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Stochastic analysis of an accelerated charged particle: Transverse fluctuations
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An accelerated particle sees the Minkowski vacuum as thermally excited, and the particle moves
stochastically due to an interaction with the thermal bath. This interaction fluctuates the particle’s
transverse momenta like the Brownian motion in a heat bath. Because of this fluctuating motion, it has
been discussed that the accelerated charged particle emits extra radiation (the Unruh radiation [P. Chen
and T. Tajima, Phys. Rev. Lett. 83, 256 (1999).]) in addition to the classical Larmor radiation, and
experiments are under planning to detect such radiation by using ultrahigh intensity lasers constructed in
near future [P. G. Thirolf, D. Habs, A. Henig, D. Jung, D. Kiefer, C. Lang, J. Schreiberl, C. Maia, G.
Schaller, R. Schutzhold, and T. Tajima, Eur. Phys. J. D 55, 379 (2009).][http://www.extreme-light-
infrastructure.eu/.]. There are, however, counterarguments that the radiation is canceled by an interference
effect between the vacuum fluctuation and the fluctuating motion. In fact, in the case of an internal
detector where the Heisenberg equation of motion can be solved exactly, there is no additional radiation
after the thermalization is completed [D.J. Raine, D. W. Sciama, and P. G. Grove, Proc. R. Soc. Lond. A
435, 205 (1991).][A. Raval, B.L. Hu, and J. Anglin, Phys. Rev. D 53, 7003 (1996).]. In this paper, we
revisit the issue in the case of an accelerated charged particle in the scalar-field analog of QED. We prove
the equipartition theorem of transverse momenta by investigating a stochastic motion of the particle, and

show that the Unruh radiation is partially canceled by an interference effect.
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L. INTRODUCTION

Quantum field theories in the space-time with horizons
exhibit interesting thermodynamic behavior. The most
prominent phenomenon is the Hawking radiation [1] and
the fundamental laws of thermodynamics hold in the black
hole background [2]. This indicates an underlying micro-
scopic description of the space-time and there are varieties
of proposals including those based on D-branes [3] or
quantum spin foam [4]. For a black hole with surface
gravity « at the horizon, the temperature of the Hawking
radiation is given by

T. — hk
" 2mcky

=6X 10-8(%) K], (1.1)

where we have used x = 1/4M for the Schwarzschild
black hole with mass M. The temperature is too small to
be observed for astrophysical black holes. A similar phe-
nomenon occurs for a uniformly accelerated observer in
the Minkowski vacuum [5,6]. The equivalence principle of
the general relativity relates acceleration with gravity. If a
particle is uniformly accelerated with an acceleration a,
there appears a causal horizon, the Rindler horizon, and no

information can be transmitted from the other side of the
horizon. Because of the existence of the Rindler horizon,
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the accelerated observer sees the Minkowski vacuum as

thermally excited with the Unruh temperature

_ ha
2mcky

— 4% 10—23<L) [K].

1 cm/s?

Ty (1.2)
Furthermore it is discussed [7] that, if we assign entropy to
the Rindler horizon and assume thermodynamic relations,
the Einstein equation can be derived.

The Unruh temperature is very small for low accelera-
tion, but the recent development of ultra-high intensity
lasers makes the Unruh effect experimentally accessible.
In the electromagnetic field of a laser with intensity
I[W/cm?], an electron can be accelerated to

’ 1
a=2X 1012 W [Cm/S2] (13)
and the Unruh temperature is given by
Ty, =8x10"!1 S [K]. (1.4)
1 W/cm?

The ELI (Extreme Light Infrastructure) project [8] recently
approved is planning to construct Peta Watt lasers with an
intensity as high as 5 X 10?°{W/cm?]. Then the expected
Unruh temperature becomes more than 10° K which is
much higher than the room temperature. Can we experi-
mentally observe such high Unruh temperature of an ac-
celerated electron in the laser field? This is an interesting
issue and worth being investigated [9].
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FIG. 1.
tuations.

Stochastic trajectories induced by quantum field fluc-

One such proposal was given by P. Chen and T. Tajima
[10]. Their basic idea is the following. An electron is
accelerated in the oscillating electromagnetic field of la-
sers. It is not a uniform acceleration, but they approximated
the electron’s motion around the turning points by a uni-
form acceleration. Since the electron feels the vacuum as
thermally excited with the Unruh temperature, the motion
of the electron will be thermalized and fluctuate around the
classical trajectory (Fig. 1).

Because of this fluctuating motion of an electron, they
conjectured that additional radiation, apart from the clas-
sical Larmor radiation, will emanate. Using an intuitive
argument, they estimated the additional radiation and
called it Unruh radiation. Though the estimated amount
of radiation is much smaller than the classical one by 1079,
they argued that the angular dependence is different.
Especially there is a blind spot for the Larmor radiation
in the direction along the acceleration while the Unruh
radiation is expected to be radiated more spherically.
Hence they proposed to detect the additional radiation in
this direction.

The above heuristic argument sounds correct, but it has
been known in a simpler situation that such radiation is
canceled by an interference effect between the radiation
field emanated from the fluctuating motion and the vacuum
fluctuation of the radiation field [11,12]. The cancellation
was shown to occur' for an internal detector in 1 + 1
dimensions.” In order to see the importance of the

"We note that, though the radiation vanishes in generic points,
a singular behavior of the radiation is pointed out to exist on the
past horizon [13].

We call a detector with internal degrees of freedom an
internal detector in order to distinguish it from an accelerated
charged particle. In the case of a charged particle, the position of
the particle reacts to the thermal effect of acceleration. On the
contrary, in the case of an internal detector, only its internal
degree of freedom is excited by the thermal effect.
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interference effect, we briefly sketch the calculation of
radiation from the internal detector. In these papers
[11,12], the authors analyzed a uniformly accelerated in-
ternal detector Q coupled with a scalar field ¢ in 1 + 1
dimensions. The action is given by
do

s=s@y+m@+e/¢5;¢@u» (15)
where z(7) = (#(7), x(7)) represents a classical trajectory
of the detector. S(Q) and S(¢) are quadratic actions of the
internal degrees of freedom of the detector (i.e., a harmonic
oscillator) and the scalar field in 1 + 1 dimensions respec-
tively;

a@=fw@a#—§¢m) (1.6)

s(4) = [ x5 0900 17
Since the coupling term is linear both in Q and ¢, the
Heisenberg equations of motion can be exactly solved. A
classical solution of the scalar field is written as a sum of
the vacuum fluctuation ¢;,(x), which is a solution to the
homogeneous equation in the absence of Q, and an inho-
mogeneous term ¢, (x) as

P (x) = p(x) + Ginn(x). (1.8)
The inhomogeneous part ¢;,;, is given by
b0 = [arGsz)E (9

where Gy, is the retarded Green function of the scalar field.
The equation of motion of Q becomes
. do,  dim
+ wiQ = —e—2— .
@+ wpQ ¢ dr ¢ dr
Since ¢y, is solved linearly in Q(7),the second term of
the r.h.s. of (1.10) is linear in Q. It can be shown that it
becomes a dissipative term yQ where y = ¢/27. Hence
Q(7) can be solved in terms of the homogeneous solution

@, as

(1.10)

O(w) = eh(w)p(w)

where O(w) and ¢(w) are the Fourier modes of Q(7) and
¢, (z(7)) with respect to 7, and h(w) = iw/(®? — 0} —
iwy). By inserting (1.11) to (1.9), the inhomogeneous
solution ¢y, is solved in terms of the vacuum fluctuation
&5 (x).

Then it is straightforward to calculate the energy-
momentum tensor. Since the energy flux is written in terms
of the 2-point function, they first calculated the 2-point
function

(1.11)

G(x, x') = ((x)$(x)).

It is written as a sum of the following terms,

(1.12)
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G(x, X') = Go(x, ') = (Pinn(X) Dinn (x')) + (Pinn (X) P (x'))
+ (1 (x) Pinn (x')) (1.13)

where vacuum fluctuation Gy(x, x') = (¢, (x) ¢, (x")) is
subtracted. The first term ;i (x) dinn(x')) can be consid-
ered as an analog of the Unruh radiation proposed in [10].
It is nonzero because the detector is thermally excited from
the classical ground state Q = 0. However, Sciama et. al.
[11] and Hu. et. al. [12] have shown that in (1 + 1)-
dimensional case, the contributions from the interference
terms {inn(X) (X)) + (P (x) Pinn(x')) cancel the radia-
tion {@ipn(x) dinn(x')), except for the polarization cloud.
The polarization cloud is the cloud of radiation field local-
ized near the accelerated particle, and does not contribute
to the energy-momentum tensor. Since we are interested in
the energy flux far from the particle in this paper, we do not
consider it in the following. Hu and Lin [14] extended the
calculation to a detector with internal degrees of freedom
in 3 + 1 dimensions. The calculation in the 3 + 1 dimen-
sional case is reviewed in Appendix A.

The physical reason of the cancellation is discussed in
[15,16] (see also [17]). The key point of their arguments is
the invariance of the Minkowski vacuum state under boosts
with the conservation of energy-momentum tensor. The
metric of the Minkowski space is invariant under the trans-
lation of 7. So, after the thermalization occurs, the system
becomes stationary and the energy-momentum tensor will
not depend on 7 explicitly. In [16], the following three
conditions are assumed:

(i) Poincare invariance;

(i) A detector follows a uniformly accelerated trajec-

tory in flat space;

(iii)) A 7-independent coupling.

With these conditions, the energy-momentum tensor does
not depend explicitly on 7. They have argued that, if the
energy conservation holds for the total system, there is no
outgoing flux. Namely the cancellation of the radiation
(Pinh (X) Dinn(x)) by the interference terms is not accidental
but a consequence of the boost symmetry. In the case of an
accelerated charged particle, however, the second condi-
tion does not hold since the particle’s trajectory is a dy-
namical variable and fluctuates. Then the boost invariance
of the trajectory is lost. Furthermore, the charged particle is
accelerated by injecting energy from outside. It is therefore
not obvious whether extra radiation vanishes or not.

The purpose of the paper is to investigate a stochastic
motion of a uniformly accelerated charged particle and to
study whether there is additional radiation, Unruh radiation
associated with the stochastic motion of the particle. The
situation becomes much more complicated than the inter-
nal detector case because the equations of motion are
highly nonlinear. When the particle’s motion z(7) is af-
fected by the vacuum fluctuation, the Green function
Gr(x, z(7)) is also changed accordingly unlike the internal
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detector case. Hence in order to calculate the radiation
from an accelerated charged particle, we need to approxi-
mate the fluctuating motion near the classical trajectory
and assume that fluctuations are small. We first study a
stochastic equation for a charged particle coupled with the
scalar field [18]. This gives a simplified model of the real
QED. A self-interaction with the scalar field created by the
particle itself gives a backreaction to the particle’s motion,
and it gives a radiation damping term of the Abraham-
Lorentz-Dirac equation [19]. If we further regard the vac-
uum fluctuation as stochastic noise, the particle’s motion
obeys a generalized Langevin equation. By solving the
Langevin equation, we can obtain stochastic fluctuations
of the particle’s momenta. In this paper, we mainly focus
on fluctuations in the transverse directions and leave analy-
sis of longitudinal fluctuations for future investigation.
Some comments are given in Discussions and in
Appendix B.

The organization of the paper is the following. In Sec. I,
we summarize the basic framework of our system, and
obtain a generalized Langevin equation for a charged
particle coupled with a scalar field. In Sec. III, we consider
small fluctuations in the transverse directions. Then the
stochastic equation can be solved and we can prove the
equipartition theorem for the transverse momenta, i.e., a
stochastic average of a square of momentum fluctuations in
the transverse directions is shown to be proportional to the
Unruh temperature. We also discuss the relaxation time of
the thermalization process. Section IV is the main part of
the paper. We calculate radiation emitted by a charged
particle in the scalar-field analog of QED. The interference
terms partially cancel the radiation coming from the con-
tribution ;. (x) din(x')), but unlike the case of an inter-
nal detector, they do not cancel exactly. In Sec. V, we
obtain a similar stochastic equation for an accelerated
charged particle in the real QED, and show the equiparti-
tion theorem for transverse momenta. Section VI is de-
voted to conclusions and discussions. In Appendix A, we
review the calculation of radiation for a uniformly accel-
erated internal detector in (3 + 1) dimensions [14]. In
Appendix B, we consider fluctuations in the longitudinal
and temporal directions. We use Planck units ¢ = 7 =
kg = 1 in most of the paper.

II. STOCHASTIC EQUATION OF AN
ACCELERATED PARTICLE

We consider the scalar-field analog of QED. The model
is analyzed in [18] and here we briefly review the settings
and the derivation of the stochastic Abraham-Lorentz-
Dirac (ALD) equations. In [18], the authors used the
influence functional approach, but here we take a simpli-
fied method. The system composes of a relativistic particle
z#(7) and the scalar field ¢(x). The action is given by

Slz, ¢, h] = S[z, h] + S[p] + Sz, 6] (2.1)

025005-3



SATOSHI ISO, YASUHIRO YAMAMOTO, AND SEN ZHANG

with
Slz, h] = —m [ dryf2#z,, (22)
1
S[81= [ s 0,00, 2.3)
Sz 61 = [ dajn o) 2.4)
The scalar current j(x; z) is defined as
jwa) = e [ar st @)

where e is negative for an electron. We can parametrize the
particle’s path satisfying z> = 1 by taking 7 properly.
The equation of motion of the particle is given by

o Sj(xz)
m# F _[d46 ()

where we have added the external force F* so as to
accelerate the particle uniformly:

(x) (2.6)

F* = ma(z', 2% 0,0). (2.7)

Then a classical solution of the particle (in the absence of
the coupling to ¢) is given by

1 1
M= <— sinhat, — coshar, 0, 0). (2.8)
a

cl a
Note that the external force satisfies F#z, = 0 and there-
fore the classical equation of motion preserves the gauge
condition z> = 1. From the definition of the current (2.5), it
is easy to prove the identity,

8j(x;2) .
f R0 = B Dy 29)
where @* is given by
(?)M = ZVZ'[V(")M] —Zu (2.10)

Here we have used the gauge condition 7> =1 and
7 - z = 0. Hence the equation of motion (2.6) becomes

mi* = F* — ed* ¢p(z(7)). (2.11)

Since the differential operator w* satisfies # @, = 0 fora
classical path satisfying the gauge condition, the stochastic
Eq. (2.11) continues to preserve the condition > = 1. The
second term of (2.11) represents a self-interaction of the
particle with the radiation emitted by the particle itself.

The equation of motion of the radiation field
0*9,¢(x) = j(x) is solved by using the retarded Green
function Gy as
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d(x) = ¢, (x) + Dinn, Dinh = fd4X/GR(X, x)j(x'; 2)

(2.12)

where ¢, is the homogeneous solution of the equation of
motion and represents the vacuum fluctuation. The re-
tarded Green function satisfies

949 ,Gglx, x') = 8W(x — x') (2.13)
and is given by
Grx, x') = i[¢p(x), p(x")DO(r — 1) (2.14)
_0—=1)8((x—=x)?) _8((t—1)—r) (2.15)
2 47r

where r? = |x — x/|?. Inserting the solution (2.12) into
(2.11), we have the following stochastic equation for the
particle

= F#(z(7))

- ew(¢h<z<r>> e [ dr'Gl(a(7), zw))).
(2.16)

mz®(7)

Here we have used the gauge condition 7> = 1. The op-
erator @, acts on z(7). The homogeneous part ¢,(z(7)) of
the scalar field describes Gaussian fluctuations of the vac-
uum, and hence the first term in the parenthesis can be
interpreted as random noise to the particle’s motion.
Expanding ¢, as

d3k 1 —iktx tikkx
th(x) = W \/Z—Tk(ake ktx, + a.e K f"), (217)
the vacuum fluctuation is given by
G — 1 @.18)
" " 4w (t—1t —ie)? — r?* '

It is essentially quantum mechanical, but if it is evaluated
on a world line of a uniformly accelerated particle x =
72(7), x' = z(7'); it behaves as the ordinary finite tempera-
ture noise.

The second term in the parenthesis of (2.16) is a func-
tional of the total history of the particle’s motion z(7’) for
7/ < 7, but it can be reduced to the so-called radiation
damping term of a charged particle coupled with a radia-
tion field. It is generally nonlocal, but since the Green
function damps rapidly as a function of the distance r,
the term is approximated by local derivative terms. First
define y*(s) = z*(7) — z*(7') where 7/ = 7 — s with 7
kept fixed. Then it can be expanded as
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2 3
yh(s) = s2(7) = ZE() + () £ (219)
A square of the space-time distance o is given by
§2
o(s) = y*y, = s2<1 - E('z')2 + .- ) (2.20)
and
do(s) . ( 52 )
=2y*y, =2s(1 —— +-). 221
s VeV =28 ¢ @ 221
In deriving them, we have used the gauge condition
(22 =1,z-2=0and z-7= —(%)* The derivative 9,

appearing in the operator @, can be written in terms of %,
when it acts on a function of o, as

do d do\-!d Yo d
=278 g (7)) L= f 2.22
B9zt do y“(ds) ds y'y, ds (2.22)
N d
= (z# BEXT E(ZM +2,()H) + - >% (2.23)

Hence the second term in the parenthesis of (2.16) can be
simplified as

6, [ arGyletn) «) (224)

= & f " dsi , Gp(s) (2.25)
0

= ¢? j:o dS(LZ#(T)GR(S) + a#(T)% %GR(S)

2
+ (2,22 + 2'#)S— iGR(s) + (9(s3)). (2.26)
6 ds
In the first equality, we have neglected the singular term
proportional to §(o). The first two terms can be absorbed
by mass renormalization. The s integrals of them are
divergent, so we assume that the renormalized mass be-
comes finite after the mass renormalization. The last one is
the radiation reaction term and can be evaluated by using
the identity

00 d 0 d 8(s) 1
24 Ry — 40V b
’[0 dss dsG (s) [0 dss 75 Tms 7

(2.27)

After the mass renormalization, we get the following
generalized Langevin equation for the charged particle,

e2

127
This is an analog of the Abraham-Lorentz-Dirac equation

for a charged particle interacting with the electromagnetic
field. The dissipation term is induced through an effect of

mit — Ft— ——(F2 + 2) = —ed” ¢y (). (2.28)
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backreaction of the particle’s radiation to the particle’s
motion. Note that, if the noise term, the r.h.s., is absent,
the classical solution (2.8) is still a solution to Eq. (2.28).

III. THERMALIZATION OF TRANSVERSE
MOMENTUM FLUCTUATIONS

The stochastic Eq. (2.28) is nonlinear and difficult to
solve. Here we consider small fluctuations around the
classical trajectory induced by the vacuum fluctuation
¢,,. Especially, we consider fluctuations in the transverse
directions perpendicular to the direction of the accelera-
tion. The classical trajectory of the particle does not move
to the transverse directions, and we can easily treat fluctu-
ations in these directions. In contrast, the particle is accel-
erated strongly to the longitudinal direction and it is more
difficult to separate fluctuations from the classical solution.
We shortly discuss longitudinal fluctuations in
Appendix B.

First we expand the particle’s motion around the classi-
cal trajectory z{ as

Z#(1) = zf + 8zM.

(3.1)

The particle is accelerated along the x direction. Now we
consider small fluctuation in transverse directions z'. By
expanding the stochastic Eq. (2.28), we can obtain a line-
arized stochastic equation for the transverse velocity fluc-
tuation dv' = 87 as,

2
mév' = ed; by, + —— (8" — a6vi).  (3.2)
127

Performing Fourier transformation with respect to the tra-
jectory’s parameter 7

. d . .
Svi(r) = f% St (w)e T,

(3.3)

dw —ioT

dipu(7) = ,[2_ dip(w)e "7,

™

the stochastic equation can be solved as

' (w) = eh(w)d; p(w) (3.4)
where

hw) = ! 35
T —imaw + Sl ta) G-

127

The vacuum 2-point function on the classical trajectory
can be evaluated from (2.18) as

<ai¢h(x)ajd)h(x,»lx:z(r),x’:z(T’)

- L dij (3.6)
272 ((r — ' — ie)? — r?)? ’
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4 S,
a - (3.7)
3277- sm}ﬁ(M)

It has originated from the quantum fluctuations of the
vacuum, but it can be interpreted as finite temperature
noise if it is evaluated on the accelerated particle’s trajec-
tory [5].> By making the Fourier transformation with re-
spect to 7, we have

(0;0(0)d; (@) =276 (w + ©')d;;1(w) (3.8)

where

a* j‘w I elor 1 o+ wad®

3277.2 o slnh4(a(‘r le)) 677- 1 — e*Zﬂ'a}/u
3.9

I(w) =

For small w, this is expanded as

l(w) = (@®>+amw + ). (3.10)

122

The expansion corresponds to the derivative expansion

(9;¢,,(x) d;¢ (xl»lx:z(r),X’ZZ(T/)
3 2

a
= P 6,»1»5(7' - 7) = LFB S(r—7)+ .
G.11)

If we approximate the 2-point function by the first term, the
noise correlation becomes white noise. The coefficient
determines the strength of the noise. We show that it is
consistent with the fluctuation-dissipation theorem at the
Unruh temperature.

By  symmetrizing it, ie., (9p(x)dp(x))s =
{0 (x), 9¢p(x')})/2, the correlation function becomes

w(w? + a?)

mTw
w72\,
127 COt(a)

It is an even function of w. The correlators I(w) and I¢(w)
should be regularized for large w where quantum field
theoretic effects of electrons become important.

The expectation value of a square of the velocity fluc-
tuations in the transverse directions can be evaluated as

I(w) = (3.12)

>The finite temperature (Unruh) effect is caused by the ap-
pearance of the horizon for a uniformly accelerated observer in
the Minkowski space-time and analogous to the Hawking radia-
tion of the black hole, but you should not confuse the radiation
we are discussing in this paper with the Hawking radiation. The
accelerated observer sees the Minkowski vacuum as thermally
excited, but it is excited from the Rindler vacuum (not from the
Minkowski vacuum) and the energy-momentum tensor remains
zero as ever. The radiation discussed in the paper is, if it exists,
produced by an interaction with the vacuum and the accelerated
charged particle.

PHYSICAL REVIEW D 84, 025005 (2011)
(60 (1)8v/())s

d d !l
- & [T 1@ (shwh(@)e )
(3.13)
) dw 9 —iw(r—r’
=e 5ijj—ls(w)|h(w)| e i) (3.14)
2
3
~626ijf d(z)3 (’21 —iw(T—T/)'
247 (mw)? + (5)(@0? + a?)?
(3.15)
The denominator has four poles at w = *i{).. where
12
0, =% i), (316)
0262
0= (1 + O(a?/m?)). (3.17)

127m

The acceleration of an electron in high-intensity laser fields
in the near future can be at most 0.1 eV and much smaller
than the electron mass 0.5 MeV. Hence, the values of these
poles satisfy the following inequalities,

Q,>a>0_. (3.18)

Since the energy scale of the dynamics of the accelerated
particle is much smaller than the electron mass, the poles at
+iQ), should be considered spurious and we should not
take the contributions of the residues at =i} .* By taking
the residue at = = i{)_, we can evaluate the integral and
get the following result,

2o r)ovI() = 5 A

8;(1 + O(a*/m?). (3.19)
Here we have recovered ¢ and 4. This gives the equipar-
tition relation for the transverse momentum fluctuations at
the Unruh temperature Ty = ah/27c. The typical energy
scale of the fluctuating motion is given by the value of the
pole ) _. Since it is much smaller than the acceleration,
the derivative expansion with respect to w/a is justified for
the transverse fluctuations.

The thermalization process of the stochastic Eq. (3.2)
can be also discussed. For simplicity, we approximate the
stochastic equation by dropping the second derivative term.
This corresponds to the derivative expansion with respect
to w/a. Then it is solved as

Svi(r) = e~ 78(0) + = f " A7 0, (2(7))e 2T,
m Jo
(3.20)

*Or we can simply approximate the denominator by dropping
the w* term. Then only the poles at =i{) _ survive.
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The relaxation time is given by 7, = 1/€)_. The momen-
tum square can be calculated as

(8v'(1)8v (7))

4 dr'e— Q- (=7
0

X e, (2(7)0 ¢ (2(7")))

. 5
= ¢ 20-7591(0)80(0) + (1 — ¢720-7),
2mm

= ¢ 22-7891(0)6v7(0) + €2 [T dr!
0

(3.21)

For 7 — oo, it approaches the thermalized average (3.19).
The relaxation time in the proper time can be estimated, for
a=0.1eVand m = 0.5 MeV, to be

127m

= 1.4 X107 sec. (3.22)

TRT 22
This relaxation time should be compared with the laser
frequency. The oscillation period of the laser field at ELI is
about 3 X 10~ seconds and much shorter than the above
relaxation time. Hence an accelerated electron by the ELI
laser does not thermalize during each oscillation and the
uniform acceleration is not a good approximation. Even in
such a situation, if an electron is accelerated in the laser
field for a long time, it may feel averaged temperature. In
order to fully understand the Unruh effect of nonuniform
acceleration, we need to investigate the transient phe-
nomena. It is beyond the present calculation, and we leave
it for future investigations. See e.g. [20] for the Unruh
effect of the circular motion.

The position of the particle in the transverse directions
fluctuates like the ordinary Brownian motion in a heat bath.
A mean square of the fluctuations is given by

R (1) = Y ((Z(r) — £(0)?

i=y.z
_ 20(7 3z 46_;: 6_297). (3.23)
The diffusion constant D is given by

which is estimated for the above parameters as D ~ 7.8 X
10* m?/s. In the Ballistic region where 7 < 7, the mean
square becomes

2T
R¥r) =Y
m

(3.25)
while in the diffusive region (7 > 7p), it is proportional to
the proper time as

R%*(1) = 2Dr. (3.26)

As the ordinary Brownian motion, the mean square of
the particle’s transverse position grows linearly with time.
If it becomes possible to accelerate the particle for a
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sufficiently long period, it may be possible to detect such
a Brownian motion in future laser experiments.

IV. QUANTUM RADIATION BY TRANSVERSE
FLUCTUATION

Once we obtain the stochastic motion of the accelerated
particle, it is straightforward to calculate the energy flux of
the radiation field emitted by this particle. In this section,
we calculate the radiation induced by the fluctuation in the
transverse directions.

A. 2-point function

First we evaluate the 2-point function
G(x, x') = Go(x, ') = (inn(¥) Pinn (x)) + (Pinn(x) P (x))
+ (4 (X) binn (x')). 4.1)

The inhomogeneous solution ¢;,;, is produced by the ac-
celerated charged particle while the homogeneous solution
¢, represents the vacuum fluctuation of the quantum field
¢. The Unruh radiation estimated in [10] corresponds to
calculating 2-point correlation function of the inhomoge-
neous terms (@i, (x)Pinn(x)). As we will see later, this
term also contains the classical Larmor radiation.
However, this is not the end of the story. As it has been
discussed in [11], the interference terms (P, +
(¢, dinn) cannot be neglected and may possibly cancel
the Unruh radiation in {¢j,, i) after the thermalization
occurs. This is shown for an internal detector in (1 + 1)
dimensions, but it is not obvious whether the same cancel-
lation occurs for the case of a charged particle we are
considering.

The inhomogeneous solution of the scalar field is written
in terms of the position of the accelerated particle z4(7) as

bunx) = ¢ [ drGylx — 2() (42)
_ 0(1—2°(7))6((x—z(7))?) _ e
—e f dr - “imr @Y
where p is defined by
p=z(15) (x — z(79)). (4.4)

Because of the step and the delta functions in the integrand
of (4.3), ™° satisfies

(x —z(9)2 =0, x0 > Z0(r0), 4.5)

which is the proper time of the particle whose radiation
travels to the space-time point x. Hence z(7*) lies on an
intersection between the particle’s world line and the light-
cone extending from the observer’s position x (see Fig. 2).
We write the superscript x to make the x dependence of 7
explicitly. The meaning of the subscript (—) will be made
clear later. By using the light-cone condition, p can be
rewritten as
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FIG. 2. The hyperbolic line in the right wedge denotes the
world line of the particle. The points Or and Oy are observers in
the future and right wedges, respectively. For an observer in the
right wedge, the light-cone of the observer has two intersections
with the world line, and the proper time of the intersections is
given by 78 . For an observer in the future wedge, there is only
one intersection on the particle’s real trajectory which corre-
sponds to 7F. The other solution TY = 7& + izr/a is complex.
One may interpret this complex proper time as the intersection
between the light-cone of the observer and the world line of a
virtual particle with a real proper time 7, in the left wedge. The
superscript letters R or F are used to distinguish two different
observers, but we do not use them in the body of the paper to
leave the space for the observer’s position x.

p() = Mwm(l -1

ar (4.6)

where v = 4%

hor(rh) =x —z(r) and r = |r|. It is the
spatial distance for the observer moving with the particle.
The particle’s trajectory is fluctuating around the classi-
cal trajectory and can be expressed as z =z + 6z +
8%z + - - - where the expansion is given with respect to e.
In terms of the expansion of the spatial distance p = py +
dp + 8%p + - - -, the inhomogeneous solution (4.3) be-
comes

o op\2
Ginh = L(1 =0 (_p) -
4mpg Po Po

2
L ) @.7)
Po

The first term is the classical potential, but since the
particle’s trajectory deviates from the classical one, the
potential also receives corrections. Here p,, 8p and 8%p
are given by

po = Zo(T) - (x — zo(72)) (4.8)
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Sp = 8z(77) - (x — zo(79)) — zo(7%) - Sz(7), (4.9)
8%p = 8%z(12) - (x — zo(7%)) — 8z(7%) - Sz(7%)
— zo(7) - 8%z(7V). (4.10)

From now on we only consider the transverse fluctuations.
Then z, - 6z = 0 is satisfied. As seen from (4.6), p is
proportional to the spatial distance from the particle to
the observer. The variation of p becomes negligible for
large distance r if we take a variation of (x — z¢(7)) in p.
On the contrary, if we take a variation of z,, 8p or §2p is
still proportional to the spatial distance r. Hence for large
r, we can approximate the variations by

Sp ~ 8z(5) - (x — zo(TY)), 4.11)

8%p ~ 82z(15) - (x — zo(T2)). (4.12)

Note also (8%z7) = 0 since the velocity in the transverse
directions fluctuates uniformly and its expectation value
vanishes.

B. Correlations of the inhomogeneous terms

Now we calculate the 2-point function explicitly. If we
take the classical part without the fluctuation of p, the
2-point function becomes

G(x, x) = Go(x, x) = (Dinn(X) Dipn (1))

= ( ¢ >2 1 (4.13)
4w} po(x)po(x’) '
This gives the classical radiation corresponding to the
Larmor radiation. The interference term vanishes because

the 1-point function vanishes identically (¢;) = 0.

Corrections to the above classical Larmor radiation are
induced by the transverse fluctuating motion 8p. First we
consider the 2-point correlation function between the in-
homogeneous terms up to the second order of the trans-
verse fluctuations. Since (8%p) = 0, we have

G0 = (=) (o)
~ (&) mowm
+ <(5pf:2)((§)))2> +

(6p(x)8p(y))
Po(x)po(y)
<(5p(y))2>>
Py /)

(4.14)

Note that all the terms in the parenthesis behave constantly
as the distance r between the observer and the particle
becomes large. The first term gives the Larmor radiation
mentioned above. The other terms correspond to the radia-
tion induced by the fluctuations. Its calculation is easy,
because one can write (8p&p) in terms of (5787’ =
(8v'Sv')y which we have already evaluated in the previous
section. With the expression (3.15), it becomes

025005-8



STOCHASTIC ANALYSIS OF AN ACCELERATED CHARGED ...

(Dion(*) Dian (V)
_(ey__ 1 » [do 2
(47T) PO(X)P()()’)I:I e f27T|h(w)| l(@)
(xiyieiw(fxry) N xixi yiyi )]
po()po(y)  po(¥)po(x)  po(Mpo(¥)) ]

(4.15)

As before, since we are considering the fluctuating motion
whose frequency is smaller than the acceleration, we may
as well approximate I(w) by a®/127>. In order to calculate
the symmetrized correlation function between x and Yy,
I(w) is replaced by I¢(w).

C. Interference terms

Next let us calculate the interference terms. They are
rewritten as

(inn () 4(¥)) + (b4 (x) Dinn ()

_i(<5p(x)¢h(y)>+<¢h(x)5p(y)>
4\ pjl) P5(»)

). (4.16)

Calculation of the interference terms is more complicated
since we need to evaluate the following correlation func-
tions:

(8p(x)1(y))
— (5257 ), ) @.17)
— e [Le h0p @) @18)
(1 (x)0p(y))
= {45272 (®.19)

— e [S2e hoXdpo).  @20)

Since two terms {9;¢(w)@,(y)) and (¢, (x)9;0(w)) are
related by

(0;p(0) () = (bp(»)9;p(—w)))", 4.21)
it is sufficient to calculate one of them. From the definition
of ¢ in (3.3), the interference term (¢, (x)9;p(w)) is writ-
ten as

(@1 (x);0(w))

- dre"wf(;y,.<¢h<x>¢h(y>>) (4.22)

y=2z(7)

1 . ) 1
—_ d lwT N
P / e <ay’ @0~y —ief —(E— i)z)y—zm
(4.23)

1 9 [ 4 eler
_ T N »
4772 9x! K= —ieP—(x!—Z'(n)*— le

(4.24)
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where x3 = (x?)? + (x¥)? is the transverse distance. We
first evaluate the integral and then take a derivative. The
integral

B eiwr
Px, 0) = [dT (0 = 27) —ie)? = (x! = ZM(7))* — x7’

(4.25)

can be evaluated by the contour integral in the complex 7
plane. The positions of the poles are given by a series of
points

2nri

=T+ + i€, (4.26)

a

where n is an integer. 7. are complex numbers whose
imaginary parts are 0 or 77/a and satisfy

4
els = 25 14+ S . 4.27)
2u a
Here we have defined
1
L? = —xtx, + =, (4.28)
a
u=x"—xl, v=2x"+x (4.29)

Note the relation ¢+ e*"~ = —v/u. The positions of the

poles reflect the finite temperature property of the uni-
formly accelerated observer. In the following we will con-
sider two different types of observers as shown in Fig. 2.
The first observer is to observe the radiation in the right
wedge (Og) while the second one is in the future wedge
(Op). For both cases, v > 0 is satisfied and the radiation
can travel causally from the particle to the observers. There
are two different types of poles 7. A pole at 7_ = T_,
which is real, is located at a classically acceptable point.
Namely, 7_ is the proper time of the particle whose radia-
tion travels to the observer in a causal way. The other pole
at T, is more subtle.

For u <0 (in the right wedge), T, = 7% is real and
corresponds to the advanced causal proper time. For u > 0
(in the future wedge), T, = 75 + i7/a has an imaginary
part and one can interpret it as the proper time of a
trajectory of a virtual particle in the left wedge, as in
Fig. 2. In the following, we drop the superscript F or R.
In the region where v <0, ¢;,, does not exist and no
nontrivial correlation is observed there.

The residue of the pole at 7% is given by
—e!*™: /(2p(7)) where
p(rh) = 2(7h) - (x — zo(71)) (4.30)
1 n —_ n
= E(ue”r + ve 97%), (4.31)

Because of the periodicity, p(7") is independent of n. The
integral is now given by
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- j 1 : X ; X
P(x, ) = - #(em’ — e Z(w)),
pO e TW/a __ 1
(4.32)
where
Z () = e™/0(u) + 6(—u) (4.33)
po = p(7™) can be rewritten in terms of L? as
_a 4 4
Note that the relation p(7") = —p, follows the identity

eTreT- = —y/u.

The second term of the parenthesis in (4.32) depends on
7*. With naive intuition based on classical causality, the
term may be removed by hand, but the calculation of the
interference terms is essentially quantum mechanical, and
it should not be neglected. It is puzzling how we can
physically interpret such 7" dependence of the integral.

Taking a derivation of P(x, ), we obtain {¢,(x)9;¢(w))

as
x! 1 al? n ZONI
2 27T(1)/(1 -1 2_,00 7 ¢
al?  iw

+ (— —+ —)e"“”’in(w)). (4.35)
2p0 a

(¢ (x)0;0(w)) =

Here we have used the following identities,

272
Opo _ &L (4.36)
ax' 2p0
0= _ 4 L i (4.37)
ax' Po

where i is the transverse direction. The second identity can
be obtained by differentiating (x — z(7%))?> = 0 with re-
spect to x', see (4.49).

The whole interference terms are now given by

(D4 (X)Pinn (1)) + {Pinn(x) D1 (y))

_ —iae’x'y’ do 1
472 po(x)2p(y)? J 27 1 — e 27/
2 .
x [ (o )
) h(“’)(zZOL(zy) +0) e
X<_220L(i) Do) - e )

(4.38)

oY)

8 ( ZZj(y)
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D. Partial cancellation

In the following, in order to see whether there is a
cancellation between the interference terms and the corre-
lation function of the inhomogeneous terms, we look more
closely at the first term in the parenthesis of (4.38) which
depends only on 7_. Note that the correlation function of
the inhomogeneous terms (4.15) depends only on 7_, and
the 7, depending terms in the interference terms cannot be
canceled with the correlations of the inhomogeneous
terms.

Note that, by using the relation

hw) + h(—w) = 66727_((1)2 + a?)|h(w)|? (4.39)

one can show that a part of the interference terms in (4.38)

—iw(tt—11)

iae*x'y’ jda) 1
(Am)?po(x)2po(y)* J 27 1 — e~27e/a

X (h(—w)%‘" + h(w)i;“’) (4.40)

can be rewritten as

_ (£ : xiyi d_we*iw(f’ifr‘i) o) (w

(477) po(x)*po(y)* Ih(@)1(e)

_ ( )2<5p(x)5p(y)>
4T

Po(X)po(y) 4D

This cancels the first correction term in the correlations of
the inhomogeneous parts in (4.15). Note that this canceled
term was obtained by taking a derivative of €“” in
P(x, w).

We have seen that there is a partial cancellation between
the interference term and the correlations of the inhomoge-
neous terms, but the other terms are not canceled each
other. Then, summing up both contributions, (4.15) and
(4.38), we get the following result of the 2-point function;

6’2

GrPro@po) Y

(@) = (Du(x) by (y) =
(4.42)

where
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F(x,y) =1+ ¢?

et

Po(x))2

Yo\ | iaxly! do 1
i (Po()’)) ) pg(x)po(y) 47 1 — 6*27Tw/a
L2 L
—iw(tt —1%)
X[ <h( w)Po(x) Po()’))

ey L? 2
- e_’“’(ﬂ_ﬂ)h(—w)( X+ i—(;)Zx(—w)
po(x) a

Lg 2w B
o) l?)zy( w)]'
(4.43)

_ e*iw(’r"i* L)h(w)(_

The first term in F(x, y) is the classical effect of radiation
corresponding to the Larmor radiation. The second term
comes from the inhomogeneous term ((§p(x)/po(x))?) +
((6p(y)/po(»))?). The third term comes from the interfer-
ence term, which is obtained by taking a derivative of p(x)
in P(x, w). The fourth term is also an interference effect
and depends on 7.

Let us compare the above result with the calculation for
an internal detector. In the case of an internal detector in
(1 + 1) dimensions, the radiation is canceled by the inter-
ference effect, and there are no terms depending on 7. In
the case of an internal detector in (3 + 1) dimensions, there
are 7, -dependent terms. But if we neglect these terms, it
was shown [18] that the interference terms completely
cancel the radiation. The calculation is reviewed in
Appendix A. In the case of a charged particle, since the
position of the particle is fluctuating, only a part of
the terms is canceled. In the following we focus on the
7, -independent terms because the rapidly oscillating func-
tion e “” remains even after setting x = y and suppresses
the w integral of the 7. -dependent terms.

For a symmetrized 2-point function, F(x, y) is replaced
by Fs(x,y)

Fg(x,y) =1+ é[‘ii |h(w)|? Iy(w )<( 0(x)>2

i (pfgy)f) B p;gc;;j(y)
j'_ th( )—m(fa—ﬂ)
% (n “’)iu Hw) <>)

+ 7.-dependent terms. (4.44)

5. Energy-momentum tensor

In the remainder of this section we consider the radiation
emitted by the accelerated particle. The energy-momentum
tensor of the scalar field is given by
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(Ty) = (0,00, — g,waad)ﬂ b2)s. (4.45)
Hence we can evaluate it by taking a derivative of the
2-point function (4.44).

The following relations are useful in taking derivatives:

dupo = (%o (x — z9) — 1)8’“7'_ + Zon (4.46)
a’L?
= =S, i, (4.47)
o7 =S (4.48)
Po

In the last line of the first equation, we used the explicit
form of the classical solution (2.8) and %, - x = —a?L?/2.
The derivative 9, 7 was obtained by taking a variation of
the light-cone condition (x — zo(7%))?> = 0;

oTt _ X, Zop

2(x, — z9,)(6x" — 2§ 675) =0 —

ox” Po
(4.49)
In particular, u and v derivatives are given by

gur. =2 Vi g =t (4.50)

2po 2po

a*L? av,

aupO = _Taulr* + 7’
4.51
9 L ] ey

= — T_

vPo ) v ZCZUZ

where u, = —e 9 /a, v, = ¢~ /a. From (4.48), we

have (dpy)> = a’x*. Since (x — z(7))> =0, x>~ O(r)
and (dpy)?* is approximately proportional to the spatial
distance 7, not 7%. On the other hand, since L? = —x7, +
1/a* is O(r), 3, py itself is growing as O(r).

First we calculate the classical part of the energy-
momentum tensor. It becomes

_€X(0,P09,p0 = 4% 9 0pod® po)

T =
char (4m)?p}

(4.52)

- ezaupoaVPO

Al (4.53)

Note that 9,p¢9%po does not make a contribution here,
since it is of the order of p at infinity while d , p¢d,p is in
general of order p3. This part of the energy-momentum
tensor corresponds to the classical Larmor radiation and
behaves as 1/pf ~ 1/r* at infinity. The term z,(7%) in
d,,po seems to be negligible, since it is O(1) while 9, p, is
O(r). However, care should be taken because 2, (%) =
(cosha7”, sinhat™, 0, 0) behaves singularly if the observer
is near the horizon.
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Next we evaluate the other parts of the energy-
momentum tensor. We especially consider the (u, ) and
(v, v)-components in the following. From (4.44), extra
terms of the energy-momentum tensor besides the classical
ones are given by

(x)2 (e 6ma’l,L? e2a’L?
Thwewr =—7= |\ =ln ————law ~ 753
0 m Po (4) Po
x ¥ 2m11
X (ml30, 79,75 + T(xﬂa,,po + x,0,p0)
Po
e,
W(Xﬂa,ﬂ'{ + x,,GMTx_)
eI, .
_ o, (0,79,p9 + 8,,7’38,”00))] (4.54)
where we have defined the following w integrals
d
I, = [—wlh(m)l2 coth(ﬂ-—w>a), (4.55)
dar a
dw 5 T\
I = | —|h(w)|? coth — |w?, (4.56)
4 a
dw 5 TW 3 5
I, = | —|h(w)|? cothl — (0> + a’w) (4.57)
4 a
=1 + a’l,. (4.58)

These integrals can be similarly evaluated as in Sec. III,
and we have
3

Il =
2mae

5, (4.59)

Im -~ azll' (460)

Because of the inequality () _ << a, terms containing /5 are
generally negligible compared to other terms; I3~
021, < a’ly.

Near the past horizon, the v — 0, the u-derivatives of p,
and 7% become very small and negligible. On the other
hand, the v-derivative of 7_ becomes potentially large.
u-derivatives of them are approximately given by

1
9,78 — —,
av

3, po — —%. (4.61)
A singular term of d,py near v ~ 0 is canceled and it
remains finite near the past horizon. Hence the second
term in (4.54) proportional to (97_)*> may becomes large
there. However, there are two reasons that the term cannot
grow so large. One is a suppression by the w integral,
which is proportional to a very small coefficient /5. The
other reason is the overall factor (x')?/p3. Since the ob-
server is much further than the acceleration scale 1/a
from the particle, L? is much larger than 1/a*. Then

po = (a/2)JJL* + (4/a’)uv can be approximated by
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po ~ (a/2)lx,|* and (x')?/pj is also suppressed. Because
of these two reasons, the singular behavior near the past
horizon seems to be difficult to be observed
experimentally.

V. THERMALIZATION IN ELECTROMAGNETIC
FIELD

In this section, we consider the thermalization of an
accelerated charged particle in the electromagnetic field.
Calculations of the energy-momentum tensors are more
involved and left for a future investigation. We study the
thermalization of the transverse momenta of a uniformly
accelerated particle in an electromagnetic field. The cal-
culation is almost the same, but due to the presence of the
polarization, several quantities become twice as large as
those in the scalar case.

The action is given by

Sem = —m[dg,z’“z'ﬂ — /d“xj“(x)AM(x)

1
7 [d“xF’“’FM,,, (5.1)
where the current is defined as
jP(x)=e [dTZM(T)54(x — z(7)). (5.2)
The equations of motion are
mi, = eF " (5.3)
9, Fr"(x) = j". (5.4)
Using the gauge
*A, =0, (5.5)
the equation of motion for A, becomes
ata A" = j". (5.6)
One can solve this equation as
A=A+ [ @36y )7,0)
= At e [arGiln s, 6

where Aj,, is the homogeneous solution of the equation of
motion which satisfies 9245 = 0. Gg(x —y) is the re-
tarded Green function

8((x —y))

Gr(x,y) = 0(x" — y0) 5
T (5.8)

9*Grlx, y) = 6*(x — y).

Inserting the solution of A,(x) back to the equation of
motion for z#, we obtain the following stochastic equation
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mZ#(T) = F/.L + e(a/.LAhV(Z) - aVAhM(Z))ZV
+e f 472 (P, (7)a,
— 2,()8,)Gr(e(7), (7). (59)

The second line is the radiation reaction which can be
treated similarly to the scalar case. It becomes

S2
e? [dT’(Z"’Z'[,,GlL] - 3(22% - z'zz'VaV)>

X £ Gylalr), (7))
N

= —¢? foo dss:s—z(Z'M(T) + 2,(1)23(7))

62 >
= E(ZM + Z,uZ ),

d 5(s?)
ds 2

(5.10)

which has exactly the same form as the scalar case, but the
coefficient is twice as large since the gauge field has two
different polarizations. This is the Abraham-Lorentz-Dirac
self-radiation term.

For small transverse momentum fluctuations dv’ = 8z,
we can simplify the stochastic equation similarly to the
scalar case in previous sections. It can be solved in terms of
the homogeneous solution of the gauge field as

0t (w) = —eh(w)(vo,d; + 8% (vy - 9))AL, (5.11)

where

1

hw) = )
—imw + & (0® + a?)

(5.12)

The noise correlation of A;f in the r.h.s. of (5.11) can be
evaluated as

(V04 0; + Bh(vg + 9))(W)gds + S(v) - )NAR (AL ()

a* 8
= ——. 5.13
1672 Sinh4(”(77£ —ie)) (5.13)

It is also twice as large as the scalar case. Note that the
quantity is gauge invariant

(Zaky = Map(Z - REBK, — g, (2 ) kP = 0.
(5.14)

Hence performing similar calculations to the scalar case,
the fluctuations of the transverse momenta become

m, . : 1 ah a’
2 oui(novI(n) = 5 %5,.,.(1 + (9<W)> (5.15)
Since the coefficient of the dissipative term is twice as
large as the scalar case, the relaxation time becomes the

half of it: 7, = i’l’{—e";.
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VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we studied a stochastic motion of a uni-
formly accelerated charged particle in the scalar-field ana-
log of QED. The particle’s motion fluctuates because of the
thermal behavior of the uniformly accelerated observer
(the Unruh effect). Because of this fluctuating motion,
Chen and Tajima [10] conjectured that there is additional
radiation besides the classical Larmor radiation. On the
other hand, it was argued [11,12] that interferences be-
tween the radiation field induced by the fluctuating motion
and the quantum fluctuation of the vacuum may cancel the
above additional radiation. The cancellation was shown in
the case of an internal detector, but it was not yet settled
whether the same kind of cancellation occurs in the case of
a fluctuating charged particle in QED.

In the present paper, in order to investigate the above
issue systematically, we first formulated a motion of a
uniformly accelerated particle in terms of the stochastic
(Langevin) equation. By using this formalism, we showed
that the momenta in the transverse directions actually get
thermalized so as to satisfy the equipartition relation with
the Unruh temperature. Then we calculated correlation
functions and energy flux from the accelerated particle.
Partial cancellation is actually shown to occur, but some
terms still remain. Hence there is still a possibility that,
besides the classical Larmor radiation, we can detect addi-
tional radiation associated with the fluctuating motion
caused by the Unruh effect.

There are several issues to be clarified. First in calculat-
ing the energy flux at infinity there appeared classically
unacceptable contributions (i.e. those depend on 7). If the
observer is in the right wedge, the contribution to the
energy flux come from the particle in the future of
the observer. In the case of the observer in the future
wedge, this contribution comes from the virtual particle
in the left wedge. Both of them are classically unaccept-
able, and we do not yet have physical understanding why
these contributions appear in the calculation.

Another issue is the calculation of longitudinal fluctua-
tions. Since the particle is accelerated in the longitudinal
direction with very high acceleration, longitudinal fluctua-
tions caused by the Unruh effect are technically difficult to
evaluate (see Appendix B). Furthermore, it is not clear
what kind of quantities are thermalized in the longitudinal
fluctuations. The particle feels finite temperature noise in
the accelerating frame and we may expect that the kinetic
energy written in the Rindler coordinate ¢ is thermalized.
However, the particle is uniformly accelerated in constant
external force. Then if a particle at P1 on a trajectory 7’1 in
Fig. 3 is kicked in the longitudinal direction to P2, it
follows another trajectory 72 with a different asymptote.
The Rindler coordinate &, which is defined in the original
accelerating frame, becomes divergent at 7 = o on the
new trajectory 72. In this sense, the longitudinal fluctua-
tions look kinematically unstable in the original Rindler
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FIG. 3. Tl is atrajectory of the original accelerated particle. If
the particle is kicked at P1 to a point P2, it follows a different
trajectory 72 in the constant external force. It has a different
asymptote from the original one, and the original Rindler coor-
dinate ¢ of the particle on T2 diverges at 7 = oo.

coordinate and it is inappropriate to describe the thermal-
ization of longitudinal fluctuations in the Rindler coordi-
nate £. We give brief discussions on the calculations of
longitudinal fluctuations in Appendix A.

Finally an interesting possibility is an effect of decoher-
ence induced by interaction with environments. In this
paper, we have treated the trajectory of the particle semi-
classically in terms of the stochastic Langevin equation. If
the initial state of the particle is a superposition of two
localized wave-packets, we need to sum over the corre-
sponding trajectories to obtain the transition amplitude
[18]. Decoherence would suppress the correlations be-
tween these different worldlines. Furthermore the effect
of decoherence might be important even for a single tra-
jectory with the stochastic fluctuations. We have discussed
the partial cancellation in the energy-momentum tensor
between the inhomogeneous (fluctuation originated) terms
and the interference terms. The fluctuating motions of the
particle are quantum mechanically induced by the vacuum
fluctuations of the radiation field. The inhomogeneous
terms in energy-momentum tensor are evaluated at the
same position on the trajectory, and robust against deco-
herence. Namely the variances of the trajectory never
vanish. On the contrary, the interference terms are given
by calculating the correlation function of the vacuum
fluctuations at the position of the observer O and at
the particle’s position on the trajectory, and can be easily
killed by an additional interaction in between the trajectory
and the observer. Then the (partial) cancellation is lost and
only the correlation function between the inhomogeneous

PHYSICAL REVIEW D 84, 025005 (2011)

term {Pinn (X) dinn(y)) (namely, the Unruh radiation) may
survive.
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APPEMDIX A: INTERNAL DETECTOR
IN 3 + 1 DIMENSIONS

In this appendix, we give a brief review of an internal
detector in (3 + 1) dimensions to see how the Unruh
radiation is canceled by the interference effects [14].

The action for an accelerated internal detector coupling
with a massless scalar field is given by

5= [ar2(@,002 - 030)+ [¢x3(0,0)9)
+ )l[d4xdTQ(’T)¢(X)(S4(X - z(T)), (A1)

where 9. is used to denote a derivative with respect to the
proper time 7. The equations of motion are given by

200 =1 [dromdi—z(m) (A2
(32 + 00() = 2 ple(). (A3

Substituting the solution ¢ = ¢, + dimn»
Gun0) = A [ dQ(MGyx — 2. (Ad

to the equation of the internal detector, we get the follow-
ing equation,

/\2
(97 + Q9O(7) - . [dT/Q(T/)GR(Z(T) = z(7))

= A 4. (AS)
m
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Here ¢, is the homogeneous solution representing the
vacuum fluctuations. The inhomogeneous term is
evaluated by expanding the Green function with respect
to (7 — 7/) as we did in (2.27). Then after a renormalization
of the mass term, we get the diffusive term of the radiation
reaction,

Q'(n)

fw@ﬂ@Mﬂ—dwz (A6)

The stochastic equation can be solved by the Fourier trans-
formation on the path as

O(7) = Ah(w)p(w), (A7)
where
2
hw)! = —mw® + mQ? — i 2% (A8)
4
and the Fourier transformations are defined as
0() = [ drero(m) (A9)
plw) = [ dretrd(z(n), (A10)

Note that Gg(z(7) — z(7')) is a function of (7 — 7') if the
classical solution z(7) represents the accelerated path (2.8).
The 2-point correlation function is decomposed into

(Pp(x)p(y)) = (D), () + {Dinn(X)4(y))
+ {D1(X)Pinn () + (Dinn(X) i (¥))

(Al1)

where
(Dinn ()P 1(y)) + (D 4(x) Pinn(y))
= [arS2 e )Gyl — ANy e (@)

+ Grlx — z2(7)e(w)d,(y))) (A12)
<¢inh(x)¢inh(}’)>

j‘ dw da) _ /

de’T — eI NG L (x — 2(7))
X Ggly — z(T’))h(m)h(m’)(go(w)go(a)’)). (A13)

We first evaluate the interference term (A12);

<¢h(x)¢’(w)>
= fd*rei“’7<¢o(x)¢o(z(7'))>

ot

1 e
T 4n? _[dT (x0 = 2%7) —ie)> — (x! — Z!(7))> — p?
1
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Poles are given by solving the equation,

0— (xo B sinhar)2 B (xl B coshm')2 B p2 (AI5)
a
eaT e*ar 2 1
=-—u—=+u +xt = —. (Al6)
a a a

The solutions of this equation are classified according to
two different types of observers (see Fig. 2)

O p(in future wedge): u >0, v >0

4 (A17)
= oot =4 (—L2 + 1,]44 + _2”U>
2u a
, 4
— ot = a <—L2 — JL*+ —2uv> (A18)
2u a

Og(in right wedge): u <0, x° + x' >0

4
L2 L4 _
2\ul ( a? |uv|)
4
ar’y LZ L4 _ ,
e 2|u| ( o |uv|)

where, L?> = —x? + 1/a?. The poles at 778 correspond to
the proper times at the intersections of the particle’s world
line and the past light-cone of the observer’s position.
Hence they are the physically acceptable poles. On the
other hand, 7% correspond to the proper time at a point on a
“virtual path” in the left wedge. 7% lies at an intersection
of the world line and the future light-cone of the observer.
Both of them are classically unacceptable.

Summing these contributions to the integral, we obtain

= i7" = (A19)

=

(A20)

— i 1 - -
Pl ©) = — — (e — e Z,(w), (A21)
0 e TWw/a __ 1
where
Z. = e™/%9(u) + 6(—u), (A22)
’ 4
Po = a L* + —5 uv. (A23)
2 a
Using the following relation,
1
[ drGats = aenf = g a2
TPo
a part of the interference term depending on 7% or 7¥ can

be written as
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(@b — ix? [ drdr T2 Gl = 2(7)

h(w)
eZn’w/a _ 1

(A25)

X Ggly = z(7')e!=)

Similarly, we have

B8y — ix® [ ardr S Glx = 2(r)

X Grly — Z(T’))e"‘”“”%,
(A26)

where we have used the identity
((@)d;(y) = (1) @(—w))". (A27)

The correlation function of inhomogeneous terms is
given by

<¢inh(x)¢’inh()’)>

do do'
_ 4 /
)t[ddzﬂ_z

X Gr(y = 2(7)h(@)h(0')((w) (o))

do do' . ;
= )\* [deT’ﬁ %e"“’(T_T)GR(x —z(7))

—1w7’e—iw’T’GR(x _ Z(T))

X Grly — 2()h(w)h(- ) j d(r, — 1)

X 2m8(w + @')e' " po(2(7,)) o (2(Ty))

= )\4[d7'd7’d—w
27

X Grly = 2(7) 5=

e T Gp(x — (7))
o h(w)h(—w)
27 1 —

These three contributions (A25), (A26), and (A28) to the
correlation function are shown to be canceled each other
because of the relation

(A28)

—27rw/u

1w)t

hw) = h(-w) = Ih(w)l2

(A29)

Therefore if we neglect the contributions from the classi-
cally unacceptable poles at 7 the 2-point function van-
ishes, and therefore there are no energy-momentum flux
after the thermalization occurs.

The remaining term in the 2-point function is the con-
tributions of the 7, dependent terms to the interference
term, and written as

j‘dw —ia’*\? 1

27 8mpo(x)po(y) 1 — e 27/
X (h(w)e‘i‘”(ﬂ(x>‘7+(y))Zy(—w)
— h(—w)e @ WO=T-0)7 (—p)).

(A30)

PHYSICAL REVIEW D 84, 025005 (2011)

It looks strange why we have such a (classically unaccept-
able) term in the final result.

APPENDIX B: LONGITUDINAL FLUCTUATIONS

In this appendix we briefly study fluctuations along the
direction of the particle’s classical motion. It is convenient
to define the light-cone coordinates

=z £~ (B1)
The classical solution in the light-cone coordinates is given
by

ieia*r

= (B2)

a

In order to describe the fluctuations around the classical
solution, we define the Rindler coordinates (7, £) by

eia(’f'if)

==

(B3)

a
The classical solution corresponds to 7(7) = 7 and

&(r) = 0.
Small fluctuations around the classical solution (B2) are

written as
8z = (67 = 8¢)e™ . (B4)

Writing the velocities as §z* = *v*e™“7, the stochastic
equations for the longitudinal fluctuations become

o2 2 -
moT = F(v— +av” — d*vT) + F(av* Four)
+eQ0g¢ (B5)
where
O=a+e"9, —e 9 _. (B6)

Here O(7) acts on ¢(z(7)) and 9. = —(80 +9,).
The set of equations can be solved by using the Fourier
transformations

d A
vi(n) = [Se i o) (B7)
27
d .
0= f Lo 0g(w) (B8)
27
as
127
- = O . B9
7(w) w(e*w — 12imm) ¢Q0¢(w) ®9)
Since (v* — v7) is not affected by the quantum field ¢, we

can safely put it at zero. It is consistent with the gauge
condition z - z = 1, 1i.e. ., - 6z = 0.
By using the relation

vE =8¢+ adF £ (87 + adé) (B10)
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we can obtain fluctuations for 7 and ¢ as

127
o¢(w) = a’> + w? (o — 12i7m) eQ0¢(w)  (BI)
57 (w) = —2 127 ¢00¢p(w). (B12)

a?+ w? w(etw — 12imm)

The vacuum noise fluctuations for O ¢ can be calculated as

a* 1

OUNOBEN) = 5y

(B13)

It is interesting that this is exactly the same as the noise
correlation (3.7) appearing in the stochastic equation for
the transverse momenta. However the 2-point function of
8¢ and 87 behave differently from the 2-point function of
the transverse momenta. After symmetrization, we have

(6é0)0é(r); = 60" [ dwcon( ) 2]

w3 + wa?
etw? + (127m)?’

(B14)
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(@535 s = 60" [ dwcotn "))

w3 + wa?
etw? + (12mm)*

(B15)

The structure of the integral is quite different from that
appeared in the transverse fluctuations. The poles at +i{) ,
are the same, but the poles at =i{)_ in the transverse case
are replaced by poles at *ia. Since a > ()_, the longitu-
dinal fluctuations are affected by higher frequency modes
of the quantum vacuum fluctuations. Hence, the positions
of the poles are of the same order as a and we cannot use
the derivative expansion with respect to w/a, which was
used in the case of the transverse fluctuations. Because of
this, we do not know yet the validity of the integrals and an
appropriate way to evaluate them. This technical problem
will be related to another problem mentioned in the dis-
cussions that it is not clear what kind of quantities are
appropriate to describe the thermalization in the longitu-
dinal direction. We leave further analysis for future
investigations.
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