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In this paper we present semiclassical computations of the splitting of folded spinning strings in AdSs,
which may be of interest in the context of AdS/CFT duality. We start with a classical closed string and
assume that it can split into two closed string fragments, if at a given time two points on it coincide in
target space and their velocities agree. First we consider the case of the folded string with large spin.
Assuming the formal large-spin approximation of the folded string solution in AdS;, we can completely
describe the process of splitting: compute the full set of charges and obtain the string solutions describing
the evolution of the final states. We find that, in this limit, the world surface does not change in the process
and the final states are described by the solutions of the same type as the initial string, i.e. the formal large-
spin approximation of the folded string in AdS;. Then we consider the general case—splitting of string
given by the exact folded string solution. We find the expressions for the charges of the final fragments, the
coordinate transformations diagonalizing them and, finally, their energies and spins. Because of the
complexity of the initial string profile, we cannot find the solutions describing the evolution of the final
fragments, but we can predict their qualitative behavior. We also generalize the results to include circular

rotations and windings in S°.
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I. INTRODUCTION

Decay properties of massive strings have been studied
for a long time [1-15]. In this paper we present semiclas-
sical computations of the splitting of folded spinning
strings in AdS;. Classical string solutions have proved to
be a useful tool for exploring the AdS/CFT correspondence
in the sector of large charges [16-23].

For flat Minkowski space, splitting of semiclassical
strings was analyzed in detail in [12,13], for R, X S° space
in [14,15]. There is an obvious lack of results in AdS space,
and the purpose of the present paper is to fill this gap.
Following the conventional approach, we start with a clas-
sical closed string and assume that it can split into two
fragments, if at a given time 7 two points on it coincide in
target space and their velocities agree. Closed string peri-
odicity conditions are separately imposed on each of the
two final pieces. Initial conditions are defined by the initial
string at 7. The relations between the energies and spins of
the cut fragments—together with ‘“‘conservation laws” of
splitting E(Ey, Ey, .. .), S(Sy, Sy, . . .), etc.—are completely
determined by the charge conservation. Thus they may be
found (at least parametrically) for the initial string solution
of arbitrary complexity. Determining the evolution is much
more complicated: one has to solve the string equations
with the boundary conditions given by a part of the profile
of the initial string. At the moment, this is possible only in
the simplest cases.

The main purpose of this paper is to investigate splitting
of folded spinning string in AdS; [17]
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YO + lY5 == dn[Keil(T, _gz]eiKT,
Y, +iY, = {sn[kl Lo, —€*]ei“,

w? 1

e

where sn[z, m] and dn[z, m] are Jacobi elliptic functions,
[[z] is the complete elliptic integral of the first kind. First
we consider the limit of the folded string with large spin.
Then solution (1.1) may be approximated by

(1.1)
k= 20 —]
ar

Y, + i¥Ys = cosh(ka)e'®”,
Y, + iY, = sinh(ko)e'“, (1.2)
K=w> 1.

In this simple case, we can completely describe the process
of splitting: compute the full set of charges and find string
solutions describing the evolution of the final states. It
appeared that when such a string splits, the world surface
does not change in the process and the final states are
described by the solutions of the same type as (1.2):

Yino + iYius = COSh(KLHo-)e”‘I,uT’

Yim + Yy = sinh(kypo)e i, (1.3)
T * 20
Kin = K———_——>
27

where o parameterizes the coordinate of the splitting
point.

In the general case we find expressions for the charges of
the final fragments, the coordinate transformations that
diagonalize them and, at the end, their energies and spins
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as the functions of € and o (in the coordinate system
where no non-Cartan components present). These are

VA
Eyn = TJ(KCI,II + oSy’ = Miy(o + k)

VA
+ TJ(KCI,H — oSy — Miy(w — x)?

VA
Spn = 7\/(KCI,H + oSy’ — Miy(e + «)?

B \/ZX\/(KCLH — wSin)?* — Mip(e — k) (1.4)

Here

1 €
kCyy = ngold + ;[E[am[Kf_lfToy —€%], —€%],

1 —( 2
wSI,Il = E‘Sfold + 1+ €2(_ ;UoK[_gz]

4 Elam[x€~ oy, — 2] —m),

2
Mg = * €—cn[K€_100, —£?], (1.5)
KT
where oy = VA& and Siyq = v/ASgq are the energy
and spin of the folded string (1.1); E[z] and E[z, m] are the
complete and incomplete elliptic integrals of the second
kind, respectively, and cn[z, m] is a Jacobi elliptic function.
These relations parametrically encode the conservation
laws of splitting, namely E(Ej, Eyp), S(St, Spp), etc.

Because of the complexity of the folded string profile
(1.1), we are unable to find the solutions describing the
evolution of the final fragments explicitly. However, we
can describe the evolution qualitatively. Let us examine the
case of large but not infinitely large (as in (1.2)) spin, with
the cut occurring far enough from the string ends for o to
satisfy k(7/2 — o) > 1. In this limit one expects the
final pieces to have almost the standard folded shape
(1.1), disturbed by a kink moving along the string, similar
to the one observed in flat Minkowski space [12]. The kink
is a “correction” to the “leading” folded shape of the cut
fragments, thus the angle of bending has to depend on the
position of the kink. It may be substantial at the string ends
but must be small close to the center.

The results obtained for the folded string in AdS; gen-
eralizes to include circular rotations and windings in S°.
We discuss such a generalization with the example of the
string in AdS; X S3.

The rest of the paper is organized as follows. In Sec. 11
we introduce notations and discuss a general approach to
studying splitting of classical bosonic closed strings in
AdSs X S°. Section III is a review of the splitting of the
folded strings in flat Minkowski space. Section IV is dedi-
cated to the splitting of Gubser—Klebanov—Polyakov
folded strings in AdS;. The results obtained in AdS; are
generalized to include circular rotations and windings in S°
in Sec. V.
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IL SPLITTING OF CLOSED STRINGS IN AdS; X S°.
GENERAL FORMALISM

In this section we discuss a general approach to
studying of splitting of classical closed bosonic strings in
AdSs X S°.

The action for a bosonic string in AdSs X S° reads

1 2 R? A
IB:—T[dT[ ﬁd(T(LAdS +LS)’ T= I:£’ (21)
2 0 2ma’ 2
where
Lags = —9,Ypd%Y? — A(YpYP + 1),
AdS alp (Yp ) 2.2)

Here X, M =1,...,6 and Yp, P =0,...,5 are embed-
ding coordinates of R® with the Euclidean metric
Syy = (+1,+1,+1,+1, +1, +1) in Ly and of R>* with
Mpo = (=1, +1,+1,+1,+1, —1) in Ly, respectively,
(Yp = npoY¥?). A and A are the Lagrange multipliers
imposing the two hypersurface conditions:

The action (2.1) is supplemented with the conformal gauge
constraints

YpYP + YY" + XXy + X3, X}, =0,

. . 24
YPY/P+XMX1/‘,[:O ( )
and the closed string periodicity conditions
Yp(r, 00 + 2m) = Yp(7, 0),
(2.5)

Xy(7, 0+ 27) = Xy(1, o).
The classical equations of motion following from (2.1) are

099,Yp— AYp=0, A=09Y,0,Y",
BaﬂaXM+AXM=0, A=8“XM6aXM,

YPYP = _1,
(2.6)

The action is invariant under the SO(2,4) and SO(6)
rotations with correspondent conserved (on-shell) charges

2rdo ; .
SPQ = V)\/ 2_(YPYQ - YQYP)’
02 d” (2.7)
Tao . .
o 2

We will be working with “spinning” string solutions which
have nonzero values of these charges.

It is useful to solve the constraints (2.3) by choosing an
explicit parametrization of the embedding coordinates Yp
and X, e.g.
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Y05 = YO + lY5 = COShpeit,

Y,, =Y, + i¥, = sinhp cosfe'?1, (2.8)
Y34 = Y3 + ZY4 = sinhp Sin0€i¢2;
X, = X, +iX, = sinycosie’®,
X34 = X5 + iX, = sinysinge'#?, (2.9)

Xs6 = X5 + iXs = cosye'#s.
The corresponding metrics take the form
—cosh?pdt? + dp?
+ sinh?p(d6? + cos?0dp? + sin*0d¢p3) (2.10)

2
dSAds5 =

dsgs = cos’ydes + dy?
+ sin?y(d? + cos? pdp? + sin®ydg3).  (2.11)

The Cartan generators of SO(2,4) corresponding to the
three linear isometries of the AdSsmetric are the trans-
lations in the AdS-time  and two angles ¢; and ¢,:

SOESOSEEZ\/ng
Sl = S12 = \/XS];
S2 = S34 = \/XSZ

The Cartan generators of SO(6) corresponding to the three
linear isometries of the S3 metric are the translations in the
three angles ¢, ¢, and ¢5:

2.12)

Ji=Jp= \/le,
Iy =Ty = VAT, (2.13)

Iy = Jss = VAT,

Let us consider a string solution
Xy = Xinm(7, 0), Yp = Yiup(7, 0) (2.14)

with energy E and spins S,,, J;. We assume that if at a given
7o two points on the string coincide in the target space

Xinnt (70, 01) = Xinp (70, 072)

(2.15)
Yinp(7, 1) = Yinp(7o, 02)
and their velocities agree
XinM(TO; o) = XinM(To, 07) (2.16)
YinP(TO’ o) = YinP(TOr 02), '
then the string can split into two pieces
fragment I: o € (0, o)) U (0, 277)
2.17)

fragmentIl: o € (o}, 0,).

The behavior of the cut fragments is governed by Egs. (2.4)
and (2.6) with the boundary conditions defined by the
initial string at the moment of splitting:

PHYSICAL REVIEW D 84, 026002 (2011)

Xin (70, 0) = Xinp (70, ) Xy (70, @) = Xinpa (70, 0)

Y1p(7o, ) = Yinp(70, 0) YIP(TO’ o) = YinP(TO’ o)
o € (0, 0)) U (0, 2m);

Xim (70, @) = Xinu (70, 0) XIIM(TO» o) = Xinu(70, 0)

YHP(TO’ o) = YinP(TO: o)

(2.18)

YHP(TO, o) = inP(To, o)

g E (0-15 0-2)'

The closed string periodicity conditions are imposed on
each fragment separately:

Xium (7, 0) = Xy um (7, 0 + 277 1p)
Yinp(7, 0) =Y up(7, 0 + 27 11),

where 27 =27 — (0 — 0) 27 =0, — 0. (2.19)

Conditions (2.18) and (2.19) uniquely determine the
final states. The relations between the energies (Eyy) and
spins (St Jim) of the cut fragments—together with
“conservation laws”  of  splitting E(Ey, Eyy, ...),
S(Sy, Sip, . ..), etc.—are completely determined by the
charge conservation. Thus they may be found (at least
parametrically) for the initial string solution of arbitrary
complexity. Determining the evolution is much more com-
plicated: one has to solve the string Egs. (2.4) and (2.6)
with the boundary conditions (2.18) and (2.19). At the
moment, this is possible only in the simplest cases.

III. SPLITTING OF FOLDED STRINGS IN THE
FLAT SPACE. A REVIEW

In this section we review splitting of the folded strings in
flat Minkowski space [12]. The solution for the folded
strings in flat Minkowski space reads

X, = {7, X, = pcos¢ = € cos(a) cos(7),
X, = psing = { cos(o) sin(7). G.D
The energy and spin

E=¢, = %fz 3.2)

obey the standard Regge relation £2 = 2.7.

Any two points on the string parameterized by o; and
o, =2 — o coincide in the target space and their veloc-
ities agree at any given time. Let us assume that at 7p=0
the string splits into two pieces. The cut occurs at X; =
{cos(am), X, = 0,ie. 0oy = amand oy » = 27 — a7

fragmentl: o € (0, am) U 27 — aar, 27)

fragmentIl: o € (am, 27 — am), (3.3)

1
N<a<-.
4=3

Here without loss of generality 0 < a < %, i.e. the fragment
I is always ““smaller” than the fragment II (see schematic
plot in Fig. 1).
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O o= =21 —-ma

FIG. 1 (color online).
space.

Splitting of the folded string in the flat

Quantum numbers of the fragment I are the energy (&),
linear momentum (Py; =+/AP;;) and angular momentum

(Jv:

g PIO = 2[ ;i—O-XOI = fa (34)

TH = O, (35)

?Iz—zf —XIZ / —CO ( )—ESL,]E:]TG), (36)

Ji=Li+8 = 2/ (X11X12 X1 Xp)

= €2a<M - l).

ma

3.7

Here the orbital momentum (L;= \/XLI) and spin
(S;=+AS)) are'

sin?(7a)
GG

L=

. . 2
SI=€2a(s1n(27ra)_sm (ma) 1)'

Ta (ma)?

(3.8)

The mass of the fragment I, i.e. its energy in the center-of-
mass system read

‘2
sin (Wa)). (3.9)

—g P €2<a2 —

The conserved charges for the fragment IT may be found
similarly:

'Orbital momentum is defined as £; = X,.,,; Pjp. where X,,,; is
the coordinate of the center of mass of the string

1 [ma € sin(7a)
Xcml = dO-XII = .
ma Jo

ma
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{sin(a
Ea=0(1-a), :Pu=——fT )

sin?(7a
M} =& —Ph= €2<(1 —a)? —%)

JIn=Ly+Su

_ gy Sin*(7a) (3.10)
B e TR
_ . sin’(ra)  sin(27a)
SH_ €2(1 a)(l +(7T(1_a))2+ 77(1 _a))

The energy, linear momentum, and angular momentum are
conserved in the process of splitting:

gl+gll=5’ T12+T112=0, jl‘l‘jH:j. (311)

The string solution describing the evolution of the final
states may be found using the general solution for a closed
bosonic string in flat Minkowski space. Imposing the
boundary and periodicity conditions [12] on it, one finds

XIO = 2€'T,
€ si = (—1)"
Xy = M(1 +2 (=1 cos(nT) cos(ﬂ»,
ma — —2 a a

Q

n=1
€ sin(7a - n
.

e o

where —a < & < ma, and

X = 267,

INRELLIT I i ( i)nﬂ)z
SESwE

X = = ST (201 - )ni n(l(_ Z)na)z)
<)oo 755)) G139

where —7m(1 —a) < o < 7(1 — a).
Summing the series up, we obtain

4
o-=0=*rT,

(3.14)

Xinp(o, 7) = XIJ,rII;L(0-+) + Xiu (o),

where
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+ 4 + + € +
Xiop=*a0",  X;j=5Ci(07),

2
Cu&) —cos(at),  Si(&) =sin(ag) — 2T ¢
for0=¢<m,
Co(&) = cos(aé — 2am),
Su(&) = sin(a — 2am) ~ 19T (¢ _ 7
form=&<2m (3.15)
and
Xi, = ig(l R gCH(a'i),
Xip = = 5[~ o 4 500 |
Cu() = cos((1 — )€ + am),
Su() = sin((1 — )¢ + am) + 1T ¢
for 0 = &£ <27, (3.16)

In the expressions (3.15) and (3.16), the world-sheet pa-
rameters are rescaled as

fragment I: 7,0 — ar, ao
(3.17)
fragmentIl: 7,0 — (1 — a)7, (1 — a)o.

The derivatives X{;;, i = 1, 2 have discontinuities at the
points of splitting, i.e. at o= = 7 for the fragment I and
o= = 0 for the fragment II. These discontinuities show up
as an angular bending on the folded shape of the strings
moving along the strings as a function of 7 (for more
details see the original paper [12]). Egs. (2.6) are satisfied
at each point on the string, in spite of the discontinuity. The
o-functions arising from the second derivative 9, ,X|
cancel with those coming from 9, ,.Xjyy;, due to the chiral
properties of (3.14).

IV. SPLITTING OF FOLDED STRINGS IN AdS;

In this section we discuss splitting of Gubser-Klebanov-
Polyakov folded spinning strings in AdSs;.

A. Folded string in AdS;

The folded string solution in the AdS; in the embedding
coordinates read [17]

Yos = coshpe', Y1, = sinhpe'®?, 4.1)

where
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sinhp = €sn[kf o, —€%],

coshp = dn[kf o, —€%], (4.2)
w? 1
1+
K2 €2

Here sn[z, m] and dn[z, m] are the Jacobi elliptic functions,
€ defines the length of the string: sinhp,,, = €.

Expressions (4.2) are valid on the interval 0 = o <7
only. To get the formal periodic solution on the interval
0 = o < 27 one has to combine four stretches of (4.2):

Yys =coshp(c)e’*™ Y, =sinhp(c)e'®™ for o €[0, g)

Yos = coshp(m — o)e’*™ Y|, =sinhp(m — o)e'®”

foro € [g, )

Yys =coshp(o — m)e'*™ Y, = —sinhp(o — m)e'®™
3
foro €[, 777)

Yys = coshp(2m — a)e*™ Y|, = —sinhp(Qm — 0)e'®”

3
foro € [777, 27). (4.3)
and impose
Yp(o + 27) = Yp(0). (4.4)
The closed string periodicity conditions require
2 2
k = —{K[—€%]. 4.5)
T

The energy and spin are
2 2
=—AE[—€*], S==AN1+CE-C]-K[—€]). (4.6)
T T

Here [K[z] and [E[z] are the complete elliptic integrals of the
first and second kinds, respectively.

The classical energy of the string in the limit of large
spin is [17,241%

7

A
E=S+—1ni+..., i>>1.
™

4.7
Ny 7 4.7
B. Large-spin limit. Formal k = w approximation

There is a useful simplification of the solution (4.2),

when the spin of the folded string is large:

K=w> 1. (4.8)

p = KO,

This is a formal limit, as k — @ implies € — .

*There is an elegant method to obtain expansion for £(S) in
large or small S with arbitrary accuracy [25].
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o =3n/2

v N ¥ v

FIG. 2 (color online). Splitting of the folded string in AdS;.

The energy and spin read

1
g: 805 =—K 7T+—€K7T,
K 1 ’
— ~ — g4 kT
S 812 27T7T 477_8

Expansion of the classical energy in large S is consistent
with the one coming from (4.6) in the first two orders®

JA oS S

E~S+—In—=+..., —=> 1

LAY VA

Any two points on the string parameterized by o; and
o, = 7 — o coincide in the target space and their veloc-
ities agree at any given time. Let us assume that at 7o = 0
the string splits into two pieces. The cut occurs at p =
KO, 1.6. g1 = 0¢ and oo = 7 — 0y

(4.10)

fragmentl: o € (oo, ™ — 07)

1
fragmentIl: 0 € (0, o) U (7 — 00,27), 0<0(< >

(4.11)

Here without loss of generality 0 <oy <7, ie. the
fragment I is always smaller than the fragment II (see
schematic plot in Fig. 2).

Approximation (4.8) is invalid close to the string ends,
thus we have to demand

1

T
— =0y > —. (4.12)
2 K

3One has to be careful using (4.8) for computing charges. It is
easy to see, that the absolute values of £ and S in (4.9)
approximately twice exceed those of (4.6) taken at equal «.
This inconsistency comes from the fact, that approximation (4.8)
is invalid close to the string ends [24], while the largest con-
tribution to the charges comes exactly from them.

PHYSICAL REVIEW D 84, 026002 (2011)

The charges (Sy ) pp of the cut fragments read

sinh(kr) F sinh(2x o)

>

K (T _
(51,11)05 = 7(7 + 0'0) +

2m\2 4

K (7T _ sinh(k7) * sinh(2koy)
(St = _—(— + 0’0) + >,

27 \2 dar

cosh(km) — cosh(2k o)
= — = +

(Simoz (Syms1 = * e ,
(Simor =0, (Spsz = 0. (4.13)

They are conserved in the process of splitting

E=8p5s=(SDos T (Swos, S=(Sp2+(Sw12,
(Sino2=(SDo + (S, (S)s1=(SDs1 +(Sp)s1.  (4.14)

Spins of the fragments I and II given in (4.13) have non-
Cartan components, as they are written in the ‘“‘center-of-
mass system’ of the initial string (the coordinate system
where Sp of the string has Cartan components only). It is
more natural to analyze the fragments in their own center-
of-mass systems. Let us diagonalize (Syy)pp-

Performing the boost rotations independently for each
string

IZI,HO - (COShaI,II
Yim sinhay i1
If LI ) — (COSh,BI,H
Y1 sinhBy

with the parameters (ay, B for the fragment I and ay, By
for the fragment IT)

sinhay 1 )( Yimo ) (4.15)

coshayy J\ Yim

sinhBy )( Yins ) (4.16)

coshByy J\ Yim

4.17)

_K{T
apg = Bin = + §<5 * Uo):

we find the energies and spins of the cut fragments in their
own center-of-mass systems

< (7 CTRIEL
Epn = 7(7 + ‘To) R p—

2m\2 A
S K (77 _ ) N ek(T/2)Fa9) 4.18)
8 ) * oy —a

These expressions coincide with (4.9) up to parameter
definitions. The expansions of the classical energies
E;n(Syy) in large spins obviously agree with (4.10):

4Any rotation in the YoYs, Y, Y5, YoY, or YsY; would result in
(Simor and (Siy)s, gaining nonzero values. We are left only
with boosts in YyY; and Y5Y, planes.

SMaking use of (4.12), we set sinh(k(Z F o)) ~ L e(@/270),

026002-6



SPLITTING OF FOLDED STRINGS IN AdS;

\/X S LII

In—=+...,

E

Let us find the string solutions describing the evolution
of the cut fragments.

The evolution of the fragment I is governed by the string
Egs. (2.4) and (2.6) with the initial conditions at 7, = 0
(written in the center-of-mass of the fragment):

Yo = COSh[K(U -7 %)],

4
~ . a (o))
71, = sinh| k(o — 2 — 20} |
1 Nl [K((T 2 2)]
0

Ejp=Syg+ (4.19)

Y15 =0, Yp=0,
a5 0 -
EYIO =0, ayn =0, (4.20)
9y cosh[ < il 00)]
— K klo————]|
ar 2

for the interval oy < oo <7 and the same expressions with
o — m — o for the interval 7 < o <7 — 0.

After rescaling of the world-sheet parameters o to ¢ in
such a way that oy <o <F— -2 <§<7:

aT—2

_ T~ 2% = 70 4.21)
7

L TV e &
7 w3

T O
+70 and 7=

we rewrite (4.20) in the following form

YIO = COSh(KIE), YI] = Sinh(Klf), YIS = O, le = 0,
d 5 d -
—Yp=0 —Yy =0
an an
d 5 J - .
— Y5 =kycosh(ki€),  ——Yp = kysinh(k;€), 4.22)
an on
m—20,
K| =K———.
! 2
Such boundary conditions are satisfied by
YIOS = COSh(Klf)eiKIn, YIIZ = Sinh(Klf)ei"I"’. (423)

That is the same as (4.8) up to parameter definitions.
For the fragment II we get similar result

Yi05 = cosh(kyé)e’
Yiip = sinh(ky&)e’um, (4.24)
7+ 20
Ky = K———.
27T
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Making use of (4.9) and (4.18) the following conserva-
tion laws of the splitting may be derived®

gl-2/¢ — 477.511_2/5[5111_2/5[1’

(4.25)
Si+2/s — 477811+2/518111+2/$H_
The boost parameters (4.17) may be expressed as
51—2/5 Sl+2/$
apg = BI,H = + lngl_z/gI,H = + 11’181_*_2/8“1 . (426)

LI LI

Given (4.8), (4.23), (4.24), and (4.17) we see that
when the initial string described by the formal x = w
limit of the folded string (4.8) splits into two pieces the
world surface does not change and the fragments are
described by the solutions of the same type as the parent
string.

It is interesting to point out that (4.8) is not just a
formal approximation of the folded string profile (in the
limit Kk = @ — ), but a true solution of the string
Egs. (2.4) and (2.6) (with arbitrary values of k = w).
Strings of this type have a peculiar property. They may
be divided into an arbitrary number of fragments, each
of which is an independent solution of the same type
as (4.8), simply boosted from its center of mass.
However, its stretches may not be consistently glued to
form a closed string. Such glued string would have jumps
of the first derivatives at the string ends p’(o.pgs + 0) #
p'(Tengs = 0), tesulting in  p"(0engs) ~ 8(0 £ Tengy),
and, consequently, would not satisfy (2.6).” The
o-functions arising on the right-hand side of Eq. (2.4)
may be interpreted as point masses attached to the string
ends [26].

C. String with an arbitrary spin. The general case

In this section we discuss the most general case of
splitting of folded strings in AdS;. Starting with the folded
string solution in its exact form (4.1), (4.2), and (4.5) and,
following the approach of Sec. IV B, we assume that the
string splits into two fragments (I and II) defined in (4.11)
and in Fig. 2. Their charges (Syy)po read

®Here we used the relations

1
E= i# + —e*"™ = In€ = k7 — Ind + 2TKEe™ KT
dar

= k7 = In€ + Indm — % In€&.

"In the flat space this inconsistency is avoided due to the
chiral properties of the solutions for the final fragments
(see above).
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4
(Simos = kCin= ;([E[_fz] F Elam[ k¢~ oy, —€2], —€2)),
V1+4£2

2

(51,11)12 = “)SI,II ==
V1+¢2

w2

(7 T 200) K[ — £2]

+

1
(St = oMy = J—“;A’ 1+ €2en[kt ™ o, —€2],

1
(Symis = &My = i;€2CU[K€71 oo, — %]

(Sto1 = (Si)s2 =0, (4.27)

where [F[z, m] is the incomplete elliptic integral of the
second kind. We want to find a coordinate systems where
the non-Cartan components of the spins vanish and find the
energies and spins of the final fragments. (Syy)po may be
diagonalized by boosts in the YY; and Y5Y, planes (4.15)
and (4.16) with parameters8

M +
sinh(ayy + Brn) = — (@ + 1)
'\/(KCI,H +oSin)® —Miy(o + «)?
. M (0 — &
sinh(ay; — Br) = i )
\/(KCLH - wSI,H)Z - Mlz,u(w - K)z
(4.28)
where
{ _ _
Ciy = — (E[— €] F Elam[«€ oy, —€*], —€2]),
KT
T+ 20
Sinp=— 0 Cin
(2
MLH = * 7Cn[K€_10'0, _€2],
KT
2
Kk = 20— 2] (4.29)
T

Then the energies and spins of the cut fragments read

8Vanishing of the non-Cartan components of the spins implies

My (k + w)cosh(eqy + Brn) + (kCyp + @Sip)
Xsinh(ayy + Brn) =0
My (k — w)cosh(eq — Brn) + (kCyp — @Sip)
X sinh(ayy = Brn) = 0.
That leads to (4.28).

(E[— €]+ Elam[x € o, —€*], —€2]),
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1
En = EJ(K(EI,H + wSin)’ — Mip(e + «)?

1
+ EJ(KCI,II — wSin)’* — Miy(w — &)

1
Sin = EJ(KCI,H + wSn)? — Miy(w + «)?

1
- EJ(KCI’H - (USLH)Z - M%H(w - K)z. (430)

These relations parametrically encode the conservation
laws of splitting, e.g. E(Ey, Eyp), S(St, Stp), etc.

The evolution of the fragments I and Il is governed by the
string Eqs. (2.4) and (2.6) with the boundary conditions
given by the initial string (4.1), (4.2), and (4.5) on the
intervals (4.11) at 7, = 0. Because of the complexity of
the folded string profile (4.2), we are unable to find solutions
to these equations. However, we could describe the evolu-
tion qualitatively based on the result of Sec. IV B and III, in
the limit of large—but not infinitely large (as in (4.8))—spin,
so long as the cut occurs far enough from the string ends for
o to satisfy x(7/2 — o) > 1. In this case, one should
expect the final pieces have almost the standard folded shape
(4.1), (4.2), and (4.5), which is disturbed by a kink moving
along the string, similar to that observed in flat Minkowski
space; see Sec. III and [12]. The kink is a correction to the
leading folded shape of the cut fragments, thus the angle of
bending has to depend on the position of the kink. It may be
substantial at the string ends but must be small close to the
center.

V. SPLITTING OF STRINGS IN AdS; X S°

In this section we generalize the results for the splitting
of the folded string in AdS; to AdS; X S°, including into
consideration circular rotations and windings in S°.

Let us consider the string solution having the folded
shape in the AdS; and the circular one with windings in S*:

Y,s =coshpe*™, Y|, =sinhpe'®7,

X12 — aei(VT"!’mO'), X34 — bei(m’*mtr)’

a>+b>*=1 meEN, 5.1
where

~ ~ ~ 2 - 02 1

sinhp=Osn[#0 o, — ], k=—TK[—0], =1+,

T K 4

d?=w?—*+m?), RE=r2—(*+md). (5.2)

Comparing that with (4.1), (4.2), and (4.5), we see that the
only result of accounting for the S* part is redefinition of «
and w — k and @. That is also true if one adds other spins
and windings in S°.

Combining together four stretches of (5.1), each of
which is valid on the interval 0 = o <%, we obtain a
periodic solution on the interval 0 = o < 2. Its classical
energy and spins read
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m? +(J | +T2)*
K[ —€7]
j———V1+€2([E[ £1-K[-€%])
_ 4 o M2 (T |+ T)))?
_‘/?(1 +4¢7)+ KZ[—€2]
v=J1tT.

53———€[E[ )= \/—432 E[—¢%],

(E[- 1= K[ 7)),

Ji=a*v, J,=b%v, (5.3)
Following the approach of Sec. IV, first, we consider the
limit of the string with large spin in AdS;. Then the AdS-

part of the solution (5.2) may be approximated by

p=\/K2—(V2+m2)a'=F<a', k=w, &>1. (54

This is a formal limit as k — @ implies {— .
The energy and AdS-spin of the string read

K K
E;=8ps~—m +——ek7,
J 05 27T7T 477'F<e 5.5)
K K . .
= = ——7+—e".
S =5n 27777 477'F<e

Spins in S* are unaffected by the limit.

Two points on the string parameterized by o and o,
coincide in the target space and their velocities agree, if
o = 09, 0, = T — 0, and

B (1 B n)
(o)) 3 m ,
or for arbitrary o if m = 0. The string is not folded in
AdS; X S3, when m # 0.

Approximation (5.4) is invalid close to the string ends,
thus we have to demand

n €N, itm#0 (5.6

T 1
K

2
for the coordinates of the cut (0. =
mT—0)).

The charges (Sfﬂ) po of the cut fragments read

() and Ocut2 =

K (7 _ k sinh(&7r) F sinh(2k o)
(561)05:2—(§+UO)+E ypm )

K (T _ k sinh(&7r) * sinh(2k o)
(S{H)IZZ_E(E"‘ UO)+E yp L
7 _ LK COSh(K’IT) - cosh(ZKO'O) (5.8)
(SI,H)OZ (SI H)Sl 4ar
(Si711)01 =0, (3{)52 =0,

(T = 0221(77 F200), (Jin)h= b2i(77'I 20).
T 2

They are conserved in the process of splitting

PHYSICAL REVIEW D 84, 026002 (2011)

ET=(87)os + (Sios, ST =(S)) 12+ (S

(3‘7)02 + (5 )o2s 5‘571 = (3‘7)51 + (S )5t
\71:(]1)1‘*‘(\711)1’ Tr= (T + (T

(5.9

It is natural to transform (5.8) to the center-of-mass sys-
tems of the final strings and explicitly find their energies

and spins. (S{II)PQ may be diagonalized by boosts in the
YyY, and YsY, planes (4.15) and (4.16) with parameters

K (m
aIII :3111 +5<§itfo). (5.10)

We obtain the energies and AdS-spins of the fragments in
the form’

< /o « oR(T/DTay)
=5\ ") TR T 4y
. < /o « oR(T/DF ) G.11)
ST — - (T~
b= (G

The evolution of the fragments (in the own center-of-
mass system for each fragment) is described by

(Y1,11)05 = COSh(RI‘H.f)eiKum

(XI II)12 = aef(V1,11n+m1,11§)

(YI,H)Q = sinh(&y &)elxnn

(XI II)34 = be"(”I’II”’ImeHér)’

(5.12)
where
7To—T—20'0 - ~7T0:20-0
Kin = K——=_——> Kin = K——F= >
2 2 (5.13)
T ¥ 20 T * 20
Vim=V—F_ > mpy=m-—7——
2 27

and o satisfy (5.6) if m # 0. Note, that while the AdS-part
of (5.12) is just a large-spin approximation, the solution for
the S;-part is exact.

Given (5.4), (5.12), and (5.10) we see that, when the
initial string, described by the formal x = w limit of the
string (5.4) in AdS; X S3, splits into two pieces, the world
surface does not change and the fragments are described by
the solutions of the same type as the parent string.

In the general case, starting from the exact solution in
AdS; X S? in the form (5.1) and (5.2), we obtain the
following expressions for the charges of the cut fragments
(in the center of mass of the initial string):

“Making use of (5.7), we set sinh(k(§ + o)) — e K(m/2)x00),
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1 1 - NE
j . —
(Siiwos =5E5 \/p‘gz * AR

X E[am[ &€ o, — €*], — %],
jz
42— 7]
X (E[am[&0 " g, — 2], — %] — %JOK[—W]),

1. _ /1 ~
(S{H)IZ ZESJ -+ \/?(1 + €2) +

Cen[/l oy, — 7]

(Si,711)02: Tw . 4 )
Cen[7l oo, — 7]
(51,711)15 == p 0 ,

(S{H)Ol = (Si,jn)sz =0,
(jI,II)l = a221(77 +20), (;7111)2 = b2i(7T: 20y),
T 2
(5.14)

where € 7 and S; are defined in (5.3). That may be trans-
formed to the center-of-mass systems of the final states by
the boosts in the Y,Y; and Ys5Y, planes (4.15) and (4.16)
with parameters

. M (@ + &
smh(a{II + ,B{H) =— = j’H( ~)
\/(K(ELH +wSiy)? —Mip(w + k)
. My (@ —
smh(aﬂl — ﬁi,711) = = ~I’H( ~)2
\/(KCLH - ngH)Z —Min(w - K)?

(5.15)

where (fZLH, SI,II and MLH are given by (4.29) with €
replaced for .

The general expressions for the energies and spins of the
fragments read

1 = = =
5‘1,711 :EJ(K(DI,H + wSin)? —Min(e + «)?

1 — — —
+ EJ(KCI,II — wSip)* —Miy(w — k)

1 = p =
5‘1,711 :EJ(KCI,H + oSy — Mlz,ll(w +k)?

1 = = =
- 5\/("@1,11 - wSl,ll)z - Mlz,ll(w - K)2

v v
(Tinh =a*=—(7F200), (Tin)r=b*-—(7F20).
27 2ar

PHYSICAL REVIEW D 84, 026002 (2011)

These relations parametrically encode the conservation
laws of splitting.

The evolution of the fragments I and II is governed by
the string Egs. (2.4) and (2.6) with the boundary conditions
given by the initial string (5.1) and (5.2) on the intervals
(4.11) at 7o = 0 with o satisfying (5.6). The solutions
describing the profiles of the fragments consist of AdS- and
S3-parts. The expressions for the S3-parts presented in
(5.12), but we are unable to find the exact expressions for
the AdS-parts, due to the complexity of (5.2). Up to pa-
rameter definitions, the AdS-parts coincide with the solu-
tions describing the splitted fragments of the folded string
in pure AdS;. This is based on the fact that the only result
of accounting for the S° is redefinition of k, w — k, w and
discretizing of o, if any.

VI. CONCLUDING REMARKS

In this paper we have investigated splitting of folded
spinning strings in AdS; and its generalization to include
circular rotations and windings in S°. We computed the
energies and spins of products of splitting and showed that
in the case of splitting of strings with large AdS-spins
(which is of greatest interest in the context of AdS/CFT
duality), the cut fragments are described by the solutions
very similar to the initial string. The complexity of the
exact folded string profile prevents us from finding the
evolution of the final fragments by solving the string
equations with boundary conditions given by the initial
string. However, one hopes that this might be reachable
“indirectly” by applying the finite gap technique (see
[27,28] for reviews). The profiles of the cut fragments are
known at the moment of splitting, thus we can find the full
set of the conserved charges for them, including the higher
ones. This uniquely determines the algebraic surface
which, being explicitly constructed, would allow the deter-
mination of the string profiles. Implementation of such an
approach is promising, but quite complicated. It requires
detailed investigation.
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