PHYSICAL REVIEW D 84, 025014 (2011)

Casimir interaction of concentric spheres at finite temperature
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We consider the finite temperature Casimir effect between two concentric spheres due to the vacuum
fluctuations of the electromagnetic field in the (D + 1)-dimensional Minkowski spacetime. Different
combinations of perfectly conducting and infinitely permeable boundary conditions are imposed on the
spheres. The asymptotic expansions of the Casimir free energies when the dimensionless parameter &, the
ratio of the distance between the spheres to the radius of the smaller sphere, is small are derived in both
the high temperature region and the low temperature region. It is shown that the leading terms agree with
those obtained using the proximity force approximation, which are of order Te!~? in the high temperature
region and of order £ in the low temperature region. Some universal structures are observed in the next
two correction terms. The leading terms of the thermal corrections in the low temperature region are also

derived. They are found to be finite when & — 0" and are of order 7P*!.
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L. INTRODUCTION

The Casimir effect is one of the most interesting macro-
scopic phenomena in the quantum theory of fields. It has
been under active studies under various contexts [1]. The
success in its experimental verification [2—7] has intensi-
fied the interest in this effect. In recent years, the thermal
correction to the Casimir effect has attracted increasing
interest both theoretically and experimentally [1,7-10].

The interest in the Casimir effect of spherical objects can
be dated back to the work of Boyer [11], where he com-
puted the zero temperature Casimir force acting on a three-
dimensional perfectly conducting spherical shell and found
that it is repulsive. This result has later been confirmed in a
number of other works [12—19]. Since then, the Casimir
effect in spherical configuration has attracted considerable
interest. The cases of scalar fields, spinor fields, and vector
fields have been considered in various works [20-28]. In
fact, in [21-26,28], the authors considered spherical shells
in general (D + 1)-dimensional Minkowski spacetime
rather than restricted to four dimensions. One of the moti-
vations for this is that physics in higher-dimensional space-
times have become a trend since it was found that the
existence of extra dimensions might be used to resolve
some fundamental problems in physics, such as the hier-
archy problem. Another reason is that the dimension of
spacetime can be used as a perturbation parameter in
quantum field theory calculations [21,29,30].

For the last ten years, there has been an intense interest
in studying the Casimir interaction between two objects.
Several methods have been developed to compute the
Casimir interaction beyond the proximity force approxi-
mation, such as the functional determinant or the multiple
scattering method [31-36] and the worldline approach
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[37-39]. The corrections to the proximity force approxi-
mations have been computed for several geometric con-
figurations, such as the sphere-plane [31,38,40-43],
cylinder-plane [31,38,44-46], cylinder-cylinder [46—48],
sphere-sphere [49,50], etc. Recently, there has been an
interest in considering the finite temperature correction to
the Casimir interactions [51-55].

As a matter of fact, the Casimir interaction between two
concentric spheres in D = 3 dimensions has been consid-
ered in [56-58]. For scalar fields or spinor fields in general
D dimensions, the zero temperature Casimir effect on two
concentric spherical shells has been studied in [59-64]. In
[65], we have derived the zero temperature Casimir inter-
action between two concentric spheres due to the fluctua-
tions of the electromagnetic field in the D-dimensional
space. In this article, we consider the finite temperature
effect. Moreover, we would derive the asymptotic behav-
iors of the Casimir free energy when the separation be-
tween the spheres is small. The results are compared to the
proximity force approximations.

In this article, we use units where 2 = ¢ = kg = 1.

II. CASIMIR FREE ENERGY
OF CONCENTRIC SPHERES

Consider two concentric spheres with radii a; and a,
(a; < a,) in (D + 1)-dimensional Minkowski spacetime,
with either the perfectly conducting or the infinitely per-
meable boundary conditions. The electromagnetic field
F,,=d,A, —d,A, satisfies the field equation

1
= (\llglg’“g“(a A —3,4A,)=0.
NriG g g

As usual, the Coulomb gauge
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is imposed to remove the gauge degree of freedom. The
eigenmodes of the field are divided into TE modes and TM
modes. In terms of D-dimensional spherical coordinates

(r,0),0 =(0,,...,0p_, ¢), the TM modes have the form
A, = e 0t~ D(C, ], (rw) + C)N,(rw))Y; ,,(0),
. d
A, = e 0t 3-D "
0 e r dr

X (rP=22[C\ ], (rw) + CoN,(ro) )Y, (0).

The TE modes can be divided into (D — 2) sets; each of
them has the form

A, =0,

Ag = ef"“”r(“*D)/z(ClJ,,(ra)) + CyN,(rw))Y; ,,(0).
Here,v =1 +232 . m = (m,,...,mp_y),J,(2),and N, (2)
are Bessel functions of the first kind and the second kind.
The sets of m have been discussed in detail in [65]. For TM
modes, each fixed [/ has
2I+D —-2)(l+ D —3)!

bi(D) = (D — 2)!I!

allowable m, whereas, for TE modes, each fixed [ has

(I+D—=2)2l+ D —2)(l+ D —4)!
(D =3)1(1+1)!

h(D) =

allowable m. The perfectly conducting boundary condition
is equivalent to

(5o~ 5%)
90, 90,

=0,

boundary

1=i<j=D-1

Therefore, for TE modes, the perfectly conducting bound-
ary condition on r = a; implies
C1J,,(a,-a)) + CZN,,(a,-w) = 0,
whereas, for TM modes, we have
d

E(r(D*Z)/Z[QJV(rw) + GN, (ro)])l,—, = 0.

fi1(§) = In(1 — M,(£)),
M(§) =

(ai1,(aé) + Bra €l (a1 6))(arK,(ar€) + Bra €K (ay€))
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The infinitely permeable boundary condition is equivalent

to
(aAgi - aA,)
or 80 i
Therefore, for TE modes, the infinitely permeable bound-

ary condition on r = a; implies

%( @=DILC, T, (rw) + CoN, (r)])l,—, = O,

1=i=D-1.

=0,

boundary

whereas, for TM modes, we have
CJ,(a;w) + CyN,(a;w) = 0.

The interacting Casimir free energy Ec,, of the concen-
tric spheres can be written as a sum of the contribution
from the TE and the TM modes:

Ecys = E1e t+ Emme (D

In the following, we will use E to represent either Etg or
Ety. Using the zeta regularization method, the Casimir
free energy is given by [see, e.g., [1], Eq. (5.17)]

Eew = =5 (@0) + 10wl 0), @)

where u is a regularization parameter with the dimension
of mass, {7(s) is the zeta function

{rl(s) = Z Z (0 + &)77
w p=—
o are the TE or TM eigenfrequencies, and &, = 27 pT are

the Matsubara frequencies. As in the zero temperature case
[65], one can show that

=Zsin77's°° ' [/ 02 s
() == S o)y, [Ee-a
d
X d—gfl(f)df, 3)
where d,(D) = h;(D) for TE modes, d;(D) = b;(D) for

TM modes, and

(4)
I=12...

I,(z) and K, (z) are modified Bessel functions of the first
kind and the second kind. The values of «; and 83; de-
pend on the type of modes and the boundary condi-
tions imposed on the sphere r = a;. They are listed in
Table I.

(arl,(ar€) + Brarél,(aré))(a K, (a &) + BraéK)(a €))’

As in [65], one can show that

[e o) 0 / 00 d
2 g2y—s
lzzldlw)];] L (&) e
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TABLE I. The values of «; and ; under different boundary
conditions.

Type of mode Sphere r = a; a; Bi
TE Perfectly conducting 1 0
™ Perfectly conducting b2 1
TE Infinitely permeable % 1
™ Infinitely permeable 1 0

is an analytic function of s. Therefore, {7(0) = 0, and

;Tm)—zzd,(mz el
=1
= —ZZdZ(D)Z fz(fp)-
=1 p=0
Since
1@ = (3) pi gl + o)
K= (5) 0+ 0@

as z — 0, we find that

_(a; + Biv)(ay = Byv) [ﬂ]z”)

(@) — Biv)(ay + Brv) Lay
Therefore, from (2), we find that the TE or TM contribution
to the Casimir free energy is given by

£,0) = ln(l

E= Tz d,(D)(%fl(O) + Zlfz(fp))
= =
XL (1

Z Z (D) f1(€)). (5)

ﬂ

Sy ey kD

o

Using the Poisson summation formula, the Casimir free
energy (5) can also be written as

E—Ey+ ZZdAD) [0°°f1(§>cos”—fd§, 6)

=1 p=

where
1 & 00
By = 5, 3.d/D) [0 FlE)de )

is the zero temperature Casimir energy (vacuum energy).
The expression (5) is suitable for the study of the high
temperature limits of the Casimir free energies, but, for the
low temperature limits, the expression (6) would be
preferred.
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From the expression (5) for the Casimir free energy, one
can use the argument in [65] to show that the force acting
on the spheres is always attractive when the two spheres
have the same boundary conditions (homogeneous bound-
ary conditions) and is repulsive when one of the spheres is
perfectly conducting and the other is infinitely permeable
(mixed boundary conditions).

II1. PROXIMITY FORCE APPROXIMATION

In this section, we discuss briefly the proximity force
approximation of the Casimir free energy when the sepa-
ration between the spheres is small compared to both radii
of the spheres. Define a dimensionless parameter

a, —a; d
e = ==,

a a;

where d = a, — a; is the distance between the two
spheres. In the following, we are going to study the asymp-
totic behaviors of the Casimir free energy when ¢ << 1. We
consider the following two regions:

(1) Low temperature: dT <K a,T < 1;

(2) High temperature: a,T > dT > 1.

For a pair of infinite parallel plates in (D + 1)-
dimensional spacetime, the Casimir free energy density,
as a function of the separation between the plates d, is
given by [66,67]

F(D+l)
Edy(d) = )( mfR(D + 1) )

®)

or

I'®) T

Elald) = (0= (= 35 25 6D) s + ), ©)
if both the two plates are perfectly conducting or infinitely
permeable. We refer to these as the homogeneous bound-
ary conditions. (8) is the low temperature asymptotics, the
leading term being the zero temperature term, and (9) is the
high temperature asymptotics, the leading term being
called the classical term. The factor (D — 1) is due to the
(D — 1) polarizations of photons in (D + 1)-dimensional
spacetime; (D — 2) of them come from the TE modes, and
one of them comes from the TM modes.

In the case of mixed boundary conditions, i.e., one plate
is perfectly conducting and one plate is infinitely perme-
able, the corresponding Casimir free energy density is

(D—1)

(D+1)
(m(l =27 ")k

Cas (d)

1
(D + l)d—D—i-...)

or
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L) = (D= )5 2051 =21 D)D) ),

In the case of two concentric spheres, the proximity
force approximation of the Casimir free energy is particu-
larly simple. It is given by the product of the surface area of
the sphere (either one) with the Casimir free energy density
between two parallel plates. Since the surface area of a
(D — 1)-dimensional sphere of radius a; is

2702
ﬂ sb-1 = —Dal - y
I'(2)
the proximity force theorem implies that, in the low tem-
perature region, the proximity force approximation to the
Casimir free energy between the spheres is

F(D+1)
PFA _ [PFA _
Ey ~ Ecago = (D 1)( mQ(D +1)
v 277'2/2 alD—liD)
I'®) d
1 D-— (ﬂ)
=== D+ 1)—2 10
\/;(1 2D D é’R( ) F(g) ( )
for homogeneous boundary conditions and is
1 D- _
EGS ~ EGly = Trar W(] —27P)(D + 1)
I
X by (1)
r'®)

for mixed boundary conditions. Notice that these leading
terms are of order ¢ 2, D being the space dimension.

In the high temperature region, the proximity force
approximation gives

~ EPFACl _ D—1

PFA — _
E Cas 2D—ISD—1 gR

Cas (DT (12)

for homogeneous boundary conditions and

~ EPFA, o _ D -1

PFA
E Cas 2Df 1Dl

Cas (1 - 2170)5R(D)T (13)

for mixed boundary conditions. These are of order Te! P

In the following, we use the exact formulas (5) and (6)
to find the asymptotic expansions of the Casimir free
energy and compare to the proximity force approximations
(10)—(13). We start with the high temperature asymptotic
expansion because it is less technical.

IV. SMALL SEPARATION ASYMPTOTIC
EXPANSIONS OF THE CASIMIR
FREE ENERGIES IN THE HIGH

TEMPERATURE REGION

From (5), it is easy to see that, in the high temperature
region, where a,T >> dT >> 1, the Casimir free energy is
dominated by the term (classical term)

PHYSICAL REVIEW D 84, 025014 (2011)

a_T's _(ay +Biv)(ay = Bav)[ay T
. ZIZIdI(D)ln<1 (01_,311’)(“2"'327/)[02] )
(14)

In the following, we derive the asymptotic expansion of
this term when & < 1. We consider the case of homoge-
neous boundary conditions and the case of mixed boundary
conditions separately.

A. Homogeneous boundary conditions

In the case in which both spheres have the same bound-
ary conditions, we find that the high temperature limit (the
classical term) of the Casimir free energy (14) is the same
and is given by

-3 g -[2])

i d/(D)In(1 — e~2%),

Nl'ﬂ

where
a=— 1og— 10g<1 + ) Z(—l)’ 12 (15)
Since h;(D) and b;(D) can be expanded as
D2 ' D-2 '
> xpv, bi(D) =Y yp,v,
=0 =1

we can write d;(D) as d,(D) = ] 0 ijVJ Then,

hy(D) =

Ecl - _ je—ZakV

@) Gl + 1

TR (G + 1 >—+0(lna> (16)

We have used the inverse Mellin transform formula

—u 1 c+ico
et =—

I'(z)u%dz (17)
270 Je—ioo

and the fact that the Hurwitz zeta function (y(s;c) =

® o(n+¢)™* has a single simple pole at s =1 with
residue 1. In fact, the use of the inverse Mellin transform
(17) and the residue theorem allows us to find the full
asymptotic series in « from the second line of (16). The
last line of (16) gives the asymptotic series up to the term in
Ina. Using (15), we can rewrite this asymptotic expansion
in terms of &. Since
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2

(D —3)V
2

(D —-2)

XDp:p-2 = XD:p-3 = 0,

YD:p-2 = YD.p-3 = 0,

we find that, when D = 4, the first three leading terms of
the TE and TM contributions to the classical term are
given, respectively, by
D—1 D — —
L2 (3 8)(D —1)
24

E ~ EE‘;;A’CI{l +e

- &

— 6D + 32 (D — 2)}
6(D —2) (D) T

D-1, ,B6D-8(D -1
24

ESy ~ E?;f’d{l +e

_ 82D —4 (D — 2)},
6 {r(D)

where EFEM and ESAt! are, respectively, the proximity
force approximations for the TE and TM contributions,
which are (D —2)/(D — 1) and 1/(D — 1) times the total
proximity force approximation (12). The first three leading
terms of the Casimir free energy are then given by
D—1 — -

42 3D —8)(D—1)

24

1 PFA,cl
ECCas -~ ECas ¢ {1 te

- &

,D*—5D +28 §R(D—2)}. (19)

6(D — 1) {r(D)

When D = 3, a more precise computation shows that the
first three leading terms of the Casimir free energy are

Ed ~ Eg °1{1 +e+ &? lns}

11
64r(3)

= _2—22513(3){1 g2 lna}.

N 11
6x(3)

This has equal contributions from the TE and the

TM modes. From (19), we see that the proximity force

29
(ln(l + %) + ln(l +
v—

l)k 1

DA

For the /; term, we find, as before,

b w
I~ 3 PRELG)1 = 204 + 1)+ Olina)

where we have used
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_ _D*-6D+32
AD:D—4 120D —4)
: (18)
Yp;p—4 = T m

approximation underestimates the Casimir free energy, and
the underestimation is worse when the space dimension
becomes larger.

B. Mixed boundary conditions

In the case in which r = a, is perfectly conducting and
r = a, 1is infinitely permeable, we find that the classical
terms of the TE and TM contributions to the Casimir free
energy are given, respectively, by

l 4-D a; v
E%Ez—Zhl(D)ln(l + ~|—4_—D|:a_2:| )

2

By == Zb(D)1n<1+ +§z[ 1]2”)

2 ar

In the case in which r = a; is infinitely permeable and r =
a, is perfectly conducting, we have

J’_
ES, ——Zh (D)ln(l + Iz

By =7 Z b,(D) ln<1 + 2=
=1 4
Consider a series of the form

_ i (D)1n<1 L2 g[az] )

. + 9
’m‘D;j Z v/ ln(l + : — ﬁe_zay),
=1

I
™M

Jj=0

which can be rewritten as the sum of two terms:

)

72ozku+z,w. quz( De! _
D;j—1 k (V—ﬁ)k (e2a1/+1)k

(29 1

I + L. (20)

00 k—1
z( D (1= 240,

For the I, term, since
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k+r—1
)(2C¥19)r/\jkr1,k + O(lna),

From these, we can derive the leading terms of the Casimir

If the sphere r = a, is perfectly conducting and the

sphere r = a, is infinitely permeable, then = 2 24 and

L.P. TEO

Z 1 1 joo (x + 25 2)/ 1 1 dx

o (V _ 0)k (62111/ + l)k | ()C + D=2 2 19)]( (ea(2x+D 2) + l)k

j—k—1
w5 (7
[
where
. S free energy.

mv 0 (eu + 1)1/ u,

we find that

(D1 ok TE Yk + -1
ZWDJIZ k (2a)jk rZ()( : )
X (Zaﬁ)r)\j_k_r_lyk + O(lna)

J

= D 2 respectively, for the TE and TM modes. When
D = 4 we find that the first three leading terms of the TE
and TM contributions to the classical term are given,
respectively, by

o __ pPFAC D—1 2(D—4)2° =8 r(D—-2) ,BD—8)(D—1)
Efg ~ Erg {1+8 > +e D=2 22=2 (D) + e 24
N ,5D* =30D +162° =8 (x(D —2) =, 2(D—4)? 2P —32 (D —4)
T6D-2 22-2 40) T D-2D-3) 222 D) }
o e D—-1 2 -84(D-2  ,BD-8)D-1)  ,5D-82" 8 (D -2)
ESy ~ Ery {1+s > +282D_2 (D) + & 24 6 22-2 {uD)
,2(D —2) 2P — 32 (D — 4)
(D=3) =2 D) } @

where EXEA

and E?;f’d are, respectively, the proximity force approximations for the TE and TM contributions, which are

(D —2)/(D—1)and 1/(D — 1) times the total proximity force approximation (13). The first three leading terms of the

total Casimir free energy are thus

D—1 2(D-3)2° -8 (D -2) (3D - 8)(D — 1)
Ecl NEPFA,Cl{l + + R 2
Cas 7 PCas T2 b1 22 o ° 24
+825D2—25D+82D—8§R(D—2) ,2(D* —171D + 14) 2P — 32 gR(D—4)} 22)
6(D—1) 2°-2 (D) (D—-1(D—=3) 2° =2  ((D)
When D = 5, the term (2° — 32)/x(D — 4) in (21) and (22) is understood as
Iljimj(ZD — 32)(D — 4) = 321n2.
When D = 3, a more detailed computation gives
8 2 T 8 2
EC‘~EPFA'°1{1+ —~eln2 — ———1 }=— 3{1+ —~&ln2 — 1 } 23
TE TE g 3sn 340 ne 1682§R( ) e 3sn 35.0) ne (23)
8 2 3T 8 2
E ~EPFA'°1{1+ +oeln2— —— 1 }=— 3{1+ +oeln2 — —— 1 }
M~ Em et+zeln 35.0) nef = r(3) etzehn 35.0) ne s

1 PFA,cl _
E&as ECdb ¢ {1 t+e

2
34r(3)

lns} — % gR(3){1

2
- 30.03) lns}.

If the sphere r = a, is infinitely permeable and the sphere r = a, is perfectly conducting, then % = * 2D and ¢ = 252 2 ,
respectively, for the TE and TM modes. When D = 4, the first three leading terms of the TE and TM contributions to the

classical term are given, respectively, by
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2D-4)2° —8 (D -2) ,

D—-1
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,(3D —8)(D — 1)

ESL ~ E?EA'CI{I + e

s

> D=2 -2 &b ° 24
,7D* — 42D + 80 2P — 8 {x(D — 2)

6(D-2) 2P
D-1_

-2 (R(D)

,  2(D—4)7 D —32 [p(D —4)
D23 22 -2 (D) }

EShy ~ E?;f'“{l +e

,7D — 16 2P = 8 {x(D — 2)

- &

. D_8§R(D_2)+
2P =2 (D)
22(D—2) 2D — 132 lp(D — 4)

2BD=8)(D 1)
24

6 2°-2 (D)

(D—3) 2P —2

{r(D) }

The first three leading terms of the total Casimir free energy are thus

ol PFAcl D—1  2D-3)2°-8(D-2)  ,(B3D—-8)(D—1)
ECas ECds {1 te 2 € D—1 20 -2 ZR(D) & 24
L2 D> —35D + 64 2P — 8 {x(D —2 ,2(D* =D + 14) 2P — 32 {»(D — 4)
e —1)  22-2 (D) (D—-1D(D—-3) 2°=2 (D) }

When D = 3, by duality, the TE contribution is given by
(24), and the TM contribution is given by (23).

Observe that the corrections to the proximity force
approximation in the case of mixed boundary condi-
tions are more complicated than the case of homogeneous
boundary conditions. We also find that the proximity
force approximations underestimate the Casimir free
energies.

In comparing the first correction to the proximity force
approximation for the two scenarios of mixed boundary
conditions, we find that, in the high temperature region, the
force is stronger when the sphere with the smaller radius is
perfectly conducting and the sphere with the larger radius
is infinitely permeable.

V. SMALL SEPARATION ASYMPTOTIC
EXPANSIONS OF THE CASIMIR FREE ENERGIES
IN THE LOW TEMPERATURE REGION

In the low temperature region, the Casimir free energy is
dominated by the zero temperature term. Making a change
of variables & — w/a; in (7), we find that the zero tem-
perature Casimir free energy can be written as

& .
E, = Fal g 4,(D) L In(l — A, (0))de

27Ta Z

s=1

hl»—

S d,(D)v ooA,,(Va))"da),
X!

where

(a1], () + Bol,(0)(a:K,(o(1 + &) + Bro(l + £)K(o(1 + £)))

Anlw) = (oK, (0) + BiowK ()] (w1 + &) + Brw(l + &)l (w(l + &)

From Debye asymptotic expansions of Bessel functions [68,69], we have

a;l,(vo) + Birwl,(vw) if a; =

a;K,(vw) + BiroK, (vw)

{% exp<2vn(w) +237, DM%W),

o Mar (@)
= eXp<2vn(w) +23E, %) it pi =1,

where

V1 I S
n(z) =V1+2° + T m 1(2) =
i Dzlj’(‘t) ( i uk(t)) Z Mkﬁ(t) _ 1n<1 N i vi(r) + ::mkl(t))y

k=1 k= k=1 k=1
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and u(7) and v, (¢) are polynomials in ¢ defined recursively
by

up(r) = 1,
201 — 12 .
ui(t) = %uiﬂ(r) + % j;)(l — 57 uy_(7)dr,
vo(t) = 1,
_ 42
00 = w0 — 201 = A 0 =0

In the following, we discuss the asymptotic expansions of
the zero temperature Casimir free energy for the case of
homogeneous boundary conditions and the case of mixed
boundary conditions separately.

A. Homogeneous boundary conditions
In this case, a; = a,, B; = B,. We find that

Ay(vw)~eXp(—2V(n([1 + elw) - n(w)

¥ Py (1([1 + 83;2)_)1— PZk-l(r(w))), (25)
k=1

PHYSICAL REVIEW D 84, 025014 (2011)

TABLE II. The polynomial P.(¢) under different boundary
conditions.

Type of modeBoundary conditions on both spheres  P(r)
TE Perfectly conducting D (1)
™ Perfectly conducting My (p—2),2(1)
TE Infinitely permeable My (4—py2(1)
™ Infinitely permeable D (1)

The polynomials P;(t) are equal to D;(t) or M, ,(t), de-
pending on the type of modes and the boundary conditions,
as shown in Table II.

In the following, we only find the first three terms in the
asymptotic expansion when & — 0*. For this, it is suffi-
cient to take the k = 1 term in (25). The polynomials D (z)
and M, (1) are given explicitly by

513 3 713
- = M, ,(t) = (a - —)t +—

D1 =1
! 8 24’ 8 24"

Therefore, we can write P,(t) as P;(f) = At + y#>. Using
(17), we have

S L= B PL(t(w(1 + 2) - Py((w))
EO~_27Ta1 ;Ejzo wp, v/ ]/0 eXp( 2s|:1/(77((1 + g)w) — n(w)) + ” :I)dw
1 L2 i [ 1 ctico . -, _ .
g 2 2 ™ [ [ TR e 01+ 0o = )
1Pl + £)) — Py(iw))\ <
X(l-f-? 2+ 9w) — (@) ) dzdw.
Since
e o) | 0t @) sl De? )’
(1 + £)w) = (@) = &0~ (0) (1 T [-= L . n,(w)2]+...),
1P + ) = P\ _ 2 Piliw)
(T g = ate) ) = g M@
we find that
Dh—2 c+ioo
By~ 5 ]Zowmﬁ [T e+ e (x5 - 1:5) A0 - B -+ 163)) ¢

where

R R (R

P (t(w))t'(w)

@) dw.

B(z) — [0 * (07'(@)

It is straightforward to find that

_ sz nl//(w)

s 7'(w)
o 3

2z + Dw? 7'(w)?
e
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Jr T z—1, & (z—=1)3z2-2z-17)
J’Zl()—T 6] <1+s Y " )
_ETED il @+ DE+3)
B(z) = > F(Z;z)( A+ (A 371+2+37(Z+2)(z+4)>'

From this, the residue theorem gives

1 g w@p 1 D— 2 D/
Ey~ " ma, ]Z 2,+2 ,+2 TG +2)(G+3)AG+2)+ ma Z TN TG+ DG+ DBG) + .
~ -1 Too 1 @wppy B B
27a, (2e)P T'(D)Zz(D + 1) A(D) — o o) ZDDAT(D — 2) (D — 1)A(D - 2)

1 wpp
2ma, (2e)P~?

For perfectly conducting boundary conditions on both spheres, we have A = g, y =

D=2 __
2 8’

I'(D — 1){g(D — 1)B(D — 2).

—5; for TE modes and A =

= ﬂ for TM modes. Using (18), we find that, if D = 4, the first three leadmg terms of the TE and TM

contributions to the zero temperature Casimir free energy are given, respectively, by

., ,(0-1)GD*~2D-17)

D —
Ergo ~ EPFA{I +
TEO T IEOLT T T 24(D +2)

,D* —4D3 +20D? + 76D — 21 {x(D — 1)
6D(D — 1)(D +2) Lr(D + 1)}’

D —
Fmo = E%){l T 24(D + 2)

where ETFY and ETY, are, respectively, the proximity
force approximations for the TE and TM contributions,
which are (D — 2)/(D — 1) and 1/(D — 1) times the total
proximity force approximation (10). When D = 3, the
term @p, p_4 has to be set to zero. One obtains

77.3 2 5 5
Erpo~———(1+e+Z-22) (6
TEO 360a183( T 4772) (26)
3 19
Ero~— T (1445 w22 27
™0 360a183< 593 2) @7)

Summing the TE and TM contributions, we find that, if
D = 4, the asymptotic expansion of the zero temperature
Casimir free energy is given by

D-1_,(D—1)(BD*-2D—17)
 EPFA 11 4 +g2
Eeuo ECaS»O{l 2 24(D+2)

—4D3 +20D* +40D — 129 {(D = 1)].
6D(D+2)(D—1) Lr(D+ 1)}’

— &

and, if D = 3,

> g2 7
Ecpeg~————|1+e+—+ 2—+...>.
Cas0 18061183( S TRy

+ ,(D—1)(3D*—2D —17)

,D* —4D3 — 16D* + 4D + 87 {(D — 1)}
6D(D +2)(D — 1) LD+ D)

For infinitely permeable boundary conditions on both
spheres, A =452 — 3y =T for TE modes and A =},

y = —25—4 for TM modes. Therefore, we find that, if
D = 4, the first three leading terms of the TE and TM
contributions to the zero temperature Casimir free energy

are given, respectively, by

-1 e ,(D—=1)(3D*—=2D —17)

ETE,O -~ E%i:[,}){l te

2 24(D +2)
_82D3—3D2+29D+57§R(D—1)}
6D(D +2) KD+ DS
D—1 D—1)3D*—2D—17
ETM'ONE%O{HS > e : );4(D+2) :
L2 (D?=T7)(D —3) {p(D - 1)}
6D(D+2) H(D+1)])

When D = 3, the TE contribution is given by (27), and the
TM contribution is given by (26), due to duality. Summing
the TE and TM contributions, we find that, if D = 4, the
asymptotic expansion of the zero temperature Casimir free
energy is given by

1, .0 1)3D%—2D —17)

D—
ECas,O NEESQO{I te D)

24(D +2)
B ,D*—4D%+32D?—8D —93 {x(D— 1)
€ 6D(D+2)(D—1) gR(D+1)}'
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TABLE III. The polynomial P,(t) and Q; under different boundary conditions.
Type of mode Sphere 1 Sphere 2 P (1) 0,(1)
TE Perfectly conducting  Infinitely permeable D (1) My 4—p)2(t)
™ Perfectly conducting  Infinitely permeable M (p—2)/2(t) Dy (1)
TE Infinitely permeable ~ Perfectly conducting M (4—p)/2(7) D, (1)
™ Infinitely permeable  Perfectly conducting D (1) My (p-2)2(t)

It is interesting to note that, in the case of homogeneous
boundary conditions, the first analytic correction to the
Casimir free energy has the form

D -1 )
+ ...
2

both in the high temperature region and the low tempera-
ture region. This is already true for the TE and TM con-
tributions separately. It also follows that the proximity
force approximation always underestimates the strength
of the force.

E= EPFA<1 +e

B. Mixed boundary conditions

In this case, a; # @y, B; # B,. The expression for
A, (v(w)) is more complicated:

1 Rz 1

Z WDij5i

=0
1 + 1

+ 1L Z(z+ 1)
e 2

27ra,

. D
G(Z)ZH(Z —Jjt 3;5)) +.o
where A (z) is the same as before, and

01 (H(w))t'(w)
7' (w)

G(o) — fo ® (0 (@)~ 2T (o)) do.

C) = [0 m(wn’(w))fz[

: /j: [(2)27(1 — 279 p(z + 1)8*Z<§H(z —j- 1;§)ﬂ(z) - zC(z)ZH(z —-j+ 1;9)

—(z+1 + -

A (vw) ~ exp(—sz([l + elw) — n(w)

_ Zg O (1([1 + &lw)) — sz—l(l(w)))

V2k—1

The polynomials P(r) and Q,(r) are equal to D;(t) or
M, (1), depending on the type of modes and the boundary
conditions, as shown in Table III.

In the present case, the computation is more involved
because Pi(t) # Q(t). Proceeding as in the previous sec-
tion, we find that

2

(28)

T (1(w)) 7"(w)

1T (t(w))] o

2 7 e on(o)

Here, 7 (1) = Q,(t) — P,(f) can be written as T (t) = &t + . On the other hand, writing Q,(7) as Q(t) = At + y£>, we

find that
Jr TED) z+1 \z+1
=" A+ (A =3y +
€& = r(%)< A (" vt 6)z+2
ﬁﬂ%)(z z+3  ,(z+3)z+5)
=7 +
Gl =73 rEy\® T T a6
Then,

z+1 z+DE+3) 1
2 K)(z+2)(z+4)+5[5
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| | D=2
" 2ma, JZ 2,+2 2LSTG+2)(1 = 2772 ( + 3)AG +2) - S, Z ZJDJJF(] + 1)1 = 279)Zx(j + 1CG)
1 D—2
a2 T = 270G = 106G =20+

~ 2;6,1 B2 LD = 27P)5(D + DAD) +5— : %F(D —2)(1 = 22 P) (D — ) AD —2)

_ 1 Wp:p-2 _ _ »2-D _ _
Y 72D728D72F(D D1 =222 (D - 1)C(D - 2)

b wpps — _ H4-D _ _
27a, 2D—3gD-2 r'o-2)(1-2 )gR(D 3)G(D 4)+ ...

If the sphere r = a, is perfectly conducting and the sphere r = a, is infinitely permeable, we find that the first three
leading terms of the TE and TM contributions to the Casimir free energy are given, respectively, by

D—1 2(D*>—4D + 1) 2P — 4 (D — 1) (D —1)(3D*>-2D —17)
Ergo ~ EREAL1 + + 2
TE,0 TE,O{ g & DD—-1) 22 —1&D+1) e 24(D +2)
e 5D3 —15D> — 59D — 15 2P — 4 {x(D — 1) o2 2(D* — 6D + 2D* + 28D — 13) 2P — 16 {x(D — 3)}
6D(D + 2) 20 —1 (D + 1) D(D — 1)(D —2)(D +2) 20 —1 (D + Df
D—1 2(D*—2D—1)2P —4 ;x(D - 1) (D —1)(3D* — 2D — 17)
Eqyo ~ ERRA {1 + + + &2
TM.0 TM,0 ) & DID—1) 2°—14&D+1) ¢ 24(D +2)
N ,5D% —3D> = 23D +92P —4 (D — 1) N ,2(D + 1)(D? = 3D> = 3D + 11) 2P — 16 {(D — 3)}
t] &
6D(D +2) 20 —1 (D + 1) (D —1)(D —2)D(D + 2) 20 —1 (D + DS

where ETLY and Ef\f are, respectively, the proximity force approximations to the TE and TM contributions, which are
(D—2)/(D—1) and 1/(D — 1) times the total proximity force approximation (11). It follows that the total zero
temperature Casimir free energy is

D-1, 2D-3) 2D—4§R(D D, L(D=DED*—2D-17)
Ecys0 ~ Egoty {1 + + 2
e A S AGES 24(D + 2)
. 25D* = 20D — 32D% + 80D +39 27 4 &(D ~ 1)
&€
6D(D — 1)(D +2) 20— 14D+ 1)

,2(D* — 6D3 + 6D? + 24D — 37) 2P — 16 (D — 3)}
€

DD—DD—-2)D+2) 2°2—1 &GO+ DJ

When D = 3, we have

E 7 - (1 )+£ , 13 B, 2192}

~—— el 11— — & =t
TEO 288083 15 7

773 s ,192
ETM’0~4288083 1+a<1+ ) 772+ - 4} (29)
£ 73 . (1+1+192)}
~ & E
Cas0 144083 15 = 77

If the sphere r = a, is infinitely permeable and the sphere r = a, is perfectly conducting, we find that the first three
leading terms of the TE and TM contributions to the Casimir free energy are given, respectively, by

025014-11
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_ 2 _ + D _ _
e T ST
,7D* — 28D + 8D + 148D — 63 20 — 4 £x(D — 1)
6D(D — 1)(D +2) 20 —1 (D + 1)
,2(D* — 6D3 + 2D? + 28D — 13) 22 — 16 £z(D — 3)
DD - 1)D -2)D +2) ?—1@m+n}
D-1 2(D>—2D —1)2P —4 ;x(D - 1)
2 T DD-1) 22—-1&4D+1)
,7D* — 16D — 40D + 64D + 57 20 — 4 £x(D — 1)
6D(D — 1)(D + 2) 2 —1MD+1)
L,2(D + 1)(D? — 3D — 3D + 11) 22 — 16 {1(D — 3)
CTTDO-DD-2DD+2) 22 —1 4D+ 1)}‘

,(D—1)(3D? - 2D — 17)
24(D + 2)

- &

, (D= 1)(3D*-2D - 17)
24(D +2)

ETM,O -~ E%lgfo{l + &

— &

It follows that, for the total zero temperature Casimir free energy,

_ _ D _ _
Ecaso ~ E(Pégéo{l * SD 3 - SZ(DD & iD _ T Zg T 3
,71D* —28D3 +20D* + 112D — 183 2P — 4 {»(D — 1)
6D(D — 1)(D + 2) 20 —1 (D + 1)
2(D* — 6D + 6D* + 24D — 37) 2P — 16 {x(D — 3)}
D(D — 1)(D —2)(D + 2) 20 —1 L(D+ DS
[

force is stronger when the smaller sphere is perfectly con-
ducting and the larger one is infinitely permeable.

,(D—1)3D*-2D —17)
24(D +2)

- &

+ g2

The D = 3 case can be obtained by duality from (29), as
before.

As in the high temperature region, the corrections to the
proximity force approximations in the case of mixed bound-
ary conditions are more complicated than the case of ho-
mogeneous boundary conditions. We find that the first
correction terms are already different for different combi-

VI. THE LOW TEMPERATURE ASYMPTOTIC
EXPANSION OF THE THERMAL CORRECTION

To find the low temperature asymptotics of the thermal

nations of boundary conditions. Again, between the two
scenarios of mixed boundary conditions, we find that the

eZﬂy

| = . [ gliy) — g(=iy)
760+ 3 o(p) = [ st i [TEEEE

— 2 Z

W(Z)RCSZ{

correction, we use the Abel-Plana summation formula
[70-72], which states that, for a well-behaved function g(z),

. (2)
1 dy + 27ri Z W(Z)Resz{e—zgﬂ'iTl}
Rez=0,Imz>0
8(2)
8277'1'1 -1 ’

Rez=0,Imz<0

where w(z) = 1/2 if Rez = 0, and w(z) = 1 if Rez > 0. Applying this to the Casimir free energy (5) gives

E=E,+ . Z d,(D) [ def + exponentially decaying terms, (30)
27T =1 0 ef/T - 1

where f;(£) is given by (4). This formula can also be obtained by deforming the contour of integration in (6) from the
positive real axis to the imaginary axis. The middle term in (30) is the term that would give the leading terms to the thermal
correction in the low temperature region. These can be obtained by expanding f;(i¢) — f;(—i¢) in ascending powers of &
and applying the formula

00 é‘,u N
fo s %€ = Tl + Ddelp + DTHTL
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Observe that the even powers of £ in f(£) would vanish in the expression f;(i¢)

PHYSICAL REVIEW D 84, 025014 (2011)

— fi(=i&). Therefore, we only need to

concentrate on the terms in f(£) that are not even in &. As in [51], we use the following small z expansion for 7,(z) and

K, (2):

K,(z) =

Here, 7,(z) and J,(z) are functions that only contain
positive even powers of z. From (31) and (32), it follows
that

i(f1(ié) = fi(=i&) ~ 2w A, £,

where

14
g(—1)1+((0—3)/2>(§) - V)<1 +71 ()~

%(g)_vr(u)(1 + 7,06+ 2(—1)"“(3)2[

1@ = ()t 0+ L@ G
<%)21+D*2 11:81”3[1 + ]V(z)]>, D odd )
ZF(V)FI(VH)[I + 71,(2)] lnz), Deven.

|
Ay~ - 2LV e
T=TE 2ﬁa1 F(%) R 1 N
DD -1 e Dl
ATETM \/Fal F(%) gR(D + 1)(a1T) + .. .
DD -1)TEH o
ATECB.S Zﬁal r(%) gR(D + 1)(GIT)D + ...
(33)

2, = [ 1 1 (a1+,811102v_a2+,821/ 2V):I/
L) 22\ — By Bav
[ 1~ Bivap+ ,327/(&)2” - 1]
ap + By ay — Brr\a;
1 1 a + ,B]Vazy
W) 2% ay — By !

From these, we can see that the leading order term of
f1(i€) — f,(i€) is of order £**P~2 Therefore, when dT <
a,T <K 1, the leading thermal correction comes from the
term with /[ = 1. This implies that

di(D) 1 2a,+BD
DI(2)? 2071 20 — B/ D @
X {p(D + 1)TP* + .
_d,(D) T(%Y) 2a, + B,D
Jma, 1"(%) 2ay = B1D
X {p(D + D) (aT)PH! + .. ..

AE ~ — aPT(D + 1)

Notice that the leading term in the thermal correction does
not depend on the boundary conditions and the radius of
the larger sphere. Using the fact that

DD — 1)

b\(D) = D, hy(D) :T,

we find that, if the smaller sphere is perfectly conducting,
then the leading terms of the thermal corrections of the TE
contribution, the TM contribution, and the total Casimir
free energy are given, respectively, by

Note that the leading term of the TM contribution is always
negative, twice the leading term of the TE contribution. If
the smaller sphere is infinitely permeable, then

D(D—-1) T'(ZH)

~ D+1
ArErg (D—2)Jma, T®) LD+ 1D(a TP+,
~ — D F(%) D+1
ATETM ng)gR(D‘I'I)(GIT) +,
D+1
ATEcy~ b I )gR(D+1)(a1T)D+1+....

(D—=2)/ma; T®)
(34)

When D = 4, we notice that the thermal correction is
larger when the smaller sphere is perfectly conducting.
When D = 3, we have specifically

ArEce ~ T aiT + 35
TECas ™ 1 5 (35)
for any boundary conditions. Notice that this is the nega-
tive of the low temperature leading term of the thermal
correction to the Casimir free energy of a single perfectly
conducting sphere of radius a; [1,13]. In fact, one can show
that (33) and (34) give, respectively, the negative of the
leading thermal correction for a single perfectly conduct-
ing sphere and a single infinitely permeable sphere in
D-dimensional space.

In the case of two infinite parallel plates, the low tem-
perature leading term of the thermal correction to the force
density is given by [67]

®3h

ArFl,=—(D~1) {r(D + TP,

7 D+D/2
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regardless of the boundary conditions on the plates.
Multiplying by the area of the sphere of radius «a,, the
proximity force approximation of the low temperature
leading term of the thermal correction is

2D — 1) T2
Jmai  T(3)

However, the leading terms (33) and (34) derived from the
exact formulas of the Casimir free energies showed that,
when the smaller sphere is perfectly conducting, then the
low temperature leading term of the thermal correction to
the force is

ATF = fR(D + 1)(611T)D+1. (36)

_DXD-DTY
2Jma; T3

ATFCaSN gR(D + 1)(alT)D+l +..,

(37

whereas, if the smaller sphere is infinitely permeable, then
the low temperature leading term of the thermal correction
to the force is

B D? NG
(D—2)/ma; T(5)

ATFCas~ {R(D+1)(a1T)D+1+....

(38)

As expected, these do not agree with the temperature
correction in the proximity force approximation (36).
The point is that, under the low temperature condition
dT < a,T < 1, the thermal correction is much smaller
than the zero temperature Casimir energy by an order 2,
and thus the proximity force approximation is not appli-
cable. However, the proximity force approximation re-
mains applicable for the calculation of the total free
energy, as we have seen in Sec. V. A similar situation has
been observed in D = 3 dimensions for the case of a
sphere in front of a plate [51].

VII. CONCLUSION

In this article, we studied the Casimir interaction be-
tween two concentric spheres in (D + 1)-dimensional
spacetime due to the confinement of the electromagnetic
field between the spheres. We consider the cases of per-
fectly conducting—perfectly conducting; infinitely perme-
able—infinitely permeable; perfectly conducting—infinitely
permeable; and infinitely permeable—perfectly conducting
boundary conditions on the spheres. The first two are
referred to as homogeneous boundary conditions, and the
last two are called mixed boundary conditions. For homo-
geneous boundary conditions, the Casimir interaction be-
tween the spheres is always attractive. For mixed boundary
conditions, it is always repulsive.

We are particularly interested in studying the asymptotic
behaviors of the Casimir free energy when &, the ratio of
the separation between the spheres to the radius of the
smaller sphere, is small. Both the high temperature region

PHYSICAL REVIEW D 84, 025014 (2011)

and the low temperature region are considered. In the high
temperature region, the Casimir free energy is dominated
by the classical term, which is the term corresponding to
the zeroth Matsubara frequency. In the case of two con-
centric spheres, this term is quite simple. It can be written
as a series in elementary functions. In the low temperature
region, the Casimir free energy is dominated by the zero
temperature term, which has to be expressed in terms of
Bessel functions. The first three leading terms are com-
puted explicitly. In the high temperature region, the leading
terms are of order T¢'™P and they coincide with that
obtained using the proximity force approximation. For
the zero temperature terms, the leading terms are of order
&P and they also agree with the proximity force approx-
imations. It is interesting to observe that the asymptotic
expansions of the Casimir free energies have the following
universal structure:

D—1 (D+i—2)
+sBdD%iaB::Tf

(D +i—2)
+ SZ[CZ(D) a0

ey = Eggg\<1 be

+ Co(D)

where i = 1 in the low temperature region and i = 0 in the
high temperature region. B,(D), Cy(D), C,(D), and C,(D)
are rational functions of D that are O(D°), O(D°), O(D),
and O(D?) when D is large. In the case of homogeneous
boundary conditions, the terms By(D) and Cy(D) are
absent.

In general, the corrections to the proximity force ap-
proximations are more complicated in the case of mixed
boundary conditions, compared to the case of homogene-
ous boundary conditions. In fact, for homogeneous bound-
ary conditions, the first correction is the same when the two
spheres are both perfectly conducting or both infinitely
permeable. For the two scenarios of mixed boundary con-
ditions, the first corrections are different. It is observed that
the Casimir interaction is stronger when the smaller sphere
is perfectly conducting and the larger sphere is infinitely
permeable.

Finally, the low temperature leading terms of the thermal
corrections to the Casimir free energies are computed.
They are finite when ¢ — 0% and are of order 7P*!. It is
interesting to find that these leading terms are independent
of the larger sphere. They do not depend on the radius or
the boundary conditions on the larger sphere. As has been
observed by a few researchers for other geometric configu-
rations [51,55], this case is outside the application region
of the proximity force approximation.

For future works, it would be interesting to consider
eccentric spheres and compare the results with those ob-
tained here.
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