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We provide a thorough exposition, including technical and numerical details, of previously published

results on the quantum stabilization of cosmic strings. Stabilization occurs through the coupling to a heavy

fermion doublet in a reduced version of the standard model. We combine the vacuum polarization energy

of fermion zero-point fluctuations and the binding energy of occupied energy levels, which are of the same

order in a semiclassical expansion. Populating these bound states assigns a charge to the string. We show

that strings carrying fermion charge become stable if the electroweak bosons are coupled to a fermion that

is less than twice as heavy as the top quark. The vacuum remains stable in our model, because neutral

strings are not energetically favored. These findings suggests that extraordinarily large fermion masses or

unrealistic couplings are not required to bind a cosmic string in the standard model.
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I. INTRODUCTION

It is well-known that the electroweak standard model
and many of its extensions have the potential to support
stringlike configurations that are the particle physics ana-
logs of vortices or magnetic flux tubes in condensed matter
physics. Such objects are usually called cosmic strings to
distinguish them from the fundamental variables in string
theory, and also to indicate that they typically stretch over
cosmic length scales.

The topology of stringlike configurations is described
by the first homotopy group �1ðMÞ, where M is the
manifold of vacuum field configurations far away from
the string. In typical electroweak-like models, a Higgs
condensate breaks an initial gauge group G down to
some subgroupH, so thatM ’ G=H. Topologically stable
strings are therefore ruled out in the electroweak standard
model SUð2Þ �Uð1Þ ! Uð1Þ because G=H is simply con-
nected. Nevertheless, one could envision a GUT and/or
supersymmetric extension in which a simply connected
group G breaks down to the electroweak SUð2Þ �Uð1Þ
at a much higher scale, so that �1ðG=ðSUð2Þ �Uð1ÞÞÞ is
nontrivial. Since such GUT strings would have enormous
energy densities, they could be seen by direct observation
using gravitational lensing [1,2] or by signatures in the
cosmic microwave background [3]. Moreover, a network
of such strings is a candidate for the dark energy required
to explain the recently observed cosmic acceleration [4,5].

The absence of topological stability does not imply that
electroweak strings (or Z-strings [6–8]) are unstable or
irrelevant for particle physics. While their direct gravita-
tional effects are negligible, Z-strings can still be relevant
for cosmology at a subdominant level [9,10]. Their most
interesting consequences originate, however, from their
coupling to the standard model fields. Z-strings provide a
source for primordial magnetic fields [8] and they also

offer a scenario for baryogenesis with a second order phase
transition [11,12]. In contrast, a strong first order transition
as required by the usual bubble nucleation scenario is
unlikely in the electroweak standard model [13], without
nonstandard additions such as supersymmetry or higher-
dimensional operators [14]. Because the core of the
Z-string is characterized by a suppressed Higgs conden-
sate, it allows for both the copious baryon number violation
and the out-of equilibrium regions required by the
Sakharov conditions, without relying on a first order phase
transition.
However, these interesting effects are only viable if

Z-strings are energetically stabilized by their coupling to
the remaining quantum fields. The most important contri-
butions are expected to come from (heavy) fermions, since
their quantum energy dominates in the limit NC ! 1,
where NC is the number of QCD colors or other internal
degrees of freedom. The Dirac spectrum in typical string
backgrounds is deformed to contain either an exact or near
zero mode, so that fermions can substantially lower their
energy by binding to the string. This binding effect can
overcome the classical energy required to form the string
background. However, the remaining spectrum of modes is
also deformed and for consistency its contribution (the
vacuum polarization energy) must be taken into account
as well. Heavier fermions are expected to provide more
binding since the energy gain per fermion charge is higher;
a similar conclusion can also be obtained from decoupling
arguments [15,16]. Dynamical stability of Z-strings in the
full standard model also would suggest that they are pres-
ently observable.
A number of previous studies have investigated quantum

properties of string configurations. Naculich [17] has
shown that in the limit of weak coupling, fermion fluctua-
tions destabilize the string. The quantum properties of
Z-strings have also been connected to nonperturbative
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anomalies [18]. The emergence or absence of exact neu-
trino zero modes in a Z-string background and the possible
consequences for the string topology were investigated in
ref. [19]. A first attempt at a full calculation of the fermi-
onic quantum corrections to the Z-string energy was car-
ried out in ref. [20]. Those authors were only able to
compare the energies of two string configurations, rather
than comparing a single string configuration to the vacuum
because of limitations arising from the nontrivial behavior
at spatial infinity which we discuss below. The fermionic
vacuum polarization energy of the Abelian Nielsen-Olesen
vortex [21] has been estimated in ref. [22] with regulari-
zation limited to the subtraction of the divergences in the
heat-kernel expansion. Quantum energies of bosonic fluc-
tuations in string backgrounds were calculated in ref. [23].
Finally, the dynamical fields coupled to the string can also
result in (Abelian or non-Abelian) currents running along
the string’s core. The time evolution of such structured
strings was studied in ref. [24], where the current was
represented by the coupling to an extra scalar field.

We have previously pursued the idea of stabilizing cos-
mic strings by populating fermionic bound states in a 2þ 1
dimensional model [25]. Many such bound states emerge
including, in some configurations, an exact zero mode [17].
Nonetheless, stable configurations were only obtained for
extreme values of the model parameters. In 3þ 1 dimen-
sions, stability is potentially easier to achieve because
quantization of the momentum parallel to the symmetry
axis supplies an additional multiplicity of bound states.

In this paper, we will employ the phase-shift approach,
or spectral method, to compute the complete OðℏÞ fermi-
onic contribution to the string energy from first principles.
This is not a simple task, since the string has a vortex
structure that introduces nontrivial field winding at spatial
infinity. The standard spectral methods are thus not directly
applicable since scattering theory off the string is ill-
defined. More precisely, the Born expansion to the vacuum
polarization energy, which in the phase shift approach is
identified with the Feynman series, does not exist for the
string background in its standard formulation. Recently we
have shown how to overcome these problems by choosing
a particular set of gauges [26,27]. Numerical results of the
full calculation of the string’s quantum energy were first
reported in ref. [28]. Here we will present the technical
details of our calculation along with improved numerical
data and a discussion of possible consequences of our
finding.

This paper is organized as follows: In the next section
we describe our model and the string configuration. We
then discuss the fermion Hamiltonian of our model and, in
particular, how a local gauge transformation can be used to
solve the technical problem of long-ranged gauge poten-
tials in the string background. We also present the grand
spin decomposition of the scattering problem. Section IV
gives a detailed account of our method for computing the

fermion quantum energy, which is based on the spectral
approach [29] and the interface formalism [30]. The indi-
vidual contributions to the string’s quantum energy are
described in separate subsections, while some (lengthy)
numerical details are deferred to appendices A, B, and C.
The omission of boson fluctuations causes the model not to
be asymptotically free which then introduces an unphysical
Landau pole. In Appendix D we verify that our results for
the vacuum polarization energy are not affected by this
artifact. In Sec. V, we explain our variational search for a
stable string configuration. To occupy fermion levels in the
string background, we introduce a quantity similar to the
chemical potential in statistical mechanics, which allows
us to compute the total binding energy of the string as a
function of the prescribed fermion charge of the string.
Our numerical results are presented in detail within

Sec. VI. We show the parameter dependence of the indi-
vidual contributions to the string’s quantum energy. The
stable configuration is discussed in more detail and it is
shown that for the most stable configuration the gauge field
contribution is negligible compared to the deformation of
the Higgs field. Stabilization occurs for otherwise realistic
parameters if the Yukawa coupling is increased by about
70% from the value for the top quark. Since we keep all
other parameters as suggested by the standard model, this
corresponds to a fermion mass of about 300 GeV. We close
in Sec. VII with a brief summary of our results, a discus-
sion of its implication for the electroweak standard model
and an outlook on possible directions for future work.
We have published some of the results earlier [28] and

therefore focus on the technical aspects of the calculation
here.

II. THE MODEL

We consider a left-handed SUð2Þ gauge theory in which
a fermion doublet

� ¼ �t

�b

� �

is coupled to a triplet gauge field

W� ¼ 1

2

W0
�

ffiffiffi
2

p
Wþ

�ffiffiffi
2

p
W�

� �W0
�

 !

and a Higgs doublet

� ¼ �þ
�0

� �
:

Both components,�t and�b, are Dirac four-spinors. This
model is intended to represent the electroweak interac-
tions, where we introduce some technical modifications
to simplify the analysis:
(1) we set the Weinberg angle to zero so that electro-

magnetism decouples and the gauge bosons become
degenerate in mass;
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(2) we neglect QCD interactions, although the color
degeneracy, NC ¼ 3, is included in the quantum
energy arising from the fermions;

(3) we only consider a single fermion doublet and ne-
glect interspecies (CKM) mixing and mass splitting
within the doublet.

With these adjustments, the bosonic part of our model is
described by the Lagrangian

L �;W ¼ � 1

2
trðG��G��Þ þ 1

2
trðD��ÞyD��

� �

2
trð�y�� v2Þ2; (1)

where the Higgs doublet is written using the usual matrix
representation

� ¼ ��
0 �þ

���þ �0

� �
:

The gauge coupling constant g enters through the covariant
derivative D� ¼ @� � igW�, and the SUð2Þ field strength

tensor is

G�� ¼ @�W� � @�W� � ig½W�;W��: (2)

We treat the bosonic fields as a classical background,
ignoring the effects of bosonic fluctuations. This approach
can be justified formally by the limit of a large number of
colors NC ! 1, even though no QCD interactions are
included: Since the quarks carry a color quantum number
in the fundamental representation of the color group
SUðNCÞ, their contribution to the quantum energy is en-
hanced by a factorNC as compared to the bosonic quantum
contribution. Hence we compute the leading quantum cor-
rections to the classical background energy from the fer-
mion Lagrangian

L� ¼ i ��ðPL 6Dþ PR@Þ�� f ��ð�PR þ�yPLÞ�: (3)

Here, PR;L ¼ 1
2 ð1� �5Þ are projection operators on left/

right-handed components, respectively, and the strength of
the Higgs-fermion interaction is parameterized by the
Yukawa coupling f, which gives rise to the fermion
mass, m ¼ fv, once the Higgs acquires a vacuum expec-
tation value (vev) v, where hdetð�Þi ¼ v2 � 0. All other
masses in this model are also a result of the symmetry
breaking Higgs condensate, viz. the gauge boson mass

MW ¼ gv=
ffiffiffi
2

p
and the Higgs mass mH ¼ 2v

ffiffiffiffi
�

p
. This

similarity with the standard model of particle physics
suggests the model parameters

g ¼ 0:72; v ¼ 177 GeV;

mH ¼ 140 GeV; f ¼ 0:99; (4)

by taking the fermion doublet to have the mass of the top
quark. Finally, the counterterm Lagrangian necessary to
renormalize the quantum energy will be listed with the
computational details in Eq. (43) below.

As mentioned earlier, we are particularly interested in
the Z-string background configuration. If we consider a
single straight (infinitely extended) string along the z-axis,
the corresponding boson fields depend only on the planar
polar coordinates, i.e. the distance � from the symmetry
axis and the corresponding azimuthal angle ’. In Weyl
gauge W0 ¼ 0, we have

W ¼ n sinð�1Þ

� fGð�Þ
�

’̂
sinð�1Þ i cosð�1Þe�in’

�i cosð�1Þein’ � sinð�1Þ
� �

(5)

and

� ¼ vfHð�Þ sinð�1Þe�in’ �i cosð�1Þ
�i cosð�1Þ sinð�1Þein’

� �
: (6)

The Z-boson component Z� � W3
� of this configuration

has the familiar shape of an Abelian Nielsen-Olesen string
of winding number n, although the entire non-Abelian
configuration is smoothly deformable into the vacuum
and thus not stable for any topological reason. We have
left the analog of winding number n general, although we
will only consider n ¼ 1 in our numerical treatment below.
The additional variational parameter �1 2 ½0; �=2� was
introduced to include a nontrivial gauge field in the string
background; the same parameter also determines the ori-
entation of the Higgs field on the chiral circle. Then the
classical energy per unit length of the string is a functional
of the profile functions fGð�Þ and fHð�Þ,
Ecl

m2
¼ 2�

Z 1

0
�d�

�
n2sin2�1

�
2

g2

�
f0G
�

�
2 þ f2H

f2�2
ð1� fGÞ2

�

þ f02H
f2

þ �2
H

4f2
ð1� f2HÞ2

�
; (7)

where the radial integration variable is related to the physi-
cal radius by �phys ¼ �=m and �H � mH=m. The radial

functions fGð�Þ and fHð�Þ in the string configuration,
Eqs. (5) and (6) approach unity at large distances and
vanish at the string core � ¼ 0. Typically, they will have
similar shapes to the familiar Nielsen-Olesen string, with
both W and � going as Oð�Þ at � ! 0 to avoid ambigu-
ities from an undefined azimuthal angle ’. We choose a
convenient form,

fHð�Þ ¼ 1� exp

�
� �

wH

�
and

fGð�Þ ¼ 1� exp

�
�
�
�

wG

�
2
�

(8)

with two width parameters, wH and wG, which we also
measure in inverse multiples of the fermion mass m.
Together with the angle �1 describing the gauge field
admixture in the string, we thus have three variational
ansatz parameters, ðwH;wG; �1Þ, in addition to the model
parameters v (which sets the overall scale) and the three
couplings f, g and �, that are discussed above.
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To assess the quality of the variational ansatz, Eq. (8) we
see how well it is capable of fitting the Nielsen-Olesen
profiles which minimize the classical energy, Eq. (7) for
�1 ¼ �=2. As seen from Fig. 1 there is a minor discrep-
ancy at large distances for the gauge field profile fG due to
the Gaußian decaying faster than any exponential function.
This discrepancy affects the result for the classical energy
in a negligible manner. For fixed �1 ¼ �=2 the true mini-
mum is at 7:56v2 while the variational profiles yield
7:72v2.

III. DIRAC HAMILTONIAN

The fermionic quantum corrections to the string back-
ground are computed in several steps. First, we extract the
Dirac Hamiltonian associated with the Lagrangian Eq. (3)
and observe that the ansätze, Eqs. (5) and (6), do not
depend on the z-coordinate (along the string symmetry
axis). Hence this coordinate does not appear explicitly in
the Hamiltonian and the z-dependence of the correspond-
ing wave functions is simply e�ipzz. To compute the vac-
uum energy with such a trivial coordinate, we use the
interface formalism [30], which gives the quantum energy
per unit length in terms of the two-dimensional spectrum in
the plane perpendicular to the string. This formulation
accounts for the integration over the longitudinal momen-
tum pz using sum rules for the scattering data [31,32] to
cope with the associated ultraviolet divergences. It then
remains to solve the scattering problem for the
Hamiltonian in the plane perpendicular to the string.

Although we are thus left with a seemingly well-defined
two-dimensional Dirac problem, the spectral method
cannot be readily applied to compute the vacuum energy,
because the long range of the string gauge field prevents us
from setting up a well-defined scattering problem. There
are two ways to circumvent this problem: As motivated
by the study of quantum effects for QED flux tubes [33],
a return string was introduced in ref. [27] to unwind
the gauge field at a large distance from the string core.
The assumption was that the energy of the return string is
small when the unwinding is done smoothly enough and,
in particular, that the associated energy density can be
well separated from the proper string core contribution.
Although these assumptions could be verified, the neces-
sity to repeat the (expensive) calculation of the vacuum
energy with varying return string positions to identify the
core contribution made the return string method inefficient
for actual calculations.
An easier method was devised in ref. [26]. It is based on

the simple observation that the Dirac spectrum is gauge
invariant, i.e. a local isospin rotation can be used to unwind
the string gauge field at spatial infinity at the price of strong
singularities in the origin (singular gauge), or to make the
gauge field regular at the origin at the price of long-ranged
fields at spatial infinity (regular gauge). The solution is to
combine the good features of both gauges by means of a
local gauge rotation that looks singular for large distances
and regular for small distances. Thus, we make a local
gauge rotation on the Dirac HamiltonianH ! UyHU with

U ¼ PL expði�ð�Þn � �Þ þ PR with

n ¼
cosðn’Þ
� sinðn’Þ

0

0
BB@

1
CCA: (9)

Here �ð�Þ is an arbitrary radial function that defines a set of
gauge transformations. Note that � ¼ 0 gives back the
original regular Hamiltonian, while � ¼ �1 together with
fH � fG � 1 at large distances yields the return string
configuration considered in ref. [27]. Thus the interpola-
tion between regular and singular behavior is accom-
plished by the boundary conditions �ð0Þ ¼ 0 and
�ð1Þ ¼ �1. The transformed Dirac Hamiltonian becomes

H¼�i
0 � � �̂

� � �̂ 0

 !
@�� i

�

0 � �’̂
� � ’̂ 0

 !
@’þHint;

Hint¼mfH

�
cosð�Þ 1 0

0 �1

 !
þ isinð�Þ 0 1

�1 0

 !
n ��

�

þ1

2

@�

@�

�� � �̂ � � �̂
� � �̂ �� � �̂

 !
n ��

þ n

2�

�� � ’̂ � � ’̂
� � ’̂ �� � ’̂

 !
½fG sinð�ÞIGð�Þ

þðfG�1Þsinð�ÞIGð��Þ�: (10)

0 4 8 12
 v ρ
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FIG. 1 (color online). Comparison between the Nielsen-Olesen
profiles (full lines) and a fit using the variational ansatz of Eq. (8)
(dashed lines). The variational parameters are wH ¼ 1:64f and
wG ¼ 3:85f.

N. GRAHAM, M. QUANDT, AND H. WEIGEL PHYSICAL REVIEW D 84, 025017 (2011)

025017-4



The new gauge function �ð�Þ is hidden in the difference
�ð�Þ � �1 � �ð�Þ which appears both explicitly and as
the argument of the space-dependent weak isospin matrix

IGðxÞ ¼ � sinðxÞ �i cosðxÞein’
i cosðxÞe�in’ sinðxÞ

� �
: (11)

All explicit matrices in Eq. (10) act in spinor space.
Together with the boundary conditions for the string pro-
files fG and fH, Eq. (10) defines a well-behaved scattering
problem for which a scattering matrix and, more generally,
a Jost function can be straightforwardly computed.
Moreover, the Born series to these scattering data can be
constructed simply by iterating Hint.

We will renormalize the calculation by subtracting or-
ders of the Born series and adding these contributions back
as the corresponding Feynman diagrams. It should be
mentioned that although the Jost function is gauge invari-
ant, neither the Born series nor the individual Feynman
diagrams associated with Eq. (10) is gauge invariant, and
so the Born-subtracted phase shifts or Jost functions will
also depend on the gauge. That is, these quantities are
functionals of �ð�Þ. However, the gauge-dependent terms
subtracted from the phase shifts correspond exactly to the
gauge-dependent finite parts in the Feynman diagrams,
while the counterterms, which parameterize the ultraviolet
singularities, are gauge-independent. The net effect is that
individual pieces of the spectral approach to the vacuum
energy will be gauge-dependent, but the combined expres-
sion is not.

The formulation in Eq. (10) describes the physical string
without the need to introduce artificial return strings to
unwind the topology. In particular, the (tedious) separation
of the return string contribution from the bound state
spectrum of the physical string is no longer required.
Moreover, the gauge function �ð�Þ can be taken to have
support at a moderate distance, so that there is no need for
nontrivial fields at very large radii and, as a consequence,
the need for extremely large angular momenta is avoided.

To solve the scattering problem for the Hamiltonian,
Eq. (10), in two space dimensions, we first introduce
grand-spin states to take care of the angular dependence.
For a fixed angular momentum ‘, there are four grand-spin
states, characterized by the quantum numbers �1=2 for
spin S and isospin I,

h’; SIj‘þþi ¼ eið‘þnÞ’ 1
0

� �
S
� 1

0

� �
I

h’; SIj‘þ�i ¼ �iei‘’
1
0

� �
S
� 0

1

� �
I

h’; SIj‘�þi ¼ ieið‘þnþ1Þ’ 0
1

� �
S
� 1

0

� �
I

h’; SIj‘��i ¼ eið‘þ1Þ’ 0
1

� �
S
� 0

1

� �
I
:

(12)

The angular dependence is thus separated from the radial
dependence by the ansatz

�‘ð�;’Þ ¼
X

s;j¼�1=2

ðh�jh’;SIjÞj	‘sji: (13)

For each value of the angular momentum ‘, this decom-
position turns the Dirac equation

H� ¼ 	�; (14)

with the Hamiltonian given in Eq. (10), into a 8� 8 system
of ordinary first order differential equation for the radial
functions in the spinor states

h�j	‘þþi ¼ f1ð�Þj‘þþi
g1ð�Þj‘�þi

� �

h�j	‘þ�i ¼ f2ð�Þj‘þ�i
g2ð�Þj‘��i

� �

h�j	‘�þi ¼ f3ð�Þj‘�þi
g3ð�Þj‘þþi

� �

h�j	‘��i ¼ f4ð�Þj‘��i
g4ð�Þj‘þ�i

� �
;

(15)

where we have suppressed the energy label (	) on the radial
functions. It is convenient to combine these eight functions
in a vector notation

~f ¼
f1ð�Þ
f2ð�Þ
f3ð�Þ
f4ð�Þ

0
BBB@

1
CCCA and ~g ¼

g1ð�Þ
g2ð�Þ
g3ð�Þ
g4ð�Þ

0
BBB@

1
CCCA: (16)

In terms of these vectors, the static Dirac equation in each
angular momentum channel takes the form of two coupled
real 4� 4 systems,

ð	�mÞ ~f ¼ Vuu
~fþ ð�CDu þ VudÞ ~g

ð	þmÞ ~g ¼ ðCDd þ VduÞ ~fþ Vdd ~g:
(17)

The 4� 4 matrix C ¼ diagð�1;�1;þ1;þ1Þ is constant
while Du and Dd contain the radial derivative operator as
well as the angular barrier terms. The coupling to the
background profiles of the boson fields emerges via the
matrices Vij. Detailed expressions for Du, Dd and Vij are

listed in Appendix B. The ODE system Eq. (17) is the basis
of the spectral approach to the string problem.
For the gauge profile �ð�Þ, any smooth function with

�ð0Þ ¼ 0 and �ð1Þ ¼ �1 will do. For simplicity and to
avoid possible singularities at � ! 0, we choose again a
Gaußian profile

�ð�Þ ¼ �1½1� expð��2=w2
�Þ� (18)

with a new width parameter w�. As explained earlier, the

scattering matrix without Born subtractions and the com-
plete quantum energy should be independent of the choice
of gauge and thus independent of the width parameter w�.
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This has been verified numerically to a fairly high
precision [26].

IV. SPECTRAL METHOD

In this section, we present the details of our approach to
compute the fermion contribution to the vacuum energy of
the string. To make the exposition clearer, we have moved
overly complicated expressions and all technical deriva-
tions to the appendices. However, the complete method is
still quite involved due to the many contributions that enter.
We will continue the discussion of the variational approach
for charged strings in Sec. V and present numerical results
in section VI.

The calculation of the fermion quantum energy is based
on the Dirac Eq. (14). From the solutions to this equation
we infer a number of distinct contributions to the energy of
the string,

Ef ¼ E
 þ EFD þ Eb (19)

In physical terms, these three contributions are
E
: the nonperturbative vacuum polarization due to the

string background, with the divergent low-order
Feynman diagrams taken out by subtracting leading
terms in the Born expansion. This piece also includes
the bound state contribution to the fermion
determinant;

EFD: the perturbative contribution of the low-order
Feynman diagrams to the vacuum polarization en-
ergy, combined with the counterterms for proper
renormalization. This compensates for the part that
has been taken out of E
 by means of the correspond-
ing Born expansion;

Eb: the binding energy due to the single particle bound
states that are explicitly occupied to give the string a
fermion chargeQ. More precisely, Eb¼½Poccbs	i��
Qm measures the energy of the populated levels
relative to the same number of free fermions. We
will describe this contribution in the next section.
Each of these pieces is separately finite; the first two
terms are not gauge invariant, but their sum is, and so
is Eb.

In this section we focus on the renormalized vacuum
polarization energy

Eq ¼ E
 þ EFD: (20)

Potential ambiguities in Eq that could originate from the

ultraviolet divergences are fully removed by the identifi-
cation of terms in the Born series with Feynman diagrams.
The most important feature of Eq is the possibility to

impose renormalization conditions from the perturbative

sector (MS or on-shell), although the calculation is com-
pletely nonperturbative, including all orders in Hint. We
then combine Eq with the classical energy Ecl required to

form the bosonic string background. Quite generally, we

expect Ecl þ Eq > 0 once quantum fluctuations are in-

cluded, since otherwise we would have an instability of
the true vacuum to cosmic string condensation, which
should obviously not happen.
In the following subsections, we will give brief accounts

for each contribution to Eq. (20). More details can be found
in the appendices.

A. Jost function and Born subtractions

The Born-subtracted vacuum polarization energy Eq has

contributions from bound and scattering states. These two
contributions are combined in the Jost function for imagi-
nary momenta [29,34]. To compute Eq it is therefore

sufficient to solve the scattering problem as in ref. [27]:
For every energy j	j>m, the fermion system Eq. (17) has

eight real linear independent solutions ð ~f; ~gÞ. In the case
without a string background, these solutions are Bessel
functions of integer order with the argument z ¼ k�, where

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 �m2

p
	 0. Instead of taking the (real) regular and

singular Bessel functions J�ðzÞ and Y�ðzÞ, respectively, we
can formally let ð ~f; ~gÞ have complex coefficients and take
Hankel function solutions instead. In this case, both the

real and imaginary parts of ð ~f; ~gÞ are (linearly independent)
solutions, or equivalently ð ~f; ~gÞ and their complex conju-
gates are independent solutions.
To describe the coupled channel scattering problem, it is

convenient to put the four free linearly independent com-

plex solutions for ~f and ~g onto the diagonal of two 4� 4
matrices

H u ¼ diagðHð1Þ
‘þnðk�Þ; Hð1Þ

‘ ðk�Þ; Hð1Þ
‘þnþ1ðk�Þ; Hð1Þ

‘þ1ðk�ÞÞ
(21)

H d ¼ diagðHð1Þ
‘þnþ1ðk�Þ; Hð1Þ

‘þ1ðk�Þ; Hð1Þ
‘þnðk�Þ; Hð1Þ

‘ ðk�ÞÞ;
(22)

which describe outgoing asymptotic fields since

Hð1Þ
� ðzÞ ¼ J�ðzÞ þ iY�ðzÞ !

ffiffiffiffiffiffi
2

�z

s
eiðz��ð�þ1Þ=2Þ; (23)

as z ! 1. With this notation, the jth linearly independent
solution is

ð ~fÞj ¼ ½H u�j; ð ~gÞj ¼ � � ½H d�j
where ½H �j denotes the jth row of the matrix H . For

convenience we omit the orbital angular momentum index
‘. By construction, the complex conjugate matrices, H �

u;d

describe incoming spherical waves. Furthermore, we have
defined the relative weight of upper and lower Dirac com-
ponents as

� � k

	þm
¼ 	�m

k
: (24)
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For later analytic continuation wemust ensure that the phase
of the Jost function is odd for real momenta under k!�k,
which requires the branch cut structure of the square root be
defined using either of the two expressions listed above.

To describe the coupling of the four channels in the
actual scattering problem, it is convenient to put the line-

arly independent solutions for ~f and ~g again in the rows of
a 4� 4 matrix, and factor out the free part to get simple
Jost boundary conditions,

ð ~fÞj ! ½F �H u�j and ½F � �H �
u�j

ð ~gÞj ! �½G �H d�j and �½G� �H �
d�j:

(25)

We substitute these ansätze into the Dirac equation,
Eq. (17), and find first order differential equations for the
matrices F and G. This is explicitly carried out in
Appendix B 1. The solutions to Eq. (B6) with the Jost
boundary conditions

lim
�!1F ð�Þ ¼ lim

�!1Gð�Þ ¼ 1 (26)

define Jost solutions to the initial Dirac problem via the
representation in Eq. (25). The physical scattering solution
is the linear combination which at large distances is the
superposition of incoming and outgoing free spherical
waves and obeys the regularity condition at the origin.
The relative weight of the incoming and outgoing waves
defines the scattering matrix S. Hence the physical scat-
tering solution for the F -type (upper) components reads

� ¼ F � �H �
u þ ðF �H uÞ � S: (27)

The corresponding G-type (lower) components are ob-
tained by replacing F ! G andH u ! �H d. The physi-
cal scattering solution must be regular at the origin � ¼ 0.
From this condition we extract the scattering matrix in one
of two equivalent ways

S ¼ �lim
�!0

H�1
u �F�1 �F � �H �

u (28)

S ¼ �lim
�!0

H�1
d � G�1 � G� �H �

d: (29)

The phase convention in Eq. (27) is chosen to reproduce

S ¼ 1 for the noninteracting case which has F ð0Þ ¼
Gð0Þ ¼ 1. The equality of the two representations from
the system of coupled differential equations is a good check
on our numerics, as is the requirement that S be unitary.

It should finally be noted that all the interaction matrices
Eq. (B9) are linear in the background profiles Eq. (B4), so
that the ODE system for the Born approximation can
simply be obtained by iteration with the ansatz

F Bornð�Þ¼
X1
i¼0

F ðiÞð�Þ and GBornð�Þ¼
X1
i¼0

GðiÞð�Þ; (30)

where the superscript denotes the order of the interaction
HamiltonianHint in Eq. (10). The zeroth order solutions are

F ð0Þð�Þ ¼ Gð0Þð�Þ ¼ 1 and all subsequent contributions
are subject to the boundary conditions

lim
�!1F

ðiÞð�Þ ¼ lim
�!1G

ðiÞð�Þ ¼ 0; i ¼ 1; 2; 3 . . .

The explicit form of the iterated system of differential
equations for the Born approximations of order i ¼ 1 and
i ¼ 2 can be found in Appendix B. Though the i ¼ 3 and
i ¼ 4 orders also yield divergences, we do not discuss them
explicitly because we employ a numerically less costly
method to handle these logarithmic divergences, as de-
scribed below.

B. Interface formalism

The 4� 4 scattering matrix S derived in the last sub-
section yields the four eigenphase shifts and thus the shift
in the two-dimensional density of states [35]

�‘ðkÞ � �ð0Þ
‘ ðkÞ ¼ 1

�

X4
c¼1

d
‘;c

dk
¼ i

2�

d

dk
ln detS‘ðkÞ;

(31)

where the sum runs over the four scattering channels for a
given grand spin channel, which we label by the associated
orbital angular momentum ‘. To turn this two-dimensional
density into a three-dimensional energy (or energy per unit
length of the string), we have to deal with the trivial
dynamics along the string symmetry axis of the string.
This is a typical application of the interface formalism
developed in ref. [30]. The modifications of the usual
spectral method are simple:
(1) The integration over the momentum conjugate to the

coordinate of translational invariance remains finite
due to sum rules for scattering data [31,32] that are
generalizations of Levinson’s theorem.

(2) When integrating over momentum k, the den-
sity, Eq. (31), must be multiplied by a kinematic
factor that differs from the usual one-particle energy

	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
.

(3) More Born subtractions are required to make the
momentum integral and angular momentum sum
convergent. This corresponds to the larger number
of divergent Feynman diagrams in three dimensions.

Then the interface formula for the vacuum polarization
energy per unit length of the string is

EðNÞ

 ¼ 1

4�

X1
‘¼�n

�
D‘

Z 1

0

dk

�

�
ðk2þm2Þln

�
k2þm2

�2

�
�k2

�

� d

dk
½
‘ðkÞ�Nþ

X
j

�
ð	j;‘Þ2 ln

ð	j;‘Þ2
�2

�ð	j;‘Þ2þm2

��
;

(32)

where the notation ½� � ��N refers to the quantity in the
brackets with its firstN terms of the Born series subtracted.
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For the string problem in three space dimensions, we need
N 	 4 to ensure convergence of the momentum integral
although, as described below, we will use a different sub-
traction in place of the N ¼ 3 and N ¼ 4 cases. Here, 	j;‘
gives the energy of the jth bound state in the angular
momentum channel ‘, and D‘ is the degeneracy in that
channel. For the string background, we have

D‘ ¼
�
1; ‘ ¼ �n
2; ‘ >�n;

(33)

where n ¼ 1 is the Higgs winding number introduced in
the string configuration of Eqs. (5) and (6). The renormal-
ization scale � emerged from the integration under item 1.
It cancels due to the same sum rules. For convenience we
usually set � ¼ m. The phase shifts can be extracted from
the scattering matrix or, equivalently, from the Jost-like
matrices F and G introduced in the last subsection,


‘ðkÞ ¼ 1

i
ln detlim

�!0
F ‘ð�; kÞ�1F �

‘ð�; kÞ

¼ 1

i
ln detlim

�!0
G‘ð�; kÞ�1G�

‘ð�; kÞ; (34)

where we have restored all the arguments. In deriving
Eq. (34) from Eq. (29) we have used the cyclic property
of the trace and the fact that as � ! 0 the Hankel functions
are dominated by their imaginary parts.

As indicated in the previous subsection, it is convenient
to evaluate the expression (32) in the complex k-plane
because after rotating to the imaginary axis the explicit
bound state contribution is automatically canceled by the
pole contribution from Cauchy’s theorem, leaving only a
single integral along the cut on the positive imaginary axis
[29,34]. There is another important technical reason to
rotate to imaginary momentum. We need to sum over
angular momentum ‘ and integrate over radial momentum
k after subtracting sufficiently many terms of the Born
series. This procedure is numerically cumbersome because
these functions oscillate in k, which can make it impossible
to exchange the sum and integral [36] because they are not
absolutely convergent. This obstacle is also avoided by
analytically continuing to imaginary momenta t ¼ ik and
performing the integrals in the complex plane along the
branch cut t > m [36].

The analytic continuation for the Dirac equation is con-
ceptually different from the well-studied Schrödinger case

because 	 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
causes the complex momentum

plane to have two sheets. So on the real axis we have to
pick one sign, continue to complex momenta and compute
the Jost function on the imaginary axis. This procedure
must then be repeated for the other sign and then all
discontinuities must be collected at the end. In the present
problem we are fortunate because the solutions to the Dirac
equation exhibit charge conjugation symmetry along the
real axis. Therefore detðSÞ does not change under 	 ! �	
and there is no additional discontinuity in the Jost function

choosing either sign. Moreover, the Jost function is real on
the imaginary axis, as in the Schrödinger problem.
However, the way this comes about in the string problem
requires us to be careful when constructing the Jost func-
tion for complex momenta. This procedure is described in
Appendix B and results in the replacement of the phase
shift 
ðkÞ (and its Born expansion) by �ðtÞ, the (modified)
logarithmic Jost function for imaginary momentum. For
this to work it is essential to have � odd under sign
reflection of real k. The resulting Jost function itself is a
continuous function in the upper complex momentum
plane and the branch cuts in the Dirac equation do not
carry over to �ðtÞ. The only discontinuity arises from the
logarithm under the integral in Eq. (32), which is 2�.
Finally an integration by parts yields a simple expression
for the Born-subtracted vacuum polarization energy,

EðNÞ

 ¼ � 1

2�

Z 1

m
dtt

X1
‘¼�n

D‘½�‘ðtÞ�N: (35)

Here we have interchanged the integral with the angular
momentum sum, which is possible on the imaginary axis

[36]. After a final change of variables t ! � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 �m2

p
,

we obtain eventually

EðNÞ

 ¼ � 1

2�

Z 1

0
d��

X1
‘¼�n

D‘½�‘ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p
Þ�N: (36)

Equation (36) is our master formula for the phase shift
contribution to the vacuum polarization energy per unit
length of the string.

C. Feynman diagrams

The Born subtractions in the integrand of Eq. (36) must
be added back in as Feynman diagrams. The latter are most
easily derived by expanding the fermion determinant rep-
resentation of the (unrenormalized) vacuum polarization
energy,

A � �TLEq ¼ �i ln det½i@�mþHI�: (37)

Both the time interval T and the length L of the string
factorize as T ! 1 and L ! 1 because the string back-
ground is static and translationally invariant. The interac-
tion part of the Dirac operator can be separated in various
spin structures,

HI ¼ L��
�PL þ hþ ip�5 (38)

where the fields L�, h and p are isospin 2� 2 matrices,

L0 ¼ 0;

Lð�Þ ¼ 2rð�ÞIPð’Þ�̂þ 2½Gð�ÞIGð�1 � �ð�ÞÞ
þ �ð�ÞIGð��ð�ÞÞ�’̂;

hð�Þ ¼ �Hð�Þ1; pð�Þ ¼ �Pð�ÞIPð’Þ: (39)

The isospin matrices IG, defined in Eq. (11), and
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IPð’Þ ¼ n � � ¼ 0 ein’

e�in’ 0

� �
(40)

contain the entire dependence on the azimuthal
angle ’. The profile functions fHð�Þ, fGð�Þ and �ð�Þ,
cf. Equations (8) and (18), determine the radial behavior
of the coefficient functions rð�Þ, Pð�Þ and �ð�Þ. They
are explicitly listed in Eq. (B4) of Appendix B. The
Feynman series for the effective fermion action (determi-
nant) is now

A ��TLEq

¼�i ln detði@�mÞþ X1
N¼1

ð�1ÞN
N

Tr½ði@�mÞ�1HI�N

(41)

where the first term corresponds to the free vacuum energy
without a string background. It is automatically removed
in the spectral method by the difference in Eq. (31). For
fermions in three space dimensions, all diagrams up
through N ¼ 4 are divergent and thus subject to renormal-
ization. While the calculation of the corresponding Born
subtractions up to fourth order is not particularly hard, the
evaluation of the higher order Feynman diagrams with up
to four nested Feynman-parameter integrals and an equal
number of Fourier transformations of the string back-
ground is very cumbersome. A better approach is the so-
called fake boson method introduced in ref. [37], which we
will describe next.

D. Fake boson approach and renormalization

The first and second order fermion Feynman diagrams
contain both quadratic and subleading linear and logarith-
mic ultraviolet divergences, so that a precise identification
of the terms in the Born expansion with the Feynman
diagrams must be made separately for each term in the
angular momentum sum. On the other hand, the third and
fourth order fermion Feynman diagrams only cause loga-
rithmic divergences, which are much easier to cope with,
because the sum

sðtÞ � X
‘

D‘½�‘ðtÞ�2 (42)

is finite. However, after multiplication by t, the integral in
Eq. (35) is logarithmicly divergent. So instead of subtract-
ing the complete third and fourth order terms in HI from
the sum in Eq. (42), it is sufficient to just subtract any
function �sðtÞ of momentum with the same ultraviolet
behavior, provided that the following conditions are met:

(1) the subtraction �sðtÞ should have the same analytic
properties with respect to complex momentum
arguments;

(2) formally its contribution to the vacuum polarization
should be identifiable as a Feynman diagram that
can be combined with the available counterterms

L ct¼c1 trðG��G��Þþc2 tr½ðD��ÞyD���
þc3½trð�y�Þ�2v2�þc4½trð�y�Þ�2v2�2

(43)

to cancel all ultraviolet divergences.
The perfect candidate is the second order contribution

from a boson scattering off a radially symmetric potential
Vð�Þ. From the properties of the (bosonic) scattering prob-
lem [35], we know that its Jost function has the required
analytical properties and its contribution to the vacuum
polarization energy can be expressed as a (very simple)
Feynman diagram. It only remains to adjust its strength to
accomplish the required subtraction. This fake boson scat-
tering problem also has a partial wave decomposition and
we subtract the sum of the logarithm of the second order
fake boson Jost function from the sum in Eq. (42). Since
the subtraction is not carried out channel by channel, the
exchange of ‘-sum and t-integral is crucial for this ap-
proach to work.
To describe the method in detail we defineAn to be the

contribution of order ðHIÞn in the sum in Eq. (41).
(1) The first order diagram N ¼ 1 is linear in the

interaction HI and local, including all finite parts.
Thus the entire diagram is proportional to the space-
time integral of the c3-counterterm in Eq. (43).
We fix the corresponding counterterm by the no-

tadpole condition A1¼! 0, which ensures that the
vev of the Higgs field is kept at its classical value v.
This condition completely fixes both the diver-
gence and the finite part in the c3-counterterm,
cf. Eq. (C16).

(2) The second order diagrams N ¼ 2 give contribu-
tions to the various propagators whose contributions
to the vacuum polarization energy are quadratically
divergent at large momenta, for which a careful
regularization is required. Because of gauge invari-
ance, the coefficients c1, c2 and c4 in the counter-
terms in Eq. (43) can unambiguously be determined
by the two-point functions that emerge at order
N ¼ 2. Hence we do not need to compute the full
Feynman diagrams at orders N ¼ 3 and N ¼ 4.

(3) Although we do not need the full diagrams, we do
need to precisely subtract the divergences from A3

and A4. In dimensional regularization (D ! 4),
these logarithmicly divergent pieces read

A1
3;4 ¼�cFTL

�
i

�
�

m

�
4�DZ dDk

ð2�ÞD ðk
2�1þ i0Þ�2

�
;

(44)

where T and L are the (infinite) lengths of the time
and z-axis intervals, respectively, and cF is a com-
plicated integral over the radial profile functions,
cf. Equation (C10). The key observation for the
implementation of the fake boson approach is that
the divergence in Eq. (44) is also contained in the
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two-point function of a simple scalar field that fluc-
tuates in a (fictitious) background potential Vð�Þ. In
fact, the divergence in the second order boson dia-
gram has the form of Eq. (44) with cF replaced by

cB ¼ 1

4

Z 1

0
d��Vð�Þ2: (45)

By properly scaling Vð�Þ with
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cF=cB

p
, we can

match the divergences from Eq. (44). The equiva-
lence of the Feynman and Born expansions implies
that the combination of sðtÞ with

�sðtÞ ¼ cF
cB

X
‘

�D‘ ��
ð2Þ
‘ ðtÞ (46)

is finite when integrated according to Eq. (35). Here

��ð2Þ
‘ ðtÞ is the second order Born approximation for

the logarithm of the Jost function on the imaginary
axis in the fake boson problem and the associated
degeneracy factor in the partial wave decomposition
is �D‘ ¼ 2� 
0;‘.

(4) The subtraction in Eq. (46) must be compensated by
adding the corresponding second order fake boson
diagram. Since the divergences of the fake boson
and the fermion problem have been carefully
matched, the fermion counterterms from Eq. (43)
are sufficient to render the relevant fake boson dia-
gram finite. As a consequence, only the renormal-
ized fake boson diagram must be added back in,
cf. Appendix C 2. We are then fully prepared to
compute the vacuum polarization energy in any

renormalization scheme. We first consider the MS
scheme, which is defined by setting �cs ¼ 0 in the
counterterm coefficients

cs ¼ �i

�
�

m

�
4�D Z dDk

ð2�ÞD ðk2 � 1þ i0Þ�2 þ �cs;

s ¼ 1; 2; 4: (47)

In this scheme the dependence on the model pa-
rameters is simple. The computational advantages

of first considering theMS scheme will be discussed
thoroughly in Sec. VI.

Let us summarize the result in the MS scheme and
carefully describe the angular momentum sums. First we
construct the subtracted logarithmic Jost function for
imaginary momenta

�ðtÞ ¼ lim
‘max!1

X‘max

‘¼�n

D‘½�‘ðtÞ�2 þ cF
cB

lim
�‘max!1

X�‘max

‘¼0

�D‘ ��
ð2Þ
‘ ðtÞ:

(48)

From Eq. (48), we can compute the phase shift contribution
to the vacuum polarization energy,

E
 ¼ � 1

2�

Z 1

0
d���ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p
Þ: (49)

The complete vacuum polarization energy in the MS
scheme is then the sum

EMS ¼ E
 þ �EFD; (50)

where �EFD ¼ �Eð2Þ
FD þ�EB is the sum of the renormal-

ized values (finite parts inMS) of the second order fermion
and fake boson diagram. Explicit expressions for these
contributions can be found in Eqs. (C8) and (C13). As a
further test of the approach we verify numerically that EMS

remains unchanged when the boson potential Vð�Þ is
modified.
To make contact with the electroweak theory, it is con-

venient to readjust the finite pieces in the counterterms
such that they match the so-called on-shell scheme. In
addition to the already implemented no-tadpole condition
that fixes c3, we thus require
(i) The pole of the Higgs propagator remains at the tree

level mass, mH ¼ mð0Þ
H , with unit residue. This fixes

the coefficients c2 and c4 and ensures the usual one-
particle interpretation of the states created by the
asymptotic Higgs field.

(ii) The residue of the gauge field propagator (in unitary
gauge) is unity, so that asymptotic W-fields create
one-particle W-boson states. This condition deter-
mines c1.

The position of the pole in the gauge boson propagator
is then a prediction, i.e. the physical W-boson mass re-
ceives radiative corrections. These corrections are deter-
mined by the implicit solution to Eq. (C17) presented in
Appendix C 3.

The on-shell and MS schemes are related by finite
changes of the counterterm coefficients, so that �ci � 0 in
the on-shell scheme; explicit expressions can again be
found in Appendix C 3. The modification to the vacuum
polarization energy Eq. (50) due to the change in renor-
malization scheme is then simply the energy from the
counterterm Lagrangian Eq. (43), with the coefficients ci
replaced by their finite pieces �ci listed in Eq. (C16). Since
the counterterms are local, this modification amounts to a
radial integral similar to the classical energy in Eq. (7),
which is numerically inexpensive. Hence the vacuum po-
larization energy in the on-shell scheme is

Eq ¼ EMS þ ECT ¼ E
 þ �Eð2Þ
FD þ�EB þ ECT: (51)

The explicit expression for the counterterm contribution
reads
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ECT ¼ 2�
Z 1

0
�d�

�
sin2�1

n2

�2

�
�c2v

2f2Hð1� fGÞ2

� 4�c1
g2

f02G
�
þ �c2v

2f02H � 2�c4v
4ð1� f2HÞ2

�
(52)

The counterterm coefficient �c3 does not appear explicitly
because this counterterm receives no correction in passing

between the MS and on-shell schemes.

V. CHARGED STRING

As already discussed in refs. [26,27], the fermion vac-
uum energy is negative for narrow strings and thus pro-
vides some binding. However, for physically relevant
model parameters, Eq. (4), it is insufficient to overcome
the large classical energy. The central mechanism for over-
coming the classical energy cost is to populate the numer-
ous fermion bound states that emerge in the background of
the string, which as a result assigns charge Q to the string.
If the energy of equally many free fermions Qm is larger
than the total energy of the string (the classical, vacuum
polarization and contribution from populated levels com-
bined), we have succeeded in constructing a stable charged
string. Quantitatively, this requirement corresponds to
Ecl þ Ef 
 0, cf. Eqs. (7) and (19). It prevents the direct

decay into fermions and only leaves charge nonconserving
decay channels, where the decay rate is heavily suppressed
due to the sphaleron barrier. The direct decay into lighter
fermion doublets is also suppressed, since we do not have
flavor mixing in our model. To carry out this procedure, we
first need to find the bound state energies in the string
background.

A. Bound states and box diagonalization

Since our system is translation invariant in the z direc-
tion, we begin by finding Dirac bound states, 	i, of the two-
dimensional problem, Eq. (14). Each bound state we find
will then correspond to a family of bound states in the
three-dimensional problem, indexed by the transverse mo-
mentum pz.

We carry out the two-dimensional bound state calcula-
tion by putting the string in a large cylindrical box of radius
R � m�1 and imposing the boundary condition that no net
flux runs through the surface of the cylinder. This boundary
condition discretizes the possible radial momenta in each
angular momentum channel through the roots of certain
Bessel functions, cf. Eq. (A2) for the case of unit winding,
n ¼ 1. We can thus take a countable set of grand spin
solutions, Eq. (12), to the free Dirac equation and express
the fully interacting string Hamiltonian as an infinite ma-
trix in this basis. The relevant matrix elements are again
presented in Appendix A. Upon truncating the set of free
solutions by including an effective UV cutoff � on the
discrete momenta, we are thus left with a large matrix
diagonalization in each grand spin channel to determine

the fermion eigenstates in the string background. Typical
matrix sizes are (1600� 1600) including Dirac indices.
We then find the energy eigenvalues numerically by diag-
onalization. In the finite box, of course, all energy levels
are discrete and there are no continuum states. In the limit
R ! 1 and � ! 1, the highest energy levels in the qua-
sicontinuum will still fluctuate considerably, but the low-
lying bound state spectrum of states with energy smaller
than m, which become bound states in the R ! 1 limit,
should remain stable. This was indeed observed for mod-
erate values, � � 8m and R � 75=m.
It should be noted that bound states occur predominantly

in the lower angular momentum channels, as we would
expect since the higher channels contain an increasingly
large centrifugal barrier. Depending on the width of the
background profile, we see bound states in as many as 10
channels, or only in the single channel ‘ ¼ �n ¼ �1,
which is the channel that contains an exact zero mode for
�1 ¼ �=2.
A good numerical test on our diagonalization procedure

is the gauge invariance of the Dirac Hamiltonian and thus
of the bound state spectrum. In our specific case, this
means that the low-lying bound state energies must remain
constant when the gauge transformation profile �ð�Þ is
modified.We have confirmed this behavior for simple scale
and width changes in �ð�Þ.

B. Populating the bound states

Having determined the set of bound state energies in the
two-dimensional problem, we now integrate these results
into the full three-dimensional calculation. Let 0 
 	i < m
represent the energy of one of these two-dimensional
bound states. In the full three-dimensional problem,
we will then have a family of bound states with energies

½	2i þ p2
z�1=2.

For a given charge Q, each of these families of bound
states will be filled up to a common chemical potential1,
�ðQÞ 
 m, to minimize their contribution to the energy.
If the towers of states built upon two different 	i had
different upper limits, the energy would be lowered by
moving a state from the tower with the larger limit to
that with the lower one, without changing the charge.

Since states with ½	2i þ p2
z�1=2 <� are filled while states

with ½	2i þ p2
z�1=2 >� remain empty, we have a Fermi

momentum Pið�Þ ¼ ½�2 � 	2i �1=2 for each bound state.
By the Pauli exclusion principle we can occupy each state
only once, and so we find the charge density per unit length
of the string

Qð�Þ ¼ 1

�

X
	i
�

Pið�Þ; (53)

1In what follows the chemical potential � should not be
confused with the redundant scale introduced in Eq. (32).
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where the sum runs over all bound states available for a
given chemical potential,2 	i < �. Of course, this sum
involves different partial waves, so we have to include
the corresponding degeneracy factors.

Equation (53) can be inverted to give � ¼ �ðQÞ. In
numerical computations we prescribe the left-hand-side
of Eq. (53) and increase � from minfj	ijg until the right-
hand-side matches. From this value � ¼ �ðQÞ, the bind-
ing energy per unit length

EbðQÞ ¼ 1

�

X
	i
�

Z Pið�Þ

0
dpz

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2i þ p2

z

q
�m

�

¼ 1

2�

X
	i
�

�
Pið�Þð�� 2mÞ þ 	2i ln

Pið�Þ þ�

	i

�

(54)

can be computed as a function of the prescribed charge. In
this manner the total energy becomes a function of the
charge density of the string. In our search for a stable
string, then, we specify the charge Q, and, among back-
ground configurations with sufficient binding to accommo-
date this charge, we vary the ansatz parameters to
minimize the total energy to see if we find a bound
configuration.

VI. NUMERICAL RESULTS

In this section we present the numerical results combin-
ing all the contributions to the string energy in our varia-
tional ansatz. We measure the variational parameters wH

and wG in inverse fermion masses. The dimensionless
vacuum polarization energy per unit length Eq=m

2 then

does not explicitly depend on the coupling constants f and

g in the MS scheme, and depends only weakly on these
constants in the physical on-shell scheme through the
logarithmic dependence introduced by the renormalization
conditions. This property simplifies the numerical analysis
because then their variation solely affects the classical and
counterterm energies, both of which are local functionals
of the profile functions and hence easy to compute.

We have already presented first results for the vacuum
polarization energy, Eq. (51) in ref. [26]. In particular, we
have verified our results numerically by checking that they
are independent of the shape of the gauge function �ð�Þ.
This result is a consequence of gauge invariance, but it is
nontrivial because the individual Born terms and Feynman
diagrams are not explicitly gauge invariant—only the com-
bination of all of them is. As a result, this invariance
verifies the equivalence between the Feynman diagram
contribution and the Born subtractions (including the

fake boson part) in Eq. (51), which is central to the appli-
cation of spectral methods in quantum field theory [29].
The computation of E
 is numerically most costly.

The main reason is that we have to go to very high angular
momenta in the sum in Eq. (48). Typical values are
‘max ¼ 500; . . . ; 800 depending on the width of the back-
ground field. To capture the behavior of the integrand in
Eq. (49) we consider about 40 points in the interval
0 
 � 
 8. Since the integrand of E
 does not oscillate
when computed from imaginary momenta, we can accu-
rately estimate the contribution from � > 8 from an inverse
power-law behavior.
In Fig. 2 we show the result of this numerical computa-

tion. The wider the background fields, the weaker the
dependence on the angle �1 that parameterizes the gauge
boson contribution. Surprisingly, we see that the vacuum
polarization per unit length is quite small. Even for large
widths it does not exceed a fraction of the fermion mass
squared. With the exception of very small widths, the
vacuum polarization turns out to be positive. Hence there
is no indication that the vacuum polarization energy from
the fermions can stabilize cosmic strings since the classical
energy is larger by orders of magnitude, unless the cou-
pling constants are f, gOð10Þ. For example, see Fig. 3,
which shows the classical energy for the standard model
parameters, which are Oð1Þ. The derivative terms of the
classical energy decrease quadratically with f and g while
the Higgs potential decreases like 1=f4 for fixed Higgs
mass. As a result, increasing the coupling constants could
lead to binding for thin strings, but such configurations
contain large Fourier components, which for f, gOð10Þ
reach the vicinity of the Landau ghost pole. Hence any
such binding is obscured by the existence of the Landau
ghost, cf. Appendix D, which arises when including quan-
tum corrections in a manner that does not reflect asymp-
totic freedom. Here it is due to the omission of quantum
corrections from fluctuating gauge boson fields. The esti-
mate for the Landau ghost contribution discussed in the
Appendix suggests that the issue can be safely ignored for
f, g & 5.
Gradient expansions [38] for quantum mechanical ex-

pectation values suggest that the energy gain from populat-
ing bound states can be estimated from a spatial integral
over some fractional power of the potential in the wave-
equation. Scaling arguments show that the energy from the
populated bound states increases quadratically with the
width parameters wH and/or wG, regardless of the specific
power in the expansion.3 Since also the dominating clas-
sical energy increases quadratically with wH (from the
Higgs potential), populating the bound states might bal-
ance the large classical energy already at small coupling

2Ambiguities in this relation due to different boundary con-
ditions at the end of the string show up at subleading order in
1=L, where L is the length of the string, and can thus be safely
ignored.

3More precisely, the energy gain involves both the summed
energy eigenvalues and the charge. Both can be expressed by
such integrals with different powers, though.
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constants and moderate widths, because the Higgs poten-
tial scales like 1=f4 when the Higgs mass is fixed while the
fermion contribution is not sensitive to any change in f
when we scale our definitions of physical quantities with

the fermion mass m ¼ vf. Hence our strategy to construct
a stable string type configuration is to balance the classical
boson energy with the fermion quantum correction by
considering wide strings and increasing the Yukawa
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FIG. 3. Classical energy for the standard model parameters as function of the ansatz parameters wH , wG and �1, including the fit to
the Nielsen-Olesen profiles. The model parameters are again from Eq. (4).
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FIG. 2. Vacuum polarization energy as function of the angle �1 for different values of the width parameters wH and wG in the on-
shell renormalization scheme. The physically motivated model parameters, Eq. (4), are used. The dots refer to actual computations,
while the lines stem from a cubic spline. We also show the results obtained for the fit to the Nielsen-Olesen profiles, cf. Figure 1. These
results do not include the combinatoric color factor NC.
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coupling. Simultaneously we must keep fixed the charge
associated with populating the fermion bound states.

Before wewill consider the total energy wewould like to
discuss the fermion part, Eq þ Eb. In Fig. 4 we show the

total fermion energy of Eq. (19), as a function of the charge
density per unit length of the string. As described in the
previous section, we can compute the binding energy as a
function of the charge for a given background configuration.
After adding the vacuum polarization energy computed for
that background, we get the parabolic curves in Fig. 4.
These lines terminate at the point where all available bound
states are populated. We then search for the configuration
thatminimizes the energy. For small charges, we obtain thin
strings, while larger charges lead to wide strings, as shown
in Fig. 4. Surprisingly, the resulting envelope that describes
the minimal fermion energy as a function of the charge
density is a straight line with (approximately) vanishing
y-intercept. This straight line stems from a delicate balance
between the vacuum polarization and binding energies.
Because this extrapolation yields a vanishing y-intercept,
we deduce that very narrow strings have vanishing vacuum
polarization energy. This interpolation overcomes the
Landau ghost problem of the direct calculation.

From several hundred configurations for which we have
computed both the vacuum polarization energy and con-
structed the bound states, we identify the one that mini-
mizes the total binding energy

Etot ¼ Ecl þ Eq þ Eb (55)

for a prescribed charge. The corresponding result for the
minimal binding energy is displayed in Fig. 5. We can see
that the optimal binding grows linearly with Q. The steep
slope at very small charges is an artifact of restricting our
ansatz to configurations with wH, wG 	 2 to avoid un-
physical effects from the Landau ghost.
As mentioned above, we increase the Yukawa coup-

ling from its top-quark motivated value f ¼ 0:99, while
all other model parameters are taken from Eq. (4).
Increasing the charge also increases the width of the
optimal string. For f � 1:6 the classical and quantum
contributions balance and the total energy is essentially
independent of the width. Increasing the coupling further
yields a negative energy (in comparison to equally many
free fermions) and stable configurations exist. Not surpris-
ingly, the minimal charge for which there are stable con-
figurations decreases quickly as f increases. For f ¼ 1:7
it is Qmin  10m ¼ 17v, while for f ¼ 1:9 stable configu-
rations exist already at Qmin  3m ¼ 5:7v.
We next discuss the structure of the stabilizing configu-

ration. We find that the fermionic part of the binding
energy is insensitive to the angle �1, as shown in Fig. 6.
As a result, the dependence of the total binding energy on
�1 stems entirely from the classical part, which is
clearly minimized for �1  0, since in that case the gauge
fields vanish and we have only a charged Higgs field, with
only the nondiagonal elements in Eq. (6) differing
from zero.
In Fig. 7 we display the chemical potential that

minimizes the binding energy for a prescribed charge.
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FIG. 4 (color online). Total bound state and vacuum energy
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units of the fermion mass, for �1 ¼ 0:4�. The dotted line
indicates the minimal fermionic contribution to the energy.
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Its construction is discussed in section V. The cusps arise
because our sample configurations are not continuous in
the variational parameters. As we increase the charge, the
minimizing configuration jumps among these possibilities.

The strong deviation from� ¼ m at low charges (where
the various graphs overlap) is again an artifact of not
considering very narrow string configurations. We see
that at the limit of binding (f ¼ 1:6) almost all bound
states are populated. As the binding increases, the chemical
potential decreases, leaving the states below threshold
unoccupied.
We have seen above that binding increases with the

Yukawa coupling. Table I indicates that at the same time
the profile functions get wider, while the critical charge at
which binding sets in (i.e. EtotðQminÞ ¼ 0) decreases with
the Yukawa coupling. As a result, the width of the critical
profile actually decreases. We find these widths to be
5:5=m ¼ 3:2=v, 4:0=m ¼ 2:2=v and 3:5=m ¼ 1:8=v for
f ¼ 1:7, 1.8 and 1.9, respectively, and the typical exten-
sion of a bound charged string is about 0.003 fm.
Finally let us estimate the total mass of the bound string.

In the regime where it is only slightly bound, we have
Estring & Qm. Typically we observe binding for Q � 5m.

Hence a reasonable estimate for the mass of the string is
M � 5m2L. Taking m ¼ 300 GeV and the length of the
string to be the radius of the sun, L ¼ R� � 7� 108 m we
find M � 2:3� 109 kg ¼ 10�20M�, i.e. only a very tiny
fraction of the mass of the sun. On the microscopic scale, a
string as short as the Compton wave-length of the heavy
fermion would carry about 30 bound fermions and have an
energy of slightly less than 9 TeV.

VII. CONCLUSIONS

We have extended our previous spectral approach to find
the leading quantum corrections to the energy of a cosmic
string in a slightly simplified version of the electroweak
theory. In the limit of many internal degrees of freedom,
NC ! 1, these leading corrections come from fermions
coupling to the string background. In this scenario NC

merely appears a combinatoric factor, which is justified
by the asymptotic freedom of QCD.We have shown how to
compute the distortion of the Dirac spectrum in the string
background, and how to extract the full nonperturbative
renormalized vacuum polarization using perturbative
counterterms and conventional renormalization schemes.
Substantial refinements of our previous techniques were
necessary to make this calculation feasible, and we have
presented a complete account including technical details in

TABLE I. The width, wH, of the minimizing Higgs profile at a
prescribed charge, Q for different values of the Yukawa coupling
constant f.
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FIG. 7 (color online). The chemical potential that minimizes
the binding energy for a prescribed charge in units of the fermion
mass.
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the appendices. Though we have focused on the computa-
tional method underlying previously published results, we
have also discussed some novel results concerning the
structure of the stable configuration.

The basic idea of the quantum stabilization of cosmic
strings is that the appearance of (near) zero modes in the
distorted Dirac spectrum could help to produce negative
contributions to the energy that overcome the classical
energy necessary to form the string. We have shown,
however, that the contribution from the distortion of the
remaining parts of the spectrum, i.e. the scattering states,
neutralizes the binding effect of the low-lying modes,
resulting in a very small vacuum polarization energy.
In particular, the vacuum is stable against spontaneous
formation of weak strings for parameters that are physi-
cally sensible. The situation is more favorable for charged
strings with explicitly occupied bound states, since such
configurations need only be lighter than the same number
of free fermions, to be stable on time scales over which we
may neglect fermion number nonconservation. This ap-
proximation is valid if the intergeneration quark mixing
is tiny (we have assumed it to be zero), and if the quark
masses in the heavy fermion doublet are nearly degenerate
(we have assumed exact degeneracy).

For otherwise realistic parameters, we have shown that
this binding mechanism sets in at surprisingly low fermion
masses of around 300 GeV. This corresponds to values of
the Yukawa coupling that are still small enough for our
calculations based on the Standard Model to be reliable.
A stable charged string can thus be formed when enough
charge density of a heavy fermion doublet with about twice
the top quark mass is available.

If taken at face value, our findings suggest that a weakly
coupled fourth generation of heavy quarks would make
its footprint through the electroweak string phenomenol-
ogy mentioned in the introduction—or conversely, that the
nonobservation of electroweak strings would put severe
bounds on the masses of possible heavy quarks. How-
ever, such conclusions must be qualified by a number
of simplifications that were necessary to make the calcu-
lation feasible. Most notably, the restriction to fermionic
quantum fluctuations, although justified by the large
NC-argument, leads to a quantum theory that is not asymp-
totically free, and in turn to the Landau pole problem at
small string widths. We have presented a crude way of
estimating this contribution in order to ensure that our
findings are not affected by it. This treatment should
obviously be improved by a full quantum calculation of
the bosonic contribution to the vacuum polarization en-
ergy. Recent studies [23] in models related to ours indicate
that the bosonic contribution can give interesting and non-
trivial effects. We are currently investigating such an ex-
tension of our model.

Other shortcomings of our model are the mass degener-
acy of the fermion doublet, the lack of intergeneration

quark couplings and, in particular, the decoupling of
Uð1Þ hypercharge. While the stable configuration that we
have constructed can be embedded in a full SUð2Þ �Uð1Þ
model with multiple generations (since additional degrees
of freedom would only serve to lower the energy in our
variational approach), it is unclear if the new couplings
provide new decay channels, in particular, when bosonic
fluctuations are taken into account. We also plan to inves-
tigate such a scenario.
The charges along the string may carry currents [39–41],

which in turn can have interesting consequences for baryo-
genesis and cosmology [24,42]. This situation is similar to
the Witten model [43,44] and its generalizations, where the
currents are induced by the coupling of extra scalar fields
to the vortex. In this scenario, the Brownian network of
vortices produced in an earlier (GUT-scale) phase transi-
tion contracts as the universe cools down. This process
could eventually be stopped by the currents becoming
superconducting, with the irregular vortex shapes being
smoothed out by the surrounding thermal background to
form circular rings. The final evolution stage would then
be a universe filled with microscopic superconducting,
charged vortex loops. Such a vorton [45,46] universe has
recently attracted much attention because it provides a
viable candidate for dark matter with rather accurately
computable properties that put stringent restrictions on
cosmological models. It would be very interesting to study
such a possibility in the electroweak standard model, with
currents produced directly from fermions (as they are in
our calculation), rather than from extra scalar fields.
Although our present investigation does not directly ad-
dress this question, it seems conceivable that a stable
vorton could be created without requiring exceedingly
large couplings or unrealistic masses. Combining this sce-
nario to our picture could be another avenue for future
research.
Finally, it would of course also be interesting to study

the Brownian network of strings as it is formed in the phase
transition if enough fermion charge is available. Because
of their complexity, such configurations must presumably
be studied in an effective (lattice) model. The necessary
string interactions could potentially be addressed through
further extensions of the spectral method.
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APPENDIX A: EIGENVALUE PROBLEM

To find the bound state spectrum, states with energy
eigenvalues j	j<m, we first diagonalize the Hamiltonian
matrix in the absence of a background potential, and then
use these free eigenstates (with the proper boundary con-
ditions built in) as a basis in which to compute the matrix
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elements of the background potential induced by the string.
The diagonalization of this full Hamiltonian matrix in turn
yields the fully interacting bound state spectrum. Note that
in this procedure all states appear as ‘‘bound’’ states, since
the volume of the coordinate space is finite. In general the
energy eigenvalues of such bound states depend on the vol-
ume. However, the true bound states with j	j<m do not
show finite size effects if the volume is chosen large
enough because their wave-functions are located in a small
subvolume.

The single particle Dirac Hamiltonian couples spin (S)
and weak isospin (I) degrees of freedom. We can combine
these degrees of freedom by introducing the grand spin
states given in Eq. (12). The matrix elements of the
(two-component) operators entering the Hamiltonians in
Eqs. (10) and (38) are listed in Tables II, III, IV, V, VI, and
VII. In all of these tables, we use the abbreviation
sx ¼ sinðxÞ and cx ¼ cosðxÞ, where the arguments of these
trigonometric functions appear as subscripts.

Next, radial functions are introduced via the four-
component spinors, cf. Equation (15),

h�j	‘þþi¼ J‘þnðk�Þj‘þþi
�J‘þnþ1ðk�Þj‘�þi
� �

! f1ð�Þj‘þþi
g1ð�Þj‘�þi
� �

h�j	‘þ�i¼ J‘ðk�Þj‘þ�i
�J‘þ1ðk�Þj‘��i
� �

! f2ð�Þj‘þ�i
g2ð�Þj‘��i
� �

h�j	‘�þi¼ J‘þnþ1ðk�Þj‘�þi
�J‘þnðk�Þj‘þþi

� �
! f3ð�Þj‘�þi

g3ð�Þj‘þþi
� �

h�j	‘��i¼ J‘þ1ðk�Þj‘��i
�J‘ðk�Þj‘þ�i

� �
! f4ð�Þj‘��i

g4ð�Þj‘þ�i
� �

:

(A1)

We note that � ¼ sgnð	Þ ffiffiffiffiffiffiffiffi
	�m
	þm

p
is well-defined for either

sign of the energy eigenvalue since j	j>m. Using the
dispersion relation for real momenta 	2 ¼ k2 þm2, we
may also write � ¼ k

	þm ¼ 	�m
k . These two expressions

are odd in k and thus suitable for analytic continuation
k ! it. The spinors to the left of the arrows in Eq. (A1)
involve ordinary Bessel functions which solve the free
Dirac equation. They will be used to construct the basis
states for the Hamiltonian matrix.

In the free case, the four spinors in Eq. (A1) each solve
the Dirac equation individually, i.e. they do not couple.
Once the background potential from the string is included,
however, the radial functions fi and gi become distorted
and mix under the dynamics.

We now construct a discrete basis built from solutions
of the free Dirac equation. To this end we must first impose
the boundary condition that no flux runs from the center of
the string through a circle at a large distance R. Since the
flux is bilinear in the spinors with all products involving
both an upper and a lower component, the no-flux bound-
ary condition is equivalent to the requirement that either
component vanishes. For the string winding n ¼ 1, this
amounts to the simple statement

TABLE II. Matrix elements of i� � �̂. The table should be read
as h� þ ji� � �̂j þ þi ¼ 1, for instance. The matrix is hermitian
in combination with the derivative @�.

states j þ þi j þ �i j � þi j � �i
hþþ j 0 0 �1 0

hþ � j 0 0 0 �1
h� þ j 1 0 0 0

h� � j 0 1 0 0

TABLE III. Matrix elements of ið� � ’̂Þ@’.
states j þ þi j þ �i j � þi j � �i
hþþ j 0 0 �ð‘þ nþ 1Þ 0

hþ � j 0 0 0 �ð‘þ 1Þ
h� þ j �ð‘þ nÞ 0 0 0

h� � j 0 �‘ 0 0

TABLE IV. Matrix elements of ð� � �̂ÞIP.
states j þ þi j þ �i j � þi j � �i
hþþ j 0 0 0 1

hþ � j 0 0 �1 0

h� þ j 0 �1 0 0

h� � j 1 0 0 0

TABLE V. Matrix elements of ð� � ’̂ÞIGð�Þ. The subscript
denotes the argument of the trigonometric functions.

states j þ þi j þ �i j � þi j � �i
hþþ j 0 0 �s� �c�
hþ � j 0 0 �c� s�
h� þ j �s� �c� 0 0

h� � j �c� s� 0 0

TABLE VI. Matrix elements of ð� � ’̂ÞIGð��Þ. The subscript
denotes the argument of the trigonometric functions.

states j þ þi j þ �i j � þi j � �i
hþþ j 0 0 s� �c�
hþ � j 0 0 �c� �s�
h� þ j s� �c� 0 0

h� � j �c� �s� 0 0

TABLE VII. Matrix elements of iIP. The extra factor i leads to
antihermitian matrix elements, compensating the same property
of its spinor coefficient ��5.

states j þ þi j þ �i j � þi j � �i
hþþ j 0 1 0 0

hþ � j �1 0 0 0

h� þ j 0 0 0 1

h� � j 0 0 �1 0
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J‘þ1ðkð‘Þr RÞ ¼ 0: (A2)

This conditions selects discrete momenta kð‘Þr in each an-
gular momentum channel ‘, where r ¼ 1; 2; . . . enumerates
the momenta and thus the free basis states. We note in
passing that a string winding n 	 2 would require two
separate sets of discrete momenta.

The normalization of the spinors can be worked out
using the Bessel function identityZ 1

0
tdtJ�ð�ð�Þ

r tÞJ�ð�ð�Þ
s tÞ ¼ 1

2
½J0�ð�ð�Þ

r Þ�2
rs (A3)

where �ð�Þ
r are the roots of the Bessel function J�. Using

furthermore the recursion relations for Bessel functions
and their derivatives, we arrive at the following explicit
expressions for the (free) radial functions in Eq. (15),

fðrÞ1 ð�Þ ¼ NðrÞ
f J‘þ1ðkr�Þ gðrÞ1 ð�Þ ¼ NðrÞ

g J‘þ2ðkr�Þ
fðrÞ2 ð�Þ ¼ NðrÞ

f J‘ðkr�Þ gðrÞ2 ð�Þ ¼ NðrÞ
g J‘þ1ðkr�Þ

fðrÞ3 ð�Þ ¼ NðrÞ
f J‘þ2ðkr�Þ gðrÞ3 ð�Þ ¼ NðrÞ

g J‘þ1ðkr�Þ
fðrÞ4 ð�Þ ¼ NðrÞ

f J‘þ1ðkr�Þ gðrÞ4 ð�Þ ¼ NðrÞ
g J‘ðkr�Þ

(A4)

where the superscripts on the momenta are omitted. The
normalization factors are given explicitly by

NðrÞ
f ¼ 1

R

1

jJ‘þ2ðkrRÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	r þm

	r

s
;

NðrÞ
g ¼ 1

R

sgnð	rÞ
jJ‘þ2ðkrRÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	r �m

	r

s
:

(A5)

To limit the number of basis states, we introduce a cutoff�
and only include momenta with kr <�. This defines rmax,
the maximal number of discrete momenta, which depends
on R for fixed �. Because of the energy degeneracy this
cutoff truncates the label r on the energy eigenvalues to run
from 1 . . . 2rmax,

	r ¼
8><
>:
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2rmaxþ1�r þm2

q
r ¼ 1; . . . ; rmaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2r�rmax
þm2

q
r ¼ rmax þ 1; . . . ; 2rmax

:

(A6)

Putting all the pieces together, we can now present the
full Hamiltonian matrix i.e. the operator in Eq. (10) sand-
wiched between the spinors constructed above. The equa-
tions become simpler if we set

C� ¼ c�G þ c�� � r and S ¼ s�G � s��;

(A7)

with the right hand sides containing the elements of Vi in
Eq. (17). They are specified in terms of the string profile

functions in Eq. (B4) of the following Appendix. The
interaction Hamiltonian matrix elements read

h1rjHintj1si¼HðfðrÞ1 fðsÞ1 �gðrÞ1 gðsÞ1 Þ�SðfðrÞ1 gðsÞ1 þgðrÞ1 fðsÞ1 Þ
h2rjHintj1si¼�Cþf

ðrÞ
2 gðsÞ1 �C�g

ðrÞ
2 fðsÞ1

h3rjHintj1si¼SðfðrÞ3 fðsÞ1 þgðrÞ3 gðsÞ1 Þ
h4rjHintj1si¼C�f

ðrÞ
4 fðsÞ1 þCþg

ðrÞ
4 gðsÞ1

�PðfðrÞ4 gðsÞ1 �gðrÞ4 fðsÞ1 Þ
h1rjHintj2si¼�C�f

ðrÞ
1 gðsÞ2 �Cþg

ðrÞ
1 fðsÞ2

h2rjHintj2si¼HðfðrÞ2 fðsÞ2 �gðrÞ2 gðsÞ2 ÞþSðfðrÞ2 gðsÞ2 þgðrÞ2 fðsÞ2 Þ
h3rjHintj2si¼Cþf

ðrÞ
3 fðsÞ2 þC�g

ðrÞ
3 gðsÞ2

þPðfðrÞ3 gðsÞ2 �gðrÞ3 fðsÞ2 Þ
h4rjHintj2si¼�SðfðrÞ4 fðsÞ2 þgðrÞ4 gðsÞ2 Þ
h1rjHintj3si¼SðfðrÞ1 fðsÞ3 þgðrÞ1 gðsÞ3 Þ
h2rjHintj3si¼Cþf

ðrÞ
2 fðsÞ3 þC�g

ðrÞ
2 gðsÞ3

�PðfðrÞ2 gðsÞ3 �gðrÞ2 fðsÞ3 Þ
h3rjHintj3si¼HðfðrÞ3 fðsÞ3 �gðrÞ3 gðsÞ3 Þ�SðfðrÞ3 gðsÞ3 þgðrÞ3 fðsÞ3 Þ
h4rjHintj3si¼�C�f

ðrÞ
4 gðsÞ3 �Cþg

ðrÞ
4 fðsÞ3

h1rjHintj4si¼C�f
ðrÞ
1 fðsÞ4 þCþg

ðrÞ
1 gðsÞ4

þPðfðrÞ1 gðsÞ4 �gðrÞ1 fðsÞ4 Þ
h2rjHintj4si¼�SðfðrÞ2 fðsÞ4 þgðrÞ2 gðsÞ4 Þ
h3rjHintj4si¼�Cþf

ðrÞ
3 gðsÞ4 �C�g

ðrÞ
3 fðsÞ4

h4rjHintj4si¼HðfðrÞ4 fðsÞ4 �gðrÞ4 gðsÞ4 ÞþSðfðrÞ4 gðsÞ4 þgðrÞ4 fðsÞ4 Þ:
(A8)

To keep the presentation simple we have omitted the radial
integrals on the right hand sides, i.e. they are understood
to be integrated with

R
R
0 �d�ð� � �Þ. In total this defines

8rmax � 8rmax matrix elements of the interaction
Hamiltonian. To populate the full Hamiltonian matrix,
we set, for example,

HðIÞ
rþ2rmax;s

¼ h2rjHintj1si (A9)

for r, s ¼ 1; . . . ; 2rmax, and 	rþ2qrmax
¼ 	r for q ¼ 1, 2, 3.

This yields the 8rmax � 8rmax matrix

Hr;s ¼ 	r
rs þHðIÞ
r;s r; s ¼ 1; . . . ; 8rmax; (A10)

which is diagonalized numerically by means of a Jacobi
routine.
Once the radius R and the momentum cutoff � are large

enough the true bound state spectrum should become
stable against further increase of these parameters.
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Typical values are� � 8m and R ¼ 75=m, so that our free
basis comprises about 400 energy eigenvalues, each with
fourfold degeneracy and the Hamiltonian matrix has
1600� 1600 entries for the lowest angular momentum.
For wider string profiles, bound states occur in higher
and higher angular momentum channels. For instance,
bound states appear for up to ‘ ¼ 5 when wH � 6=m,
while narrow widths wH 
 1=m only induce bound states
in the channel ‘ ¼ �n ¼ �1, i.e. the effective S-wave
channel.

We have verified the gauge independence of the bound
state energies by checking that they are insensitive to
variations in the shape of the gauge transformation profile
�ð�Þ. Also the zero mode in the ‘ ¼ �n ¼ �1 channel is
observed for �1 ¼ �=2 regardless of the values of the
width parameters.

APPENDIX B: SCATTERING PROBLEM

In this Appendix we describe the scattering solutions to
the Dirac Eq. (17). To this end we write the Dirac
Hamiltonian, Eq. (10) in terms of 4� 4 matrices and
derive the differential equation for the Jost function.

1. Differential equation for Jost function

The derivative operators as well as the angular barriers
are contained in the diagonal 4� 4 matrices

Du � @�1� 1

�
diagð�ð‘þ nþ 1Þ;�ð‘þ 1Þ; ‘þ n; ‘Þ

Dd � @�1� 1

�
diagð‘þ n; ‘;�ð‘þ nþ 1Þ;�ð‘þ 1ÞÞ

(B1)

where C ¼ diagð�1;�1; 1; 1Þ. For the interactions, we
must compute the matrix elements of the various pieces
in Eq. (10) within the grand spin basis Eq. (12). The
explicit expressions for the emerging radial functions are
listed in Eqs. (15) and (16), cf. Eq. (A1). After some
lengthy algebra, the interaction matrices in the system
(17) can written in terms of simpler submatrices,

Vuu ¼
H Gþ
G� H

 !
Vdd ¼

�H G�
Gþ �H

 !

Vud ¼ � Gþ P

P G�

 !
Vdu ¼ � G� �P

�P Gþ

 !
;

(B2)

where the 2� 2 submatrices are

H ¼ H

1 0

0 1

 !
; P ¼ p

0 �1

1 0

 !
;

G� ¼ G

sin� cos�

cos� � sin�

 !
þ �

� sin� cos�

cos� sin�

 !

� r

0 �1

1 0

 !
: (B3)

The coefficients H, p, G, � and r are radial func-

tions determined by the background profiles fG, fH and the
gauge function �,

rð�Þ ¼ 1

2

@�ð�Þ
@�

Gð�Þ ¼ n

2�
fGð�Þ sin�ð�Þ

�ð�Þ ¼ n

2�
ðfGð�Þ � 1Þ sin�ð�Þ

Hð�Þ ¼ mðfHð�Þ cos�ð�Þ � 1Þ
Pð�Þ ¼ mfHð�Þ sin�ð�Þ:

(B4)

Note that the new gauge function also enters via �ð�Þ �
�1 � �ð�Þ. We now write the Dirac equation for the matrix
fields defined in Eq. (25) as

@�F ¼½MffþOd� �F þF �MðrÞ
ffþ½MfgþkC� �G �Zd

(B5)

@�G¼½MggþOu� �GþG �MðrÞ
ggþ½Mgf�kC� �F �Zu;

(B6)

where the 4� 4 matrices without an overline are purely
kinematic,

Zu¼diag

�
H‘þnðk�Þ
H‘þnþ1ðk�Þ;

H‘ðk�Þ
H‘þ1ðk�Þ;

H‘þnþ1ðk�Þ
H‘þnðk�Þ ;

H‘þ1ðk�Þ
H‘ðk�Þ

�

Zd¼diag

�
H‘þnþ1ðk�Þ
H‘þnðk�Þ ;

H‘þ1ðk�Þ
H‘ðk�Þ ;

H‘þnðk�Þ
H‘þnþ1ðk�Þ;

H‘ðk�Þ
H‘þ1ðk�Þ

�
¼ðZuÞ�1

Ou¼ 1

�
diagð�ð‘þnþ1Þ;�ð‘þ1Þ;‘þn;‘Þ

Od¼ 1

�
diagð‘þn;‘;�ð‘þnþ1Þ;�ð‘þ1ÞÞ

C¼diagð�1;�1;1;1Þ: (B7)

The matrices multiplying F and G from the right are also
independent of the background potential,

M ðrÞ
ff ¼ �kC � Zd �Od and MðrÞ

gg ¼ kC � Zu �Ou:

(B8)

Genuine interactions from the string background are solely
contained in the overlined matrices in Eq. (B6). Using the
same 2� 2 matrix notation as above, we have explicitly

Mgg ¼ CVud ¼ Gþ P

�P �G�

 !

Mff ¼ �CVdu ¼
�G� P

�P Gþ

 !

Mgf ¼ 1

�
CVuu ¼ 1

�

�H �Gþ
G� H

 !

Mfg ¼ ��CVdd ¼ �
�H G�
�Gþ H

 !
:

(B9)
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The solutions to the differential Eqs. (B6) subject to the
boundary conditions F ! 1 and G ! 1 at � ! 1 define
the scattering solution, Eq. (27), from which we extract the
scattering matrix as described in Eq. (29).

2. Born series

To set up the Born series defined in Eq. (30), we simply
expand the system of differential equations from the last
section in powers of the background potential, which only
enters the overlined matrices. At first order, we obtain

@�F ð1Þ ¼ Od �F ð1Þ þF ð1Þ �MðrÞ
ff þ kC � Gð1Þ � Zd

þMff þMfg � Zd (B10)

@�Gð1Þ ¼ Ou � Gð1Þ þ Gð1Þ �MðrÞ
gg � kC �F ð1Þ � Zu

þMgg þMgf � Zu: (B11)

The matrices MðrÞ
... do not contain the interactions and are

thus of order zero. In the same way we obtain the second
order equations,

@�F ð2Þ ¼ Od �F ð2Þ þF ð2Þ �MðrÞ
ff þ kC � Gð2Þ � Zd

þMff �F ð1Þ þMfg � Gð1Þ � Zd (B12)

@�Gð2Þ ¼ Ou � Gð2Þ þ Gð2Þ �MðrÞ
gg � kC �F ð2Þ � Zu

þMgg � Gð1Þ þMgf �F ð1Þ � Zu: (B13)

With these Jost-like matrices, the Born series for the

S-matrix is S ¼ 1þ Sð1Þ þ Sð2Þ þ � � � with

Sð1Þ ¼ lim
�!0

fH�1
u � ½F ð1Þ� �F ð1Þ� �H �

ug

Sð2Þ ¼ lim
�!0

fH�1
u � ½F ð1Þ � ðF ð1Þ �F ð1Þ� Þ

þF ð2Þ� �F ð2Þ� �H �
ug (B14)

and similarly for Gi withH u ! H d. The Born expanded
eigenphase shifts are now simply given, to first and second
order, by


ð1Þ
‘ ¼ � 1

2
tr½ImðSð1Þ

1 Þ� and


ð2Þ
‘ ¼ � 1

4
tr½ImðSð1Þ � Sð1Þ þ 2Sð2ÞÞ�:

(B15)

The third and fourth order pieces will be treated as
part of the fake boson formalism discussed below in
section C 2.

3. Analytic continuation

We describe the continuation to imaginary momenta

for the case where 	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
; the second Riemann

sheet (	 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
) works analogously. The analytic

continuation concerns the Hankel functions, which turn
into modified Bessel functions, Zu ! Yu and Zd ! Yd,
with

Yu ¼ diag

�
K‘þnðt�Þ
K‘þnþ1ðt�Þ ;

K‘ðt�Þ
K‘þ1ðt�Þ ;�

K‘þnþ1ðt�Þ
K‘þnðt�Þ ;�K‘þ1ðt�Þ

K‘ðt�Þ
�
¼ �ðYdÞ�1: (B16)

Furthermore, the kinematic coefficient turns into a pure
phase

� ! z� ¼ mþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 �m2

p

t
: (B17)

The system of differential equations for imaginary momen-
tum then becomes

@�F ¼½MffþOd� �F þF �MðrÞ
ffþ½Mfg� tC� �G �Yd

(B18)

@�G¼½MggþOu� �GþG �MðrÞ
ggþ½Mgfþ tC� �F �Yu:

(B19)

with the boundary conditions that F and G both approach
unity at � ! 1. For simplicity, we have omitted the mo-
mentum arguments in the radial wave-functions F and G
and also used the same symbol as in the case of real
momenta, Eqs. (B6). The coefficient matrices in the dif-
ferential equations are slightly modified:

MðrÞ
gg ¼�tC � Yu �Ou MðrÞ

ff ¼ tC � Yd �Od

Mgf ¼ z�
�H �Gþ
G� H

 !
Mfg ¼�z��

�H G�
�Gþ H

 !
;

(B20)

while Mgg and Mff are the same as on the real axis.
Unlike the Schrödinger problem, the differential equa-

tions in the present case do not become real on the imagi-
nary axis. Rather, charge conjugation 	 ! �	 induces
complex conjugation. It is therefore not surprising that
the naı̈ve extrapolation lim�!0 detðF Þ does not give a

real result. Instead, we find numerically that F ¼ G�
with the imaginary part being independent of angular
momentum for a given value of t. The origin for this
imaginary part lies in the subtle definition of the Jost
function via the Wronskian between the Jost solution, i.e.
F or G, and the regular solution, which satisfies momen-
tum independent boundary conditions at the origin. The
momentum independence of these boundary conditions
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ensures that the regular solution is an analytic function of
complex momentum. Analyticity of the Jost solution, on
the other hand, is guaranteed by the nonsingular behavior
of the interaction potentials, which is in turn a consequence
of the boundary conditions on the profile function �ð�Þ. At
the origin, the Higgs field differs from its vacuum expec-
tation value (it actually vanishes), which modifies the
relative weight of the upper and lower Dirac components.
More precisely, the nondiagonal elements of the matrices
in Eq. (B20) vanish at the origin and the eight differential
equations decouple with respect to the spin and weak
isospin index on the radial functions in Eq. (16). For real
momenta k, a typical solution in the vicinity of � ¼ 0 then
looks like [22]

f4
g4

� �

�
k

q

�
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþmc�fHð0Þ

p
Jlðq�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E�mc�fHð0Þ
p

Jlþ1ðq�Þ

 !
(B21)

with q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � ðmc�fHð0ÞÞ2

p
and similar dependencies

for the other six radial functions. The square-root coeffi-
cients cause the proper definition of the logarithmic Jost
function, �ðtÞ, to be

exp½�ðtÞ� ¼
�

�� im

�� imc�fHð0Þ
�
2
lim
�!0

detðF Þ

¼
�

�þ im

�þ imc�fHð0Þ
�
2
lim
�!0

detðGÞ (B22)

with � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 �m2

p
. The power of 2 occurs because we

compute the determinant of a 4� 4matrix. Notice that this
redefinition not only cancels the imaginary parts, but also
modifies the real part. Furthermore it avoids the logarith-
mic singularity in ln½lim�!0 detðF Þ� otherwise observed

numerically at tm. Since fH is part of the interaction,
the correction prefactor in Eq. (B22) also contributes to the
Born series. To make this explicit, we write

ln

�
�� im

�� imc�fHð0Þ
�
¼ ln

�
�� im

�� iðHð0Þ þmÞ
�

(B23)

¼ iHð0Þ
�� im

� 1

2

�
Hð0Þ
�� im

�
2 þ . . . ;

(B24)

and subsequently set Hð0Þ ¼ �m. The Born expansion of
the remaining determinant in Eq. (B22) is constructed as
for real momenta by iterating the differential Eq. (B19) in

the interaction Mi.
Numerically, we integrate the differential Eqs. (B6) and

(B19), their Born expansions and the fake boson analog4

@2� ��‘ðt; �Þ ¼ 2tL‘ðt�Þ@� ��‘ðt; �Þ � ��2
‘ðt; �Þ þ Vð�Þ with

L‘ðzÞ ¼ K‘þ1ðzÞ
K‘ðzÞ � ‘þ 1

2

z
(B25)

from some large radius �max  10maxðwH;wG;w�Þ to

�min  0 with the boundary condition F ð�max; kÞ ¼ 1,
and identify lim�!0F ð�; kÞ ¼ F ð�min; kÞ. Alternatively,

this identification can also be obtained from the derivative
of the wave-function. Furthermore, a differential equation
is formulated for ln detF ð�; kÞ�1F ð�; kÞ� to avoid 2�
ambiguities in the computation of the phase shift, 
‘ðkÞ,
cf. Eq. (34).
The computations for real momenta have been per-

formed mainly for use in the consistency tests on the
unitarity of the scattering matrix and the spectral sum rules
[31]. There is one more merit of considering real momenta:
Channels that include Hankel functions with zero index
(‘ ¼ �2, �1, 0) are particularly cumbersome because
regular and irregular solutions are difficult to separate in
such cases, because they go as a constant and lnð�Þ,
respectively, at �min � 1, cf. Eq. (29). As a consequence,
�min must be taken tiny in the problematic channels to
obtain the correct scattering matrix in Eq. (29).
On the real axis, the result can be checked against extract-
ing the S-matrix from the derivative of the scattering wave-
function because Y0

0ð�Þ  Y1ð�Þ diverges like a power.

For calculations on the imaginary axis, we assume
�min  10�60 and successively carry out an extrapolation

�ð�minÞ ¼ �0 þ a1
lnð�minÞ þ

a2
ln2ð�minÞ

. . . ; (B26)

for the Jost function in these channels. We test the final
result, i.e. �0, for stability against further changes of �min

and also check the condition Imð�0Þ ¼ 0. In the nonpro-
blematic channels ‘ =2 f�2;�1; 0g, it is sufficient to set
�min  10�12 in order to represent the origin.
We have also successfully tested our numerical results

of the scattering data against the reflection symmetry
‘ ! �ð‘þ 2nÞ.

APPENDIX C: FEYNMAN DIAGRAMS

In this Appendix we describe the details of the compu-
tation of the Feynman diagrams. We start from the series in
Eq. (41). This computation involves three parts:
(1) The contribution linear in HI. This term vanishes

identically with the no-tadpole condition.
(2) The piece quadratic inHI. This term is quadratically

divergent at high momenta and must be carefully
regularized to handle the leading and subleading
logarithmic divergences.

(3) The contribution from terms cubic and quartic inHI.
They are only logarithmicly divergent which makes
the separation of the finite parts simpler. Since the
corresponding Feynman diagrams are complicated

4The boundary condition is ��‘ðt;1Þ ¼ @� ��‘ðt;1Þ ¼ 0. The
second order contribution required in Eq. (48) is obtained from
the expansion ��‘ ¼ ��ð1Þ

‘ þ ��ð2Þ
‘ þ . . . , where the superscript

labels the order in Vð�Þ.
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to evaluate we employ the fake boson methods to
compute this part of the vacuum polarization energy.

We first consider the MS scheme in which only the bare
divergences proportional to

� i

�
�

m

�
4�D Z dDl

ð2�ÞD ðl2 � 1þ i0Þ�2;

are subtracted, and then determine the finite counterterm
coefficients suitable to implement the on-shell renormal-
ization scheme.

1. Second order contribution

After imposing the no-tadpole condition5 we find the
contribution to the action functional up to second order in

HI within the MS scheme as

�A¼ � 1

8�2

Z d4k

ð2�Þ4
Z 1

0
dx ln

�
1� xð1� xÞ k

2

m2

�
trI

�
½m2 � xð1� xÞk2�

�
1

2
LðkÞ � Lð�kÞ � 3ðhðkÞhð�kÞ þ pðkÞpð�kÞÞ

�

þ xð1� xÞ
�
k � LðkÞk � Lð�kÞ � 1

2
k2LðkÞ � Lð�kÞ

�
þ 2m2pðkÞpð�kÞ þ imk � LðkÞpð�kÞ

�

þ 1

8�2

Z d4k

ð2�Þ4
k2

6
trI½hðkÞhð�kÞ þ pðkÞpð�kÞ�: (C1)

Here the fields with momentum arguments are the Fourier
transforms of the corresponding spatial fields in Eq. (39).
Specifically, we introduce the notation k :¼ k� ¼
ðk0; k?k̂? þ k3ẑÞ� and L :¼ L� ¼ ðL0;L? þ L3ẑÞ�
with L0 ¼ L3 ¼ 0. As a result, we have

hðkÞ ¼ hð�kÞ ¼ �ð2�Þ3
ðk0Þ
ðk3Þh0ðk?Þ
pðkÞ ¼ pyð�kÞ ¼ �ð2�Þ3
ðk0Þ
ðk3Þð�iÞnpnðk?ÞIPð’kÞ

(C2)

and

LðkÞ ¼ �ð2�Þ3
ðk0Þ
ðk3Þ

�X3
i¼1

½lðiÞ? ðk?; ’kÞk̂þ lðiÞ’ ðk?; ’kÞ’̂k�; (C3)

where ’k is the azimuthal angle in momentum space. The
coefficients are isospin matrices,

lð1Þ? ¼ ð�iÞn�1ð�Þ
r ðk?ÞIPð’kÞ

lð1Þ’ ¼ ð�iÞnðþÞ
r ðk?ÞIPð’kÞ

�1 0

0 1

 !

lð2Þ? ¼ 0

lð2Þ’ ¼ isðk?Þ
�1 0

0 1

 !

lð3Þ? ¼ ð�iÞn�1ðþÞ
c ðk?ÞIPð’kÞ

lð3Þ’ ¼ ð�iÞnð�Þ
c ðk?ÞIPð’kÞ

�1 0

0 1

 !
:

(C4)

The matrix IP is defined in Eq. (40), here to be taken as a
function of the azimuthal angle in momentum space. The
functions h0, pn, 

ð�Þ
r ; . . . are the Fourier transforms

h0ðkÞ ¼
Z 1

0
�d�Hð�ÞJ0ðk�Þ

pnðkÞ ¼
Z 1

0
�d�Pð�ÞJnðk�Þ

ð�Þ
r ðkÞ ¼

Z 1

0
�d�rð�Þ½Jnþ1ðk�Þ � Jn�1ðk�Þ�

sðkÞ ¼ 2
Z 1

0
�d�½Gð�Þs�ð�Þ � �ð�Þs�ð�Þ�J1ðk�Þ

ð�Þ
c ðkÞ ¼

Z 1

0
�d�½Gð�Þc�ð�Þ þ �ð�Þc�ð�Þ�

� ½Jnþ1ðk�Þ � Jn�1ðk�Þ�: (C5)

Some of these terms can be conveniently combined,

X3
i¼1

lðiÞ? ¼ ð�iÞn�1½ð�Þ
r þ ðþÞ

c �IPð’kÞ (C6)

X3
i¼1

lðiÞ’ ¼ is

�1 0

0 1

 !
þ ð�iÞn½ðþÞ

r þ ð�Þ
c �

� IPð’kÞ
�1 0

0 1

 !
: (C7)

Then we find the second order contribution to the energy

�Eð2Þ
FD ¼

Z 1

0

kdk

4�

�
k2

3
ðh20 þ p2

nÞ þ 4m2I1p
2
n

þ 2mkI1ððþÞ
c þ ð�Þ

r Þpn þ k2I2½ððþÞ
c þ ð�Þ

r Þ2
� ðð�Þ

c þ ðþÞ
r Þ2 � ðsÞ2� � ðm2I1 þ k2I2Þ

� ½6h20 þ 6p2
n þ ððþÞ

c þ ð�Þ
r Þ2

þ ðð�Þ
c þ ðþÞ

r Þ2 þ ðsÞ2�
�
; (C8)

with the Feynman-parameter integrals (� ¼ k=m)

5The c3 type counterterm in Eq. (43) contains a term quadratic
in the fluctuations about the Higgs vev. Its finite contribution is
essential to keep the pseudoscalar part of the Higgs field mass-
less, i.e. the expansion of the coefficient of pðkÞpð�kÞ starts at
Oðk2Þ.
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I1 ¼
Z 1

0
dx ln½1þ xð1� xÞ�2�

¼ 2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ �2

q
arsinhð�=2Þ � 2;

I2 ¼
Z 1

0
dxxð1� xÞ ln½1þ xð1� xÞ�2�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ �2

p
3�3

½�2 � 2� arsinhð�=2Þ þ 2

3�2
� 5

18
: (C9)

2. Fake boson method

We have already discussed the spectral part of the fake
boson approach in Eq. (B25). Here we focus on the
Feynman diagram part. First we need to determine the log-
arithmicly divergent contribution to the action from the
third and fourth order Feynman diagrams. They can be
parameterized by a radial integral,

cF ¼
Z 1

0
�d�

�
ð2

H þ 2
PÞð2

H þ 2
P þ 4mHÞ þ 4rðH

0
P � P

0
HÞ

þ 4ð2
r þ 2

G þ 2
� þ 2�Gc�1

Þð2
H þ 2

P þ 2mHÞ � 64

3
2
rð2

G þ 2
� þ 2�Gc�1

Þ

� 8

3

n2

�2
rf

0
Gs�1

s�s� � 4
n

�
P½HðGc� þ �c�Þ þ PðGs� � �s�Þ�

�
; (C10)

where primes denote derivatives with respect to the radial
coordinate. With this radial integral the divergence reads,
in dimensional regularization,

A ðdivÞ
3;4 ¼ �cFTL

�
i

�
�

m

�
4�D Z dDl

ð2�ÞD ðl2 � 1þ i0Þ�2

�
:

(C11)

Here T and L are the (infinite) lengths of the time and
z-axis intervals, respectively.

A boson field that fluctuates about a background poten-

tial Vð�Þ ¼ m2 �
�0
e�2�=�0 causes a similar logarithmic di-

vergence for its vacuum polarization energy at quadratic
order. In fact, the only replacement in Eq. (C11) is cF ! cB
with

cB ¼ 1

4

Z 1

0
�d�V2ð�Þ ¼ 3m4�2

0

512
: (C12)

As for the spectral part, Eq. (48), we rescale the fake boson
potential with the strength of the fermionic divergence cF
so that we are only left with the finite part of the second
order (boson) Feynman diagram,

�EB ¼ � cF
cB

Z 1

0

kdk

16�
I1V

2
0 : (C13)

In this equation, the Fourier transform of the fake boson
background is

V0ðkÞ ¼
Z 1

0
�d�Vð�ÞJ0ðk�Þ ¼ m2�2

0

8� k2�2
0

½4þ k2�2
0�5=2

:

(C14)

For the numerical test mentioned after Eq. (50) we vary �0

and verify that the vacuum polarization energy does not
change.

3. On-shell renormalization

We parameterize the counterterm coefficients in dimen-
sional regularization

cs ¼ �i

�
�

m

�
4�D Z dDl

ð2�ÞD ðl2 � 1þ i0Þ�2 þ �cs; (C15)

for s ¼ 1; . . . ; 4. In the MS scheme, �c1 ¼ �c2 ¼ �c4 ¼ 0,
while the on-shell conditions discussed in the main text
yield (�W;H ¼ mW;H=m)

�c1 ¼ � 1

12

g2

ð4�Þ2
�
1þ 6

Z 1

0
dxxð1� xÞ

�
2 ln½1� xð1� xÞ�2

W� �
xð1� xÞ�2

W

1� xð1� xÞ�2
W

��

�c2 ¼ 2f2

ð4�Þ2
�
2

3
þ 6

Z 1

0
dxxð1� xÞ ln½1� xð1� xÞ�2

H�
�

�c4 ¼ � f4

2ð4�Þ2
�
�2

H þ 6
Z 1

0
dx ln½1� xð1� xÞ�2

H�
�
: (C16)
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We recall that the no-tadpole condition implies �c3 ¼ m4=ð4�2v2Þ ¼ f2m2=ð4�2Þ. In this scheme, the pole position
of the gauge boson field is not prescribed but rather becomes a prediction. We find an implicit equation for the gauge
boson mass:

�2
W ¼ g2

2f2
þ g2

16�2

�
2

3
��2

W

�
1

6
��2

W

Z 1

0
dx

x2ð1� xÞ2
1� xð1� xÞ�2

W

�
þ 6

Z 1

0
dxxð1� xÞ ln½1� xð1� xÞ�2

W�

�
Z 1

0
dx ln½1� xð1� xÞ�2

W�
�
: (C17)

APPENDIX D: LANDAU GHOST ESTIMATE

In the present treatment (without gauge boson loops) our
model is not asymptotically free. This results in unphysical
poles of the renormalized propagators at large spacelike
momenta. These so-called Landau poles are not real sin-
gularities but rather indicate the breakdown of our treat-
ment in certain momentum or parameter regimes. In the
present model the problem has a notable effect only for
narrow background profiles and/or large coupling con-
stants. We have implemented a procedure similar to that
of ref. [47] to verify a posteriori that the interesting con-
figurations do not suffer from this unphysical effect.

Specifically, we write the renormalized quadratic con-
tribution to the energy per unit length coming from the
pseudoscalar component of the Higgs as

v2

2

Z d2q

ð2�Þ2 tr½pðqÞpð�qÞ�G�1
p ðq2Þ

which involves the corresponding (inverse) propagator for
spacelike momenta,

G�1
p ðq2Þ¼q2þf2NC

8�2

�
q2�6q2

Z 1

0
dxxð1�xÞ

� ln
m2þxð1�xÞq2
m2�xð1�xÞm2

H

�2m2
Z 1

0
dxxð1�xÞln

�
1þxð1�xÞ q

2

m2

��
: (D1)

In the vicinity of the Landau pole (q2 m2
G) this propa-

gator has the expansion

G�1
p ðq2Þ  1

ZG

ðq2 �m2
GÞ; (D2)

where

ZG ¼
�
@G�1

p ðq2Þ
@q2

��������q2¼m2
G

��1
(D3)

is the residue of the pole. This allows us to remove the
Landau pole explicitly by introducing

��1
p ðq2Þ ¼

�
1

G�1
p ðq2Þ �

ZG

q2 �m2
G

��1
: (D4)

We eliminate the artificial ghost contribution associated
with the Higgs field from the energy in chirally symmetric
way

EðHÞ
G ¼

Z d2q

ð2�Þ2
�
1

q2
��1

p ðq2Þ
�
ðD��ÞTð�qÞðD��ÞðqÞ:

(D5)

To study the effect of the Landau ghost, this quantity
should be compared to the same contribution without the

Landau ghost removal in Eq. (D4), which we call EðHÞ.
In the same way, we can treat the gauge boson contri-

bution to the renormalized energy per unit length,

EðWÞ ¼ 1

2

Z d2q

ð2�Þ2 tr½W��ðqÞW��ð�qÞ�G�1
W ðq2Þ (D6)

where W��ðqÞ denotes the Fourier transform of the field

strength tensor for the static background, Eqs. (5) and (8),
while

G�1
W ðq2Þ ¼ 1þ NCg

2

16�2

Z 1

0
dxxð1� xÞ ln m2 þ xð1� xÞq2

m2 � xð1� xÞm2
W

(D7)

describes the inverse gauge field propagator for spacelike
momenta. Again, this propagator has a pole at q2 ¼ �m2

G

with residue �ZG which we remove by defining the sub-
tracted inverse propagator

��1
W ðq2Þ ¼

�
1

G�1
W ðq2Þ �

�ZG

q2 � �m2
G

q2

�m2
G

��1
: (D8)

The Landau ghost eliminated gauge field energy then
becomes

TABLE VIII. Landau ghost removal for g ¼ f ¼ 10. As an
example we have chosen �1 ¼ 0:3�.

wG ¼ wH EðHÞ þ EðWÞ EðHÞ
G þ EðWÞ

G

0.1 �15:597 3.220

0.5 �0:168 0.209

2.0 0.041 0.082

4.0 0.061 0.077

6.0 0.068 0.077

8.0 0.070 0.077
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EðWÞ
G ¼ 1

2

Z d2q

ð2�Þ2 tr½W��ðqÞW��ð�qÞ���1
W ðq2Þ: (D9)

Asymptotic freedom implies that the Landau poles at large
spacelike momentum in the various propagators should
disappear at any order in perturbation theory, and also in
the full theory. We therefore expect that the difference

between EðHÞ þ EðWÞ and EðHÞ
G þ EðWÞ

G is small whenever

the effect of the unphysical Landau ghost in our model can
be safely ignored. For the model parameters that we found
interesting, g ¼ 0:72 and f � 2, this condition is indeed

satisfied since the relative difference between EðHÞ þ EðWÞ

and EðHÞ
G þ EðWÞ

G is only a fraction of a percent even for

narrow configurations with wG ¼ wH ¼ 0:1.

To see that there are indeed background potentials where
the Landau ghost contribution is sizeable, we present the

same comparison between EðHÞ þ EðWÞ and EðHÞ
G þ EðWÞ

G

for g ¼ f ¼ 10 in Table VIII. We observe that the
Landau ghost causes the well-known instability for narrow
configurations and large couplings [48]. However, for
wider configurations its effect is moderate even when the
coupling is large. It should be emphasized that the present
approach to the Landau ghost problem is only qualitative
since the energy expressions (D2) and (D6) are not rigor-
ous. However, the present method convinces us that the
configurations discussed in the main body of this article do
not suffer from this problem.
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