative. From (50) we read off

�¼3	

�
~c0
R4

þ�2

16

�
; p¼	

�
~c0
R4

�3
�2

16

�
; 	¼ 4R3

16
Gð5Þ
N

:

(54)

A priori, from the way how we introduced the boundary
cosmological constant �ðtÞ in Sec. IIb, it has to be consid-
ered as being time-dependent. The continuity equation
then requires

_� ¼ 0; (55)

where we used ~c0 ¼ C=ð4�2a40ðtÞÞ. Continuity of energy

density and pressure thus dictate the cosmological constant
to be an actual constant in time.

The requirement that the boundary stress-energy tensor
satisfies the continuity Eq. (53) is very natural from the
point of view of diffeomorphism invariance of the bound-
ary theory. Gauge/gravity duality provides, in particular, a
way to holographically calculate the generating functional
of correlators in the dual field theory via the Gubser-
Klebanov-Polyakov-Witten relation [1] from the appropri-
ately renormalized on-shell gravity action. Since the
regularized on-shell action as well as the holographic
counterterms are invariant under boundary diffeomor-
phisms ��ðx�Þ by construction, the resulting generating
functional respects this invariance in the absence of exter-
nal sources. The boundary diffeomorphisms are the ones
compatible with the Fefferman-Graham expansion of the
metric, and hence can only depend on boundary coordi-
nates x�. In particular, only the leading piece of the expan-
sion, the boundary metric, transforms under boundary

diffeomorphisms as gð0Þ�� � gð0Þ�� þ @ð���Þ, but all the sub-
leading coefficients such as the stress-energy tensor VEV

gð4Þ�� will be invariant. The source-operator couplingR
dpxgð0Þ��T�� then enforces the Ward identities

0 ¼ r�hT�� . . .i (56)

upon transformation of the effective action by such a
boundary diffeomorphism. This identity should hold for
correlators involving the stress-energy tensor. In particular,
the holographic stress-energy tensor should be conserved,

0 ¼ r�hT�
�i: (57)

For a perfect fluid T�
� ¼ diagð��ðtÞ; pðtÞ; pðtÞ; pðtÞÞ,

Eq. (57) is equivalent to the continuity Eq. (53). The
time-independence of �, Eq. (55), thus follows directly
from the requirement of stress-energy conservation.
In a more general setup one would, however, expect the

boundary cosmological constant to changewith time due to
energy exchange between bulk and boundary. As noted
before, this is not possible in the holographic setup, due to
the imposed Dirichlet boundary conditions imposed at the
boundary, and due to the fact that gravity decouples from
the gauge theory in this case as the uv cutoff is taken to
infinity [34]. This dictates that the energy-momentum con-
tributions to the holographic stress-energy tensor coming
from the bulk (the dark radiation part) as well as from the
nontrivial boundary geometry (the boundary cosmological
constant part) cannot mix with each other in a nontrivial
(time-dependent) way. Hence, each of them is conserved
by itself, yielding (55).

V. DARK RADIATION, BOUNDARY
COSMOLOGICAL CONSTANTAND

QUARK CONFINEMENT

In this section, we consider the combined effect of both
the dark radiation term and the boundary cosmological
constant on infinitely heavy quarks, i.e. test quarks, in the
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Super Yang-Mills theory, by holographically evaluating
the static quark-antiquark potential from a Wilson loop
vacuum expectation value. One way to introduce (super-
symmetric) quarks in the present context is through probe
D7 branes [40]. The test quark-antiquark pair is then
described by a string worldsheet ending on a prescribed
space-time contour on the D7 brane. If the D7 brane
corresponds to an infinitely massive embedding, and bar-
ring special issues such as the presence of gauge field
charge on the brane, the brane embedding then will coin-
cide with the asymptotic boundary of our space-time, and
we can consider a string worldsheet ending on a contour at
this boundary. The static quark-antiquark potential is then
calculated from the energy of the string, evaluated on a
minimal surface with the boundary condition prescribed by
the contour [41]. Usually, the string worldsheet then has
two possible configurations:

(1) A pair of parallel strings, which stretch between the
boundary and the horizon. This configuration de-
scribes a free quark-antiquark pair, and corresponds
to a deconfined situation in which the Wilson loop
shows a perimeter law.

(2) A U-shaped string whose two end-points are on the
boundary, but which does not touch any black hole
horizon or singularity in the bulk. If the gxx compo-
nent of the string frame metric has a minimum, the
string will be stuck there and the energy will depend
linearly (for large separations) on the separation of
the end-points, and show an area law for the Wilson
loop. This configuration describes a confined quark-
antiquark pair.

These two types of configurations are seen to compete
thermodynamically in the finite temperature gauge theory
[11], as well as for the theory in dS4 [9], with the decon-
fined configuration being thermodynamically preferred in
both cases.

A. The wilson loop in cosmological evolution

Following [41], we consider the Nambu-Goto string
dynamics with the string world volume in ðt; xÞ plane.
The energy E of this state is then obtained as a function
of the proper distance L between the quark and antiquark
as follows [9]: Choosing a gauge X0 ¼ t ¼ 
 and X1 ¼
x1 ¼ � for the world sheet coordinates ð
; �Þ of the
Nambu-Goto action, the Nambu-Goto Lagrangian in the
present background (23) becomes

LNG¼� 1

2
	0
Z
d�e�=2 �nðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02þ

�
r

R

�
4ð �AðrÞa0ðtÞ�ðxÞÞ2

s
;

(58)

where only the radial coordinate rðxÞ is assumed to depend
on x, and prime denotes the derivative with respect to x.
The functions �n, �A are defined in (34) and (35).

The energy of the string configuration, which is nothing
but the static quark-antiquark potential, is obtained from
(58) as

E ¼ �LNG ¼ 1

2
	0
Z

d~�jnsj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
R2

r2 �A
@~�r

�
2

s
; (59)

where

~� ¼ a0ðtÞ
Z

d��ð�Þ ¼ a0ðtÞ
Z

d�
1

1þ k�2=4
; (60)

and

ns ¼ e�=2

�
r

R

�
2j �A �n j: (61)

We should note that ~� measures the physical length
(proper distance) in the present case, while � ¼ x mea-
sures the distance in comoving coordinates, which do not
change with expanding scale. We will consider the static
quark-antiquark potential as a function of proper distance.
The quark-antiquark potential (59) shows a scaling with

distance if nsðrÞ has a finite minimum at some distance r ¼
r	 outside the horizon. This is the case for � � �4�2~c1=20 .

In this case, the dilaton in nsðrÞ varies very slowly and
monotonically (see the discussion around Fig. 1), and we
can estimate the minimum of ns by neglecting the dilaton

dependence, e�=2 � 1, in nsðrÞ, i.e. taking

ns �
�
r

R

�
2j �A �n j ¼

�
r

R

�
2j
�
1� �

4�2

�
R

r

�
2
�
2 � ~c0

�
R

r

�
4
��������:
(62)

We then find the minimum of nsðrÞ at

r	 ¼ R

��
�

4�2

�
2 � ~c0

�
1=4

: (63)

We see that the minimum is at a finite value of r	 for �2 >
ð4�2Þ2~c0 > 0, since ~c0 > 0 is necessary in order to have a
positive temperature contribution of the Yang-Mills fields
to the holographic energy-momentum tensor (51). There
are thus two regimes, � > 4�2

ffiffiffiffiffi
~c0

p
and � <�4�2

ffiffiffiffiffi
~c0

p
. In

the former case, however, the dilaton e� diverges at a finite
radius, and cannot be neglected any more in (61). We are
thus left with considering the case � <�4�2

ffiffiffiffiffi
~c0

p
. For

� <�4�2
ffiffiffiffiffi
~c0

p
, the value of ns at the minimum is

nsðr	Þ ¼ �

2�2
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�

4�2

�
2 � ~c0

s

 0: (64)

This is finite since we are considering the case of � <

�4�2~c1=20 . Note that nsðr	Þ 
 0 since ~c0 
 0. Then the

energy E is approximated as [9]

E� nsðr	Þ
2
	0 L; (65)

where
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L ¼ 2
Z ~�max

~�min

d ~� (66)

is the proper distance between the string end-points, and
~�min (~�max) is the value at rmin (rmax) of the string con-
figuration [10]. The potential V ¼ E thus grows linearly in
proper distance as long as nsðr	Þ> 0, and the string tension
is given by


q �q ¼ nðr	Þ
2
	0 : (67)

On the other hand, for the case of � >�4�2~c1=20 , we do

not find such a finite minimum of nsðrÞ. In this case
nsðrHÞ ¼ 0 at the horizon rH defined by �nðrHÞ ¼ 0. The
exact behavior of ns, including the dilaton dependence, is
shown in the numerically obtained plot Fig. 3 for all cases of
relevance. The numerical results support the approxima-
tions made above. In particular, there is no linear potential

for � >�4�2~c1=20 . The quarks are deconfined in this case,

which can qualitatively be understood as the effect of the
cosmological constant not being sufficiently negative to
overcome the thermal screening of the quark-antiquark
force. This is particularly interesting for negative �, in
which case we find a possible deconfined phase even for
AdS backgrounds if only the finite ‘‘temperature’’screening
of the quark-antiquark potential, set in this case by the dark
radiation constant C, is strong enough. This seems to be a
novel phenomenon at strong coupling, since the Wilson
loop in AdS spaces previously was expected to confine
[22,23] due to the diverging gravitational potential in AdS
space (for a more thorough discussion see Sec. Vb.).

We obtained the relation EðLÞ, as shown in Fig. 4, and
the tension 
q �q in the following way: Since the Lagrangian

in (58) does not explicitly depend on the coordinate � ¼ x,
we find the following quantity conserved under �-shifts,

e�=2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr=RÞ4 �A2ðrÞ þ ðr0Þ2p �
r

R

�
4
�n �A2ðrÞ ¼ H: (68)

We can fix H at any point we like, so we fix it at r ¼ rmin.

Then, choosing H ¼ e�=2ðrRÞ2 �nðrÞ �AðrÞjrmin
, we get

L ¼ 2R2
Z rmax

rmin

dr
1

r2 �AðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�ðrÞr4 �nðrÞ2 �AðrÞ2=ðe�ðrminÞr4min �nðrminÞ2 �AðrminÞ2Þ � 1

q ;

E ¼ 1


	0
Z rmax

rmin

dr
�nðrÞe�ðrÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e�ðrminÞr4min �nðrminÞ2 �AðrminÞ2=ðe�ðrÞr4 �nðrÞ2 �AðrÞ2Þ
q : (69)

Figure 4 shows the exact dependence of the energy E on
the distance L for the values q ¼ 0 (i.e. for constant
dilaton) for � � �4�2~c1=20 (curve A) and � >�4�2~c1=20

(curve B). In the former case, we find the linear potential at
large L as expected, and we find a typical screening
behavior in the latter case, similar to the one seen in the
finite temperature deconfinement phase. The qualitative
behavior of the Wilson loop for q � 0 are unchanged
from the q ¼ 0 case.

B. Classification of (De)confining behavior
in cosmological backgrounds

In the above analysis, we found confining behavior for
the Wilson loop if

� � �4�2
ffiffiffiffiffi
~c0

p ¼ � 2
ffiffiffiffiffiffiffiffiffiffiffiffi
C=R2

p
a20ðtÞ

: (70)

Thus, for vanishing dark radiation constant C ¼ 0 (which
would correspond to vanishing temperature in the static
case) and negative boundary cosmological constant � < 0,
the system is always confined, in accordance with earlier
results of [12,22]. On the other hand, the Wilson loop
cannot have an area law for

� >�4�2
ffiffiffiffiffi
~c0

p ¼ � 2
ffiffiffiffiffiffiffiffiffiffiffiffi
C=R2

p
a20ðtÞ

: (71)

This regime is deconfining. The right-hand side of these
inequalities is generically time-dependent, and hence the

a

b

c

1 2 3 4 5
r

5

10

15

n s

FIG. 3 (color online). Plots of n vs r for (a) �¼�1�4�2~c1=20 ,

(b) �¼�4�2~c1=20 and (c) �¼1�4�2~c1=20 . Cases (a) and (c) are

taken as examples for � <�4�2~c1=20 and � >�4�2~c1=20 , re-

spectively. In agreement with (63), (a) and (b) show minima and
hence confine. The parameters are taken to be 1=� ¼ R ¼ 1,
k ¼ �1, and ~c0 ¼ 0:2. For (c), there is a horizon at r ¼ 0:5.
Note that for the parameter values chosen in this plot, � < 0 in
all cases and hence k ¼ �1 is consistent when solving the
Friedmann Eq. (14). k only enters the dilaton and hence the
Wilson loop via the value of ~c0. Furthermore, since in general ~c0
is explicitly time-dependent, these curves represent snapshots at
constant times.
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inequalities will hold only, in particular, time intervals, in
which the universe is larger/smaller than a critical value set
by the boundary cosmological constant. There are three
cases:

(i) Positive �: In this case the system is in a deconfined
phase. This could have been expected by the expand-
ing nature of the de Sitter universe in this case: The
expansion of space tends to destabilize bound states,
leading to deconfinement even at zero dark radiation
constant.

(ii) Vanishing �: This case is similar to the (de)confine-
ment properties of a planar AdS-Schwarzschild
black hole. For any finite value of the dark radiation
constant C> 0 (‘‘finite temperature’’), Eq. (71) is
satisfied, and the system is in the deconfined phase.
For vanishing dark radiation constant C ¼ 0, how-
ever, Eq. (70) holds and the Wilson loop shows
confining behavior.

(iii) The most interesting situation occurs for negative
�: Depending on the value of the scale factor a0ðtÞ
at any given time, either (70) or (71) can be sat-
isfied, leading to transitions between confined and

deconfined phases as the universe evolves.
Physically, this transition is due to the competition
between two effects: The screening effects of the
thermal (dark radiation) energy always aims at
driving the system into a deconfined phase, while
the influence of the background cosmological evo-
lution on the static quark-antiquark potential can
be either confining (for � < 0) or deconfining (for
� > 0). Thus for negative boundary cosmological
constant thermal screening and background-
induced confinement can compete and result into
(de)confinement transitions.
For definiteness, let us consider the solution of (14)
for k ¼ �1 and � < 0,

a0ðtÞ ¼ sin
ffiffiffiffiffiffij�jp

tffiffiffiffiffiffij�jp : (72)

This solution thus describes an oscillating universe.
Analyzing (70) and (71), we find two different
regimes: Since the scale factor is bounded from

above by a0;max ¼ 1=
ffiffiffiffiffiffij�jp

, a large enough dark

radiation constant C> R2=4 always satisfies (71),
and hence quarks are always deconfined in this
case. For C< R2=4, however, the system oscillates
between a deconfined phase at smaller scale factors
a0ðtÞ, and a confined phase at larger values. For the
marginal value C ¼ R2=4, the Wilson loop shows
confining behavior only at maximal extension of
the universe. Our holographic setup thus describes
a (supersymmetric) plasma with the qualitative
properties observed in the evolution of our uni-
verse: Near the big bang singularity a0 ¼ 0, the
matter is in a deconfined state, and undergoes a
confinement phase transition as the universe cools
down. Figure 5 summarizes the situation.
These results, in particular, in the latter case, need
to be compared to the results of [23], where it was
argued that the Wilson loop is not a good measure
for (de)confinement in AdS space. The arguments
of [23] involve a conformal transformation be-
tween AdS space and half of the Einstein static
universe (ESU), relating long distance behavior in
AdS space to the (universal) short distance behav-
ior in the ESUmeasured in turn by theWilson loop.
This argument fails in the backgrounds considered
here since the conformal symmetry of N ¼ 4
SYM theory is broken by the gluon condensate,
as well as by the conformal anomaly for � � 0.7

The results of Sec. V show that the Wilson loop is
sensitive to both, and hence depends on the chosen
conformal frame, measuring unambiguously the
deconfinement properties of the chosen field theory
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FIG. 4 (color online). Plots of E vs L for

(A) � ¼ �1� 4�2~c1=20 and (B) � ¼ þ1� 4�2~c1=20 . Cases (A)

and (B) are taken as examples for � <�4�2~c1=20 and � >

�4�2~c1=20 , respectively. Case (A) shows confinement, while

case (B) shows typical screening behavior: In the latter case
there exist two U-shaped configurations for small L, while for
large separations the string breaks at the horizon and hence has
vanishing energy (at OðN2Þ). Other parameters are set as q ¼ 0,
� ¼ 1, R ¼ 1, k ¼ �1, ~c0 ¼ 1:0, rmax ¼ 3 and 	0 ¼ 1. Note
that in general ~c0 is explicitly time-dependent, these curves
represent snapshots of the dilaton solution at constant time.

7This point was noted before in [42].
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state by coupling to the full energy-momentum
tensor and to the gluon condensate.8 Similarly, we
do not expect the arguments of [22] for a weakly
coupled meron gas disordering the Wilson to sim-
ply carry over to strong coupling.
The conformal anomaly is also responsible for the
time-dependent nature of the holographic back-
grounds presented here: The diffeomorphism relat-
ing these backgrounds to topological black holes
[17,18] induces a conformal transformation on the
boundary, which, due to the conformal anomaly, is
not a quantum symmetry of the dual field theory.
Thus, except for the case of vanishing boundary
cosmological constant, observables calculated in
the two different conformal frames will generically
be different, and therefore have to be calculated in
the time-dependent background itself. We cannot
resort to the equivalence with topological black
holes to define a thermodynamic ensemble or to
consider phase transitions, as e.g. studied for com-
pactifications of CFT’s on dS space-times [43]. Our

setup, hence, is time-dependent and describes
genuine nonequilibrium physics. We can, however,
characterize the properties of the nonequilibrium
state by calculating observables such as the Wilson
loop via the machinery of gauge-gravity duality.
For vanishing boundary cosmological constant, the
conformal anomaly vanishes, and the phase struc-
ture of the AdS-Schwarzschild black hole with flat
(k ¼ 0) horizon, which has OðN2Þ entropy density
at finite temperature andOð1Þ at absolute zero [44],
coincides exactly with our results for the Wilson
loop. For the hyperbolic (k ¼ �1) black hole, on
the other hand, these two measures of confinement
do not agree: From [17,18] it is clear that the black
hole mass is given by� ¼ C. The hyperbolic black
hole has a nondegenerate horizon at rþ ¼ LAdS for
� ¼ 0, and both its free energy and entropy are
OðN2Þ at this point [45]. Our Wilson loop, on the
other hand, is confined at � ¼ C ¼ 0. This is one
of the rare examples where the density of states and
the Wilson loop do not agree as measures of con-
finement, which can be traced back in this case to
the effect of the gluon condensate which enters the
Wilson loop via the string frame metric.
As discussed in the introduction, different mea-
sures of confinement leading to different answers
in curved backgrounds are not uncommon, and
since the field theory is known exactly,9 this case
appears to be a good playground for a future inves-
tigation of the interplay of different measures of
confinement.10 We plan to come back to this point
in a future work.
Another interesting observation concerns the rela-
tion of the Wilson loop with the temperature (40):
Although this temperature has been derived in a
adiabatic approximation, assuming the cosmologi-
cal constant to be sufficiently small, the Wilson
loop feels exactly this temperature, without any
approximation. The reason is that the Wilson loop
calculation in this section is done ‘‘locally in time’’,
i.e. by considering a string stretching into the fifth
dimension at each fixed value in time, testing the
presence of the horizon with (40). If the horizon is
present the Wilson loop exhibits perimeter law, if
not, the temperature (40) is zero or ill-defined, and
the Wilson loop exhibits an area law. Thus,

Confinement

Confinement

Deconfinement

Deconfinement

5 5 10
t

1.0

0.5

0.5

1.0
a t

FIG. 5 (color online). The (de)confinement transition as seen
in the Wilson loop behavior in an oscillating, open, universe
(� < 0, k ¼ �1). During the periods depicted in blue, the
Wilson loop shows confining behavior, while during the red
periods (close to the big bang singularity), the plasma is in a
deconfined phase. The transition line, shown in black, is fixed by
the value of the dark radiation constant C.

8The gluon condensate is essential for confinement in the case
� ¼ 0, k ¼ �1, since the Wilson loop in the purely hyperbolic
AdS-Schwarzschild black hole is screened [19] for all
temperatures.

9The field theory is N ¼ 4 SYM theory with a gluon con-
densate [4]. This breaks conformal symmetry spontaneously, but
not explicitly at the level of symmetry generators or Green
functions, since the beta function still vanishes (see also [37]).
10This is particularly interesting in view of claims that the so-
called ‘‘precursor’’ states [46], which create the OðN2Þ ground
state entropy of the extremal hyperbolic black hole, are poten-
tially relevant to the thermal screening of the quark-antiquark
potential in the absence of the gluon condensate [19].
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although (40) can only be considered as an approxi-
mation, it exactly reproduces the Wilson loop
behavior.

VI. SUMMARYAND DISCUSSIONS

We have investigated properties of strongly coupled
N ¼ 4 UðNÞ supersymmetric Yang-Mills theory in the
presence of a gluon condensate on cosmological space-
times of Friedmann-Robertson-Walker type by applying
methods of gauge/gravity duality. The dual gravity solu-
tions are obtained from a Liu-Tseytlin Ansatz of IIB su-
pergravity by solving the effective five-dimensional
Einstein equations through a metric Ansatz first employed
in the setup of brane-world cosmologies [15]. By introduc-
ing a single integration constant, the so-called ‘‘dark ra-
diation constant’’ or ‘‘mirage energy density’’, Einstein’s
equations reduce to a single constraint equation. We solved
this equation by introducing a boundary cosmological
constant which a priori can be time-dependent. In this
way the constraint is separated into a standard Friedmann
equation and an equation for the sole undetermined func-
tion in the bulk metric. The resulting holographic back-
ground is dual to N ¼ 4 SYM theory in a FRW-type
metric, and has a the gluon condensate. This bulk geometry
determines the vacuum expectation value of the stress-
tensor.

Holographically, the dark radiation term [17,18,20] in-
duces a relativistic radiation component (of Stefan-
Boltzmann form) in the stress-energy tensor. If the universe
is static, this radiation component has the correct T4 be-
havior and N2 scaling in the large N limit. If the universe is
nonstatic, it is modified by a factor 1=a40ðtÞ, as expected for
a gas of relativistic particles. For nonvanishing boundary
cosmological constant there is also the familiar conformal
anomaly contribution proportional to the square of the
boundary cosmological constant �2.

Using the holographic stress-energy tensor, we have also
clarified the holographic interpretation of a possible time-
dependence of the cosmological constant �ðtÞ: The holo-
graphic stress-energy tensor is conserved if and only if the
boundary cosmological constant �ðtÞ is time-independent,
_� ¼ 0. Requiring a conserved boundary stress-energy ten-
sor is necessary to ensure that the dual field theory is
boundary diffeomorphism invariant. In general relativist’s
terms, the coupling between field theory and curved back-
ground geometry does not spoil the equivalence principle.
Hence, with the standard AdS/CFT Dirichlet boundary
conditions, only a time-independent boundary cosmologi-
cal constant �ðtÞ ¼ � is holographically meaningful and
consistent.

The main result of this paper is the behavior of the
Wilson loop in the cosmological background geometries,
which we take as the measure of the (de)confinement
properties of quark-antiquark pairs. We find an interesting
interplay between dark radiation and cosmological

constant: The dark radiation component drives the
Wilson loop to deconfining behavior, which may be under-
stood as thermal screening of the quark-antiquark interac-
tion. On the other hand, the boundary cosmological
constant � can have deconfining or confining effect:
Positive � (i.e. de Sitter-like expanding cosmologies)
drives the system into deconfinement, while negative �
(i.e. antide Sitter-like cosmologies) drives it towards con-
finement. For negative �, there exist periodically oscillat-
ing cosmologies in which the system undergoes periodic
(de)confinement transitions: For dark radiation constants
below a critical value set by the bulk AdS radius, the
Wilson loop is deconfined when the universe is small
(i.e. near the big bang singularity). After sufficient expan-
sion it undergoes a transition to confining behavior. This is
in qualitative agreement with the expected behavior in
nature: Close to the big bang, i.e. at large temperatures,
QCD matter should have been in a quark-gluon plasma
state, and undergoes a confinement phase transition once
the universe sufficiently expanded and cooled down.
It should be stressed that in contrast to previous works

[17,18,20], the standard holographic Dirichlet boundary
conditions employed in this paper forbid bulk-boundary
energy exchange. The dual field theory lives on a curved
but fixed background geometry with no propagating gravi-
ton in the boundary theory. The Friedmann equation is
obtained from the bulk Einstein equations. It is then natural
that boundary diffeomorphism invariance restricts the
choice of bulk geometry.
As a follow-up and in view of the interesting (de)

confinement properties of the system described, it ap-
pears to be worthwhile to investigate the dynamics of
fundamental degrees of freedom. Such degrees of free-
dom can e.g. be introduced into these cosmological back-
grounds by probe D7 branes [40]. This would for
instance allow an investigation of the chiral symmetry
breaking and its relation to Wilson loop (de)confinement,
as well as possible chiral symmetry enhancement or
suppression.—Applying holographic renormalisation to
these backgrounds will further clarify the relation be-
tween the free energy, entropy, and the properties of the
Wilson loop, and thus shed light on the relation between
these different measures of confinement. In a similar way
the existence of a mass gap can be inferred from a
fluctuation analysis around the bulk geometry. We will
come back to these questions in a future work.
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