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It is shown that different couples of stress-energy and spin tensors of quantum-relativistic fields, which

would be otherwise equivalent, are in fact inequivalent if the second law of thermodynamics is taken into

account. The proof of the inequivalence is based on the analysis of a macroscopic system at full

thermodynamical equilibrium with a macroscopic total angular momentum and a specific instance is

given for the free Dirac field, for which we show that the canonical and Belinfante stress-energy tensors

are not equivalent. For this particular case, we show that the difference between the predicted angular

momentum densities for a rotating system at full thermodynamical equilibrium is a quantum effect,

persisting in the nonrelativistic limit, corresponding to a polarization of particles of the order of ℏ!=KT

(! being the angular velocity) and could in principle be measured experimentally. This result implies that

specific stress-energy and spin tensors are physically meaningful even in the absence of gravitational

coupling and raises the issue of finding the thermodynamically right (or the right class of) tensors. We

argue that the maximization of the thermodynamic potential theoretically allows us to discriminate

between two different couples, yet for the present we are unable to provide a theoretical method to single

out the best couple of tensors in a given quantum field theory. The existence of a nonvanishing spin tensor

would have major consequences in hydrodynamics, gravity and cosmology.
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I. INTRODUCTION

It is commonly known that stress-energy and spin
tensors are not uniquely defined in field theory as long
as gravity is disregarded. In quantum field theory, dis-
tinct stress-energy tensors differing by the divergence
of a rank-3 tensor provide, once integrated in three-
dimensional space, the same generators of space-time
translations provided that the flux of the additional rank-
3 tensor field (hereafter referred to as superpotential) van-
ishes at the boundary. Correspondingly, in classical field
theory, the spatial integrals of T0� yield the same values of
total energy and momentum. Within field theory on a flat
spacetime, it is then possible to generate apparently
equivalent stress-energy tensors which are, e.g., symmetric
or nonsymmetric. Indeed, gravitational coupling provides
an unambiguous way of defining the stress-energy tensor;
in general relativity, it is symmetric by construction and the
spin tensor vanishes. However, in a likely extension known
as Einstein-Cartan theory (not excluded by present obser-
vations) the spin tensor is nonvanishing and the stress-
energy tensor is nonsymmetric.

Can we say something more? In classical physics we
have a stronger requirement with respect to a quantum
theory: we would like the energy, momentum and angular
momentum content of any arbitrary macroscopic spatial
region to be well-defined concepts; otherwise stated, we
would like to have objective values for the energy, mo-
mentum and angular momentum densities. If these quan-
tities are to be the components of the stress-energy and spin
tensors, such a requirement strongly limits the freedom to
change these tensors. It is crucial to emphasize, from the

very beginning, the difference between quantum and clas-
sical tensors. The quantum stress-energy and spin tensors,
henceforth denoted with a hat ,̂ are operatorial expressions
depending on the microscopic quantum field operators �,
whereas the classical ones are c-numbers. The relation
between them is [1]

T��ðxÞ¼ tr½�̂:T̂��ðxÞ:� S�;��ðxÞ¼ tr½�̂:Ŝ�;��ðxÞ:� (1)

where �̂ is the density operator describing the (mixed or
pure) quantum state and : denotes normal ordering; the
latter is usually introduced in the mean value definition
in order to subtract the zero-point infinities.1 According to
(1), a change of quantum stress-energy and spin tensors
could induce a change of the corresponding classical ones in
an undesirable fashion, meaning that energy or momentum
or angular momentum density get changed. However, the
change that classical mean values undergo as a reflection of
a variation of quantum tensors crucially depends on the
physical state �̂. Particularly, we will see that the freedom
of varying the stress-energy and spin tensors at a quantum
level depends on the symmetry features of the physical
state: a highly symmetric state allows more changes of
quantum tensors than a state with little symmetry does.
In this paper, we prove that a system at full thermody-

namical equilibrium with a macroscopic value of angular
momentum, then rigidly rotating [3], allows us to discrimi-
nate between different quantum spin tensors, and,

1For a discussion of the meaning of normal ordering for
interacting fields see, e.g., Ref. [2]. We stress that the results
obtained in this work, particularly in Sec. VI are anyhow
independent of the use of normal ordering in Eq. (1).

PHYSICAL REVIEW D 84, 025013 (2011)

1550-7998=2011=84(2)=025013(21) 025013-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.025013


consequently, between different quantum stress-energy
tensors. This kind of inequivalence shows up only for a
rotating system whereas all quantum tensors are equivalent
for a system at the more familiar thermodynamical equi-
librium with vanishing macroscopic angular momentum.
The paper is organized as follows: in Sec. II wewill discuss
the general class of stress-energy tensor transformations
ensuring the invariance of conservation equations; in
Sec. III we will discuss the usual thermodynamical equi-
librium distribution and its symmetries and in Sec. IV we
will do the same for a system at full thermodynamical
equilibrium with angular momentum; in Sec. V we will
obtain the most general form of mean stress-energy and
spin tensor for a system at full thermodynamical equilib-
rium with angular momentum and show that the equiva-
lence between different quantum tensors no longer applies
unless peculiar conditions are met; in Sec. VI we will
present and prove a concrete instance of inequivalence
for the free Dirac field; finally, in Sec. VII we will sum-
marize and further illustrate the obtained result and discuss
the possible consequences thereof.

Notation

In this paper we adopt the natural units, with
ℏ ¼ c ¼ K ¼ 1. The Minkowskian metric tensor is
diagð1;�1;�1;�1Þ; for the Levi-Civita symbol we use
the convention �0123 ¼ 1. We will use the relativistic no-
tation with repeated indices assumed to be saturated.
Operators in Hilbert space will be denoted by an upper

hat, e.g., R̂, with the exception of the Dirac field operator
which is denoted with a capital �.

II. TRANSFORMATIONS OF STRESS-ENERGY
AND SPIN TENSORS

The conservation equations ensuing from the relativistic
translational and Lorentz invariance are the well-known
continuity equations of energy-momentum and total angu-
lar momentum

@�T̂
�� ¼ 0

@�Ĵ
�;�� ¼ @�ðŜ�;�� þ x�T̂�� � x�T̂��Þ

¼ @�Ŝ
�;�� þ T̂�� � T̂�� ¼ 0 (2)

However, stress-energy T̂ and spin tensor Ŝ are not
uniquely defined in quantum field theory; once a particular

couple ðT̂; ŜÞ of these tensors is found, e.g., applying
Noether’s theorem to some Lagrangian density (the so-
called canonical tensors), it is possible to generate new

couples ðT̂0; Ŝ0Þ through the following pseudogauge trans-
formation [4]:

T̂0�� ¼ T̂�� þ 1

2
@�ð�̂�;�� � �̂�;�� � �̂�;��Þ

Ŝ0�;�� ¼ Ŝ�;�� � �̂�;��;
(3)

where �̂ is an arbitrary tensor of rank-three antisymmetric

in the last two indices depending on the fields ĉ . It is easy
to check that the new couple fulfills the same continuity
Eqs. (2) as the original one and that the new total angular
momentum tensor, like the stress-energy tensor, differs
from the original one by a divergence

Ĵ 0�;�� ¼ Ĵ �;�� þ 1

2
@�½x�ð�̂�;�� � �̂�;�� � �̂�;��Þ

� x�ð�̂�;�� � �̂�;�� � �̂�;��Þ�: (4)

The spatial integrals over the domain �

P̂� ¼
Z
�
d3xT̂0�

Ĵ�� ¼
Z
�
d3xĴ 0;�� ¼

Z
d3xŜ0;�� þ x�T̂0�� x�T̂0�

(5)

are conserved (and are generators of translations and
Lorentz transformations if the domain is the whole space)
provided that the fluxes at the boundary vanishZ

@�
dST̂i�ni ¼ 0

Z
@�

dSðŜi;�� þ x�T̂i� � x�T̂i�Þni ¼ 0;

(6)

ni being the surface normal versor. The Eqs. (6) are usually
ensured by enforcing special boundary conditions for the
fields; for instance, the familiar periodic boundary condi-
tions for a box, or requiring some expression involving the
field or its normal derivatives to vanish at the boundary
(this will be the case in this paper, see Sec. VI). It is very
important to stress here that one can obtain conserved
stress-energy and angular momentum tensors and a corre-
sponding set of conserved generators even within a finite or
bounded region, thus breaking global translational and
rotational symmetry, provided that suitable boundary con-
ditions are imposed on the fields; this point will be further
discussed in Sec. VI.
The spatial integrals (5) of the new tensors are invariant,

thus yielding the same generators, if the tensor �̂ is such
that the following boundary integrals vanish, according to
Eqs. (3) and (4)Z

@�
dSð�̂i;0� � �̂0;i� � �̂�;i0Þni ¼ 0

Z
@�

dS½x�ð�̂i;0� � �̂0;i� � �̂�;i0Þ
� x�ð�̂i;0� � �̂0;i� � �̂�;i0Þ�ni ¼ 0: (7)

In fact, if the above conditions are met, the flux integrals
(6) of the new primed tensors vanish because the new
tensors also fulfill the continuity equations. In conclusion,
a pseudogauge transformation like (3) is always possible
provided that the boundary conditions (7) are ensured; in

this case the couple ðT̂; ŜÞ and ðT̂0; Ŝ0Þ are regarded as
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equivalent in quantum field theory because they give the
same total energy, momentum and angular momentum, in
the operatorial sense.

The classical counterpart of transformation (3) can be
calculated by applying Eq. (1) to both sides and this
obviously leads to

T0�� ¼ T�� þ 1

2
@�ð��;�� ���;�� ���;��Þ

S0�;�� ¼ S�;�� ���;��

(8)

If the system is macroscopic, we would like the mean
values of those tensors to be invariant under a transforma-
tion (8), and not just their integrals. This is because energy,
momentum and total angular momentum densities classi-
cally must take on objective values, independent of the
particular quantum tensors. A minimal requirement would
be the invariance of the aforementioned densities, that is,

T00� ¼ T0� J 00;�� ¼ J 0;��:

However, this is a frame-dependent requirement; a
Lorentz-boosted frame would measure a different energy-
momentum density if only the first row of the stress-energy
tensor was invariant under transformation (8) in one par-
ticular frame. We are thus to enforce a stricter requirement,
namely,

T0�� ¼ T�� (9)

whereas, for the rank-3 angular momentum tensor, we can
make a looser request

J 0�;�� ¼ J �;�� þ g��K� � g��K� (10)

where K is a vector field. Indeed, if we limit ourselves to
spatial indices�, � ¼ 1, 2, 3, the above equation is enough
to ensure that the angular momentum densities, with
� ¼ 0, are the same in any inertial frame. Comparing
Eq. (9) with Eq. (8), we get

@�ð��;�� ���;�� ���;��Þ ¼ 0; (11)

while comparing Eq. (10) with the mean of Eq. (4) and
taking (11) into account, we obtain a simple condition for
the superpotential to meet

1

2
@�½x�ð��;�� ���;�� ���;��Þ
� x�ð��;�� ���;�� ���;��Þ� ¼ g��K� � g��K�

) 1

2
ð��;�� ���;�� ���;�� ���;��

þ��;�� þ��;��Þ ¼ ���;�� ¼ g��K� � g��K�:

(12)

Plugging this last result back into Eq. (11) one obtains

2@�ðK�g�� � K�g��Þ ¼ 2@�K� � 2g��@ � K ¼ 0:

Contracting the indices � and � we obtain at once that the
divergence of the vector fieldK vanishes and so, because of
the above equation

@�K� ¼ 0 (13)

Therefore the Eqs. (11) and (12) imply that the vector field
K is a constant field. The possible directions of this field
will be dictated by the symmetry properties of the system
under consideration, as wewill see in the next two sections.
It should be emphasized that the conditions (11) and (12)

do not need to apply to the quantum tensor �̂, which only
has to meet the boundary conditions (7), as has been seen.
On the other hand, if we take the mean values of (7)
applying trð�̂Þ on both sides, the ensuing equation is a
trivial consequence of the Eq. (11). In fact, it may happen
that the mean value of the superpotential � fulfills
Eqs. (11) and (12) even though its quantum correspondent

�̂ does not, because of specific features of the density

operator �̂. In this case, the couples ðT̂; ŜÞ and ðT̂0; Ŝ0Þ
are to be considered equivalent only with regard to a
particular density operator, that is, for a specific quantum
state.
We will see in the next two sections that the equivalence

between couples of tensors crucially depends on the sym-
metry properties of the physical state �̂ (either mixed or
pure). Particularly, we shall see that if �̂ is the usual
thermodynamical equilibrium operator, proportional to

exp½�Ĥ=T þ�Q̂=T�, any quantum tensor �̂ will result
in a mean value � fulfilling Eq. (11) and (12). This means
that all possible quantum microscopic stress-energy and
spin tensors will yield the same physics in terms of macro-
scopically observable quantities.

III. THERMODYNAMICAL EQUILIBRIUM

The familiar thermodynamical equilibrium distribution
(in the thermodynamical limit V ! 1)

�̂ ¼ 1

Z
expð�Ĥ=T þ�Q̂=TÞ (14)

where Q̂ denotes a conserved charge, and Z is the grand-
canonical partition function

Z ¼ tr½expð�Ĥ=T þ�Q̂=TÞ�

is remarkably symmetric. It is space-time translationally

invariant, since both Q̂ and Ĥ commute with translation

operators T̂ðaÞ ¼ exp½ia � P̂�. This entails that the mean

value of any space-time-dependent operator ÂðxÞ, includ-
ing stress-energy and spin tensor, are independent of the
space-time position
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tr ½�̂:Âðxþ aÞ:� ¼ tr½�̂:T̂ðaÞÂðxÞT̂ðaÞ�1:�
¼ tr½�̂ T̂ðaÞ:ÂðxÞ:T̂ðaÞ�1�
¼ tr½T̂ðaÞ�1�̂ T̂ðaÞ:ÂðxÞ:� ¼ tr½�̂:ÂðxÞ:�

(15)

where the ciclicity of the trace and the transparency of the
normal ordering with respect to translations have been
used.2 As a consequence, the mean value of any space-
time derivative vanishes, and so will the divergences on the
right-hand side of Eq. (3). Therefore, the mean stress-
energy tensor will be the same regardless of the particular
microscopic quantum tensor used. For instance, for the
Dirac field, the three tensors

i ����@��
i

2
����@�

$
�

i

4
½ ����@�

$
�þ ð� $ �Þ�

(16)

will result in the same mean stress-energy tensor.
Also, the density operator (14) manifestly enjoys rota-

tional symmetry, for Ĥ and Q̂ commute with rotation

operators R̂. This implies that most components of tensors
vanish. To show that, it is sufficient to choose suitable
rotational operators and repeat the same reasoning as in
Eq. (15). For instance, choosing the R2ð�Þ operator, i.e.,
the rotation of 180 degrees around the 2 (or y) axis,
changing the sign of 1 (or x) and 3 (or z) components
and leaving 2 and 0 unchanged, in the x ¼ ðt; 0Þ one has

T12ðxÞ ¼ tr½�̂:T̂12ðxÞ:� ¼ tr½R̂2ð�Þ�̂R̂2ð�Þ�1:T̂12ðxÞ:�
¼ tr½�̂R̂2ð�Þ�1:T̂12ðxÞ:R̂2ð�Þ�
¼ tr½�̂R2ð�Þ1�R2ð�Þ2�:T̂��ðR2ð�Þ�1ðxÞÞ:�
¼ �tr½�̂:T̂12ðR2ð�Þ�1ðxÞÞ:�
¼ �tr½�̂:T̂12ðxÞ:� ¼ �T12ðxÞ (17)

where, in the last equality, we have taken advantage of the
homogeneity of all mean values shown in Eq. (15); thus,
T12ððt; 0ÞÞ ¼ 0 and, in view of the translational invariance
T12ðxÞ ¼ 0 8 x. Similarly, by choosing other rotation
operators, it can be shown that all off-diagonal elements
of a tensor vanish. The only nonvanishing components are
the diagonal ones, which, again owing to the rotational

symmetry (choose Rið�=2Þ and repeat the above
reasoning), are equal

T11ðxÞ ¼ T22ðxÞ ¼ T33ðxÞ:
The component T00ðxÞ can also be nonvanishing and its
value is unrelated to the other diagonal ones. Altogether,
the mean stress-energy tensor can only have the diagonal
(symmetric) form

T�� ¼
� 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

0
BBB@

1
CCCA ¼ ð�þ pÞt̂�t̂� � pg��;

where t̂ is the unit time vector with components ð1; 0Þ and �
and p have the physical meaning of proper energy density
and pressure. It should be stressed that, for a system at full
thermodynamical equilibrium described by �̂ in Eq. (14),
they would be the same regardless of the particular form
of the quantum stress-energy tensor, e.g., those in Eq. (16)
for the free Dirac field.
As far as the superpotential is concerned, it is easy to

convince oneself, by using suitable rotations, that the only
nonvanishing components are

�1;01ðxÞ ¼ �2;02ðxÞ ¼ �3;03ðxÞ ¼ ��1;10ðxÞ
¼ ��2;20ðxÞ ¼ ��3;30ðxÞ:

Hence, one scalar function B, independent of x, is suffi-
cient to determine the spin tensor for a system at full
thermodynamical equilibrium

��;�� ¼ Bðg��t̂� � g��t̂�Þ:
This tensor has exactly the form for a ‘‘good’’ superpoten-
tial derived in Eq. (12) fulfilling condition (13). In con-
clusion, any transformation of the kind (3) will yield the
same energy, momentum and angular momentum density
for all inertial frames and so, all quantum stress-energy and
spin tensors are equivalent as far as the density operator
(14) is concerned.

IV. THERMODYNAMICAL EQUILIBRIUM
WITH ANGULAR MOMENTUM

The situation is remarkably different for a thermody-
namical system having a macroscopic nonvanishing total
angular momentum. In this case, in its rest frame (defined
as the one where the total momentum vanishes) the density
operator reads [3,5]

�̂ ¼ 1

Z!

expð�Ĥ=T þ! � Ĵ=T þ�Q̂=TÞ; (18)

where ! has the physical meaning of a constant, fixed
angular velocity around which the system rigidly rotates.
The factor Z! is the rotational grand-canonical partition
function

2Here a comment is in order. The transparency of the normal
ordering with respect to a conjugation transformation, that is,
:AFð�ÞA�1 :¼ A:Fð�Þ:A�1 where A is a translation or a
Lorentz transformation and F a function of the fields and its
derivatives, is guaranteed for free fields provided that the vac-
uum j0i is an eigenstate of the same transformation, which is
always the case. For interacting fields, we will assume that the
definition of normal ordering (for this problem, see e.g., Ref. [2])
is such that transparency for conjugation holds; anyhow, for the
examined case in Sec. VI we will just need transparency for a
free field.
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Z! ¼ tr½expð�Ĥ=T þ! � Ĵ=T þ�Q̂=TÞ�: (19)

The density operator (18) is much less symmetric than that
in (14) and this has remarkable and interesting consequen-
ces on the allowed transformations of stress-energy and
spin tensor. The surviving symmetries in (18) are time-
translations TðtÞ and translations along the ! axis TðzÞ,
rotations around the! axis R!̂ð’Þ and reflection�!̂ with

respect to planes orthogonal to! (if Ĥ is parity-invariant).
The density operator (18) can be obtained in several

fashions: by maximizing the entropy with the constraint
of fixed mean value of angular momentum [6], generaliz-
ing to the quantum-relativistic case an argument used by
Landau for classical systems [3], or as the limiting macro-
scopic case of a quantum statistical system with finite
volume and fixed angular momentum in its rest frame in
an exact quantum sense, i.e., belonging to a specific rep-
resentation of the rotation group [7]. It should be pointed

out that Ĥ, Q̂ and the angular momentum operator along
the ! direction commute with each other, so that the
exponential in (18) also factorizes.

The density operator (18) implies that, in its rest
frame, the system is rigidly rotating with a velocity field
v ¼ !� x. The classical, nonrelativistic derivation by
Landau [3] shows this in a very simple fashion by assuming
that the system is made of macroscopic cells. To show the
same thing within a quantum formalism implies a little
more effort, which is nevertheless quite enlightening.

Consider a vector field V̂ðxÞ and calculate its mean value
at a point xþ a by using space-time translation operators.
Evidently

tr½�̂:V̂�ðxþ aÞ:�
¼ tr½�̂ T̂ðaÞ:V̂�ðxÞ:T̂ðaÞ�1�
¼ tr½T̂ðaÞ�1�̂ T̂ðaÞ:V̂�ðxÞ:�
¼ 1

Z!

tr½T̂ðaÞ�1e�Ĥ=Tþ!�Ĵ=Tþ�Q̂=TT̂ðaÞ:V̂�ðxÞ:�

¼ 1

Z!

tr½e�Ĥ=Tþ!�T̂ðaÞ�1Ĵ T̂ðaÞ=Tþ�Q̂=T :V̂�ðxÞ:�; (20)

where known commutation properties ½Q̂; P̂�� ¼ 0 and

½Ĥ; P̂�� ¼ 0 have been used. Now, from the theory of
Poincaré group it is known that

T̂ðaÞ�1Ĵ T̂ðaÞ ¼ Ĵþ a� P̂; (21)

whence, from (20)

tr½�̂:V̂�ðxþ aÞ:�
¼ 1

Z!

tr½e�Ĥ=Tþ!�ðĴþa�P̂Þ=Tþ�Q̂=T :V̂�ðxÞ:�

¼ 1

Z!

tr½e�Ĥ=Tþð!�aÞ�P̂=Tþ!�Ĵ=Tþ�Q̂=T :V̂�ðxÞ:�: (22)

We can now define the temperature four-vector

	 ¼ 1

T
ð1;!� aÞ;

which can also be rewritten as:

	 ¼ 1

T0

u ¼ 1

T0

ð�; �vÞ; (23)

where v ¼ !� a, � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
and T0 ¼ �T. The

vector v is manifestly a rigid velocity field, while T0 is
the inverse modulus of 	, i.e., the comoving temperature
which differs by the constant uniform T by a � factor [8,9].
The mean value of V�ðxþ aÞ in Eq. (22) becomes

tr½�̂:V̂�ðxþ aÞ:�
¼ 1

Z!

tr½expð�	ðaÞ � P̂þ! � Ĵ=T þ�Q̂=TÞ:V̂�ðxÞ:�:
(24)

Since 	 is timelike (provided that v < 1), it is possible to
find a Lorentz transformation � such that

T0	� ¼ u� ¼ �0� ¼ g0��
�
�: (25)

A convenient choice is the pure Lorentz boost along the
v ¼ !� a direction, which, being ortogonal to !, leaves

the operator Ĵ �! invariant

� ¼ exp½�i arccoshð�Þv̂ � K�;

where Ki (i ¼ 1, 2, 3) are the generators of pure Lorentz
boosts. Thereby, the trace on the right-hand side of the
Eq. (24) can be written

tr ½e��0� P̂
�þ!�Ĵ=Tþ�Q̂=T :V̂�ðxÞ:�

¼ tr½e��̂�1ðP̂0=T0þ�!�Ĵ=T0þ��Q̂=T0Þ�̂:V̂�ðxÞ:�
¼ tr½�̂�1e�P̂0=T0þ�!�Ĵ=T0þ��Q̂=T0 �̂:V̂�ðxÞ:�
¼ tr½e�P̂0=T0þ�!�Ĵ=T0þ��Q̂=T0 �̂:V̂ðxÞ:�̂�1�
¼ ð��1Þ�� tr½e�P̂0=T0þ�!�Ĵ=T0þ��Q̂=T0 :V̂�ð�ðxÞÞ:�: (26)

Finally, from (24) and (26) we get

tr½�̂:V̂�ðxþ aÞ:�
¼ 1

Z!

ð��1Þ�� tr½e�P̂0=T0þ�!�Ĵ=T0þ��Q̂=T0 :V̂�ð�ðxÞÞ:�;
(27)

which tells us how to calculate the mean value of a vector
field at any space-time point given its value in some other
specific point. The most interesting feature of Eq. (27) is
that the density operator on the right-hand side the same as
�̂ on the left-hand side with the replacement
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T ! T0 ¼ �ðaÞT ! ! �ðaÞ! � ! �ðaÞ�:

(28)

If we choose x ¼ ð0; 0Þ, i.e., the origin of Minkowski
coordinates, and a ¼ ð0;aÞ the Eq. (27) implies

tr½�̂:V̂�ð0; aÞ:�
¼ 1

Z!

ð��1Þ�� tr½e�P̂0=T0þ�!�Ĵ=T0þ��Q̂=T0 :V̂�ð0; 0Þ:�;
(29)

that is, the mean value of the vector field at any space-time
point (it should be kept in mind that �̂ is invariant by time
translation and so any mean value is stationary) is com-
pletely determined by the mean value at the origin of the
coordinates, with the same density operator, modulo the
replacement of thermodynamical parameters in (28). This
particular value is strongly constrained by the symmetries
of �̂. Let us identify the ! direction as that of the z (or 3)
axis (see Fig. 1) and consider the reflection�z with respect
to z ¼ 0 plane and the rotation R3ð�Þ of an angle � around
the z axis; by repeating the same reasoning as for Eq. (17)
for V�ð0Þ we can easily conclude that the time component
V0ð0Þ is the only one having a nonvanishing mean value.
Note, though, that the mean value on the right-hand side of
(29) depends on the distance r from the axis because the
density operator is modified by the replacement of the
uniform temperature T with a radius-dependent T0 ¼ �T.
Therefore, according to Eq. (29) and using (25), the mean
value of the vector field can be written

V�ðxÞ¼ tr½�̂:V̂�ðxÞ:�
¼ 1

Z!

ð��1Þ�0
� tr½e�P̂0=T0ðrÞþ�ðrÞ!�Ĵ=T0ðrÞþ�ðrÞ�Q̂=T0ðrÞ:V̂0ð0Þ:�

��0�VðrÞ¼VðrÞu�; (30)

i.e., it must be collinear with the four-velocity field
u ¼ ð�; �vÞ in Eq. (23) and, therefore, its field lines are
circles centered on the z axis and orthogonal to it.
Similarly, we can obtain the general form of tensor fields
of various rank and specific symmetry properties as a
function of the basic four-velocity field.
However, the previous derivation relies on the fact that

the system is infinitely extended in space. Indeed, at a
distance from the axis such that j!� xj ¼ 1 the velocity
becomes equal to the speed of light and the system has a
singularity. We cannot, therefore, take the strict thermody-
namical limit V ! 1 for a system with macroscopic an-
gular momentum. Instead, we have to enforce a spatial
cutoff at some distance and figure out how this reflects on
the most general forms of vector and tensor fields.
Enforcing a bounded region V for a thermodynamical

system implies the replacement of all traces over the full
set of states with a trace over a complete set of states jhVi
of the fields for this region V, that we indicate with trV ,

tr ! trV ¼ X
hV

hhV j . . . jhVi:

The density operator is the same as in (18) with the
partition function now obtained by tracing over the local-
ized states. It may sometimes be convenient to introduce
the projection operator

P V ¼ X
hV

jhVihhV j;

which allows us to maintain the trace over the full set of
states of provided that we replace �̂withPV�̂; for a generic

operator Â

tr V½�̂ Â� ¼ tr½PV�̂ Â�;
which amounts to stating that the effective density operator
is now �̂V

�̂ V ¼ 1

Z!

PV expð�Ĥ=T þ! � Ĵ=T þ�Q̂=TÞ; (31)

where

Z! ¼ tr½PV expð�Ĥ=T þ! � Ĵ=T þ�Q̂=TÞ�
¼ trV½expð�Ĥ=T þ! � Ĵ=T þ Q̂=TÞ�:

In order to maintain the same symmetry of the density

operator in (18), PV has to commute with Ĵz, Ĥ, P̂z, the

Lorentz boost along z K̂z and the reflection operator with

respect to any plane parallel to z ¼ 0, �̂z (see Fig. 1).
These requirements are met if the region V is a static

FIG. 1. Rotating cylinder with finite radius R at temperature T.
Also shown are the inertial frame axes and the spatial parts of the
vectors of tetrad (32).
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longitudinally indefinite cylinder with finite radius R and
axis !, and we will henceforth take this assumption.

There are two important consequences of having a finite
radius R. Because of the presence of the projector PV , the
previous derivation which led us to express the vector field
according to the simple formula (30) cannot be carried over
to the case of finite (though macroscopic) radius. The
reason is that PV does not commute with the Lorentz boost
along v or, otherwise stated, a Lorentz boost along a
direction other than z will not transform the set of states
jhVi into themselves, as needed for completeness. So, one
the one of the crucial steps in Eq. (26) no longer holds and
specifically

tr ½PV�̂
�1e�P̂0=T0þ�!�Ĵ=T0þ��Q̂=T0�̂:V̂�ðxÞ:�

� tr½PVe
�P̂0=T0þ�!�Ĵ=T0þ��Q̂=T0�̂:V̂�ðxÞ:�̂�1�:

As a consequence, general vector and tensor fields will be
more complicated than in the unphysical infinite radius
case and get additional components. The most general
expressions of mean value of fields in the cases of interest
for the stress-energy and spin tensor will be systematically
determined in the next section. The second consequence is
that boundary conditions for the quantum fields must be
specified at a finite radius value R, but we will see that
those conditions alone cannot ensure the validity of
Eqs. (11) or (12), which are local conditions.

V. TENSOR FIELDS IN AN
AXISYMMETRIC SYSTEM

In this section we will write down the most general
forms of vector and tensor fields in an axisymmetric sys-
tem, i.e., a system with the same symmetry features of the
thermodynamical rotating system at equilibrium studied
in the previous section. The goal of this section is to
establish the conditions, if any, to be fulfilled by the super-
potential to generate a good transformation of the stress-
energy and spin tensors.

A. Vector field

The decomposition of a vector field will serve as a
paradigm for more complicated cases. The idea is to take
a suitable tetrad of space-time-dependent orthonormal four-
vectors and decompose the vector field onto this basis. The
tetrad we choose is dictated by the cylindrical symmetry

u¼ ð�;�vÞ 
 ¼ ð�v;�v̂Þ n ¼ ð0; r̂Þ k ¼ ð0; k̂Þ;
(32)

where r̂ is the radial versor in cylindrical coordinates, while

k̂ is the versor of the z axis, that is, the axis of the cylinder
(see Fig. 1).

Because of symmetry for reflections with respect to
z ¼ const planes, the most general vector field V has
vanishing component on k, and therefore

V ¼ AðrÞuþ BðrÞ
þ CðrÞn; (33)

where A, B, C are scalar functions which can only depend
on the radial coordinate r, owing to the cylindrical sym-
metry. Note the presence of two additional components
with respect to the infinitely extended cylinder case in
Eq. (30). For symmetry reasons the only surviving compo-
nent of the field at the axis is the time component, so
Bð0Þ ¼ Cð0Þ ¼ 0.
If the field is divergence-free, then CðrÞ � 0.

B. Rank-2 antisymmetric tensor field

Any antisymmetric tensor field of rank-2 can be decom-
posed first as

A�� ¼ �����X�u� þ Y�u� � Y�u�;

where

X� ¼ � 1

2
���	�A�	u� Y� ¼ A��u�

and, thus, X and Y are two spacelike vector fields such that
X � u ¼ Y � u ¼ 0. Because of the reflection symmetry
with respect to z ¼ const planes, one has Axz ¼ Ayz ¼
A0z ¼ 0 and this in turn entails that, being uz ¼ 0, the
only nonvanishing component of the pseudovector X is
along k. Conversely, Y is a polar vector and it has compo-
nents along 
 and n which must vanish in r ¼ 0.
Altogether

A�� ¼ DðrÞ�����k�u� þ EðrÞð
�u� � 
�u�Þ
þ FðrÞðn�u� � n�u�Þ (34)

with Eð0Þ ¼ Fð0Þ ¼ 0. Since

�����k�u� ¼ n�
� � n�
�

(which can be easily checked), the expression (34) can be
rewritten as:

A�� ¼ DðrÞðn�
� � n�
�Þ þ EðrÞð
�u� � 
�u�Þ
þ FðrÞðn�u� � n�u�Þ: (35)

C. Rank-2 symmetric tensor field

For the symmetric tensor S�� we will employ an itera-
tion method in order to write down the most general
decomposition. First, we project the tensor onto the u field

S�� ¼ GðrÞu�u� þ q�u� þ q�u� þ���;

where q � u ¼ 0 and���u� ¼ 0. Then, we decompose the
spacelike polar vector field q according to (33)

q ¼ HðrÞ
þ IðrÞn;
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with Hð0Þ ¼ Ið0Þ ¼ 0, and we project the tensor � in turn
onto the vector field 


S�� ¼ GðrÞu�u� þHðrÞð
�u� þ 
�u�Þ
þ IðrÞðn�u� þ n�u�Þ þ JðrÞ
�
� þ h�
�

þ h�
� þ���;

being h � u ¼ h � 
 ¼ 0 (whence h ¼ KðrÞn with
Kð0Þ ¼ 0) and ���
� ¼ ���u� ¼ 0. This procedure can
be iterated projecting � onto n and the thus-obtained new
symmetric tensor onto k. Thereby, we get

S�� ¼ GðrÞu�u� þHðrÞð
�u� þ 
�u�Þ
þ IðrÞðn�u� þ n�u�Þ þ JðrÞ
�
�
þ KðrÞðn�
� þ n�
�Þ þ LðrÞn�n� þMðrÞk�k�:

(36)

However, since u�u� � 
�
� � n�n� � k�k� ¼ g�� the
last term can be replaced with a linear combination of all
other diagonal terms plus a term in g�� and the most
general symmetric tensor can be rewritten, after a suitable
redefinition of the scalar coefficients, as

S�� ¼ GðrÞu�u� þHðrÞð
�u� þ 
�u�Þ
þ IðrÞðn�u� þ n�u�Þ þ JðrÞ
�
�
þ KðrÞðn�
� þ n�
�Þ þ LðrÞn�n� �MðrÞg��

where Hð0Þ ¼ Ið0Þ ¼ Kð0Þ ¼ 0.

D. Rank-3 spinlike tensor field

The decomposition of a rank3 tensor is carried out in an
iterative way, similarly to what we have just done for the
rank2 symmetric tensor. First, we project the tensor onto
the vector u and, taking the antisymmetry of �� indices
into account, one obtains

��;�� ¼ u�ðf�u� � f�u�Þ þ u�	�� þ 
��u�

�
��u� þ��;��; (37)

where all vector and tensor fields have vanishing contrac-
tions with u for any index. Particularly, using the general
expressions (33) and (35), the vector field f and the anti-
symmetric tensor 	 read

f ¼ EðrÞ
� þ FðrÞn� 	�� ¼ DðrÞðn�
� � n�
�Þ;
(38)

with Eð0Þ ¼ Fð0Þ ¼ 0. The tensor 
 can be decomposed
as the sum of a symmetric and an antisymmetric part;
having vanishing contractions with u, according to
Eqs. (35) and (36), it can be written as


�� ¼ NðrÞðn�
� � n�
�Þ þ PðrÞ
�
�
þQðrÞðn�
� þ n�
�Þ þ RðrÞn�n� þ SðrÞk�k�;

(39)

withQð0Þ ¼ 0. The tensor� is projected in turn onto n and
the above procedure is iterated. Then, similarly to Eq. (37)

��;�� ¼ ���n� þ ðh�n� � h�n�Þn� þ���n�

����n� þ��;��; (40)

where all tensors have vanishing contractions with u and n.
The antisymmetric tensor � must be orthogonal to u and n
and, therefore, according to Eq. (35), vanishes. On the
other hand, the vector field h can only have nonvanishing
component on 
 and so h ¼ TðrÞ
 with Tð0Þ ¼ 0. Finally,
the tensor � must be orthogonal to n, besides u, hence,
using Eqs. (35) and (36), can only be of the form

��� ¼ UðrÞ
�
� þ VðrÞk�k�: (41)

Likewise, the tensor � can be decomposed onto 
 and,
because of vanishing contractions with u and n, it can be
written as

��;�� ¼ WðrÞk�ðk�
� � k�
�Þ: (42)

Putting together Eqs. (37)–(42), the general decomposi-
tion of a rank-3 tensor with antisymmetric �� indices is
obtained

��;�� ¼ DðrÞðn�
� � n�
�Þu� þ EðrÞð
�u� � 
�u�Þu� þ FðrÞðn�u� � n�u�Þu� þ NðrÞðn�
� � n�
�Þu�
� NðrÞðn�
� � n�
�Þu� þ PðrÞ
�ð
�u� � 
�u�Þ þQðrÞðn�
� þ n�
�Þu� �QðrÞðn�
� þ n�
�Þu�
þ RðrÞn�ðn�u� � n�u�Þ þ SðrÞk�ðk�u� � k�u�Þ þ TðrÞð
�n� � 
�n�Þn� þUðrÞ
�ð
�n� � 
�n�Þ
þ VðrÞk�ðk�n� � k�n�Þ þWðrÞk�ðk�
� � k�
�Þ; (43)

with Eð0Þ ¼ Fð0Þ ¼ Qð0Þ ¼ Tð0Þ ¼ 0.
We are now in a position to find out the conditions to be

fulfilled by the superpotential � to be a good transforma-
tion of the stress-energy and spin tensors in a thermody-
namically equilibrated system with angular momentum, as
derived at the end of Sec. II.

Let us start from Eq. (12), which is the most constrain-
ing. Since

u�u� � 
�
� � n�n� � k�k� ¼ g��;

we can write a rank3 tensor (43) in the form of Eq. (12) as
long as
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VðrÞ¼UðrÞ¼FðrÞ PðrÞ¼RðrÞ¼SðrÞ
EðrÞ¼WðrÞ¼�TðrÞ DðrÞ¼NðrÞ¼QðrÞ¼ 0; (44)

which are definitely nontrivial conditions. If these are
fulfilled, then the superpotential (43) reduces to

��;�� ¼ ðFðrÞn� þ EðrÞ
� þ PðrÞu�Þg��
� ðFðrÞn� þ EðrÞ
� þ PðrÞu�Þg��

� K�g�� � K�g��:

Now, the field K� ¼ FðrÞn� þ EðrÞ
� þ PðrÞu� ought to
be a constant one, according to Eq. (13). Since its diver-
gence vanishes, then FðrÞ ¼ 0 and, by using the definitions
(32), we readily obtain the conditions

FðrÞ ¼ 0 PðrÞ=� ¼ const EðrÞ ¼ �PðrÞ!r:

(45)

In conclusion, only if a quantum superpotential is such that
its mean value, calculated with the density operator (31),
fulfills conditions (44) and (45), is the corresponding trans-
formation (3) possible. Otherwise, the original and trans-
formed stress-energy and spin tensors are inequivalent
because they imply different values of mean energy, mo-
mentum or angular momentum densities. Since the most
general form of the mean value of the superpotential, i.e.,
Eq. (43) is highly nontrivial, the inequivalence will occur
far more often than equivalence. To demonstrate this, we
will consider a specific instance involving the most famil-
iar quantum field endowed with a spin tensor.

VI. AN EXAMPLE: THE FREE DIRAC FIELD

We now come to the possibly most significant result
obtained in this work: the proof of a concrete instance of
inequivalence, involving the simplest quantum field theory
endowed with a spin tensor, namely, the free Dirac field.

It is well known that the from the Lagrangian density

L ¼ i

2
����@

$
���m ��� (46)

one obtains, by means of the Noether theorem, the canoni-
cal stress-energy and spin tensors [10]

T̂�� ¼ i

2
����@�

$
�

Ŝ�;�� ¼ 1

2
��f��;
��g� ¼ i

8
��f��; ½��; ���g�;

(47)

where


ij ¼ �ijk
�k=2 0
0 �k=2

� �
and�k are Pauli matrices. The spin tensor obeys the Eq. (2)

@�Ŝ
�;�� ¼ T̂�� � T̂�� ¼ i

2
����@�

$
�� i

2
����@�

$
�:

The couple of quantum tensors in (47) can be changed
through the psuedo-gauge transformation in Eq. (3).

Accordingly, if we take �̂ ¼ Ŝ, namely, the superpotential
as the original spin tensor itself, a symmetrized stress-
energy tensor and a vanishing spin tensor are obtained

T̂ 0�� ¼ i

4
½ ����@�

$
�þ ����@�

$
�� Ŝ0�;�� ¼ 0: (48)

This transformation is well known as Belinfante’s symmet-
rization procedure.
One may wonder whether these tensors, fulfilling con-

tinuity equations, still exist in a bounded region breaking
the global translational and Lorentz symmetry, such as our
cylinder with finite radius; or if, because of the boundary,
they get additional terms with respect to the usual form.
The problem of Dirac field with boundary has been tackled
and solved by the authors of the MIT bag model [11].
First of all, it should be pointed out that the continuity
Eqs. (41) certainly apply to tensors (47) and (48) on shell,
i.e., for fields obeying the free Dirac equation within the
cylinder. Furthermore, it is possible to find suitable bound-
ary conditions, discussed in the next subsection, such that
the fluxes (6) vanish, as needed, without introducing an
ad hoc discontinuity in the Dirac field. Thereby, the stress-
energy and spin tensors retain the same form as in the usual
no-boundary case and the integrals over the bounded re-
gion of the time components have the same physical mean-
ing of conserved generators. It is also possible to derive
field equations and canonical tensors (47) from an action,
which is shown in Appendix A.
The spin tensor in Eq. (47) has a remarkable feature

which makes it easier to check the equivalence of the two
couples in Eqs. (47) and (48): because of the special
properties of gamma matrices, the spin tensor is also anti-
symmetric in the first two indices

Ŝ �;�� ¼ �Ŝ�;�� (49)

and thus the mean value of this tensor is greatly simplified.
The antisymmetry in the indices ð�;�Þ dictates that all
coefficients of symmetric �� terms of the general form of
this kind of tensor found in Eq. (43) vanish

EðrÞ ¼ FðrÞ ¼ PðrÞ ¼ QðrÞ ¼ RðrÞ ¼ SðrÞ ¼ TðrÞ
¼ UðrÞ ¼ VðrÞ ¼ WðrÞ ¼ 0

and that DðrÞ ¼ NðrÞ, so that S is simply given by:

S�;�� ¼ DðrÞ½ðn�
� � n�
�Þu� þ ðn�
� � n�
�Þu�
� ðn�
� � n�
�Þu�� (50)

and it is described by just one unknown radial function
DðrÞ. Therefore, according to the conditions (44), the
Belinfante tensors (48) are equivalent to the canonical ones
(47) only if DðrÞ ¼ 0, i.e., only if the spin tensor has a
vanishing mean value.
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For � ¼ 0, Eq. (50) reads:

S 0;�� ¼ DðrÞ½ðn�
� � n�
�Þu0 � 
0ðn�u� � n�u�Þ�
and, because of the antisymmetry, the only nonvanishing
components are those with both � and � equal to 1, 2, 3,
indices that we denote with i, j. We can then write,
using (32)

S0;ij ¼ DðrÞ½ðni
j � nj
iÞu0 � 
0ðniuj � njuiÞ�
¼ DðrÞ½�2ðniv̂j � njv̂iÞ � �2v2ðniv̂j � njv̂iÞ
¼ DðrÞðniv̂j � njv̂iÞ ¼ DðrÞ�ijkk̂k; (51)

Therefore, as expected, the time part of the spin tensor,
contributing to the angular momentum density, is equiva-
lent to a pseudovector field DðrÞ directed along z axis.

According to Eq. (8), the variation of energy-momentum
density reads

1

2
@�ð��;0���0;�����;�0Þ¼1

2
@�ðS�;0��S0;���S�;�0Þ

¼�1

2
@�S0;��; (52)

which implies at once that the energy density is unchanged
because S0;�0 ¼ 0 in view of (49), whereas the momentum
density varies by a derivative. Using (51) and recalling the
expression of curl in cylindrical coordinates

T0i
Belinfante ¼ T0i

canonical �
1

2
@�S0;�i

¼ T0i
canonical �

1

2
@���ikDðrÞk̂k

¼ T0i
canonical þ

1

2
ðrotDÞi

¼ T0i
canonical �

1

2

dDðrÞ
dr

v̂i: (53)

Note that this last equation implies that the mean value
of the canonical stress-energy tensor of the Dirac field has
a nontrivial antisymmetric part if D0ðrÞ � 0 as, according
to (2)

@�S0;�i ¼ �@�S�;0i ¼ T0i � Ti0:

Now we can write the angular momentum density variation

by thermal-averaging Eq. (4) with �̂ ¼ Ŝ

J 0;��
Belinfante ¼ J 0;��

canonical þ
1

2
@�½x�ð��;0� ��0;�� ���;�0Þ

� x�ð��;0� ��0;�� ���;�0Þ�
¼ 1

2
½x�@�ð��;0� ��0;�� ���;�0Þ

þ��;0� ��0;�� ���;�0 � ð� $ �Þ�:
The sum of all terms linear in the superpotential returns a
��0;�� (see Eq. (12)) while for the derivative terms we
can use Eq. (52)

J 0;��
Belinfante¼J 0;��

canonicalþ
1

2
½x�@�ð��;0���0;�����;�0Þ

�ð�$�Þ���0;��

¼J 0;��
canonical�

1

2
½x�@�S0;���x�@�S0;����S0;��:

(54)

Therefore, by plugging the expression of the mean value of
the spin tensor in Eq. (51), the angular momentum pseu-
dovector corresponding to the angular momentum density
in (54) can be finally written

J Belinfante ¼ J canonical � 1

2

�
x� dDðrÞ

dr
v̂

�
�DðrÞ

¼ J canonical �
�
1

2
r
dDðrÞ
dr

þDðrÞ
�
k̂: (55)

In order for the canonical and Belinfante tensors to be
equivalent, as has been mentioned and as it is apparent
from Eqs. (53) and (55), the function DðrÞ ought to vanish
everywhere. If D0ðrÞ � 0, the two stress-energy tensors
give two different momentum densities and are thus in-
equivalent; if, on top of that, D0ðrÞ � �2DðrÞ=r, then the
angular momentum densities are inequivalent as well. In
the rest of this section we will prove that this is exactly the
case, i.e., neither of these conditions is fulfilled. In order to
show that this is not a problem arising from peculiar values
of the field at the boundary, we will conservatively enforce
boundary conditions such that the total energy, momentum
and angular momentum operators obtained by integrating
the fields within the cylinder are invariant by transforma-
tion (3). Note that for this to be true, in the case under
consideration, it is necessary that the function DðrÞ van-
ishes at the boundary, i.e., DðRÞ ¼ 0, because the differ-
ence between total angular momenta is

Z
V
d3xðJ Belinfante � J canonicalÞ

¼ �
Z
V
dzd’drr

�
1

2
r
dDðrÞ
dr

þDðrÞ
�
k̂

¼ �2�
Z þ1

�1
dz

Z R

0
dr

d

dr

�
r2

2
DðrÞ

�
k̂:

Thereby, we will demonstrate that, although the stress-
energy and spin tensors in (47) and (48) lead to the same
quantum generators, their respective mean densities are
inconsistent. The problem we are facing is then to solve
the Dirac equation within a cylinder with finite radius and
second-quantize the field.

A. The Dirac field in a cylinder

The problem of the Dirac field within a cylinder with
finite radius has been tackled by several authors in the
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context of the MIT bag model [12]. We first stress that, as
we have done thus far, we take the viewpoint of an external
inertial observer in Minkowski space-time, seeing the spin-
ning cylinder globally at rest. This observer can use either
Cartesian coordinates or cylindrical coordinates to de-
scribe the system, the former being certainly more conve-
nient to express tensor fields components while the latter
are fit to solve the Dirac equation, as we will see. The most
important issue in searching for a solution of this problem
is the choice of appropriate boundary conditions, not an
easy task because the Dirac equation is a first-order partial
differential equation. The authors of the bag model [11]
have shown that the following condition3

in�ðRÞ ¼ in����ðRÞ ¼ ��ðRÞ (56)

ensures the vanishing of the fluxes in Eq. (6) through the
border and allows nontrivial solutions of the Dirac equa-
tion within the cylinder (see Fig. 1) which, however, extend
to the whole space without any discontinuity in the field.
These boundary conditions, whence the whole solution,
are not affected by the rotation of a possible material
support defining the outer surface of the cylinder, as, for
the inertial observer, the motion transforms the boundary
into itself. The above equation, in the nonrelativistic limit,
entails the vanishing of the ‘‘large’’ components of the
Dirac field at the boundary, that is, one is left with the
Schrödinger equation with Dirichlet boundary conditions.

The Eq. (56) implies that ��ðRÞ�ðRÞ ¼ 0 at the boundary
[11], whence the vanishing of the outward current flux

j�ðRÞn�. Morevoer, since ���ðRÞ ¼ 0, for any value of

’, z, t, the outer surface of the cylinder must be such that

@� ���jR ¼ �̂ðRÞn� or

n�@�ð ���ÞðRÞ ¼ @

@r
���jr¼R ¼ ��̂ðRÞ: (57)

Thus, the flux of energy-momentum of the canonical tensor
at the boundary is vanishing because, using Eq. (47), (56),
and (57)

Z
@V

dST̂��n� ¼ i

2

Z
@V

dS ��n@��� @� ��n�

¼ 1

2

Z
@V

dS ��@��þ @� ���

¼ 1

2

Z
@V

dS@�ð ���Þ

¼ � �̂ðRÞ
2

Z
@V

dSn� ¼ 0:

Likewise, for the orbital part of the angular momentum flux

Z
@V

dSx�T̂��n� � ð� $ �Þ

¼ 1

2

Z
@V

dSx�@�ð ���Þ � ð� $ �Þ

¼ �̂ðRÞ
2

Z
@V

dSðx�n� � x�n�Þ ¼ 0;

where the last integral vanishes because of the geometrical
symmetry z ! �z. Finally, the flux of the spin tensor also
vanishes at the boundary because, using (47) and (56)

n�Ŝ
�;��ðRÞ ¼ 1

2
ð ��n
���þ ��
��n�Þ

¼ � i

2
ð ��
���� ��
���Þ ¼ 0: (58)

Therefore, the Eq. (6) applies and the integrals

P̂ � ¼
Z
V
d3xT̂0� Ĵ�� ¼

Z
V
d3xĴ 0;�� (59)

are conserved. Since, we also have, from the Lagrangian,
the usual anticommutation relations at equal times

f�aðt;xÞ;�y
b ðt;x0Þg ¼ ab

3ðx� x0Þ
f�aðt;xÞ;�bðt;x0Þg ¼ f�y

a ðt;xÞ;�y
b ðt;x0Þg ¼ 0;

it is easy to check that the conserved Hamiltonian

i=2
R
d3x�y@

$
t� is indeed, as expected, the generator of

time translations, i.e.,

½Ĥ;�� ¼ �i
@

@t
� ½Ĥ;�y� ¼ �i

@

@t
�y

and, therefore, putting together the above equation with
Eqs. (59) and (47) we conclude that

½Ĥ; Ĵi� ¼ 0 (60)

for the case under examination.
The complete solution of the free Dirac equation for a

massive particle in a longitudinally unlimited cylinder with
finite transverse radius, with boundary conditions of the
kind (56) has been obtained by Bezerra de Mello et al. in
Ref. [13] and we summarize it here. In a longitudinally
unlimited cylinder, but with finite transverse radius R,
the field is expanded in terms of eigenfunctions of the
longitudinal momentum, third component of angular
momentum, transverse momentum and an additional
‘‘spin’’ quantum number [13]. The relevant quantum num-
bers n ¼ ðpz;M; �ðM;�;lÞ; �Þ take on continuous (pz) and

discrete values ðM; �ðM;�;lÞ; �Þ. The third component of the

angular momentum M takes on all semi-integer values
�1=2;�3=2; . . . ; the spin quantum number � can be �1
and the transverse momentum quantum number

�ðM;�;lÞ ¼ pTlR (61)
3Actually, in the paper [11], the boundary condition chosen is

in�ðRÞ ¼ �ðRÞ, but the change of sign is indeed immaterial.
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takes on discrete values which are zeroes, sorted in ascend-
ing order with the label l ¼ 1; 2; . . . and depending on M
and �, of the equation

JjM�ð1=2ÞjðpTRÞ þ sgnðMÞbðþÞ
� JjMþð1=2ÞjðpTRÞ ¼ 0; (62)

where J are Bessel functions and

bð�Þ
� ¼ �mþ �mT

pT

; (63)

m being the mass and

mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

q
the transverse mass4; we note in passing that bðþÞ

� ¼
1=bð�Þ

� . The Dirac field itself can bewritten as an expansion

�ðxÞ ¼ X
n

UnðxÞan þ VnðxÞbyn; (64)

where an and bn are destruction operators of quanta n
whileX

n

� X
M

X
�¼�1

X
�ðM;�;lÞ

Z þ1

�1
dpz ¼

X
M

X
�¼�1;1

X1
l¼1

Z þ1

�1
dpz:

The eigenspinors Un and Vn read, in the Dirac representa-
tion of the � matrices and in cylindrical coordinates
ðt; r; ’; zÞ

UnðxÞ ¼ Cn

JjMð1=2ÞjðpTlrÞ
i sgnðMÞ��b

ðþÞ
� JjMþð1=2ÞjðpTlrÞei’

��JjM�ð1=2ÞjðpTlrÞ
�i sgnðMÞbðþÞ

� JjMþð1=2ÞjðpTlrÞei’

0
BBBBBB@

1
CCCCCCA

� 1ffiffiffiffiffiffiffi
2�

p ei½ðM�1=2Þ’þpzz�"t�

VnðxÞ ¼ Cn

bð�Þ
�

JjMþð1=2ÞjðpTlrÞ
isgnðMÞ��b

ð�Þ
� JjM�ð1=2ÞjðpTlrÞei’

��JjMþð1=2ÞjðpTlrÞ
�isgnðMÞbð�Þ

� JjM�ð1=2ÞjðpTlrÞei’

0
BBBBBB@

1
CCCCCCA

� 1ffiffiffiffiffiffiffi
2�

p e�i½ðMþ1=2Þ’þpzz�"t� (65)

with

�� ¼ "þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2 � p2

z

q
pz

and " ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ p2

Tl þm2
q

being the energy. The eigenspi-

nors (65) are normalized so as toZ
V
d3x�y� ¼ X

n

aynan þ bnb
y
n;

that is, withZ
V
d3xUy

nðxÞUn0 ðxÞ ¼
Z
V
d3xVy

n ðxÞVn0 ðxÞ ¼ nn0

Z
V
d3xUy

nðxÞVn0 ðxÞ ¼ 0;
(66)

being nn0 ¼ MM0��0ll0ðpz � p0
zÞ and the anticommu-

tation relations of creation and destruction operators

fan; ayn0 g ¼ fbn; byn0 g ¼ nn0 fan; bn0 g ¼ fayn; bn0 g ¼ 0:

(67)

The normalization coefficient in (65) obtained from the
condition (66) reads [13]

ðCnÞ�2 ¼ 2�R2J2jM�ð1=2ÞjðpTlRÞ
�2
� þ 1

p2
TlR

2

� ð2R2m2
Tl þ 2�MRmTl þmRÞ: (68)

B. Proving the inequivalence

For what we have seen so far, from a purely quantum
field theoretical point of view, the Belinfante tensors (48)
for the Dirac field in the cylinder could be regarded as
equivalent to the canonical ones in Eq. (47) because they
give, once integrated, the same generators (59). This hap-

pens because the condition (7) is met for �̂ ¼ Ŝ (what
follows from Eq. (58)) and this implies, taking Eq. (49)
into account, that all the integrands of (7) vanish at the
boundary. Yet, these two set of tensors are thermodynami-
cally inequivalent because, as it will be shown hereafter, it
turns out that, using Eq. (51),

S0;ij ¼ 1

2
trVð�̂: ��f�0;
ijg�:Þ

¼ DðrÞ�ijkkk � 0 ) DðrÞ � 0 (69)

at some r � R (we have used the Eq. (51)), with �̂ written
in Eq. (18). This will be enough to conclude that either the
energy-momentum or the angular momentum densities or
both have different values for different sets of quantum
tensors, as previously discussed. Note that the boundary
condition (58) together with the general expression of the
mean value of the spin tensor (50) implies that DðRÞ ¼ 0,
i.e., its vanishing at the boundary.
We can rewrite the inequality (69) by taking advantage

of the commutation relation

½��;
��� ¼ ig���� � ig����;

implying

S 0;ij ¼ trV½�̂:�y
ij�:� � ig0i tr½�̂: �����:�
þ ig0i tr½�̂: �����:�

¼ trV½�̂:�y
ij�:� � 0

or, equivalently

4In the rest of this section the symbol pTl stands for a discrete
variable taking on ðM;�; lÞ-dependent values given by the
Eq. (61) or, later on, by Eq. (79).
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DðrÞ ¼ 1

2
�ij3S0;ij ¼ 1

2
tr½�̂:�y�ij3
ij�:�

� tr½�̂:�y
3�:� � 0; (70)

where the indices i, j can only take on the value 1 or 2.
In the above equation and henceforth, we can take the
Heisenberg field operators at some fixed time t ¼ 0 be-
cause of the stationarity of density operator �̂. Hence we
just need to show that

tr V½�̂:�yð0;xÞ
z�ð0;xÞ:� � 0; (71)

with


z ¼ 1

2

1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 �1

0
BBB@

1
CCCA; (72)

for some point x within the cylinder and our goal is
achieved.

To calculate the mean value of the spin density in
Eq. (71), we start by observing that (see Appendix B for
the proof)

tr½�̂aynan0 � ¼ nn0

eð"�M!þ�Þ=T þ 1

tr½�̂bynbn0 � ¼ nn0

eð"�M!��Þ=T þ 1

tr½�̂aynbn0 � ¼ tr½�̂anbn0 � ¼ 0;

(73)

which allows us to work it out by plugging in there the field
expansion (64)

trV½�̂:�yð0;xÞ
z�ð0;xÞ:�
¼ X

n

1

eð"�M!þ�Þ=T þ 1
½Uy

nðxÞ
zUnðxÞ�

� 1

eð"�M!��Þ=T þ 1
½Vy

n ðxÞ
zVnðxÞ�: (74)

where we have taken into account that the normal ordering

of fermions is such that :bnb
y
n0 :¼ �byn0bn. By using

Eq. (65) and (72),

Uy
nðxÞ
zUnðxÞ ¼ C2

n

4�
½J2jM�ð1=2ÞjðpTlrÞ � �2

�b
ðþÞ2
� J2jMþð1=2ÞjðpTlrÞ þ �2

�J
2
jM�ð1=2ÞjðpTlrÞ � bðþÞ2

� J2jMþð1=2ÞjðpTlrÞ�

¼ C2
n

4�
½J2jM�ð1=2ÞjðpTlrÞ � bðþÞ2

� J2jMþð1=2ÞjðpTlrÞ�ð1þ �2
�Þ

Vy
n ðxÞ
zVnðxÞ ¼ C2

n

4�
bð�Þ2
� ½J2jMþð1=2ÞjðpTlrÞ � bð�Þ2

� J2jM�ð1=2ÞjðpTlrÞ�ð1þ �2
�Þ

¼ C2
n

4�
½�J2jM�ð1=2ÞjðpTlrÞ þ bðþÞ2

� J2jMþð1=2ÞjðpTlrÞ�ð1þ �2
�Þ ¼ �Uy

nðxÞ
zUnðxÞ;

hence, by using Eqs. (68) and (70), we can rewrite Eq. (74) as

tr V½�̂:�yð0;xÞ
z�ð0;xÞ:� ¼ DðrÞ

¼ X
M

X
�¼�1

X1
l¼1

Z 1

�1
dpz

�
1

eð"�M!þ�Þ=T þ 1
þ 1

eð"�M!��Þ=T þ 1

�

� p2
Tl½J2jM�ð1=2ÞjðpTlrÞ � bðþÞ2

� J2jMþð1=2ÞjðpTlrÞ�
8�2RJ2jM�ð1=2ÞjðpTlRÞð2Rm2

Tl þ 2�MmTl þmÞ : (75)

The mean value of the spin tensor is therefore given by the
sum of a particle and an antiparticle term which are equal
only for � ¼ 0. As expected, it vanishes for r ¼ R in view
of the Eq. (62), yet our goal is to show that it is non-
vanishing at some point x not belonging to the boundary. It
is worth pointing out that, if this is the case, the spin tensor
has a macroscopic value because, as is apparent from (75),
it is proportional to the number density (in phase space) of
quanta 1= exp½ð"�M!��Þ=T þ 1�.

It is most convenient to consider a point belonging
to the rotation axis, i.e., with radial coordinate r ¼ 0
because Bessel functions of all orders but 0 vanish therein.
By working out the Eq. (75), it can then be shown that
Dð0Þ ¼ 0 for ! ¼ 0 and that it is an increasing function of
!=T thereafter (see Appendix C). It then follows that

Dð0Þ � 0 for !=T > 0
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and therefore the inequality (71) must be true for small, yet
finite, values of !=T around the rotation axis. We note in
passing that for ! ¼ 0 the whole function DðrÞ must be
vanishing because of symmetry reasons. In fact, if ! ¼ 0,
the density operator (31) enjoys an additional symmetry,
that is, the rotation of an angle � around any axis orthogo-
nal to the cylinder axis, say R2ð�Þ. This transformation
corresponds to flipping over the cylinder, which leaves the
system invariant provided that ! ¼ 0, and has the conse-
quence that any pseudovector field directed along the axis
must vanish.

Moreover, it is easy to show, again by using Eq. (75),
that the derivative of the function DðrÞ vanishes in r ¼ 0
for it is proportional to terms, with N � 0,

2JNð0ÞJ0Nð0Þ ¼ JNð0ÞðJN�1ð0Þ � JNþ1ð0ÞÞ;
which all vanish because of the known properties of Bessel
functions. Hence, the mean angular momentum density in
r ¼ 0 differs between canonical and Belinfante tensors,
i.e., rewriting the Eq. (55) for r ¼ 0,

J Belinfanteð0Þ ¼ J canonicalð0Þ �Dð0Þk̂;
where Dð0Þ is finite for finite ! and positive. Thus, the
Belinfante angular momentum density is lower than the
canonical one by some finite and macroscopic amount.

We point out that, had we used the definition of mean
values (1) without normal ordering, this conclusion would
be unaffected. Indeed, the spin tensor (47) is a bilinear in
the fields and therefore the difference between the two
definitions is a vacuum expectation value of the spin tensor

tr ð�̂:Ŝ:Þ ¼ trð�̂ ŜÞ � h0jŜj0i: (76)

Vectorial irreducible parts of the spin tensor, such as Ŝ0;ij,
have a vanishing vacuum expectation value if the vacuum
is invariant under general rotations. The vacuum of the free

Dirac field in the cylinder—defined by anj0i ¼ 0—is
indeed rotationally invariant. If degenerate vacua existed,
the commutation of the Hamiltonian with angular momen-
tum operators that was shown before (see Eq. (60)) would
ensure that they belong to some irreducible representation
of the SU(2) group. However, for the free Dirac field in the
cylinder, the angular momentum operator along the z axis
turns out to be

Ĵ z ¼
X
n

Mðaynan þ bynbnÞ

so that Ĵzj0i ¼ 0 on all possible degenerate vacua. This
means that the only possible multiplet is one-dimensional
and, thereby, the vacuum is nondegenerate and the second
term in the Eq. (76) vanishes.

C. The nonrelativistic limit

It would be very interesting to calculate the function
DðrÞ numerically to ‘‘see’’ the difference between the
Belinfante and the canonical tensors and to make sure
that this difference is not a rapidly oscillating function on
a microscopic scale, which would render the macroscopic
observation of the difference impossible. This is, though,
very hard in the fully relativistic case but relatively easy in
the nonrelativistic limit m=T � 1 because in this case the
Eq. (62) yielding the quantized transverse momenta re-
duces to the vanishing of one single Bessel function. This
happens because, in the nonrelativistic limit,

bðþÞ
� ¼ �mT þm

pT

¼
8<
:

mTþm
pT

’ 2mþp2
T=2m

pT
’ 2m

pT
� 1 for � ¼ 1

m�mT

pT
’ p2

T=2m

pT
’ pT

2m 	 1 for � ¼ �1
(77)

so that the Eq. (62) in fact reduces to

� JjMþð1=2ÞjðpTRÞ ¼ sgnðMÞ pT

2m JjM�ð1=2ÞjðpTRÞ ’ 0 for � ¼ 1

JjM�ð1=2ÞjðpTRÞ ¼ sgnðMÞ pT

2m JjMþð1=2ÞjðpTRÞ ’ 0 for � ¼ �1
: (78)

Altogether, we can solve the equation JLðpTRÞ ¼ 0 for all integers L ¼ Mþ �=2 and take the quantized transverse
momenta

pTl ¼ �L;l
R

; (79)

where �L;ll ¼ 1; 2; . . . are now the familiar zeroes of the Bessel function of integer order L.
We can now separate the particle and antiparticle terms in the Eq. (75)

DðrÞ� ¼ X
M

X
�¼�1

X1
l¼1

Z 1

�1
dpz

1

eð"�M!��Þ=T þ 1

p2
Tl½J2jM�ð1=2ÞjðpTlrÞ � bðþÞ2

� J2jMþð1=2ÞjðpTlrÞ�
8�2RJ2jM�ð1=2ÞjðpTlRÞð2Rm2

Tl þ 2�MmTl þmÞ ;
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with DðrÞ ¼ DðrÞþ þDðrÞ�. In the nonrelativistic limit
one has

2Rm2
T þ 2�MmT þm ’ 2Rm2 þ 2�Mmþm ’ 2Rm2;

(80)

where the last approximation is due to the obvious assump-
tion Rm � 1 and that the term j�Mmj can be comparable
to Rm2 only if jMj is very large. However, terms with large
jMj are either suppressed by the exponential exp½!M=T�
or by the Bessel functions, which effectively implements
the semiclassical equality M 
 RpT; since nonrelativisti-
cally Rm2 � RpTm 
 jMjm, the approximation (80)
is justified. We then calculate the terms with � ¼ 1 and

� ¼ �1 in the sum in Eq. (78) separately. For � ¼ 1 one
sets Mþ 1=2 ¼ L and writes the integrand of Eq. (75),
including approximation (80) and taking into account (77),

1

eð"�L!þ!=2��Þ=Tþ1

p2
T

16�2R2m2

J2jL�1jðpTlrÞ�4m2

p2
Tl

J2jLjðpTlrÞ
J2jL�1jðpTlRÞ

’� 1

eð"�L!þ!=2��Þ=Tþ1

1

4�2R2

J2jLjðpTlrÞ
J2jL�1jðpTlRÞ

; (81)

where pTl is a solution of the first equation in (78).
Similarly, for � ¼ �1 one sets M� 1=2 ¼ L and obtains,
by using the second of the Eqs. (78),

1

eð"�L!þ!=2��Þ=T þ 1

p2
T

16�2R2m2

J2jLjðpTlrÞ � p2
Tl

4m2 J
2
jLþ1jðpTlrÞ

J2jLjðpTlRÞ
’ 1

eð"�L!�!=2��Þ=T þ 1

p2
T

16�2R2m2

J2jLjðpTlrÞ
p2
Tl

4m2 J
2
jLþ1jðpTlRÞ

¼ 1

eð"�L!�!=2��Þ=T þ 1

1

4�2R2

J2jLjðpTlrÞ
J2jLþ1jðpTlRÞ

: (82)

Now, by using approximations (80)–(82) we can write the nonrelativistic limit of DðrÞ� as

DðrÞ� ¼ 1

4�2R2

X1
L¼�1

X1
l¼1

Z 1

�1
dpz

1

eð"�L!�!=2��Þ=T þ 1

J2jLjðpTlrÞ
J2jLþ1jðpTlRÞ

� 1

eð"�L!þ!=2��Þ=T þ 1

J2jLjðpTlrÞ
J2jL�1jðpTlRÞ

; (83)

where the first term is to be associated to particles with spin projectionþ1=2 along the z axis and the second term to those
with projection �1=2. Finally, the integral over pz in Eq. (83) can be worked out by first introducing the nonrelativistic
approximation " ¼ mþ p2

T=2mþ p2
z=2m and then expanding the Fermi distribution. The final result is

DðrÞ� ¼ 1

4�2R2

X1
L¼�1

X1
l¼1

X1
n¼1

ð�1Þnþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�mKT

n

s
e�nðmc2��þp2

T=2m�Lℏ!Þ=KT

�
�
enℏ!=2KT

J2jLjðpTlr=ℏÞ
J2jLþ1jðpTlR=ℏÞ

� e�nℏ!=2KT
J2jLjðpTlr=ℏÞ

J2jL�1jðpTlR=ℏÞ
�
;

where we have purposely restored, for reasons to become
clear shortly, the natural constants.

It is very interesting to observe that the functionsDðrÞ�,
hence DðrÞ, are nonvanishing in the exact nonrelativistic
limit c ! 1. Indeed, it can be seen from Eq. (84) that no
factor ℏ or c or powers thereof appear as proportionality
constants in front of it, because the DðrÞ� dimension is
already—in natural units—that of an angular momentum;
the only c2 needed is in the exponent, which is compen-
sated by a shift of the chemical potential, and the only ℏ’s
needed are those multiplying ! and in the argument of
Bessel functions. Since ℏ multiplies ! everywhere and
DðrÞ vanishes for ! ¼ 0, we also see that the difference
between canonical and Belinfante densities is essentially a
quantum effect, as it vanishes in the limit ℏ ! 0; this is
expected as the spin tensor exists only for quantum fields.

For very small values of ℏ!=KT these two functions
are proportional to ℏ!=KT itself since DðrÞj!¼0 ¼ 0, as
discussed in the previous subsection. Retaining only the
n ¼ 1 term of the series, corresponding to the Boltzmann
limit of Fermi-Dirac statistics, and expanding the expo-
nentials expð�nℏ!=2KTÞ at first order, one obtains the
noteworthy equality

DðrÞ� ¼ ℏ tr½�̂ð:�y
z�:Þ�� ’ 1

2

ℏ!
KT

ℏ tr½�̂ð:�y�:Þ��

¼ ℏ
1

2

ℏ!
KT

�
dn

d3x

��
; (84)

where the superscript � implies that one retains either the
particle or the antiparticle term in the expansion of the free
field and ðdn=d3xÞ� is, apparently, the particle or antipar-
ticle density. The Eq. (84) can be shown by retracing all the
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steps of the calculations carried out for the spin tensor just
replacing 
z with the identity matrix.

The function DðrÞ can be computed with available nu-
merical routines finding a sufficient number of zeroes of
Bessel functions, according to Eq. (78). For the numerical
computation to be accurate enough one has to make the
series in L, l and n quickly convergent at any r. For the
series in L, two requirements should be met: first (in
natural units) !=T 	 1 in order to keep the exponential
exp½L!=T� relatively small and, secondly, the radius R

should be such that R
ffiffiffiffiffiffiffiffi
mT

p
is not too large; this condition

stems from the fact that, as the Bessel functions effectively
implement the semiclassical approximation jLj ’ pTR

and pT 
 ffiffiffiffiffiffiffiffi
mT

p
, the effective maximal value of L is of

the order of R
ffiffiffiffiffiffiffiffi
mT

p
. For the series in l, one has to set

m=T � 1, so that large pT’s are strongly suppressed; this
is also the nonrelativistic limit condition. For the series in
n, one has to choose � so as to keep far from the degen-
erate Fermi gas case. The functionDðrÞ as a function of r is
shown in Fig. 2 for� ¼ 0, R ¼ 300, T ¼ 0:01,m ¼ 1 and
two different values of!, 10�4 and 2� 10�4; the function
ðr=2ÞD0ðrÞ �DðrÞ, which is the difference between angu-
lar momentum densities for the canonical and Belinfante
tensors, is shown in Fig. 3.

The plots in Figs. 2 and 3 show that the angular mo-
mentum density is larger in the canonical than in the
Belinfante case almost everywhere, except for a narrow
space near the boundary, whose thickness is plausibly
determined by the microscopic scales of the problem
(thermal wavelength or Compton wavelength). Thereby,
the observable macroscopic value of the differences be-
tween angular momentum densities, for a rotating system

of free fermions, is the slowly varying positive one in the
bulk. While the boundary conditions are needed to ensure
the invariance of the total angular momentum, the rapid
drop to zero within a microscopic distance from the cylin-
der surface tells us that the chosen boundary conditions at
a mascroscopic scale of observation correspond to a dis-
contintuity or a surface effect. Any macroscopic coaxial
subcylinder of the full cylinder with a radius r < R will
therefore have different total angular momenta whether
one chooses the canonical or the Belinfante tensors in
Eqs. (47) and (48), respectively. Such an ambiguity is
physically unacceptable and can be solved only by admit-
ting that these tensors are in fact inequivalent.

VII. CONCLUSIONS AND OUTLOOK

In conclusion, we have shown that, in general, couples
of stress-energy and spin tensors related by a pseudogauge
transformation (3) and allegedly equivalent in quantum
field theory, are in fact thermodynamically inequivalent.
The inequivalence shows up only for thermodynamical
rotating systems and not for the systems—familiar in
thermal field theory—locally at rest in an inertial frame.
We have worked out exhaustively an instance of such
inequivalence involving the free Dirac field and have
shown that, surprisingly, the canonical and Belinfante ten-
sors imply the same mean energy density but different
mean densities of momentum and angular momentum.
Particularly, the latter is almost everywhere larger in the
canonical than in the Belinfante case for a small, yet
macroscopic, amount. We would like to stress that this
result does not depend on an inappropriate treatment of
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FIG. 2. Function DðrÞ, corresponding to the mean value of the
canonical spin tensor for the free Dirac field, in a rotating
cylinder at thermodynamical equilibrium as a function of radius
r, in the nonrelativistic limit.
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tum density for the free Dirac field, in a rotating cylinder at
thermodynamical equilibrium as a function of radius r, in the
nonrelativistic limit.
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the quantum field problem in a region with finite transverse
size. First of all, field boundary conditions have been
chosen so as to guarantee the invariance of the integrated
quantities—i.e., the generators—and, secondly, the final
spin tensor value (84) is proportional to particle density
through fixed parameters! and T. Hence, its nonvanishing
does not apparently depend on spurious factors depending
on the radius R which would probably be there if that was
the result of an inaccurate calculation of finite size effects.

What is the right couple of tensors? Needless to say, this
is a very important issue; for instance, if it was found that
the quantum spin tensor is not the trivial Belinfante one
(i.e., vanishing) this would have major consequences in
hydrodynamics and gravity, even more if its associated
stress-energy tensor had a nonsymmetric part, because
this could imply a torsion of the space-time (for a recent
discussion see, e.g., Ref. [14]). Thus far in this work, no
method has been discussed to answer the above question.
Indeed, the problem of determining the right tensors can be
approached both theoretically and experimentally.

From an experimental viewpoint, in principle we could
decide if a specific stress-energy or a spin tensor is wrong
by measuring with sufficient accuracy the angular momen-
tum density of a rotating system at full thermodynamical
equilibrium kept at fixed temperature T and angular veloc-
ity !. This measurement would, for instance, be able to
reject the canonical or Belinfante tensor without even the
need of resorting to relativistic systems as their difference
has a nonvanishing, nonrelativistic limit, as has been dis-
cussed at the end of last section. In practice, at a glance,
this measurement would not seem an easy one. According
to Eq. (84), in the nonrelativistic limit the difference
between these two tensors is of the order of ℏ!=KT times
ℏ times the particle density, that is, particles have a polar-
ization of the order of ℏ!=KT. This ratio is extremely
small for ordinary macroscopic systems; assuming a large
angular velocity !, say 100 Hz, at room temperature
T ¼ 300 �K it turns out to be of the order of 10�12.
Notwithstanding, this is precisely the polarization respon-
sible for the observed magneto-mechanical phenomena,
the Barnett [15] (magnetization induced by a rotation)
and Einstein-De Haas (rotation induced by magnetization)
effects. It is therefore possible that with some suitable
experiment of this sort one can discriminate between spin
tensors; this will be the subject of further investigation. We
would like to point out that the effect could be enhanced by
lowering the temperature so much to increase the ratio
ℏ!=KT, e.g., with cold atom techniques.

From a theoretical viewpoint, we cannot, for the present,
determine a thermodynamically best couple of stress energy
and spin tensor. Yet, we can argue, on the basis of a ther-
modynamical argument—which can in principle be used to
assess any other couple of tensors—that the canonical spin
tensor is favored over the Belinfante one; the argument also
elucidates why the source of the inequivalence is ultimately

the second law of thermodynamics. Let us first write down
the entropy of a systemwith cylindrical symmetry and large
but finite radius R, using Eq. (18),

S ¼ �trV½�̂ log�̂� ¼ logZ! þ hĤi
T

��

T
hQ̂i �!

T
� hĴi;

where hi stands for tr½�̂�. All average quantities in the above
equation, namely, energy, charge and angular momentum,
have a density, meaning that they are given by a volume
integral of a supposedly objective function. Now let us
assume that entropy also has a physically objective density,
which is expected to happen for a macroscopic system; in
this case, according to the above equation, the potential
logZ! has an objective density as well. Furthermore, if
the system is properly thermodynamical, the derivatives
of this density d logZ!=dV with respect to the intensive
parameters 1=T,�=T and !=T should give the energy
density, the charge density and the angular momentum
density, similarly to what happens for the integrated
quantities.
Suppose that the system is initially nonrotating, i.e., with

! ¼ 0. We have seen in Sec. VI that in this case the
function DðrÞ vanishes, hence there is no difference be-
tween the mean values of canonical and Belinfante tensors.
Let us then focus on a coaxial subcylinder with radius
r 	 R, yet large enough for it to be macroscopic.
Keeping the temperature T and chemical potential� fixed,
let us turn on very slowly a small angular velocity �!.
Thermodynamically, we can think of the subcylinder as
‘‘the system’’ and the rest as an angular momentum reser-
voir at full thermodynamical equilibrium with it as both
have the same angular velocity. It is well known that a
thermodynamical system at fixed T, V and � maximizes
the value of the thermodynamical potential logZ. Likewise,
a thermodynamical system with fixed T, V, � and !
maximizes the value of the potential logZ!. For the sub-
cylinder with radius r, according to our previous thermo-
dynamical assumptions, this potential is given by the
integral over the region Vr of the density d logZ!=dV
and its variation after switching on the rotational motion is

� logZ!;r ’ @ logZ!;r

@ð!=TÞ
��������Vr;T;�

�

�
!

T

�
¼ hJir�

�
!

T

�
;

where hJir is the angular momentum of the subcylinder.
This variation should be maximal and since, for what we
have seen in Sec. VI, in any properly macroscopic coaxial
subcylinder with radius r < R, the canonical value of the
angular momentum is larger than the Belinfante one, the
final value of the thermodynamical potential of the subcy-
linder will be larger in the canonical than in the Belinfante
case. Hence, if the system could choose between canonical
and Belinfante tensors, the former would be certainly
favored. Of course, this method allows to discriminate
between two couples of tensors but, for the present, does
not permit to single out the best couple of tensors for a
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given quantum field theory. For instance, for the free Dirac
field, it may happen that neither the canonical nor the
Belinfante tensors maximize the thermodynamic potential
of such a subsystem and another couple does.
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Note added in proof—After the acceptance of this paper,
F. W. Hehl brought to our attention his paper [17], in which
he wrote the most general transformations of the stress-
energy and spin tensor. The transformations (3) that we
have used are a special case of his with a tensor field of
rank-4 (called z in his paper) set to zero or constant. We
note that this choice does not affect any argument of this
work.

APPENDIX A: ACTION AND CANONICAL
STRESS-ENERGY TENSOR FOR THE

DIRAC FIELD IN A BOUNDED REGION

Consider an action A of general fields c a in a cylindrical
region in Fig. 1 and its variations

A ¼
Z
V
d4x

�
@L
@c a � @�

@L
@@�c

a

�
c a

þ
Z
V
d4x@�

�
@L

@@�c
a c

a

�

¼
Z
V
d4x

�
@L
@c a � @�

@L
@@�c

a

�
c a

þ
Z
@V

dtdSn�
@L

@@�c
a c

a: (A1)

Particularly, if we take the Dirac action

A ¼
Z
V
d4x

�
i

2
����@

$
���m ���

�
(A2)

and require it to be stationary with respect to variation of

the fields �, �� with the boundary conditions (56), we
obtain the free Dirac equation. This can be shown by
working out the derivatives in the boundary integral with
L as in Eq. (46)

n�
@L

@@�c
a c

a ¼ n�
i

2
������ n�

i

2
 �����

¼ i

2
ð ��n��  ��n�Þ:

As the fields meet boundary condition (56)

i

2
ð ��n��  ��n�Þ ¼ � 1

2
ð ���þ  ���Þ

¼ � 1

2
ð ���Þ

as well as ���ðRÞ ¼ 0 as a consequence of (56), then

 ��� vanishes at the boundary and the second integral in
Eq. (A1) vanishes. We are thus left with a bulk integral
which has to vanish for general variations of the field,
leading to free Dirac equations, as usual.
For the calculation of canonical tensors from the action

(A2), we follow Ref. [16] and use a space-dependent
variation of the fields

�ðxÞ ¼ �ðxþ �ðxÞÞ ��ðxÞ ’ ��ðxÞ@��ðxÞ

with small �ðxÞ. This is a particular variation of the field
which fulfills the condition (56) if �ðxÞ ¼ 0 at the boundary
and this is what we set. If � is the solution of the equation
of motion, then the variation of the action should vanish.
After some easy calculations (see Ref. [16])

0 ¼ A

¼
Z
V
d4x@�

�
@L

@@�c
a @

�c a � g��L
�
��

þ
Z
V
d4x@�

�
@L

@@�c
a @

�c a��

�
:

The second term can be turned into a boundary integral
which vanishes because � ¼ 0 there, as has been men-
tioned. The first term should also vanish and since �ðxÞ is
an arbitrary function, the divergence of the what can be
easily recognized as the canonical stress-energy tensor
must vanish.
A similar reasoning leads to the conclusion that the

angular momentum tensor is conserved.

APPENDIX B: CALCULATION OF THE MEAN
VALUE OF PRODUCTS OF CREATION AND

DESTRUCTION OPERATORS

We follow the argument used in [1]. The aim is to
calculate

tr V½�̂aynan0 �

with �̂ given by Eq. (18). For this purpose we define, with
	 ¼ 1=T,

aynð	Þ ¼ e�	ðĤ�!Ĵ��Q̂Þayne	ðĤ�!Ĵ��Q̂Þ (B1)

and similarly for an, bn and b
y
n. From the above equation it

ensues:

@aynð	Þ
@	

¼ ½aynð	Þ; Ĥ �!Ĵ ��Q̂� (B2)

and, since

F. BECATTINI AND L. TINTI PHYSICAL REVIEW D 84, 025013 (2011)

025013-18



½Ĥ; ayn� ¼ "ayn ½Ĵ; ayn� ¼ Mayn ½Q̂; ayn� ¼ qayn;

one readily obtains that Eq. (B2) is equivalent to:

@aynð	Þ
@	

¼ ð�"þM!þ�qÞaynð	Þ;

which is solved by, being aynð0Þ ¼ ayn,

aynð	Þ ¼ ayne�	ð"�M!��qÞ: (B3)

We can now write

tr V½�̂aynan0 � ¼ trV½�̂ayne	ðĤ�!Ĵ��Q̂Þe�	ðĤ�!Ĵ��Q̂Þan0 � ¼ trV½e�	ðĤþ!Ĵ��Q̂Þan0�̂ayne	ðĤ�!Ĵ��Q̂Þ�

¼ 1

Z!

trV½e�	ðĤ�!Ĵ��Q̂Þan0e�	ðĤ�!Ĵ��Q̂Þayne	ðĤ�!Ĵ��Q̂Þ� ¼ 1

Z!

trV½e�	ðĤ�!Ĵ��Q̂Þan0aynð	Þ�

¼ trV½�̂an0aynð	Þ�;

where we have used the ciclicity of the trace, the definition
of �̂ in Eq. (18) and the Eq. (B1). It should be pointed out
that the ciclicity of the trace can be used safely because a
complete set of states for the cylinder with finite radius can
be constructed with eigenvectors of the operators Ĥ, Ĵz and
Q̂; we could have also used the full trace and insert the
operator PV discussed in Sec. IV but this would not have
changed the final result as this operator commutes with �̂.
By using Eq. (B3) and the anticommutation relation (67),
the above equation can also be written as

tr V½�̂aynan0 � ¼ trV½�̂an0aynð	Þ�
¼ trV½�̂an0ayn�e�	ð"�M!��qÞ

¼ ð�trV½�̂aynan0 � þ nn0 Þe�	ð"�M!��qÞ;

whence

tr V½�̂aynan0 � ¼ nn0

e	ð"�M!��qÞ þ 1
:

The above method can be used for the calculation
of other bilinear combinations of creation and destruc-
tion operators, leading to the equalities reported in
Eq. (73).

APPENDIX C: CALCULATIONOF THE FUNCTION
DðrÞ ON THE ROTATION AXIS

We calculate Dð0Þj!¼0 to show that it is vanishing as
well as its derivative with respect to !=T to show that is
strictly positive. The function DðrÞ in Eq. (75) is the sum
of a particle DðrÞþ and an antiparticle DðrÞ� term: we
focus on the particle term as the calculation for anti-
particle is a trivial extension. Since Bessel functions of
all orders but zero vanish (J0ð0Þ ¼ 1), in r ¼ 0 in the sum
of Eq. (75) only terms with M ¼ �1=2 and M ¼ 1=2
survive

Dð0Þþ ¼ 1

8�2R

X
�¼�1

X1
l¼1

Z 1

�1
dpz

� p2
þ;�

ðeð"�ð1=2Þ!þ�Þ=T þ 1ÞJ0ðpþ;�RÞ2½2Rðp2
þ;� þm2Þ þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
þ;� þm2

q
þm�

� p2
�;�b

ðþÞ2
�

ðeð"þð1=2Þ!þ�Þ=T þ 1ÞJ1ðp�;�RÞ2½2Rðp2
�;� þm2Þ � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
�;� þm2

q
þm�

�
; (C1)

where we have defined p�;� ¼ �ð�1
2
;�;lÞ

R (see Eq. (61)). We can rearrange the above sum by noting that the Eq. (62), depending
on indices ðM;�Þ is the same for ð�M;��Þ. In fact,

Jj�M�ð1=2Þjð�Þ þ sgnð�MÞbðþÞ
��Jj�Mþð1=2Þjð�Þ ¼ JjMþð1=2Þjð�Þ � sgnðMÞbðþÞ

��JjM�ð1=2Þjð�Þ;

However, because of (63), �bðþÞ
�� ¼ bð�Þ

� ¼ 1=bðþÞ
� , and so multiplying the right-hand side of above equation by

sgnðMÞbðþÞ
� one gets the left hand side of Eq. (62). Hence, the zeroes of Eq. (62) and the one with ‘‘reflected’’ indices

ð�M;��Þ are the same

�ð�M;��;lÞ ¼ �ðM;�;lÞ (C2)

for any l ¼ 1; 2; . . . . Nowwe can redefine the indices in the second term of the sum in Eq. (C1) by turning � into��, which
changes nothing as � ¼ �1, þ1 and write
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Dð0Þþ ¼ 1

8�2R

X
�¼�1

X1
l¼1

Z 1

�1
dpz

(
p2
þ;�

½eð"�ð1=2Þ!þ�Þ=T þ 1�J0ðpþ;�RÞ2½2Rðp2
þ;� þm2Þ þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
þ;� þm2

q
þm�

� p2
�;��b

ðþÞ2
��

½eð"þð1=2Þ!þ�Þ=T þ 1�J1ðp�;��RÞ2½2Rðp2
�;�� þm2Þ þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
�;�� þm2

q
þm�

)
:

We can replace p�;�� with pþ;� because of (C2) and therefore:

Dð0Þþ ¼ 1

8�2R

X
�¼�1

X1
l¼1

Z 1

�1
dpz

(
p2
þ;�

½eð"�ð1=2Þ!þ�Þ=T þ 1�J0ðpþ;�RÞ2½2Rðp2
þ;� þm2Þ þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
þ;� þm2

q
þm�

� p2
þ;�b

ðþÞ2
��

½eð"þð1=2Þ!þ�Þ=T þ 1�J1ðpþ;�RÞ2½2Rðp2
þ;� þm2Þ þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
þ;� þm2

q
þm�

)
: (C3)

We are now going to prove that this latter expression is nonvanishing when ! � 0. First, we note that it does vanish
when ! ¼ 0. In this case Eq. (C3) yields

Dð0Þþj!¼0 ¼ 1

8�2R

X
l;�

Z 1

�1
dpz

p2
þ;�½J1ðpþ;�RÞ2 � bðþÞ2

�� J0ðpþ;�RÞ2�
½eð"þ�Þ=T þ 1�J1ðpþ;�RÞ2J0ðpþ;�RÞ2½2Rðp2

þ;� þm2Þ þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
þ;� þm2

q
þm�

:

By using again (C2) to replace pþ;� with p�;�� it is easy to show that the numerator of the integrand vanishes as

J1ðpþ;�RÞ2 � bðþÞ2
�� J0ðpþ;�RÞ2 ¼ J1ðp�;��RÞ2 � bðþÞ2

�� J0ðp�;��RÞ2 ¼ J1ð�ð�1=2;��;lÞÞ2 � bðþÞ2
�� J0ð�ð�1=2;��;lÞÞ2 ¼ 0

in view of the Eq. (62). Therefore, the spin tensor density in r ¼ 0 vanishes for a nonrotating system, as expected. To show
that it is no longer zero for ! � 0 we just need to show that the derivative with respect to !=T in ! ¼ 0 is not zero.
One has

@

@ð!=TÞDð0Þþj!¼0 ¼ 1

16�2R

X
l;�

Z 1

�1
dpz

eð"þ�Þ=Tp2
þ;�½J1ðpþ;�RÞ2 þ bðþÞ2

�� J0ðpþ;�RÞ2�
½eð"þ�Þ=T þ 1�2J1ðpþ;�RÞ2J0ðpþ;�RÞ2½2Rðp2

þ;� þm2Þ þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
þ;� þm2

q
þm�

:

All terms are manifestly positive except ½2Rðp2
Tl þm2Þ þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
Tl þm2

q
þm� in the denominator when � ¼ �1. However,

in this case,

2Rðp2
Tl þm2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
Tl þm2

q
þm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
Tl þm2

q
ð2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
Tl þm2

q
� 1Þ>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
Tl þm2

q
ð2Rm� 1Þ;

which is positive for a radius greater than half the Compton wavelength of the particle, that is, positive for any actually
macroscopic value of the radius R. The very same argument applies to the antiparticle term Dð0Þ� of the DðrÞ function in
Eq. (75) with the immaterial replacement � ! ��, hence,

Dð0Þj!¼0 ¼ 0
@

@ð!=TÞDð0Þj!¼0 > 0:
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