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Hydrodynamics predicts long-lived sound and shear waves. Thermal fluctuations in these waves can

lead to the diffusion of momentum density, contributing to the shear viscosity and other transport

coefficients. Within viscous hydrodynamics in 3þ 1 dimensions, this leads to a positive contribution

to the shear viscosity, which is finite but inversely proportional to the microscopic shear viscosity.

Therefore the effective infrared viscosity is bounded from below. The contribution to the second-order

transport coefficient �� is divergent, which means that second-order relativistic viscous hydrodynamics is

inconsistent below some frequency scale. We estimate the importance of each effect for the quark-gluon

plasma, finding them to be minor if �=s ¼ 0:16 but important if �=s ¼ 0:08.
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I. INTRODUCTION

Heavy-ion collisions at the Relativistic Heavy Ion
Collider [1–4] and the LHC [5,6] produce a medium whose
evolution, at least at early times, is well described by hydro-
dynamics with a very small viscosity [7–15] (at least when
normalized to the entropy density [16]). A major theoretical
goal is now to determine this viscosity as accurately as pos-
sible, by modeling the development of a heavy-ion collision
with viscous hydrodynamics. In order to do so it is necessary
to go beyond the ‘‘first-order’’ (Navier-Stokes) formalism,
because the first-order formalism leads to acausal and un-
stable evolution in a relativistic setting [17–21]. As shown
by Israel and Stewart [22–24], this problem can be cured
by working instead with hydrodynamics expanded to the
second order in gradients, which should have the added ad-
vantage of being more accurate. Several groups have been
involved in studying the hydrodynamics of heavy-ion colli-
sions using such second-order formalisms [10,25–30].How-
ever, within the community which studies hydrodynamics
and kinetics of atomic gases, it has been known for almost
40 years that the gradient expansion in hydrodynamics fails
beyond the first order [31]. Is this also true in the relativistic
setting? If so, what implications does it have for the study of
hydrodynamics via the second-order formalism?

II. SETUP AND INTUITIVE ARGUMENT

We start by reviewing relativistic hydrodynamics to
second order. Hydrodynamics is the modeling of a fluid
by solving the stress-energy conservation equations1

@�T
��ðxÞ ¼ 0 (2.1)

assuming some functional form for the stress tensor. Ideal
hydrodynamics assumes the equilibrium form

T
��
eq ðxÞ ¼ ð�ðxÞ þ PÞu�ðxÞu�ðxÞ þ Pg��; P ¼ Pð�Þ;

(2.2)

where g�� ¼ Diag½�1;þ1;þ1;þ1� is the metric, u� is

the four-velocity determining the rest frame (normalized so
u�u

� ¼ �1), � ¼ u�u�T
�� is the rest-frame energy den-

sity, and P is the pressure as determined by the equation of
state P ¼ Pð�Þ. Viscous hydrodynamics assumes that the
fluid is near equilibrium so that T�� is close to this form.
Assuming that equilibration is a fast, local process, correc-
tions to this form can be written in terms of an expansion in
gradients. Israel and Stewart showed [23] that a slight
reorganization of the second-order derivative expansion
yields stable equations which are correct to second order,
provided a particular additional term appears at second
order:

T��ðxÞ ¼ T��
eq þ���;

��� ¼ �2�cl@
h�u�i þ ��ðu�@���� þ 1

3�
��@�u

�Þ
ðþother termsÞ; (2.3)

where �cl is the ‘‘classical’’ viscosity coefficient that one
would obtain from a microscopic calculation using the
Kubo formula based on (2.3). The angular brackets in

@h�u�i mean that the indices are to be symmetrized, pro-
jected to be spatial in the frame given by u�, and trace-
subtracted.2 The extra terms include bulk viscosity and

1If there are conserved currents J
�
a , one also considers current

conservation @�J
�
a ¼ 0. In equilibrium J�a ¼ nau

�; out of equi-
librium there can be derivative corrections. However, in ultra-
relativistic heavy-ion collisions the density of the conserved
baryon number in the central rapidity region is small, so we
will neglect it and will not discuss conserved currents further.

2That is, defining P�� ¼ g�� þ u�u� which is a projector to
local rest-frame spatial components, 2@h�u�i ¼ ðP��P�� þ
P��P�� � 2

3P
��P��Þ@�u�.

PHYSICAL REVIEW D 84, 025006 (2011)

1550-7998=2011=84(2)=025006(9) 025006-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.025006


nonlinear effects, and are catalogued in [32–34]. To sim-
plify the discussion here we will consider a conformal
fluid, in which case the bulk viscous term is absent.
While this is not a very good approximation for QCD
near the transition temperature, in practice the inclusion
of bulk viscosity and a realistic equation of state would
have only a small influence on our final results.3

Solving the hydrodynamic equations for small fluctua-
tions in u�, � about constant values, one finds two sorts of
long-lived wave solutions, sound waves and shear waves.
At lowest order in k, ! � �=�cl, they obey dispersion
relations of

!shear ¼ �i
�cl

�þ P
k2; !sound ¼ �kffiffiffi

3
p � i

2�cl

3ð�þ PÞ k
2:

(2.4)

Each sort of wave decays with time, but with a decay rate
which vanishes quadratically in the small k limit, as well as
becoming small for small �cl. Generically, out of equilib-
rium such waves will be present with large amplitudes. But
equipartition of energy says that even in equilibrium such
waves will be present, carrying energy which averages to
T=2 per degree of freedom. The long decay times of these
waves contradict the assumption that all degrees of free-
dom in a fluid equilibrate via rapid local processes. This
imperils the assumption behind the gradient expansion in
Eq. (2.3). If there are arbitrarily slowly equilibrating de-
grees of freedom, Eq. (2.3) can contain terms nonanalytic
in gradients. In the nonrelativistic setting it is known that
precisely this happens [31].

To see more intuitively how hydrodynamic waves can
contribute to hydrodynamic coefficients, consider a shear
wave, as illustrated in Fig. 1. Hydrodynamics says that this
wave configuration will decay with time as the x momen-
tum carried by the fluid diffuses in the y direction into
neighboring regions, which are not flowing. The rate of this
diffusion is controlled by shear viscosity, which is, by
definition, the diffusion coefficient for the component of
momentum transverse to the diffusion (the y diffusion of
x momentum in this illustration). But one mechanism
which can transmit x momentum is hydrodynamic waves,
such as sound waves, with wave lengths shorter than the
hydrodynamic structure considered. Sound waves leaving
the x-moving fluid carry net x momentum away, diffusing
away this component of momentum. The phase space of
such waves scales as d3k which is very UV dominated;
but the distance propagated before dissipation scales as
1=k2 as we just saw, leading to a contribution to viscosity
which scales as�d3k=k2. This is IR finite, though it would
not be in two spatial dimensions [35]. The contribution is
larger for smaller �cl, both because hydrodynamic waves

propagate further and because the range of k where hydro
is valid expands at smaller �cl, so the phase space of
hydrodynamic waves is larger.
Similarly, �� can be interpreted as a relaxation time; if a

fluid suddenly develops shear flow, �� is the time scale for
momentum diffusion to be established. We already saw
that hydrodynamic modes contribute to momentum diffu-
sion, with a mode of wave number k contributing of order
1=k2. The time scale for this mode to leave equilibrium and
establish its contribution to momentum diffusion also
scales as 1=k2. This suggests that such a mode contributes
to �� by an amount proportional to k�4, leading to anR
d3k=k4 contribution to ��, which is small k divergent.

III. COMPUTATION OF THE CONTRIBUTION
FROM HYDRODYNAMIC WAVES

Reference [32] derives the following Kubo relation for
the shear viscosity �cl and the relaxation time �� in terms
of the retarded correlation function for two Txy stress-
tensor operators:

Gxy;xy
R ð!; kzÞ ¼ P� i!�cl þ

�
�cl�� � 	

2

�
!2

� 	

2
k2z þOð!3; k3Þ: (3.1)

Here 	 is another transport coefficient discussed in [32].
We see from the above that 	 can be extracted from the
zero frequency behavior of the stress-stress correlation
function, Gxyxy

R ð! ¼ 0; kzÞ. The zero frequency retarded
function equals the Euclidean correlation function, so 	
is a thermodynamic property [36], which is not sensitive to
long-wavelength hydrodynamic waves. Since we are not
interested in the value of 	, we will consider Gxy;xy

R at
vanishing external spatial momentum k ¼ 0 and small
nonzero frequency !.

FIG. 1 (color online). A shear wave; fluid moves to the left in a
band of fluid near the middle of the figure. Viscosity determines
the loss (by diffusion) of the forward motion of this fluid. Sound
waves (dotted red lines) leaving the left-moving fluid carry, on
average, net left-moving momentum, which is not compensated
by sound waves arriving in the left-moving fluid. Hence sound
waves contribute to viscosity.

3In particular, our results are dominated by the effects of shear
waves, which are not sensitive to bulk viscosity or the equation
of state.
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To compute the contribution of hydrodynamic waves to
� and ��, we compute their contribution to the above
correlation function, along the lines of what Kovtun and
Yaffe did for the symmetrized correlator [37]. The operator
Txy to be used in the Green function above is the hydro-
dynamic one as described in Eqs. (2.2) and (2.3) above,

allowing for thermally occupied fluctuations in u� and �.
In the absence of fluctuations u� ¼ ð1; 0; 0; 0Þ, � ¼ �0,
P ¼ �0=3, where �0 is the equilibrium energy density.
Therefore Txy arises at order ð
uÞ due to the viscous terms,
and at order ð
uÞ2 and higher from the equilibrium and
viscous terms:

Txy ¼ ½��clð@xuy þ @yuxÞ� þ
�
ð�þ PÞuxuy � �clðux@0uy þ uy@0u

xÞ � 
�
d�cl

d�
ð@xuy þ @yuxÞ

�
þOð
3Þ: (3.2)

The contribution at first order in fluctuations arises only from the viscous term ��clð@xuy þ @yuxÞ. The symmetrized
correlator is

Gxyxy
S ½1-order� ¼

Z
d3xdtei!t�ik�x

�
1

2
fð��cl½@xuy þ @yux�ðx; tÞÞ; ð��cl½@xuy þ @yux�ð0; 0ÞÞg

�
; (3.3)

which is related to the retarded correlator via GSð!Þ ¼
�½1þ 2nbð!Þ� ImGRð!Þ. The expression above is auto-
matically Oðk2Þ and so it does not contribute in the k ! 0
limit. But there can also be local contributions, that is,
contributions proportional to 
4ðxÞ or its derivatives (con-
tact terms). We will present a direct calculation of such
contact terms within hydrodynamic theory in a future

publication [38]. For our current purposes we will instead
extract them by using stress conservation,

@�T
�y ¼ 0 ) k2xG

xyxyðkx; !Þ ¼ !2G0y0yðkx; !Þ; (3.4)

together with the known expression for G0y0y
S [see

Eq. (33d) of [37]]:

G0y0y
S ðkx; !Þ ¼ 2k2x�clT

ðk2x�cl=ð�þ PÞÞ2 þ!2
and hence Gxyxy

S ðkx; !Þ ¼ 2�clT

�
1� ðk2x�cl=ð�þ PÞÞ2

ðk2x�cl=ð�þ PÞÞ2 þ!2

�
: (3.5)

The first term in (3.5) is the contact term, which gives rise
to the �i!�cl term in Eq. (3.1). The second term is the
contribution from the correlator of the ��cl@

xuy part of
Txy, which vanishes at small k.

Now we extend this calculation to second order in
fluctuations. At this order there are higher order corrections
to the terms involving a single power of 
u in Txy, and the
lowest order contribution from terms involving two powers
of ux, uy, 
� in Txy. But since the terms involving a single
power of 
u in Txy always involve spatial derivatives, these
terms all vanish in the k ! 0 limit, like the second term in
Eq. (3.5) above. So we skip their calculation and concen-
trate on contributions from second order in fluctuation
terms in Txy. There are several such terms in Eq. (3.2),
but we will concentrate on the term ð�þ PÞuxuy and
explain why the other terms can be neglected at the end.
Since uxuy is already quadratic in fluctuations, we can
neglect fluctuations in � and replace ð�þ PÞ with �0 þ
P0 ¼ 4

3 �0. Since fluctuations in � will play no further

role in the discussion, we will henceforth write �, P for
�0, Pð�0Þ.

Define the correlation function of the fluid velocity
ui to be

�ij
S;Rð!0;pÞ�

Z
dtd3xe�ip�xþi!thuiðt;xÞujð0;0ÞiS;R; (3.6)

where hiS;R indicate whether the operators are to be sym-

metrized (S) or if the retarded correlator is to be used (R).
Using the expression we have for the stress tensor above,
the symmetrized correlation function of two stress tensors
at vanishing external spatial momentum is

Gxyxy
S ½2-order�ð!; k ¼ 0Þ

¼ ð�þ PÞ2
Z d!0

2�

Z d3p

ð2�Þ3 ½�
xx
S ð!0;pÞ�yy

S ð!�!0;�pÞ
þ �xy

S ð!0;pÞ�yx
S ð!�!0;�pÞ�; (3.7)

where we assumed small, nearly linear, hydrodynamic
fluctuations and small frequencies (details will be given
in Ref. [38]).
We could use the Kubo-Martin-Schwinger (KMS)

relation GSð!Þ ¼ �½1þ 2nbð!Þ� ImGRð!Þ to extract the
shear viscosity from this correlation function, but since ��
depends on the real part of the retarded function, we would
need to invert the KMS condition through a Kramers-
Kronig relation to get the real part of GR. It is more
economical to compute GR directly:
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Gxyxy
R ½2-order�ð!; k ¼ 0Þ ¼ ð�þ PÞ2

Z d!0

2�

Z d3p

ð2�Þ3 ½�
xx
S ð!0;pÞ�yy

R ð!�!0;�pÞ þ�xy
S ð!0;pÞ�yx

R ð!�!0;�pÞ
þ�xx

R ð!0;pÞ�yy
S ð!�!0;�pÞ þ �xy

R ð!0;pÞ�yx
S ð!�!0;�pÞ�; (3.8)

which in the small frequency limit reproducesGxyxy
S when using the KMS condition. This contribution is to be added to the

first-order contribution, which, as we discussed, reproduces the terms present in Eq. (3.1).

Now �ij
S ð!0;pÞ was determined by Kovtun and Yaffe [37]. They included the effect of the viscous �cl term (first-order

gradients) but dropped the �� term (second-order gradients), a procedure we will follow. One finds

�ij
S ð!0;pÞ ¼ 2T

�þ P

�
pipj

p2

~��p
2!2

ð!2 � p2=3Þ2 þ ð~��p
2!Þ2 þ

�

ij � pipj

p2

�
��p

2

ð��p
2Þ2 þ!2

�
with �� � �cl

�þ P
;

~�� � 4�cl

3ð�þ PÞ : (3.9)

The first and second terms in�ij represent sound and shear
waves, respectively. This expression differs slightly from
the one found by Kovtun and Yaffe [37] because they
assume p�� � 1 which allows them to split the sound
mode contribution into separate terms for ! ’ p=

ffiffiffi
3

p
and

! ’ �p=
ffiffiffi
3

p
propagation.

In the small frequency limit, the factor 2T in the
numerator of Eq. (3.9) should really be interpreted as

!ð1þ 2nbð!ÞÞ, with nbð!Þ ¼ ðe!=T � 1Þ�1 as usual.

Then the KMS relation �ij
S ðp; !Þ ¼ �ð1þ 2nbð!ÞÞ

Im�ij
Rðp; !Þ and the analytic properties of �R (no poles

in the upper half-plane) uniquely establish

�ij
Rðp; !Þ ¼ 1

�þ P

�
pipj

p2

!2

i~��p
2!þ ð!2 � p2=3Þ

þ
�

ij � pipj

p2

� ���p
2

�i!þ ��p
2

�
: (3.10)

We are now ready to compute Eq. (3.8). Since our
calculation is done entirely within hydrodynamics, or
equivalently assuming momenta to be small, our result
will not be applicable at large momenta, neither in the
argument of Gxyxy

R , nor for the hydrodynamic propagators
�ij inside the integral of Eq. (3.8). Hence, we need to
restrict the calculation to the highest wave number pmax,
or the inverse of the shortest length scale, where the hydro-
dynamic description is valid. Cutting off the p integration
at pmax and considering first the shear-shear contribution,
we can perform the index contractions and angular inte-
grals, finding

Gxyxy
R;shear-shearð!Þ ¼ 14

15

1

2�2

Z pmax

0
p2dp

Z d!0

2�

2��p
2T

ð��p
2 � i!0Þð��p

2 þ i!0Þ
���p

2

��p
2 � i!þ i!0

¼ 7T

30�2

Z pmax

0
dp

�p4

p2 � i!=ð2��Þ
¼ 7T

30�2

Z pmax

0
dp

�
�p2 � i!

2��

þ !2=ð4�2
�Þ

p2 � i!=ð2��Þ
�
: (3.11)

The p2 term is an uninteresting contribution of hydro-
dynamic waves to the pressure.4 The two ‘‘interesting’’
terms are

Gxyxy
R;shear-shearð!Þ ’ �i!

7Tpmax

60�2��

þ ðiþ 1Þ!3=2 7T

240��3=2
�

:

(3.12)

Comparing with Eq. (3.1), we see that the first term is a
positive contribution to the shear viscosity arising from
shear waves. The imaginary part of the second term is a
frequency-dependent reduction in the shear viscosity,
which vanishes as ! ! 0. Therefore, there is no problem
defining the shear viscosity in terms of the zero frequency
limit of @Gxyxy

R =@!. The real part of the !3=2 term has the
same sign as the �� term in Eq. (3.1), but the wrong !
dependence. This term can be interpreted as a frequency-
dependent correction to �� which diverges at small fre-
quency; or it can be interpreted as a breakdown of the
validity of the hydrodynamic expansion beyond one-
derivative order.

4The pressure contribution has an unexpected sign. In a
weakly coupled theory, the contributions of ordinary particles
in loops also have the wrong sign, which is over-canceled by a
contact term; see [39].
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We should also include the sound (pipj=p2) terms in�ij

shown in Eqs. (3.9) and (3.10). If we assume pmax�� � 1

then the sound part in (3.10) may be approximated as

!2

i~��p
2!þ ð!2 � p2=3Þ ! !

2

�
1

!þ i~��=2p
2 � p=

ffiffiffi
3

p

þ 1

!þ i~��=2p
2 þ p=

ffiffiffi
3

p
�

which has the advantage that now the !0 poles in (3.8) are
simple. The integration is then straightforward, and for the
mixed shear-sound term, one has

�T

5�2

Z pmax

�pmax

dp
p4

p2 � 3ið!� p=
ffiffiffi
3

p Þ=5��

¼ � 2T

3�2
�2
�p

5
max þ i

2��T

3�2
!p3

max þ . . . :

One thus finds that the mixed shear-sound term is sup-
pressed with respect to the result (3.12) by extra powers of
pmax��. The sound-sound term contains a part that has the

same structure as the shear-shear contribution, as well as
other parts that are again suppressed by powers of pmax��.

Evaluation of the interesting contribution to leading order
in pmax�� gives

Gxyxy
R ð! � pmax � ��1

� Þ

’ �i!
17Tpmax

120�2��

þ ðiþ 1Þ!3=2
ð7þ ð32Þ3=2ÞT
240��3=2

�

þOðp2
max�

2
�;!

2Þ: (3.13)

This is our main result.
Let us finally comment about whether or not we need

to consider other contributions to Gxyxy
R coming, for in-

stance, from the ��clu
x@0u

y term in Eq. (3.2). Since
hydrodynamics is predicated on the convergence of the
derivative expansion introduced in Eqs. (2.2) and (2.3),
pmax should be chosen as the largest momentum scale
where successive terms in the series are successively
smaller, which requires pmax � ð�þ PÞ=�cl (comparing
the zero- and one-derivative terms) and pmax �
�cl=ð�cl��Þ ¼ ��1

� (comparing the one-derivative and
two-derivative terms). This also ensures that hydrody-
namic waves with p < pmax will have Im! � p, so that
hydrodynamic waves are well-defined, long-lived excita-
tions in the plasma. And it ensures that the real parts of
the propagating frequencies of the two sound waves and
the shear wave are more widely separated than their imagi-
nary parts. These conditions ensure that contributions to
Gxyxy

R from higher-derivative terms in Eq. (2.3), and con-
tributions arising from interference between sound and
shear waves in Eq. (3.8), are small compared to the terms
we have computed. In particular, terms arising from
Txy � ��clu

x@0u
y in Eq. (2.3) will give rise to an inte-

grand similar to Eq. (3.11) but with an extra power of

ðp��Þ2. The resulting term will be analytic in the fre-

quency and will give corrections suppressed by p2
max�

2
�

relative to the terms we have computed. We will not
attempt to compute such suppressed corrections here.

IV. INTERPRETATION AND DISCUSSION

A. Viscosity

We found that, besides the classical viscosity �cl, there
is an additional contribution to viscosity as measured on
very long distance and time scales, generated by relatively
short-wavelength hydrodynamic waves. It is given by the
coefficient of �i! in Eq. (3.13):

�new ¼ 17pmaxTð�þ PÞ
120�2�cl

ð1þOðp2
max�

2
�ÞÞ; (4.1)

where higher power corrections in pmax can be neglected
as long as pmax�� � 1. The new contribution from

Eq. (3.13) scales as an inverse power of �cl. Therefore,
�� �cl þOð1=�clÞ has a positive minimum at a nonzero
value of �cl. This places a lower bound on the total
(infrared) value of � in any given theory.
To estimate the size of the new term and the minimum

possible viscosity, we need to estimate pmax. As discussed,
pmax should be the largest wave number such that the
gradient expansion converges and a hydrodynamic descrip-
tion is self-consistent. Following the discussion after
Eq. (3.13), we will estimate pmax ’ ��1

� =2.
The total viscosity � is then the classical plus the new

contribution,

� ¼ �cl þ
17pmax��Tð�þ PÞ2

120�2�2
cl

; (4.2)

which leads to an absolute lower bound on the total vis-
cosity:

�>

�
153

160�2
Tð�þ PÞ2pmax��

�
1=3

: (4.3)

Note that an actual measurement of correlators in a fluid
would give information about �, whereas �cl turns out to
be only a calculational quantity.
In a theory with many colors and a weak coupling so that

parametrically [40–42]

�� N2
cT

4; s� N2
cT

3; �� N2
c�

�2T3;

�� � N0
c�

�2T�1;
(4.4)

the new contribution is parametrically

�new � ��1
� �T

�
� �4T3 � �6N�2

c �; (4.5)

showing that the new contribution is safely subdominant
in any theory which is either weakly coupled or has many
fields.
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However, in the real world QCD has three colors and the
coupling at scales of current interest is not small. How
large is this new contribution to � in this case? To address
this, we need estimates for �cl, ��, and �þ P ¼ sT for
real-world QCD. The easiest is sT, which can be deter-
mined on the lattice. According to Borsányi et al. [43]
(Fig. 12), between T ¼ 200 MeV and T ¼ 300 MeV s=T3

rises from about 10 to about 14. Bazavov et al. [44]
(Fig. 8) give comparable numbers, with s=T3 rising from
11 to 16 in the same range. �� naturally scales as �� �
�cl=sT ¼ ��, and estimates in QCD vary from 2:6��, the

value in strongly coupledN ¼ 4 super Yang-Mills theory
[32], to �5��, the value at weak coupling [42]. The trend

is that, while ��=�� is a pure number of order unity, it is

smaller in more strongly coupled contexts and larger in
weakly coupled contexts. So in the context of QCD with a
small shear viscosity, it probably makes sense to assume
��=�� is at the low end of this estimated range. Regarding

�cl, the lowest estimates for �cl=s are around 0.08, while
�cl=s ¼ 0:16 may be on the high side in terms of fitting
elliptic flow data [10].

If we estimate that ��¼3�cl=sT, �cl=s¼0:08, and s ¼
10T3, we find pmax�2T and �new�0:36T3�0:036s.
The true value of �=s would then be 0:08þ 0:036 ¼
0:116. Varying the value of �cl=s while holding the other
estimates fixed, this is close to the minimum value of the
total viscosity. On the other hand, if �cl ¼ 0:16s but the
other estimates are the same, then pmax � 1T and �new �
0:09T3 � 0:01s, which is a negligible correction to the
total viscosity. Therefore, the importance of the ‘‘new’’
contribution to viscosity is quite sensitive to the value of
�cl=s; for real-world values of other parameters �=s ¼
0:08 appears to be impossible, but �=s ¼ 0:16 is not.

Finally, we point out that these viscosity values depend
on the choice for the parameter pmax, the UV scale up
to which hydrodynamics can be used. We estimated
pmax ’ 1=ð2��Þ, which should be reliable up to a factor
of 2. Note that this uncertainty in pmax translates into an
uncertainty of �25% in the viscosity bound (4.3), not
enough to jeopardize the above estimate for the real-world
value of �=s.

B. Relaxation time ��

The presence of a nonanalytic term in the frequency
expansion for Gxyxy

R ð!Þ implies that hydrodynamics at
second order in gradients does not, strictly speaking,
work. However, in practice we are usually interested in
applying hydrodynamics over some range of time, with
some limited time resolution, and with a finite accuracy
tolerance. If the nonanalytic term is sufficiently small
compared to the !2 term for the frequency scales which
are of actual importance in a particular problem, then there
may be no issue, in practice, with using second-order
hydrodynamics. To see whether this is the case, we should

estimate the frequency !min where the !
3=2 term is larger

than the �cl��!
2 term. Clearly, for !<!min, the second-

order treatment becomes invalid.
Again using the parametric estimates of Eq. (4.4), the

frequency expansion of Gxyxy
R , Eq. (3.1) plus Eq. (3.13), is

parametrically of the form

Gxyxy
R ð!Þ�P�ið�clþ�newÞ!þ�cl��!

2

�N2
cT

4!0�iN2
c�

�2T3!1þð1þiÞN0
c�

3T5=2!3=2

þN2
c�

�4T2!2: (4.6)

The frequency scale where the !3=2 term first dominates
the !2 term is parametrically

N0
c�

3T5=2!3=2 � N2
c�

�4T2!2 ) !min � N�4
c �14T:

(4.7)

Therefore, in a theory which either has a large number of
colors or has weak coupling, the frequency scale where the
new term becomes important is parametrically tiny. Then
there is no obstacle to using second-order hydrodynamics
for !>!min; the second-order treatment will only be-
come invalid at a frequency scale where it is, in any case,
almost irrelevant compared to the !1 viscous term. Note
that, in particular, the large Nc limit is the reason why one
does not encounter the new term e.g. in the context of AdS/
CFT duality calculations. However, it has been shown that
it reemerges when 1=Nc corrections are taken into account,
cf. [45].
Now we turn to real-world QCD. To determine the

breakdown scale of second-order hydrodynamics, we again

compute the scale where the real part of the !3=2 term in
Eq. (3.13) equals the �cl��!

2 term in Eq. (3.1):

!min ¼ ð7þ ð3=2Þ3=2Þ2T
ð240�Þ2

�
�cl

s

��7
�
��
��

��2
�
s

T3

��2
: (4.8)

We illustrate the consequences for real-world QCD in
Table I, using some of the estimates for s=T3, ��, and �cl

discussed in the last subsection to evaluate the frequency
scale !min. Below this frequency second-order hydrody-
namics is certainly not consistent. What we see is that,
for reasonable values of s=T3 and of ��, this frequency
scale is very low if �cl=s ¼ 0:16, but it is very high for
�cl=s ¼ 0:08. Therefore, second-order hydrodynamics can
be applied to QCD if �cl=s� 0:16 above the transition

TABLE I. Frequency scale !min, where the !3=2 term equals
the �cl��!

2 term in Gxyxy
R ð!Þ. For !<!min, second-order

hydrodynamics is inconsistent.

�þ P �� �cl=s !min

10T4 3 �cl

sT 0.08 7T
10T4 5 �cl

sT 0.08 2:6T
16T4 3 �cl

sT 0.08 2:8T
10T4 3 �cl

sT 0.16 T=18
16T4 5 �

sT 0.16 T=125
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temperature; it breaks down below frequency scales of
order T=20, which corresponds to time scales above
20 Fermi, safely above the microphysical scale it is in-
tended to model in heavy-ion collisions (5–10 fm). But if
�cl=s� 0:08, there is a problem. Second-order hydrody-
namics is then already inconsistent on frequency scales of
order 2:5T, corresponding to time scales above 0.4 Fermi.
This is a shorter time scale than our estimate p�1

max � 1=2T
for the shortest scale on which hydrodynamics is to be
reliable. So in this case there would be no range of scales
on which second-order hydrodynamics is applicable.

C. Viscosity—again

Let us accentuate the conclusions drawn in the previous
subsection by again considering the correction to the vis-
cosity in (3.13). As discussed above, Eq. (3.13) contains a
constant, pmax-dependent correction to the viscosity, but its
actual value depends on the estimate for pmax.

A different way to bound what values of viscosity are
compatible with second-order hydrodynamics can be ob-

tained by considering the imaginary part for the!3=2 term,
which can be interpreted as a frequency-dependent correc-
tion to the viscosity,

�ð!Þ ¼ �cl �!1=2 ð7þ ð3=2Þ3=2ÞT
ð240�Þ�3=2

�

:

Note that the first and second terms become of the same
order at ! ¼ !max, where

!max ¼ �5
�s

2 ð240�Þ2
ð7þ ð3=2Þ3=2Þ2 :

Second-order hydrodynamics is certainly no longer appli-
cable at !>!max, because the frequency-dependent
contribution to the viscosity becomes large. On the other
hand, we found above that second-order hydrodynamics

also breaks down for !<!min, because there the
frequency-dependent contribution to the relaxation time
becomes dominant.
So for a second-order hydrodynamic description to be

applicable at all, there has to be a frequency window
!min <!<!max which can only exist if

�cl >
s2=3Tð7þ ð3=2Þ3=2Þ1=3
ð240�Þ1=3ð��=��Þ1=3

: (4.9)

This is a lower bound on viscosity if second-order hydro-
dynamics is to have any range of validity. If we require the
range of allowed frequencies! to be nonzero, the viscosity
will have to be even higher than this bound.
The temperature dependence of the minimal viscosity

can be evaluated when using lattice QCD data [43,44] for
the entropy s and using ��=�� ¼ 3, and it is shown in

Fig. 2. We find that the minimal viscosity as defined in
Eq. (4.9) varies from about �=s ¼ 0:09 at 200 MeV to
about �=s ¼ 0:07 in the Stefan-Boltzmann limit. These
values are comparable to what we found to be the lowest
possible value of �=s in Sec. IVA.

V. CONCLUSIONS

We have shown that, just as in nonrelativistic hydro-
dynamics, in a relativistic setting it is not self-consistent
to consider the hydrodynamic gradient expansion to sec-
ond order. The effects of thermal fluctuations in the
hydrodynamic variables themselves contribute to the
hydrodynamic evolution of the longest wavelength modes.
These effects are suppressed both in weakly coupled theo-
ries and in theories with many degrees of freedom such as
QCD with many colors, but they can be important in real-
world QCD.
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FIG. 2 (color online). Examples for the viscosity over entropy density bound (4.3) (left panel) and applicability of second-order
viscous hydrodynamics (4.9) (right panel). The unknown parameters �� and pmax were assumed to be ��=�� ¼ 3 and pmax ¼ 1=ð2��Þ,
and s=T3 was evaluated using lattice QCD equations of state from the hotQCD [44] and Wuppertal-Budapest [43] collaborations.
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The correction to the shear viscosity is positive and
finite, so shear viscosity is a well-defined quantity in
3þ 1 dimensions. However, in real-world QCD, if �cl=s
is very small then the hydrodynamic fluctuations can make
a significant additional contribution; estimating their size
from our calculation, it does not appear to be possible for
the shear viscosity to entropy ratio of real-world QCD at
T ¼ 200 MeV to be smaller than �=s ’ 0:1.

The issue becomes more severe for the second-order
coefficient ��. Strictly speaking, this coefficient cannot
be defined; its definition assumes an analytic structure for
the stress-stress correlation function which is violated due
to long-wavelength hydrodynamic fluctuations. In prac-
tice, this is only really an issue at long time scales (low
frequencies), where the inclusion of second-order effects
may not be important anyway. However, how long ‘‘long’’
is depends on the value of the viscosity and the entropy
density. For real-world QCD, if�cl=s� 0:16 then there is a
wide range of frequencies where the second-order theory is
applicable; it only fails at such low frequencies that the
difference between first-order and second-order hydro is
insignificant at the affected scales. In this case there would
be no real problem, in practice, with using the second-
order theory to e.g. model heavy-ion collisions. But if
�cl=s� 0:08, then there is no range of scales where the
application of second-order hydrodynamics is consistent in
real-world QCD.

While our calculation focused on the case of relativistic
hydrodynamics, a similar calculation should be possible in

the nonrelativistic setting, presumably with qualitatively
similar results. We leave this interesting project for future
work.
The effects we describe should not be present in dis-

sipative hydrodynamic simulations of heavy-ion collisions
as they are currently conducted. That is because, currently,
such simulations include dissipative viscous effects, but
they do not include the fluctuations required by the
fluctuation-dissipation theorem to ensure that hydrody-
namic modes equilibrate with mean thermal excitation
amplitudes. So the short-wavelength hydrodynamic waves
responsible for the effects we are discussing get quenched
in existing hydrodynamic simulations. It would be very
interesting to try to include thermal fluctuations in hydro-
dynamic variables consistently in hydrodynamic studies of
heavy-ion collisions.
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