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We formulate quantum mechanics on the group SOð3Þ using a noncommutative dual space representa-

tion for the quantum states, inspired by recent work in quantum gravity. The new noncommutative

variables have a clear connection to the corresponding classical variables, and our analysis confirms them

as the natural phase space variables, both mathematically and physically. In particular, we derive the first

order (Hamiltonian) path integral in terms of the noncommutative variables, as a formulation of the

transition amplitudes alternative to that based on harmonic analysis. We find that the nontrivial phase

space structure gives naturally rise to quantum corrections to the action for which we find a closed

expression. We then study both the semiclassical approximation of the first order path integral and the

example of a free particle on SOð3Þ. On the basis of these results, we comment on the relevance of similar

structures and methods for more complicated theories with group-based configuration spaces, such as loop

quantum gravity and spin foam models.
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I. INTRODUCTION

Quantum mechanics on a Lie group has been consid-
ered, following the seminal work of DeWitt [1] on
quantum mechanics on general curved manifolds, first
by Schulman [2] for SUð2Þ and later by Dowker [3] for
semisimple Lie groups. This work has been later ex-
panded upon, e.g., by Marinov and Terentyev [4]. In
the case of group manifolds, the group structure, and
thus ensuing homogeneity and representation theory, ad-
mit a considerable simplification compared to the general
case considered by DeWitt. These formulations are con-
sidered largely satisfactory, apart from some disagree-
ment about quantum correction terms in the path integral
formulation [1,5,6]. We will show that our approach
produces quantum corrections consistent with those ob-
tained originally by DeWitt [1], and find that this form is
required for the propagator to satisfy the Schrödinger
equation.

Moreover, complications in considering quantum sys-
tems on Lie groups are bound to arise also from the rather
involved representation theory of Lie groups, which is used
in the spectral decomposition of quantum states via Peter-
Weyl theorem. Recently, a new way of decomposing fields
on SOð3Þ into unitary representations of the group, the so-
called group Fourier transform, was introduced in the
context of 3d quantum gravity models in [7,8], further
developed in [9], and generalized to SUð2Þ by Joung,
Mourad and Noui [10]. The group Fourier transform, an
isometry from the L2-space of functions on SOð3Þ to an
L2-space of functions on R3 equipped with a noncommu-
tative ?-product structure (reviewed in Sec III C), is solidly
based on the theory of quantum groups (Hopf algebras) and

the corresponding definition of noncommutative geometry
[11]. It has the convenient property of circumventing the
representation theory by encoding the non-Abelian group
structure in the noncommutative structure of the dual
space. The transform is yet to be formulated for a general
Lie group, but this appears as merely a question of further
research, not a fundamental difficulty. Therefore, it is
particularly interesting to apply the group Fourier trans-
form technique to well-known systems, such as quantum
mechanics on SOð3Þ, to be able to compare the results, and
to gain more insight into the interpretation of the new
noncommutative variables. This is the main purpose of
this work.
Our more general motivation comes, however, from

quantum gravity. A special case of quantum mechanics
on a Lie group, even though it is made rather unusual by
background independence, is loop quantum gravity (LQG),
which is the theory obtained via canonical quantization
of the general theory of relativity [12,13]. In LQG the
kinematical Hilbert space of quantum states is given, in
fact, in terms of cylindrical functions associated to
graphs (embedded in 3-space) on a configuration space
SOð3ÞL=SOð3ÞV , where L is the number of links of the
graph, and V the number of vertices. By harmonic analysis,
the same states can be recast in the form of spin networks,
i.e., graphs labeled by irreducible representations of SOð3Þ.
Analogously, an approach to the dynamics of LQG uses
2-complexes (as a spacetime counterpart of the graphs on
which states are defined) to represent a discrete substitute
for continuum spacetime, decorated either by group ele-
ments (as in lattice gauge theory) or by representations.
These labeled 2-complexes are called spin foams. One then
defines quantum amplitudes for these spin foams to give a
purely algebraic version of a gravitational path integral
[14]. The group Fourier transform has recently been ap-
plied both to LQG states [15], to define a representation
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of the states in terms of noncommutative fluxes of the
gravitational triad field [12], and to the spin foam dynamics
[16,17] or, more specifically, to the more general context of
group field theory [18,19], where the transform has been
shown to encode an exact duality between spin foam
models and lattice gravity path integrals, thus making the
geometry of the spin foam dynamics manifest. We will
give some more details on these quantum gravity construc-
tions, and comment on the relation and implications of
our considerations to LQG and spin foam models along
the way.

The layout of the paper is following: In Sec. II
we will review the canonical formulation of classical me-
chanics on SOð3Þ, on which we build up our treatment
of quantum mechanics on SOð3Þ in Sec. III. We start
from the canonical quantization, first in terms of group
variables in Sec. III A, in terms of spin labels in
Sec. III B, and finally in the dual noncommutative space
in Sec. III D obtained via the group Fourier transform
reviewed in Sec. III C. In Sec. III E we then derive
the first order phase space path integral in terms of the
group and dual noncommutative variables, and show in
Sec. III F that it yields the correct semiclassical behavior.
In Sec. III G we further demonstrate that in the well-known
case of a free quantum particle on SOð3Þ the amplitudes
coincide with the previous results in the literature with
the correct form for the quantum corrections to the
action. Section IV wraps up with the conclusions from
our results, as well as some insights they provide on
quantum gravity.

II. CLASSICAL MECHANICS ON SOð3Þ
Classical mechanics of a nonrelativistic physical system,

evolving in a global time t, and whose configuration space
is SOð3Þ, can be rigorously formulated by starting from the
cotangent bundle of SOð3Þ (the phase space) and its ca-
nonical symplectic structure. We will shortly review this
construction in this section. More details can be found,
e.g., in [20–22].

A. Structure of the phase space T �SOð3Þ
As a Lie group, SOð3Þ has the convenient property of

having a parallelizable cotangent bundle T �SOð3Þ ffi
SOð3Þ � soð3Þ due to the existence of left-(or right-)
invariant 1-forms Pg induced by the group action as

Pgh � L�
gPh 2 T �

ghSOð3Þ; (1)

where L� is the pullback of the left multiplication
Lgh � gh on 1-forms. Thus, the cotangent bundle is par-

allelized by the left-invariant 1-forms labeled by covectors
Pe ¼: P in the cotangent space at the unit element

T �
eSOð3Þ ffi soð3Þ ffi R3, which we accordingly interpret

as the momentum space of the system.1

A metric 2-form in the tangent bundle T SOð3Þ is
obtained as the pullback with respect to left multiplication
of the Killing form BðX; YÞ :¼ ðl2�=2Þ trðXYÞ, X, Y 2
soð3Þ, from T eSOð3Þ ffi soð3Þ onto the whole tangent
bundle.2 Here, trðXYÞ is taken in the fundamental repre-
sentation so that the left-invariant vector fields given by
l�1� Ti;g � l�1� L�gTi;e, where ti :¼ Ti;e ¼ �i in the funda-

mental representation, �i being the Pauli matrices, con-
stitute an orthonormal set of vector fields in T SOð3Þ.
Similarly, on the cotangent bundle T �SOð3Þ a metric
tensor is obtained as the push-forward with respect to
left multiplication of the form ~BðP;QÞ :¼ ðl�2� =2ÞtrðPQÞ
in T �

eSOð3Þ ffi soð3Þ, and an orthonormal basis of left-
invariant 1-forms is given by l�Ti

g � l�L�
gT

i
e, where t

i :¼
Ti
e ¼ �i. l� 2 Rþ is a constant with dimensions of

length, which determines the length scale on the group
manifold, namely, l� is the radius of the 3-sphere S3 ffi
SUð2Þ ffi SOð3Þ � Z2 embedded into a 4-dimensional
Euclidean space, to which SOð3Þ corresponds when
antipodes g, �g 2 SUð2Þ are identified. Then, consis-
tency requires us to choose the integration measure
�2l3�dg on SOð3Þ, where dg is the left-invariant Haar
measure normalized to unity, so that the volume of the
group, �2l3�, is the volume of the upper hemisphere of S3

with radius l�.
The Lie brackets of the left-invariant orthonormal basis

vector fields l�1� Ti reflect the structure of the underlying
soð3Þ Lie algebra:

½Ll�1� Ti
;Ll�1� Tj

� ¼ �2l�1� �ij
kLl�1� Tk

; (2)

1In fact, choosing a specific polarization of the phase space,
namely, the physical interpretation of which part of it corre-
sponds to the configuration space and which part to the momen-
tum space, is not crucial at this point. Indeed, there is a
mathematical duality between the two parts, namely, one part
corresponds to the generators of translations of the other via the
canonical symplectic structure of the cotangent bundle (to be
introduced in the following). The physical meaning to the
cotangent bundle is ultimately attached by the dynamics, e.g.,
the Hamiltonian of the physical system in consideration and, in
particular, its symmetries. Typically, the physical configuration
space is considered to be the part of the phase space in which
the dynamics of a free system is translationally invariant.
Nevertheless, in what follows we will use, for the sake of
simplicity, the labels ‘‘configuration space’’ and ‘‘momentum
space’’ for the parts SOð3Þ and soð3Þ of the phase space SOð3Þ �
soð3Þ, respectively, bearing in mind that the labelling is always
invertible when no particular physical interpretation is given.
Indeed, notice that in the papers [8–10] from which our treat-
ment of the noncommutative dual variables stems, the opposite
polarization has been considered, due to the specific form of the
action of the field theory considered.

2In this paper we use the physics convention of Lie algebras,
where soð3Þ consists of traceless Hermitean elements.
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where LTi
fðgÞ :¼ d

ds fðgeistiÞjs¼0 is the Lie derivative of a

function f 2 C1ðSOð3ÞÞ with respect to the left-invariant
vector field Ti. We have here chosen the fields Ti to be
dimensionless while the dimensions are given by the con-
stant l�. By first absorbing the constant into the orthonor-
mal basis l�1� Ti � Ti and into the definition of trace
l2�tr � tr in the Killing metric, we may take the
Euclidean limit l� ! 1, where Lie derivatives become
commutative and the integration measure becomes the
Lebesgue measure on R3, while the basis fields remain
orthonormal. Thus, in this limit SOð3Þ becomes essentially
Euclidean R3 (even though the global topology of the
manifold does not change3).

On the phase space we have the canonical 1-form � 2
T �ðT �SOð3ÞÞ ffi T �SOð3Þ �T SOð3Þ given by �Pg

�
ðPg; 0Þ 2 T �

Pg
ðT �SOð3ÞÞ for all Pg 2 T �SOð3Þ, where

0 is the null vector field on SOð3Þ. The symplectic 2-
form ! on the phase space is given via the exterior deriva-
tive of the canonical 1-form � as

! :¼ �d� ¼ dgi ^ dPi � 2l�1� �ij
kPkdg

i ^ dgj; (3)

where we used the notation dgi :¼ ðl�Ti; 0Þ,
dPi :¼ ð0; l�1� TiÞ.4 Pi � Pg � Ti;g are Euclidean coordi-

nates in the momentum space soð3Þ ffi R3. The
Hamiltonian vector field XF 2 T ðT �SOð3ÞÞ correspond-
ing to a function F 2 C1ðSOð3ÞÞ is defined through the
relation iXF

! � dF, where iX denotes the interior product,

which ensures that LXF
! ¼ 0, i.e., the symplectic struc-

ture is conserved under the flow generated by XF. Then, the
Poisson bracket f�; �gPB on the phase space T �SOð3Þ is
given by

fF;GgPB � !ðXF; XGÞ

¼ @F

@Pi

@G

@gi
� @F

@gi
@G

@Pi

� 2l�1� �ij
kPk

@F

@Pi

@G

@Pj

;

(4)

for F, G 2 C1ðT �SOð3ÞÞ, where we use the notation
Lðl�1� Ti;0ÞF ¼: @F

@gi
and Lð0;l�TiÞF ¼: @F

@Pi
for the Lie deriva-

tion of a function F 2 C1ðT �SOð3ÞÞ with respect to left-
invariant basis vector fields in T ðT �SOð3ÞÞ. Here we
observe that the momentum space receives a nontrivial
Poisson structure, basically due to the noncommutativity
of the left-invariant derivations under the Lie bracket.

B. Parametrization of the phase space

Although the Poisson brackets can be expressed in a
global form in terms of Lie derivatives, and while the
coordinate functions Pi � Pg � Ti;g in the cotangent spaces

are globally well-defined due to the parallelizability of
T �SOð3Þ with the left-invariant 1-forms Pg labeled by

Pi, the choice of coordinates on SOð3Þ is not unique. In
fact, since SOð3Þ is compact, we cannot cover it with only
one coordinate patch. For example, the coordinate func-
tions XiðgÞ, defined via g � exp½iXiðgÞti=l��, on the group
are well-defined and differentiable only in a limited neigh-
borhood of the unit element, namely, for jXiðgÞj<�l�=2
(in the Euclidean R3 norm). For jXiðgÞj ¼ �l�=2 there
is a two-to-one relation between a group element g and
	XiðgÞ, since in this case exp½iXiðgÞti=l�� ¼ g ¼
exp½�iXiðgÞti=l��. However, we can choose a coordinate
system Xi

hðgÞ in a neighborhood of any element h 2
SOð3Þ, such that g � h exp½iXi

hðgÞti=l��.
The Poisson brackets for the coordinate functions above,

induced by the left-invariant vector fields, read

fXi
h; X

j
hgPB ¼ 0; fXi

h; PjgPBjh ¼ ��i
j;

fPi; PjgPB ¼ �2l�1� �ij
kPk

(5)

for all h 2 SOð3Þ. Note that the exact form of the Poisson
bracket fXi

h; PjgPB holds only at the origin of the coordinate

system h 2 SOð3Þ, but this is generally true for any choice
of coordinates ZhðgÞ such that fZi

h; PjgPBjh ¼ ��i
j. How-

ever, the above choice of coordinates is not the most
convenient one, since the inverse map from the group
elements to the coordinate functions includes a logarithm,
and makes it therefore difficult to make explicit calcula-
tions. Possibly a better choice are the coordinates

Yi
hðgÞ :¼ �i

l�
2
trðh�1g�iÞ � Xi

hðgÞ
sinðjXhðgÞj=l�Þ
jXhðgÞj=l� ; (6)

which are one-to-one for the range jYhðgÞj< l�. These
coordinates will also later enter the definition of the non-
commutative plane waves in Sec. III C. For them the
Poisson brackets read

fYi
h; Y

j
hgPB ¼ 0;

fYi
h; PjgPB ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l�2� Y2

h

q
�i
j þ l�1� Yk

h�ki
j;

fPi; PjgPB ¼ �2l�1� �ij
kPk

(7)

for the whole range of validity of Yi
h. For themwe also have

fYi
h; PjgPBjh ¼ ��i

j as a special case. The deformation of

the canonical commutation relations can be understood to
arise from the deformed addition of the coordinates on
SOð3Þ, given by

3We thank Frank Eckert for pointing this out.
4The Darboux theorem ensures the existence of a coordinate

system ðxi; piÞ in a neighborhood of any point in a cotangent
bundle such that the symplectic 2-form acquires the canonical
form ! ¼ dxi ^ dpi [22]. However, on a Lie group it is more
convenient and physically transparent to use the coordinates
generated by the left-invariant (or right-invariant) vector fields,
since they respect the division of the cotangent bundle to its
horizontal SOð3Þ and vertical soð3Þ parts, i.e., to the configura-
tion and the momentum spaces.
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ðYhðg1Þ 
h Yhðg2ÞÞi � Yi
hðg1h�1g2Þ

¼ �hðg1; g2Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Y2
hðg2Þ=l2�

q
Yi
hðg1Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Y2

hðg1Þ=l2�
q

Yi
hðg2Þ

� ðYhðg1Þ � Yhðg2ÞÞi=l�
�
; (8)

where �hðg1; g2Þ :¼ sgnðtrðh�1g1h
�1g2ÞÞ in the funda-

mental SUð2Þ representation and � denotes the
Euclidean cross-product. This is because the momenta
correspond to the generators of translations on the configu-
ration space SOð3Þ. Furthermore, we observe that the
Poisson algebra of the momentum space coordinate func-
tions Pi reflects directly the noncommutative structure of
the soð3Þ Lie algebra.

C. Classical dynamics on T �SOð3Þ
The dynamics of the system is given by the choice

of a Hamiltonian function H 2 C1ðT �SOð3ÞÞ. The
Hamiltonian vector field corresponding to H

d

dt
� fH; �gPB

¼ @H

@Pi

@

@gi
� @H

@gi
@

@Pi

� 2l�1� �ij
kPk

@H

@Pi

@

@Pj

(9)

is the generator of time-evolution of dynamical variables in
the phase space. This expression has an additional term
with respect to the Euclidean case, arising from the non-
commutative Lie algebra structure of derivations, which
vanishes in the commutative limit l� ! 1. Thus the clas-
sical dynamics of the system coincides with the usual
Euclidean one in this limit. In particular, the equations of
motion for the canonical variables are

dXi
h

dt

��������h
� fH;Xi

hgPBjh ¼ @H

@Pi

��������h
8 h 2 SOð3Þ; (10)

dPi

dt
� fH;PigPB ¼ � @H

@gi
þ 2l�1� �ij

kPk

@H

@Pj

: (11)

D. The phase space of Loop Quantum Gravity

Let us digress briefly to recall some elements of LQG
[12,13], showing the similarity with the much simpler case
we are dealing with here, as an additional motivation for
our forthcoming analysis. In the connection formulation
that defines the classical starting point of LQG, the con-
figuration space of general relativity is replaced, after a
canonical transformation, by the space of soð3Þ-valued (or
suð2Þ-valued, depending on the formulation) connections
A on some spatial 3d hypersurface � in spacetime. The
conjugate variable is a (densitized) triad field e, also valued
in soð3Þ. One then changes variables in the classical
phase space, going from connections to SOð3Þ-valued

holonomies hl � P exp½Rl A� along paths l in �, where
P indicates path ordering. The canonically conjugate vari-
able to the holonomies along all such possible paths are
soð3Þ-valued fluxes ES �

R
Sl
�ðe ^ eÞ of the triad fields

through surfaces, also embedded in �. More generally, one
considers (spin network) graphs embedded in � and asso-
ciated dual surfaces [12]. Computing Poisson brackets of
these classical variables, one finds commutativity among
any two holonomies and noncommutativity among fluxes.
While the general Poisson brackets are complicated, as
they depend on the specific path and surface associated
to the variables considered, in the simplest case of a link l
and a surface S intersecting it at a single point, one finds the
algebraic structure of T �ðSOð3ÞÞ ffi SOð3Þ � soð3Þ, the
cotangent bundle over SOð3Þ [23],

fhl; h0lg ¼ 0; fEi
S; E

j
S0 g ¼ �2�S;S0�

ij
kE

k
S;

where�2�ijk are the structure constants of the Lie algebra
soð3Þ. Thus, the phase space T �SOð3Þ we are considering
in this paper is the phase space associated, in LQG, to a
single link of a spin network graph, with associated dual
surface.
For a more general spin network �, the phase space P �

will become the direct product of phase spaces of the
individual links l 2 � modulo relations arising from the
requirement of SOð3Þ gauge invariance at the vertices
v 2 �,

P � � T �ðSOð3ÞL=SOð3ÞVÞ: (12)

where L is the number of links in � and V is the number of
vertices. In terms of the fluxes ES the gauge invariance can
be understood as implying the closure of the surfaces dual
to the links attached to the vertex, or equivalently the
absence of flux outgoing from the region surrounded by
the same surfaces around the vertex.
Obviously, there is one crucial difference between our

simple case of nonrelativistic quantum mechanics on
SOð3Þ and LQG. In LQG, being the quantization of general
relativity, we must require diffeomorphism invariance to
hold, and so due to the reparametrization invariance of the
time coordinate, the Hamiltonian function H becomes a
constraint [12], and no time coordinate will play a distin-
guished role. Therefore, with regard to LQG, we restrict
our arguments mainly on the level of phase space structure,
and comment on the possible advantages and perspectives
for LQG of the noncommutative structure we study, based
on the intuition gained from the simpler cases.

III. QUANTUM MECHANICS ON SOð3Þ
A. Group basis

Building on the results reviewed in the previous section,
it is now straightforward to give a canonical formulation of
quantum mechanics on SOð3Þ. The natural choice for
canonical variables in the phase space SOð3Þ � soð3Þ are
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the group elements g 2 SOð3Þ and the Lie algebra
elements P 2 soð3Þ ffi R3, which we then ‘‘upgrade’’ to
canonical operators formally via the quantization map

:̂ g � ĝ and Pi � P̂i for the components of P 2 soð3Þ.
We first consider the complete set of orthonormal basis
states fjgijg 2 SOð3Þg, labeled by group elements, which
we will call the group basis, satisfying

hgjg0i� 1

�2l3�
�ðg�1g0Þ;

Z
SOð3Þ

�2l3�dgjgihgj� 1̂; and fðĝÞjgi�fðgÞjgi
(13)

for any function f 2 FðSOð3ÞÞ, where 1̂ denotes the unit
operator, dg the normalized Haar measure. In the above
sense, jgi are the eigenstates of the operator ĝ. Note that
here one must necessarily consider the group elements
themselves as operators instead of some coordinate func-
tions on SOð3Þ, since there does not exist any global differ-
entiable coordinate system on SOð3Þ. On the other hand,
since g 2 SOð3Þ are not real numbers but group elements,
we can neither act directly with the operator ĝ on states.
The property fðĝÞjgi � fðgÞjgi, however, guarantees that
for any coordinate system on SOð3Þ, jgi are the eigenstates
of the coordinates. As usual, we then define the Hilbert
space of states H to consist of those states jc i, whose
decomposion in the jgi basis can be expressed in the form

jc i ¼
Z
SOð3Þ

�2l3�dgc ðgÞjgi; (14)

where c 2 L2ðSOð3Þ; �2l3�dgÞ, and hc jc i ¼ 1. Notice
that, with this choice of normalization, the measure coin-
cides with the Lebesgue measure onR3 in the commutative
limit l� ! 1.

In the group basis fjgijg 2 SOð3Þg it is natural to choose
the momentum operators to be of the form

P̂ i � �i
ℏ
l�
LTi

; (15)

where LTi
is the Lie derivative on SOð3Þ with respect

to the left-invariant basis vector field Ti 2 T SOð3Þ, and
ℏ is the Planck constant, since these are the generators of
translations on SOð3Þ. Also, they are self-adjoint in
L2ðSOð3Þ; �2l3�dgÞ, and the quadratic Casimir operator is

P̂2 :¼ P
iP̂

2
i � �ðℏ=l�Þ2�LB, where �LB is the Laplace-

Beltrami operator on SOð3Þ [24].
The commutators of the operators P̂i and the coordinate

operators X̂i
h :¼ Xi

hðĝÞ corresponding to the coordinate

functions Xi
h: SOð3Þ ! R3, induced by the left-invariant

vector fields, g � h exp½iXi
hðgÞti=l��, where ti � TiðeÞ 2

T eSOð3Þ ffi soð3Þ is a Lie algebra basis, and jXhðgÞj<
�l�=2, read

½X̂i
h; X̂

j
h� ¼ 0; ½X̂i

h; P̂j�jh ¼ iℏ�i
j;

½P̂i; P̂j� ¼ 2i
ℏ
l�
�ij

kP̂k;

(16)

for all h 2 SOð3Þ, due to the properties of Lie derivatives.
As for the Poisson brackets, we find that, in general, we

must have different canonical coordinate operators X̂i
h for

each h 2 SOð3Þ to satisfy the canonical commutation
relations with the momentum operators. With the choices
above, the commutators then correctly reflect the classical
Poisson structure (5) of the canonical variables in the usual
sense:

i

ℏ
½Ô; Ô0� !ℏ!0fO;O0gPB: (17)

The canonical dynamics of a quantum system corre-
sponding to a given classical system is then obtained by
applying the quantization map to the Hamiltonian function,

HðP; gÞ � Ĥ � HðP̂; ĝÞ. As is well known, this prescrip-
tion is not unique due to the ambiguity in ordering opera-
tors. Namely, there are several inequivalent ways to order

the canonical operators in Ĥ, which all coincide in the
limit ℏ ! 0. For the purposes of this paper, however,
we will not have to fix any specific operator ordering.
(Later in considering the first order phase space path
integral we will restrict to consider Hamiltonians of the
form HðP; gÞ ¼ HPðPÞ þHgðgÞ to avoid unnecessary

complications arising from operator ordering ambiguities.)
Nevertheless, the ordering should be such that the

Hamiltonian operator Ĥ is self-adjoint, hc 0jHc i ¼
hHc 0jc i. Then, the time-evolution generated by Ĥ is
unitary, and we obtain a unitary time-evolution operator

Ûðt0 � tÞ :¼ exp½� i
ℏ ðt0 � tÞĤ�.

In LQG, one proceeds to quantization in the same
way as we have done above (apart from the normalization
chosen for the measure of integration, which is taken to be
simply the Haar measure on each link). Functions c �

associated to graphs � define the Hilbert space H � ’
L2ðSOð3ÞL=SOð3ÞVÞ. By taking the direct sum over all
such Hilbert spaces corresponding to all possible graphs
in �, one defines the kinematical Hilbert space of the
theory. Similarly to what we have done above, one defines
the algebra of kinematical observables of the theory by
turning the canonical variables into operators.

B. Spin basis and coherent states

In this subsection we will briefly review the well-known
decomposition of functions on SOð3Þ in terms of spin
representations, as well as in terms of coherent states on
SOð3Þ. This will allow us to compare our results in later
parts of the paper to the ones obtained by more conven-
tional methods.
A decomposition of functions on SOð3Þ in terms of spin

representations follows from Peter-Weyl theorem [25],
which shows the orthogonality of the elements of repre-
sentation matrices (also called Wigner D-functions)

Dj
mnðgÞ, j 2 N0, m, n ¼ 0;	1; . . . ;	j:
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Z
SOð3Þ

dgDj0
m0n0 ðgÞDj

mnðgÞ¼ ð2jþ1Þ�1�jj0�mm0�nn0 : (18)

Accordingly, the states jj;m; ni defined via hgjj;m; ni :¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
Dj

nmðgÞ constitute a complete and orthonormal
basis of states in the Hilbert space H ffi L2ðSOð3ÞÞ, the
spin basis, for they satisfy

hj0;m0; n0jj;m; ni ¼ �2l3��j0j�m0m�n0n and

1

�2l3�

X
j;m;n

jj;m; nihj;m; nj ¼ 1̂; (19)

where in the spin basis we introduce the measure
ð�2l3�Þ�1

P
j;m;n, j 2 N0, m, n ¼ 0;	1; . . . ;	j. The spin

label j of the state jj;m; ni refers to the eigenvalues of the

quadratic Casimir operator P̂2 ¼ ð�iℏ=l�Þ2PiLTi
LTi

,

P̂ 2jj;m; ni ¼ ð2ℏ=l�Þ2jðjþ 1Þjj;m; ni; (20)

which label the irreducible unitary representations of
SOð3Þ, while the indices m, n refer to eigenvalues of the

Lie derivative operators P̂l;r
z :¼ �i ℏ

l�
LTl;r

z
with respect to

left- and right-invariant vector fields Tl;r
z 2 T SOð3Þ, such

that Tl
zðeÞ ¼ Tr

z ðeÞ � tz 2 soð3Þ,

P̂l
zjj;m; ni ¼ 2

ℏ
l�
mjj;m; ni and

P̂r
zjj;m; ni ¼ 2

ℏ
l�
njj;m; ni; (21)

respectively.5 These operators form a maximal commuting
set of operators on the Hilbert space H . The commuta-
tivity of left- and right-invariant derivatives follows
from the associativity of the group product. Also note
that the Casimir operators corresponding to left- and
right-invariant Lie derivatives coincide. Then, any state
jc i 2 H can be expanded in the spin basis as

jc i ¼ 1

�2l3�

X
j;m;n

jj;m; nihj;m; njc i; (22)

where

hj;m; njc i ¼
Z
SOð3Þ

�2l3�dghj;m; njgihgjc i

�
Z
SOð3Þ

�2l3�dg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
Dj

nmðgÞc ðgÞ: (23)

We should emphasize that the states jj;m; ni are not the
usual spherical harmonics states jj;mi familiar from con-
siderations of quantum spin systems [26], even though they

are related through the definition of representation matrix

elements Dj
mnðgÞ � hj; mjDjðgÞjj; ni. The spherical har-

monics given by

hgjj; mi :¼ Yj
mðgÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þ=4�

q
Dj

m0ðgÞ (24)

are invariant under the right multiplication R�
hfðgÞ �

fðghÞ by elements of the form eistz 2 Uð1Þ � SUð2Þ, and
therefore are functions on SUð2Þ=Uð1Þ ffi S2, the 2-sphere.
In other words, the spherical harmonics jj; mi are elements
of the vector space corresponding to the (2jþ 1)-
dimensional representation, whereas we have states on
the group itself. Thus, the spherical harmonics do not
give a complete basis for H ffi L2ðSOð3ÞÞ, and we need
to use the states jj;m; ni instead, which give a full repre-
sentation of both left and right multiplication.
A set of coherent states6 jj; ~m; ~ni, j 2 N0, ~m, ~n 2 S2

(the unit 2-sphere in R3), can be defined on SOð3Þ in terms
of the representation matrices as

hgjj; ~m; ~ni :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

�2l3�

s
Dj

jjðg�1
~n gg ~mÞ; (25)

where g ~m 2 SOð3Þ is the unique element, which rotates the
unit vector in z-direction in R3 to ~m with the axis of
rotation in the x-y-plane (similarly for ~n). These states

satisfy P̂2jj; ~m; ~ni ¼ 4ðℏ=l�Þ2jðjþ 1Þjj; ~m; ~ni,

~m � P̂ljj; ~m; ~ni ¼ 2
ℏ
l�
jjj; ~m; ~ni and

~n � P̂rjj; ~m; ~ni ¼ 2
ℏ
l�
jjj; ~m; ~ni;

(26)

but also

hj; ~m; ~njP̂l
ijj; ~m; ~ni ¼ 2

ℏ
l�
j ~mi and

hj; ~m; ~njP̂r
i jj; ~m; ~ni ¼ 2

ℏ
l�
j ~ni: (27)

The coherent states jj; ~n; ~ni ¼: jj; ~ni are particularly inter-
esting, because they turn out to coincide in the semiclas-
sical limit ℏ ! 0, j ! 1, ℏj ¼ const, with the states jPi
defined below in terms of the noncommutative momentum
variables P 2 R3

? in the sense that, at this limit, we
can identify the variables P ¼ 2ðℏ=l�Þj ~n. This suggests
that the variable 2ðℏ=l�Þj ~n 2 soð3Þ labelling the states
jj; ~ni can be understood in some sense as ‘‘quantum
momentum variables’’ for a particle on SOð3Þ, between
the continuous variables P and the discrete quantum num-

bers ðj;m; nÞ in character, while the functions hgjj; ~ni ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2jþ 1Þ=�2l3�
p

Dj
jjðg�1

~n gg ~mÞ may be understood as a sort
5The factors of 2 in these expressions follow from our choice

of normalization of the basis vector fields, namely, we chose
Tl
i ðeÞ ¼ Tr

i ðeÞ � ti ¼ �i in the fundamental representation,
where �i are the Pauli matrices, for later convenience. With
the choice ti ¼ �i=2 we would find expressions without extra
factors of 2.

6These states are directly related to Perelomov coherent
states jj; ~niP [27] on a 2-sphere S2 via hgjj; ~m; ~ni �Phj; ~mjDjðgÞjj; ~niP, the use of which has proven very useful in
recent developments in spin foam models [28–30].
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of plane waves giving rise to an alternative Fourier
transform (given a suitable noncommutative product
for the variable ~n 2 S2) to the one we will use in the
following [31].

The above decompositions correspond, in LQG, to the
expansion of cylindrical functions of the connection in spin
network basis [12,13], which are labeled by quantum
numbers of geometric operators, functions of the triad
operator (areas, volumes, etc.), in the same sense in which
the states (19) are eigenstates of the quantum operators
corresponding to the momentum variables P.

C. Group Fourier transform

Next we will review the formulation of group Fourier
transform on SOð3Þ considered first in [8,9] (and extended
to SUð2Þ in [10]) in connection with 3d quantum gravity
models, and has also been utilized in formulating a non-
commutative flux representation of LQG [15] and a metric
representation of group field theory[16,17]. On the most
foundational level, the transform is based on the theory of
quantum groups [11], but we will restrict our review only
on the most pragmatic aspects. For more details, see [9,10].

The group Fourier transform on SOð3Þ is an isometry
[15] in L2-norm from L2-functions on SOð3Þ to
L2-functions on a noncommutative space R3

? equipped
with a ?-product. To describe the transform and the non-
commutative spaceR3

?, we first define the noncommutative
plane waves,

egðPÞ :¼ exp½trðgPÞl�=2ℏ� � exp½iYiðgÞPi=ℏ� (28)

on SOð3Þ, where the trace trðgPÞ is taken in the funda-
mental 2-dimensional representation of SOð3Þ, which is
obtained from g0 2 SUð2Þ via the 2-to-1 map g0 �
sgnðtrðg0ÞÞg0 � g 2 SOð3Þ. egðPÞ will act in the construc-

tion as the kernel of the group Fourier transform. The
coordinates YiðgÞ in the exponential are given by

YiðgÞ � l�
2
trðg�iÞ � XiðgÞ sinðjXðgÞj=l�ÞjXðgÞj=l� ; (29)

where g � exp½iXiðgÞti=l��. The noncommutative
?-product is then defined through the relation

egðPÞ ? ehðPÞ � eghðPÞ 8 g; h 2 SOð3Þ; P2 soð3Þ:
(30)

Obviously, the ?-product so defined is associative but
noncommutative due to the corresponding properties of
the group multiplication. It also induces a corresponding
deformed noncommutative addition [7] for the coordinates
YiðgÞ on SOð3Þ such that exp½iY1 � P=ℏ� ? exp½iY2 �
P=ℏ� � exp½iðY1 
 Y2Þ � P=ℏ�, where 
 � 
e from (8).

Now, we may define the group Fourier transform ~f 2
L2ðR3

?Þ of a function f 2 L2ðSOð3ÞÞ as

~fðPÞ :¼
Z
SOð3Þ

�2l3�dgegðPÞfðgÞ; (31)

where egðPÞ denotes the complex conjugate of egðPÞ. The
inverse transform is then given by

fðgÞ �
Z
R3
?

d3P

ð2�ℏÞ3 egðPÞ ?
~fðPÞ; (32)

where d3P is the usual Lebesgue measure on R3. In par-
ticular, we have the important identities

Z
R3

?

d3P

ð2�ℏÞ3 egðPÞ ¼
1

�2l3�
�ðgÞ and

Z
SOð3Þ

�2l3�dgegðPÞ ¼ ð2�ℏÞ3�?ðPÞ;
(33)

where �? is the delta function with respect to the ?-product
in the senseZ

R3
?

d3P�?ðPÞ ? ~fðPÞ ¼ ~fð0Þ ¼
Z
R3
?

d3P~fðPÞ ? �?ðPÞ:
(34)

We should note that �?ðPÞ is a regular function on R3 for
ℏl�1� > 0, and in particular �?ð0Þ<1. It is also easy to
show that the group Fourier transform is an isometry [15]
with respect to the L2-norms:

Z
SOð3Þ

�2l3�dgfðgÞf0ðgÞ¼
Z
R3

?

d3P

ð2�ℏÞ3
~fðPÞ? ~f0ðPÞ: (35)

Another useful property of the ?-product, of which we will
take advantage later on, is that it can be expressed as a
differential operator under integration [7,32] via

Z
d3PfðPÞ ? gðPÞ ¼

Z
d3PfðPÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðℏ=l�Þ2�P

q
gðPÞ:
(36)

In fact, the map e: SOð3Þ ! fegjg 2 SOð3Þg, g�e eg is

an isomorphism: gh�
e
egh � eg ? eh, the inverse e�1:

fegjg 2 SOð3Þg ! SOð3Þ to the fundamental representa-

tion being

eg�
e�1

�
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
ℏ
l�

�
2
�P

s
þ ℏ

l�
�j

@

@Pj

�
eg

��������P¼0
¼ g; (37)

where �P :¼ P
j

@
@Pj

@
@Pj is the Laplacian in R3 with respect

to the momentum variable P, 12 is the 2� 2 identity
matrix, and �j are the Pauli matrices. Then, the non-

commutative plane waves eg give an ‘‘isomorphic’’ repre-

sentation of SOð3Þ on functions f 2 L2ðR3
?Þ via

?-multiplication as

ðeg ? fÞðPÞ ¼
Z
SOð3Þ

�2l3�dhehðPÞfðghÞ 2 L2ðR3
?Þ; (38)
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which is dual to left translations L�
gfðhÞ ¼ fðghÞ 2

L2ðSOð3ÞÞ. Right translations will instead be dual to
ðf ? egÞðPÞ.

Moreover, a definition of ?-polynomials of the coordi-
nates Pi in the noncommutative space (which do not
belong to L2ðR3

?Þ) and their ?-products with the noncom-
mutative plane waves can be obtained through the relation�
�i

ℏ
l�

�
nðLTi1

� � �LTin
egðPÞÞ

¼ egðPÞ ?
�
�i

ℏ
l�

�
LTi1

eeðPÞ ? � � � ?
�
�i

ℏ
l�

�
LTin

eeðPÞ
� egðPÞ ? Pi1 ? � � � ? Pin ; (39)

from which we obtain

Pi1 ? � � � ? Pin ¼ egðPÞ ? Pi1 ? � � � ? Pin jg¼e

¼
�
�i

ℏ
l�

�
nðLTi1

� � �LTin
egðPÞÞjg¼e: (40)

With this definition, we find that the lowest order term in
ℏl�1� is, for all powers, the pointwise product,

Pi1 ? � � � ? Pin ¼ Pi1 � � �Pin þOðℏ=l�Þ: (41)

Thus, the (noncommutative) ?-product coincides with the
(commutative) pointwise product both in the classical limit
ℏ ! 0 as well as in the Euclidean (commutative) limit
l� ! 1. We also find, by an explicit calculation,

Pi ? Pj ¼ PiPj þ i
ℏ
l�
�ij

kPk; (42)

so the coordinates Pi satisfy Lie algebra type of commu-
tation relations, which follow directly from the properties
of the Lie derivative. Moreover, we have for the noncom-
mutative plane waves an expression in terms of the
?-product as

egðPÞ � eX
iðgÞLTi

=l�eeðPÞ

¼ X1
n¼0

1

n!ln�
Xi1 � � �XinðLTi1

� � �LTin
eeðPÞÞ

¼ X1
n¼0

in

n!ℏn X
i1 � � �XinPi1 ? � � � ? Pin ¼ eiXðgÞ�P=ℏ? ;

(43)

where g � exp½iXiðgÞti=l��, ti � Ti;e, jXðgÞj � �l�=2,
and we introduced the notation

e�fðPÞ? :¼ X1
n¼0

�n

n!
fðPÞ ? � � � ? fðPÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n times

: (44)

D. The noncommutative momentum basis

Through the group Fourier transform reviewed in the
previous section, we may now formulate the dual

momentum space representation of quantum mechanics
on SOð3Þ in terms of the noncommutative momentum
space R3

?. (See, e.g., [33,34] for earlier treatments of
quantum mechanics on Lie algebraic noncommutative
spaces.) Let us define a set of states fjPijP 2 R3

?g via their
inner product with the group basis

hgjPi � egðPÞ; (45)

which satisfy, due to the properties (33) of the group
Fourier transform, the following formal identities

hPjP0i ¼ ð2�ℏÞ3�?ðP� P0Þ andZ
R3

?

d3P

ð2�ℏÞ3 jPi ? hPj ¼ 1̂: (46)

Accordingly, they form a complete and orthonormal basis
with respect to the ?-product structure in the noncommu-
tative momentum space.

The momentum operators P̂i do not commute among
themselves but obey the Lie algebra commutation relations
in (16), and therefore it is impossible to diagonalize them
simultaneously. However, the states jPi are eigenstates of

the momentum operators P̂i in the ?-product sense

P̂ijPi ¼ jPi ? Pi: Because of (39), by definition,

hgjP̂ijPi � �i
ℏ
l�
LTi

egðPÞ � egðPÞ ? Pi � hgjPi ? Pi:

(47)

where l�1� Ti are the left-invariant basis vector fields, and
the ordering of Pi to the right of hgjPi follows from the

left-invariance of l�1� Ti. For the operators P̂r
i � �i ℏ

l�
LTr

i

corresponding to right-invariant basis vector fields Tr
i we

have hgjP̂r
i jPi ¼ Pi ? hgjPi. Since the ?-product is non-

commutative, and thus nonlocal in the sense that it is not
possible to resolve points, the states jPi are, from the point
of view of commutative R3, coherent states peaked on the

momentum value P: hPjP̂ijPi ¼ PihPjPi ¼ Pi�?ð0Þ.7
By the properties of the group Fourier transform, any

state jc i 2 H has then a representation in terms of the
momentum basis as

jc i ¼
Z
R3

?

d3P

ð2�ℏÞ3 jPi ?
~c ðPÞ; (48)

where ~c ðPÞ � hPjc i 2 L2ðR3
?Þ is the group Fourier trans-

form of the wave function c ðgÞ � hgjc i 2 L2ðSOð3ÞÞ in
the group basis. The group element operator ĝ in the
fundamental representation can be written in the momen-
tum basis as

7Manipulating formal expressions in the Dirac bra-ket notation
requires some extra care now that we have two different products
in use. In particular, when evaluating expressions of the form
hPjÔjPi, where Ô is some operator, one should always first
evaluate hPjÔjP0i and only afterwards set P ¼ P0, i.e., we define
hPjÔjPi :¼ hPjÔjP0ijP¼P0 .
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ĝ ¼ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ℏ2

l2�
�P

s
þ ℏ

l�
�j

@

@Pj

; (49)

where 12 is the 2� 2 unit matrix and �j are the Pauli

matrices.
Since the transformations between different bases are

isometries, we may always freely move from one basis to
another. In particular, the transformation between the spin
basis and the noncommutative momentum basis is medi-
ated by the transformation kernel [32,35]

hj;m; njPi ¼
Z
SOð3Þ

�2l3�dg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
Dj

nmðgÞegðPÞ

¼ �2l3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p 2J2jþ1ðl�jPj=ℏÞ
i2jl�jPj=ℏ

�Dj
mnðeið�l�=2ℏÞðP=jPjÞÞ; (50)

In the semiclassical limit ℏ ! 0, j ! 1, ℏj ¼ const the
function 2J2jþ1ðl�jPj=ℏÞ=i2jℏ�1l�jPj approximates a

delta function �ðjPj � 2 ℏ
l�
jÞ [32].

Moreover, for the coherent states jj; ~ni, it can be
shown [15] that in the semiclassical limit ℏ ! 0, j ! 1,
ℏj ¼ const, their group Fourier transform

hPjj; ~ni¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2l3�ð2jþ1Þ

q Z
SOð3Þ

dgegðPÞDj
jjðg�1

~n gg ~nÞ (51)

peaks sharply at P ¼ 2ðℏ=l�Þj ~n, and therefore we find an
identification of the noncommutative dual variables and
the coherent state variables in this limit, in which, we
remark again, the momentum variables P become commu-
tative. This can be further understood by first noting that

for the states jPi we have P̂2jPi ¼ P2 ? jPi,
P̂ l

ijPi ¼ jPi ? Pi and P̂r
i jPi ¼ Pi ? jPi; (52)

while for the coherent states jj; ~ni we have P̂2jj; ~ni ¼
ð2ℏ=l�Þ2jðjþ 1Þjj; ~ni and

hj; ~njP̂l
ijj; ~ni ¼ 2

ℏ
l�
j ¼ hj; ~njP̂r

i jj; ~ni: (53)

Accordingly, in the limit ℏ=l� ! 0, j ! 1, ðℏ=l�Þj ¼
const, where the ?-product coincides with the pointwise
product and the coherent states become infinitely sharply
peaked, both jPi and jj; ~ni are simultaneous eigenstates (in
the commutative sense) of the maximal set of commuting

operators P̂2, P̂l;r
i with the above identification of the

eigenvalues.
At this point, before moving onto the path integral

formulation, we would like to further highlight the con-
nection between the nontrivial classical Poisson structure
(5) of the momentum variables, the canonical commutation
relations (16) of the canonical quantum operators, and the
noncommutative structure of the momentum space induced
by the ?-product (30). These all arise from a common
source, namely, the noncommutative Lie algebra structure

of derivations on SOð3Þ, which again follows from, or
rather is equal to, the curvature of the group manifold.
There are certain choices we have made in deriving these
structures. The first choice is the specific coordinate system
for the phase space, which is reflected in the canonical
Poisson structure (5) of the classical theory. We chose to
use the coordinates induced by the left-invariant vector
fields on SOð3Þ, which allow for unique global coordinates
for the covector spaces, and accordingly for a single
Euclidean momentum space. In this respect, it is the
most natural choice of coordinates even though, according
to the Darboux theorem, one could always choose a local
coordinate system such that one recovers the usual Poisson
brackets, but these coordinates mix the coordinates of
configuration and momentum spaces, and cannot be glob-
ally extended. The second choice is the choice of quantum
mechanical momentum operators in the group basis such
that they correctly reflect the classical Poisson structure.
We chose to use the Lie derivatives with respect to the left-
invariant vector fields on SOð3Þ. These are a natural gen-
eralization of the directional coordinate derivatives @

@xi

in the Euclidean case as the generators of translations in
SOð3Þ, and indeed coincide with them at the Euclidean
limit l� ! 0. Also, this choice is consistent with the fact
that we chose to use the coordinates generated by the
left-invariant vector fields for the configuration space.
Furthermore, these operators are self-adjoint with respect
to the measure we use on SOð3Þ, and the quadratic operator
P̂2 ¼ P

iP̂iP̂i is a multiple of the Laplace-Beltrami
operator on SOð3Þ. The third choice has to do with the
noncommutative plane waves, and thus the ?-product
structure, which is not completely unique. In particular, it
seems that one can choose any infinitely differentiable real-
valued coordinates XjðgÞ on SOð3Þ for the plane waves
egðPÞ � exp½iPjX

jðgÞ=ℏ�, which satisfy Xjðg�1Þ ¼
�XjðgÞ and LTi

XjðeÞ ¼ �j
i . In general, this will affect

the explicit form of the ?-product but, however, not the
Lie algebraic commutation relations of the momentum
variables, since these derive directly from the commutation
relations of the Lie derivatives via the relation (39).
In LQG, an analogous noncommutative basis was

introduced in [15], and interpreted as providing a flux
representation for the theory, taking into account the non-
commutativity of fluxes even in the classical theory [23].
We close by noting that the same quantization map we use
here, and related to the Duflo map [9], has been used, and
justified further, in the context of Chern-Simons path in-
tegrals in [36].

E. Path integral in terms of noncommutative variables

Next we will give the first order path integral formula-
tion of quantum mechanics on SOð3Þ using the noncom-
mutative momentum space defined above, and, in
particular, the ?-product orthonormal momentum basis
fjPijP 2 soð3Þg. The derivation follows similar lines to
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the commutative case, but some extra subtleties arise due
to the noncommutative structure.

The quantum mechanical evolution operator is given by

Ûðt0 � tÞ � e�ði=ℏÞðt0�tÞĤ; (54)

where Ĥ is the Hamiltonian operator, as usual.
Accordingly, we have for the propagation amplitude from
the group element g at time t to g0 at time t0

hg0; t0jg; ti � hg0jÛðt0 � tÞjgi: (55)

Now, we introduce the time-slicing via the decomposition

Ûðt0 � tÞ � YN�1

k¼0

Ûðtkþ1 � tkÞ; (56)

where tkþ1 > tk 8 k and t0 ¼ t, tN ¼ t0. We set tkþ1 �
tk � � 8 k ¼ 0; . . . ; N � 1, so we have t0 � t � N�. By

inserting the resolution of identity 1̂ ¼ R
SOð3Þ�

2l3�dgjgi�
hgj N � 1 times in between the evolution operators we
obtain

hg0; t0jg; ti ¼ lim
N!1

�YN�1

k¼1

Z
SOð3Þ

�2l3�dgk
�

�
�YN�1

k¼0

hgkþ1jÛð�Þjgki
�
: (57)

Furthermore, for each of the factors we use the resolution

of identity 1̂ ¼ R
R3

?

d3P
ð2�ℏÞ3 jPi ? hPj to express them as

hgkþ1jÛð�Þjgki ¼
Z
R3

?

d3Pk

ð2�ℏÞ3 hgkþ1jPki ? hPkjÛð�Þjgki:
(58)

At this point, we have to restrict to systems with

Hamiltonian operators of the form Ĥ ¼ HPðP̂Þ þHgðĝÞ
to avoid additional operator ordering issues, on top of those
stemming from the noncommutativity of momentum var-
iables and encoded by the ?-product structure defined

above.8 Then we get hPjĤjgi ¼ H?ðP; gÞ ? hPjgi, where
the function H?ðP; gÞ is now obtained from the

Hamiltonian operator Ĥ by replacing the momentum op-

erators P̂i in Ĥ by the noncommutative momentum varia-
bles Pi and the operator product of the momentum
operators is replaced by the ?-product, whereas the group
element operators ĝ are replaced by the group elements g

and the operator product between them by the group multi-
plication. We may take the linear approximation in � as

hPje�ði=ℏÞ�Ĥjgi 

�
1� i

ℏ
�H?ðP; gÞ

�
? hPjgi


 e�ði=ℏÞ�H?ðP;gÞ
? ? hPjgi; (59)

since, as shown in [1], the linear order in � for the time-
slice propagators is sufficient in order to obtain the correct
finite time propagator satisfying the Schrödinger equation.
Accordingly, we obtain

hgkþ1jÛð�Þjgki



Z
R3

?

d3Pk

ð2�ℏÞ3 egkþ1
ðPkÞ?e�ði=ℏÞ�H?ðPk;gkÞ

? ? eg�1
k
ðPkÞ

¼
Z
R3

?

d3Pk

ð2�ℏÞ3 egkþ1g
�1
k
ðPkÞ?e

�ði=ℏÞ�H?ðg�1
k

Pkgk;gkÞ
? ; (60)

where we used the properties egðPÞ ¼ eg�1ðPÞ,
egkþ1

ðPÞ ? eg�1
k
ðPÞ ¼ egkþ1g

�1
k
ðPkÞ and

egðPÞ ? fðPÞ ¼ fðg�1PgÞ ? egðPÞ
(61)

of the ?-product. Furthermore, we have egkþ1g
�1
kðgkPkg

�1
k Þ ¼ eg�1

k
gkþ1

ðPkÞ, so by making the change of

variables Pk � gkPkg
�1
k the full propagator reads in the

first order form

hg0; t0jg;ti¼ lim
N!1

�YN�1

k¼1

Z
SOð3Þ

�2l3�dgk
��YN�1

k¼0

Z
R3

?

d3Pk

ð2�ℏÞ3
�

�
�YN�1

k¼0

eg�1
k

gkþ1
ðPkÞ?e�ði=ℏÞ�H?ðPk;gkÞ

?

�
: (62)

We observe that each of the factors in the product over Pk’s
is exactly the group Fourier transform of the function
exp?½� i

ℏ �H?ðPk; gkÞ� from the momentum variable Pk

to the group variable g�1
k gkþ1. It is easy to verify that the

time-slice propagator

hgkþ1jÛð�Þjgki

¼
Z
R3
?

d3Pk

ð2�ℏÞ3 eg�1
k

gkþ1
ðPkÞ ? e�ði=ℏÞ�H?ðPk;gkÞ

? (63)

satisfies the Schrödinger equation exactly. However, we
would like to express this as an integral over a single
exponential. Using the expression (36) for the ?-product
under integration, and taking again the linear approxima-
tion in �, we obtain

hgkþ1jÛð�Þjgki

¼
Z
R3

?

d3Pk

ð2�ℏÞ3 exp

�
i

ℏ
�

�
Yðg�1

k gkþ1Þ
�

� Pk �HqðPk; gkÞ
�	
;

(64)

8To handle more general Hamiltonians with mixed terms in g
and P variables, one should introduce an additional ?-product,
encoding in the definition of the path integral the operator
ordering between group and momentum operators [37]. This
would then lead to more complicated forms for the discrete and
continuum phase space path integrals. However, for the argu-
ments we wish to present in this paper, the generalization is not
important, as we focus on how the ?-product between momen-
tum variables encodes their noncommutativity in the same path
integral representation of the dynamics, so we restrict to the
simpler case.
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where

HqðP; gÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðℏ=l�Þ2�P

q
H?ðP; gÞ (65)

is an effective Hamiltonian containing additional terms,
which arise from the nontrivial phase space structure
and ensure that the time-slice propagator satisfies the
Schrödinger equation up to first order in �. Accordingly,
we may write

hg0;t0jg;ti¼ lim
N!1

�YN�1

k¼1

Z
SOð3Þ

�2l3�dgk
��YN�1

k¼0

Z
R3

?

d3Pk

ð2�ℏÞ3
�

�exp

�
i

ℏ

XN�1

k¼0

�

�
Yðg�1

k gkþ1Þ
�

�Pk�HqðPk;gkÞ
�	
;

(66)

This is clearly analogous to the usual first order form of
path integral in the usual Euclidean case. The second order
path integral can, in principle, be obtained from this first
order form by integrating out the momentum or group
variables, but since these integrations can only be per-
formed explicitly for certain special cases (quadratic
Hamiltonians, in particular), for greater generality we
will stay at the first order level. (See Sec. III G for the
free particle on SOð3Þ case.)

We may write (66) in the continuum limit as

hg0; t0jg; ti ¼
Z

gðtÞ¼g
gðt0Þ¼g0

DgDP exp

�
i

ℏ

Z t0

t
ds

�
l�
2
trð _gðsÞPðsÞÞ

�HqðPðsÞ; gðsÞÞ
�	
; (67)

where _gðtÞ :¼ �ig�1ðtÞ dgdt ðtÞ 2 soð3Þ, since we have

lim
�!0

Yðg�1
k gkþ1Þ=l�

�
¼ �i

d

d�

���������¼0
g�1ðtkÞgðtk þ �Þ

� _gðtkÞ: (68)

In the expression (67) of the propagator, the action

S b½g; P� ¼
Z t0

t
ds

�
l�
2
trð _gðsÞPðsÞÞ �HqðPðsÞ; gðsÞÞ

�
(69)

appearing in the exponent is the classical action, i.e., the
time integral over the classical Lagrangian function ob-
tained through Legendre transformation, except for the
effective Hamiltonian Hq. The Hamiltonian Hq can be

interpreted as introducing quantum corrections to the ac-
tion, as it contains, in addition to the classical Hamiltonian
function H in the zeroth order, higher order terms in ℏ.
The presence of such quantum corrections to the classical
action in the path integral formulation of the dynamics
is necessary in order for the propagator to satisfy the
Schrödinger equation, and a generic feature of path inte-
grals on curved manifolds [1,37]. Also, note that at the
Euclidean (no curvature in configuration space, commuta-
tive in momentum space) limit l� ! 1 we have Hq ! H

and, as should be expected, at this limit the path integral
(67) coincides with the path integral for a point particle in
Euclidean space.
The expression (67) represents our first main result,

confirming the usefulness and interpretation of the non-
commutative momentum basis, in this simple context.
We should also mention that the homotopy group of

SOð3Þ is Z2 and, therefore, in the path integral the paths
are divided into two separate homotopy classes, which may
receive different phase factors [38]. The phases must, how-
ever, constitute a unitary representation of Z2, and there are
altogether two choices, the multiplicative groups f1g and
f1;�1g, which give two different propagators. It can be
shown [2] that the first one corresponds to the integer spin
representations j 2 N0 while the latter corresponds to the
half-integer spin representations j 2 N0 þ 1

2 of SOð3Þ.
The propagator hP0; t0jP; ti in the noncommutative mo-

mentum basis is obtained by applying the group Fourier
transform to both sides of the propagator hg0; t0jg; ti in the
group basis. This results in adding a boundary term into the
action:

hP0; t0jP; ti ¼
Z
SOð3Þ

�2l3�dg0
Z
SOð3Þ

�2l3�dghP0jg0ihg0; t0jg; tihgjPi

¼
Z
SOð3Þ

�2l3�dg0
Z
SOð3Þ

�2l3�dge�trðg0P0Þl�=2ℏþtrðgPÞl�=2ℏ
Z

gðtÞ¼g
gðt0 Þ¼g0

DgDP

� exp

�
i

ℏ

Z t0

t
ds½l�trð _gðsÞPðsÞÞ �HqðPðsÞ; gðsÞÞ�

	

¼
Z

PðtÞ¼P
Pðt0Þ¼P0

DgDP exp

�
i

ℏ

Z t0

t
ds

�
l�
2
trð _gðsÞPðsÞÞ �HqðPðsÞ; gðsÞÞ

�

� l�
2ℏ

½trðgðt0ÞPðt0Þ � trðgðtÞPðtÞÞ�
	
�

Z
PðtÞ¼P
Pðt0Þ¼P0

DgDPeði=ℏÞS½g;P�; (70)

where the action S½g; P� consists of bulk and boundary terms S½g; P� � Sb½g; P� þ S@b½g; P�, respectively,
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Sb½g; P� ¼
Z t0

t
ds

�
l�
2
trð _gðsÞPðsÞÞ �HqðPðsÞ; gðsÞÞ

�
;

S@b½g; P� ¼ i
l�
2

�
trðgðt0ÞPðt0Þ � trðgðtÞPðtÞÞ

�
: (71)

Here, the appearance of a boundary term in the action is
analogous to what happens in path integral quantization of
BF theory, in which the B field represents the analogue of
our momentum variable P, and in general for gravity
theories when one chooses metric boundary conditions,
i.e., fixes (some components of) the intrinsic metric on
the boundary. This boundary term is similarly crucial for
obtaining the correct semiclassical limit in our case, as we
will observe in Subsection III F.

Let us summarize the results of this section. We have
shown that one can derive a first order path integral
for a quantum mechanical system with configuration
space SOð3Þ in terms of the noncommutative momentum
space variables defined in Sec. III D. For the propagator
in the group basis we obtained the continuum limit ex-
pression (67),

hg0; t0jg; ti ¼
Z

gðtÞ¼g
gðt0Þ¼g0

DgDP exp

�
i

ℏ

Z t0

t
ds

�
l�
2
trð _gðsÞPðsÞÞ

�HqðPðsÞ; gðsÞÞ
�	
; (72)

where the measure reads

DgDP � lim
N!1

�YN�1

k¼1

�2l3�dgk
��YN�1

k¼0

d3Pk

ð2�ℏÞ3
�
: (73)

The ?-product structure gives naturally rise to quantum
corrections into the action

S b½g;P�¼
Z t0

t
ds

�
l�
2
trð _gðsÞPðsÞÞ�HqðPðsÞ;gðsÞÞ

�
(74)

via the form of the quantum corrected Hamiltonian

HqðP; gÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðℏ=l�Þ2�P

p
H?ðP; gÞ. Crucially, these

corrections ensure that the propagator obtained via path
integral satisfies the Schrödinger equation. In the momen-
tum basis we found that the action receives an additional
boundary term

S @b½g; P� ¼ i
l�
2
½trðgðt0ÞPðt0ÞÞ � trðgðtÞPðtÞÞ�; (75)

and thus the path integral acquires the form (70),

hP0; t0jP; ti ¼
Z

PðtÞ¼P
Pðt0Þ¼P0

DgDP exp

�
i

ℏ

Z t0

t
ds

�
l�
2
trð _gðsÞPðsÞÞ

�HqðPðsÞ; gðsÞÞ
�
� l�

2ℏ
½trðgðt0ÞPðt0ÞÞ

� trðgðtÞPðtÞÞ�
	
: (76)

The second order path integral, either in terms of the group
or the momentum variables, can be obtained from the first
order formalism by integrating out the momentum or the
group variables, respectively.
The first order path integral we have derived above has a

counterpart in the quantum gravity case, in the context of
spin foam models and LQG, where it corresponds to the
simplicial gravity path integral in terms of flux (triad) and
connection variables [16,17]. If we were to expand (70) in
representation basis (19), or in the associated coherent
states (25), we would obtain the particle analogue of the
spin foam formulation of the dynamics of LQG [14], i.e., a
definition of the transition amplitude in terms of quantum
numbers of geometric operators. To be concrete, in the
case of 3d gravity, in Euclidean signature and no cosmo-
logical constant (thus gauge group SOð3Þ), the spin foam
formulation of the dynamics for a given 2-complex (history
of spin networks) made of vertices v, links l and faces f
gives

Zð�Þ ¼
�Y

f

X
jf

�Y
f

ð2jf þ 1ÞY
v

(
j1 j2 j3
j4 j5 j6

)
; (77)

while the noncommutative metric formulation yields the
expression

Zð�Þ ¼
Z Y

l

dhl
Y
f

dxfe
i
P
f

TrxfHfðhlÞ
(78)

with Lie algebra variables xf playing the role of discretized

triad, group elements hl for each link l of the 2-complex
interpreted as a discrete connection, with discrete curva-
ture Hf ¼ Q

l2@fhl. (78) is the usual expression for the

simplicial path integral of 3d gravity in first order form,
i.e., with the continuum action Sðe;!Þ ¼ R

M Trðe ^
Fð!ÞÞ with triad 1-form eiðxÞ and a connection 1-form
!jðxÞ, both valued in soð3Þ, and the associated curvature
2-form Fð!Þ. Looking at the derivation of this simplicial
path integral in [16], one may notice that the amplitude
corresponds to a simple composition of noncommutative
plane waves, so that the BF dynamics resembles the trivial

dynamics Ĥ ¼ 0 in the particle case. See [14,16] for more
details. We are going to give another simple explicit ex-
ample of this duality between path integral and state sum
formulations of dynamics in the following.

F. Semiclassical analysis

We are now interested in the semiclassical approxima-
tion of the transition amplitudes we have derived in general
form. The way we tackle this issue is to first show that the
path integral expression we have derived has the correct
semiclassical approximation, which confirms further the
analysis we have performed and the role of the noncom-
mutative momentum variables, and then use this result for
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obtaining a semiclassical approximation for the same tran-
sition amplitude written in representation space.

So, let us first of all study the variations to the action
(71). We choose an arbitrary path ð �gðsÞ; �PðsÞÞ in the phase
space, and introduce a perturbation of the path as

( �gðsÞei�ZðsÞ, �PðsÞ þ �QðsÞ), where ZðsÞ, QðsÞ 2 soð3Þ for
s 2 ½t; t0�, and we assume that the momentum variation
vanishes at the boundary: QðtÞ ¼ Qðt0Þ ¼ 0. We find for

the first order variation of the tangent vector _g :¼ �ig�1 dg
ds

the form

� _gðsÞ ¼ �

�
dZ

ds
ðsÞ þ i½ _g; Z�ðsÞ

�
þOð�2Þ 2 soð3Þ: (79)

Now, even though we seem to be dealing with a classical
action in calculating the variations, we cannot forget its
quantum origin. In fact, what we are really dealing with are
the underlying quantum amplitudes in which the action
appears. Thus, we must take into account the noncommu-
tative ?-product structure in calculating the variations by
defining the variation of the action through the variation of
the amplitude, symbolically as

exp

�
i

ℏ

�
�
�S
�g

½ �g; �P��gþ �
�S
�P

½ �g; �P��P
�

þOð�2; �2; ��Þ
	

:¼ exp

�
� i

ℏ
S½ �g; �P� 
 i

ℏ
S½ �gei�Z; �Pþ �Q�

	

¼ exp

�
� i

ℏ
S½ �g; �P�

	
? exp

�
i

ℏ
S½ �gei�Z; �Pþ �Q�

	
; (80)

where the ?-product applies for momentum variables in
the same time-slice. 
 is the induced deformed addition
from (8). Here, the ordering of the factors follows from the
left-invariance of vector fields.
Because of the linear approximation in � for the single

time-slice actions in the bulk, we can however neglect the
deformation of the addition in the calculation of the varia-
tion of the bulk part of the action. Substituting the varia-
tions into the bulk action, we find for the first order
variation in � and �

�Sb½ �g; �P�¼
Z t0

t
ds

�
�
l�
2
tr

��
dZ

ds
ðsÞþ i½ _�g;Z�ðsÞ

�
�PðsÞ

�
þ�

l�
2
trð _�gðsÞQðsÞÞ��ZiðsÞLTi

Hqð �PðsÞ; �gðsÞÞ

��QiðsÞ
@Hq

@Pi

ð �PðsÞ; �gðsÞÞ
	

¼ l��ZiðsÞ �PiðsÞjs¼t0
s¼t þ

Z t0

t
ds

�
�ZiðsÞ

�
�l�

d �Pi

ds
ðsÞþ2l��ijk _�gjðsÞ �Pk�LTi

Hqð �PðsÞ; �gðsÞÞ
�

þ�QiðsÞ
�
l� _�giðsÞ�@Hq

@Pi

ð �PðsÞ; �gðsÞÞ
�	
: (81)

Let us, at first, neglect the first term in (81) associated with
the boundary. By requiring the variation given by the
integral to vanish for arbitrary perturbations ZiðsÞ, QiðsÞ,
we obtain the equations

l� _�giðsÞ ¼ @Hq

@Pi

ð �PðsÞ; �gðsÞÞ

d �Pi

ds
ðsÞ ¼ 2�ij

k _�gjðsÞ �Pk � l�1� LTi
Hqð �PðsÞ; �gðsÞÞ:

(82)

Substituting the first equation into the second, using the
notation l�1� LTi

¼: @
@gi

from Sec. II, and noting that l� _gi �
dXi

g

dt jg, we arrive at the equations
d �Xi

�g

dt

�������� �g
¼@Hq

@Pi

�������� �g
;

d �Pi

dt
¼�@Hq

@gi
þ2l�1� �kij

@Hq

@Pj

�Pk: (83)

In the semiclassical limit ℏ ! 0 the dominating contribu-
tion to the path integral arises then from the paths satisfy-
ing the equations of motion (83). Given that at this limit
Hq ! H, the equations coincide with the classical equa-
tions of motion (10) we obtained from the canonical analy-
sis in Sec. II.

We still need to show that the boundary term in the first
order variation of the action (81) is cancelled by the
variation of the boundary term. Now, for the boundaries
no approximation is available, such as the one in � for the
bulk, and therefore the deformation structure must be taken
into account. On the other hand, we observe that it is
exactly the deformation of addition of coordinates on
SOð3Þ, which enables us to cancel the boundary term and
arrive at the right classical equations of motion: With the
deformed addition 
 of coordinates on SOð3Þ, we obtain
for the first order variation in � of the boundary action

�S@b½ �g; �P� ¼ �i
l�
2
trð �gðsÞ �PðsÞÞjs¼t0

s¼t


 i
l�
2
trð �gðsÞei�ZðsÞ �PðsÞÞjs¼t0

s¼t

¼ i
l�
2
trðei�ZðsÞ �PðsÞÞjs¼t0

s¼t


 � l�
2
trð�ZðsÞ �PðsÞÞjs¼t0

s¼t

¼ �l��ZðsÞ � �PðsÞjs¼t0
s¼t ; (84)
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which exactly cancels the boundary term arising from the
bulk action (81). This further confirms the correctness of
the noncommutative Fourier transform in encoding the
relation between g and P variables, needed to produce
the boundary term in the action.

Accordingly, we obtain the correct semiclassical behav-
ior from the path integral (70), but only by taking into
account the noncommutative structure of the phase space.
In particular, this means that in the semiclassical limit
ℏ ! 0 we may approximate the full path integral by a
sum over the amplitudes of solutions to the classical equa-
tions of motion,

hP0; t0jP; ti 
 X
ðgcl;PclÞ

eði=ℏÞS½gcl;Pcl�; (85)

such that PclðtÞ ¼ P, Pclðt0Þ ¼ P0.
Finally, the expression of the path integral in terms of the

noncommutative momentum variables may be particularly
useful since it provides, a simpler way to compute the
semiclassical expansion of the transition amplitudes,
even when they are written in the spin basis jj;m; ni, or
with the coherent states jj; ~ni. This is indeed the type of
calculation that is more commonly used in spin foam
models [30,39]. Let us show how the above results can
be used to this end in our simpler context.

In the semiclassical limit j ! 1, ℏ ! 0, while ℏj ¼
const, the coherent states and the noncommutative momen-
tum states coincide, P ¼ 2ðℏ=l�Þj ~n [15,32]. Therefore, we
may easily calculate the semiclassical limit of the propa-
gator hj0; ~n0; t0jj; ~n; ti by transforming to the problem into
the noncommutative momentum basis,

hj0; ~n0; t0jj; ~n; ti

¼
Z
R3
?

d3P0

ð2�ℏÞ3
Z
R3

?

d3P

ð2�ℏÞ3
� hj0; ~n0jP0i ? hP0; t0jP; ti ? hPjj; ~ni; � � � (86)

taking the limit j, j0 ! 1, ℏ ! 0, while ℏj, ℏj0 ¼ const,
of this expression, and evaluating the path integral at the
solutions to the classical equations of motion (10), thus
obtaining

hj0; ~n0; t0jj; ~n; ti 
 X
ðgcl;PclÞ

eði=hÞS½gcl;Pcl� (87)

for phase space paths ðgcl; PclÞ such that PclðtÞ ¼
2ðℏ=l�Þj ~n, Pclðt0Þ ¼ 2ðℏ=l�Þj0 ~n0, i.e., simply taking the
path integral result and substituting the coherent state
parameters associated (in this approximation) to the cor-
responding momentum variables. In particular, if the action
appearing in the path integral, when evaluated on saddle
points, depends on the norm of P only (as in the free
particle case, for example), then one obtains an expression
depending only on the spin label j.

Let us again use the results obtained above to get
some insight into the quantum gravity context. The above

semiclassical analysis sheds some light on the a priori
surprising asymptotic expressions for spin foam models
for gravity [14,30,39]. These take the form of a simplicial
path integral weighted by the Regge action for discrete
gravity, even though the appearance of the spin foam
amplitudes themselves is far from resembling a discrete
gravity path integral. By reflecting on the above result, and
keeping in mind the dual expression of the same spin foam
amplitudes as simplicial path integrals in noncommutative
metric variables [16], one realizes that this is not surprising
at all: the spin foam amplitudes acquire the same func-
tional dependence on the noncommutative metric variables
in the limit in which the variables appearing in the spin
foam expression j, ~n coincide with the noncommutative
metric variables themselves.9 As an explicit example, con-
sider the famous asymptotic expression of the 6j-symbol
that is the basic building block of the amplitudes (77) in the
semiclassical limit:�
j1 j2 j3

j4 j5 j6

	


e
i
P
f

ðð2jfþ1Þ�f=2þð�=4ÞÞ
þe

�i
P
f

ðð2jfþ1Þ�f=2þð�=4ÞÞ

ffiffiffiffiffiffiffiffiffiffi
3�V

p ; (88)

where the function
P

fð2jf þ 1Þ�fðjÞ=2 is nothing but the

Regge calculus action for a simplicial complex made of a
single tetrahedron with six edge lengths jf and six dihedral

angles �fðjÞ, functions of the same edge lengths, and

volume VðjÞ. This is simply the saddle point evaluation
with respect to the discrete connection hl of the path
integral (78), for the same simplicial complex, dual to a
single vertex of the 2-complex �, in which therefore all the
discrete triad variables xf are on the boundary (and thus not

subject to variations), which in the semiclassical limit have
length jf.

G. Free particle on SOð3Þ
Finally, in order to show explicitly the compatibility of

our analysis and results with those obtained by more
conventional methods (in particular, harmonic analysis
on the group manifold), we first compare our path integral
expression for the finite time propagator with the standard
expression, in the special case of a free particle on SOð3Þ,
i.e., with Hamiltonian Ĥ ¼ P̂2=2m, a multiple of the
Casimir operator. Let us stress that this is indeed a very
special case, as we will notice by the fact that the transition
amplitude written in coherent state basis basically coincide
in form, apart from the discreteness of j labels as opposed
to the continuous norm of the P variables, with the first
order path integral. As we remarked above, this is not at all
the case in general (as it is not in spin foam models).
Nevertheless, the free particle is an important test case

9This had been anticipated in [15].
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for the formalism we have developed in this paper, since it
is well-known from previous literature [1–3,37].

In the canonical picture, the evolution operator for a

free particle reads Ûðt0 � tÞ ¼ exp½� i
ℏ ðt0 � tÞP̂2=2m�,

and using the spin basis jj;m; ni we obtain a simple

expression for the finite time propagator hg0; t0jg; ti :¼
hg0jÛðt0 � tÞjgi

hg0; t0jg;ti
¼ 1

�2l3�

X
j;m;n

hg0jj;m;nihj;m;nje�ði=ℏÞðt0�tÞð1=2mÞP̂2 jgi

¼ 1

�2l3�

X
j

e�ði=ℏÞðt0�tÞð1=2mÞð2ℏ=l�Þ2jðjþ1Þð2jþ1Þ

�X
m

Dj
mmðg0g�1Þ

¼ 1

�2l3�

X
j

e�ði=ℏÞðt0�tÞð2ℏ2=ml2�Þjðjþ1Þð2jþ1Þ	jðg0g�1Þ

(89)

in terms of the character function 	jðgÞ :¼ trDjðgÞ.
Since the Hamiltonian is just the Casimir operator, the
propagator is invariant under left and right translations
of the elements g, g0, and depends only on the norm

jXðg0g�1Þj of the coordinates on SOð3Þ (defined via g �
eiX

iðgÞti) as [40]

	jðg0g�1Þ ¼ sinðð2jþ 1ÞjXðg0g�1Þj=l�Þ
sinðjXðg0g�1Þj=l�Þ

; (90)

and we may write

hg0; t0jg; ti ¼ 1

�2l3�

X
j

e�ði=ℏÞðt0�tÞð2ℏ2=ml2�Þjðjþ1Þð2jþ 1Þ

� sinðð2jþ 1ÞjXðg0g�1Þj=l�Þ
sinðjXðg0g�1Þj=l�Þ

: (91)

This is, of course, the well-known evolution kernel [41].
In the limit ðt0 � tÞ ! 0 the propagator correctly satisfies

hg0jÛðt0 � tÞjgi ! 1
�2l3�

�ðg0g�1Þ.
Now, for comparison, we perform the same calculation

in the momentum basis jPi, and we obtain

hg0; t0jg; ti ¼
Z
R?

d3P

ð2�ℏÞ3 hg
0jPi? hPje�ði=ℏÞðt0�tÞð1=2mÞP̂2 jgi

¼
Z
R?

d3P

ð2�ℏÞ3 e
�ði=ℏÞðt0�tÞð1=2mÞP

i

Pi?Pi

? ? eg0g�1ðPÞ:

(92)

Here only the plane wave depends on the direction P
jPj :¼

~n 2 S2 of P, since
P

iPi ? Pi � P2, so we may write

hg0;t0jg;ti
¼ 1

ð2�ℏÞ3
Z
Rþ

djPje�ði=ℏÞðt0�tÞð1=2mÞP2

? ?
Z
S2
P2d2 ~neg0g�1

�ðjPj ~nÞ
¼ 1

ð2�ℏÞ3
Z
Rþ

djPje�ði=ℏÞðt0�tÞð1=2mÞP2

? ?4�jPj

�sinðjPjjYðg0g�1Þj=ℏÞ
jYðg0g�1Þj=ℏ : (93)

Note that P2 ?-commutes with everything, so there is no
ambiguity in placing it in the above expression, where
it arises from the integration measure. Given that
jYðg0g�1Þj ¼ l� sinðjXðg0g�1Þj=l�Þ, we can further write

hg0; t0jg; ti ¼ 1

�2l3�

Z
Rþ

l�
2ℏ

djPje�ði=ℏÞðt0�tÞð1=2mÞP2

? ?
l�
ℏ
jPj

� sinðl�ℏ jPj sinðjXðg0g�1Þj=l�ÞÞ
sinðjXðg0g�1Þj=l�Þ

: (94)

This expression clearly parallels that of (91) coming from
the spin representation, as we have anticipated to be the
case in this simple example. In general, we remark again,
we could expect such similarity only in the semiclassical
limit, where we have the identification jPj ¼ 2ðℏ=l�Þj.
On the other hand, we may plug the finite time propa-

gator (91) in terms of the spin label j into the path integral
to give the infinitesimal propagators. In this case, we obtain
a first order path integral of the form

hg0; t0jg;ti¼
�YN�1

k¼1

Z
SOð3Þ

�2l3�dgk
��YN�1

k¼0

X
jk

1

�2l3�

�

�
�YN�1

k¼0

ð2jkþ1Þsinðð2jkþ1ÞjXðgkþ1g
�1
k Þj=l�Þ

sinðjXðgkþ1g
�1
k Þj=l�Þ

�e�ði=ℏÞ�ð2ℏ2=ml2�Þjkðjkþ1Þ
�
: (95)

Here we may approximate jXðgkþ1g
�1
k Þj=l� 


sinðjXðgkþ1g
�1
k Þj=l�Þ, and thus further write for the factors

in the integrand

sinðð2jk þ 1Þ sinðjXðgkþ1g
�1
k Þj=l�ÞÞ

sinðjXðgkþ1g
�1
k Þj=l�Þ

¼ 2jk þ 1

4�

Z
S2

d2 ~nke
ið2jkþ1Þ ~nk�Yðgkþ1g

�1
k

Þ=l� : (96)

Substituting back to the path integral, we obtain
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hg0; t0jg; ti

¼ lim
N!1

�YN�1

k¼1

Z
SOð3Þ

�2l3�dgk
��YN�1

k¼0

X
jk

2ℏ=l�
ð2�ℏÞ3

�
Z
S2

ℏ2

l2�
ð2jk þ 1Þ2d2 ~nk

�

� exp

�
i

ℏ

XN�1

k¼0

�

�
ℏ
l�
ð2jk þ 1Þ ~nk � Yðgkþ1g

�1
k Þ

�
�HðjkÞ

�	
;

(97)

where HðjkÞ ¼ ð2ℏ2=ml2�Þjkðjk þ 1Þ. Again, this expres-
sion is analogous to the discrete first order path integral
(66) we derived previously, with the identification jPj ¼
2ðℏ=l�Þj (which would hold also in the general case, in the
semiclassical limit).

However, we notice that taking the continuum limit
N ! 1, � ! 0 and applying the calculus of variations to
this (pseudo) path integral expression, in order to study the
semiclassical limit is more difficult than in the true first
order (noncommutative) path integral in terms of the var-
iables P, since the spin labels jk take only integer values. It
is also interesting to note that we obtain the standard
Euclidean path integral from the previous expression by
taking the Euclidean limit l� ! 1, jk ! 1, jk=l� ¼ const
with the identification Pk ¼ 2ðℏ=l�Þjk. This limit is both

conceptually and mathematically different with respect to
the semiclassical limit.
Next we will calculate the second order form of the path

integral for the free particle in terms of the group (configu-

ration) variables. For the Hamiltonian Ĥ ¼ P̂2=2m the
corresponding quantum corrected Hamiltonian is found

to be HqðPÞ ¼ ðP2 þ ℏ2

l2�
Þ=2m, which agrees with the ex-

pression in [37] (when we set l� ¼ 2 to use the same length
scale for the group as in [37]) originally found by DeWitt
[1] in the case of a general curved space. Then, each of the
N integrals over Pk in (62)

hg0; t0jg; ti ¼ lim
N!1

�YN�1

k¼1

Z
SOð3Þ

�2l3�dgk
��YN�1

k¼0

Z
R3

?

d3Pk

ð2�ℏÞ3
�

� exp

�
i

ℏ

XN�1

k¼0

�

�
Yðg�1

k gkþ1Þ
�

� Pk

� 1

2m

�
P2
k þ

ℏ2

l2�

��	
(98)

becomes the usual Fourier transform of the function

exp½� i�
2mℏ ðP2

k þ ℏ2

l2�
Þ� to the coordinate variables

Yðg�1
k gkþ1Þ. Thus, by performing the Gaussian integrals

we obtain

hg0; t0jg; ti ¼ lim
N!1

�YN�1

k¼1

Z
SOð3Þ

�2l3�dgk
��YN

k¼1

�
m

2�iℏ�

�
3=2

exp

�
i�

ℏ
m

2

�
Yðg�1

k gkþ1Þ
�

�
2
	�
e�ððiðt0�tÞℏÞ=ð2ml2�ÞÞ

¼ lim
N!1

��
m

2�iℏ�

�
3=2 YN�1

k¼1

Z
SOð3Þ

�2l3�dgk
ð2�iℏ�=mÞ3=2

�
exp

�
i

ℏ

XN
k¼1

�
m

2

�
Yðg�1

k gkþ1Þ
�

�
2
	
e�ððiðt0�tÞℏÞ=ð2ml2�ÞÞ: (99)

The product of integrals including the factors of ð m
2�iℏ�Þ3=2

becomes the second order path integral measure at the
continuum limit, as in the usual case of R3, and the
function in the exponent becomes i=ℏ times the classical
action [2,3], since by defining �V�ðk�Þ by gkþ1 �
exp½i� �V�ðk�Þ � ��=l��gk, where j� �V�ðk�Þj< �

2 l�, we have

m

2

�
Yðg�1

k gkþ1Þ
�

�
2 ¼ m

2
�V2
�ðk�Þ !N!1m

2
�V2
0ðtÞ

¼ �m

2

l2�
2
tr

�
g�1ðtÞdg

dt
ðtÞg�1ðtÞdg

dt
ðtÞ
�

¼ Lclass; (100)

which is the classical Lagrangian of a free point particle
on SOð3Þ. Finally, we can write for the continuum path
integral

hg0; t0jg; ti ¼
Z

gðtÞ�g
gðt0 Þ�g0

DgðtÞ exp
�
i

ℏ

Z t0

t
dt

ml2�
2

trð _g2ðtÞÞ

� iðt0 � tÞℏ
2ml2�

�
; (101)

where DgðtÞ is the continuum limit of the path integral
measure given above, and _g :¼ �ig�1 dg

dt 2 soð3Þ is the
velocity of the particle. This coincides with the path inte-
gral for free particle on SOð3Þ obtained by other methods
[4,37].

IV. CONCLUSIONS

We have shown, starting from the canonical formulation
of quantum mechanics on SOð3Þ, that a first order path
integral can be derived for a quantum system with configu-
ration space SOð3Þ, using the noncommutative dual space
variables via the group Fourier transform, which produces
the correct semiclassical behavior, and is consistent with
earlier results in the literature.
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The advantages of the approach we have studied here are
the following: On one hand, it provides an alternative to the
use of representation theory, and a more intuitive picture
of the classical dynamics behind the quantum one with
continuous noncommutative momentum variables, which
resemble more closely the classical momentum variables.
On the other hand, this approach makes the semiclassical
analysis much more straightforward.

Our main interest in this formulation of the quantum
dynamics of this simple system is in the fact that it exem-
plifies, as we have discussed, the respective role and use of
the standard spin network/spin foam representation of
canonical LQG and spin foam models, and the recent
flux/noncommutative simplicial path integral representa-
tion of these theories.

More precisely, what we think we can learn from the
above analysis for quantum gravity models, LQG and spin
foams, in particular, is the following:

(i) Given the classical phase space of the theory, the use
of the noncommutative Fourier transform and of the
?-product described above is very natural, and seems
to provide a correct conjugate representation for
quantum states.

(ii) Similarly, it is not surprising, although certainly
welcome, that the dynamics of the theory in terms
of the dual noncommutative variables takes the form
of the expected first order path integral. In the spin
foam case, this is to be expected every time the
quantum spin foam dynamics is supposed to encode
the classical geometry of simplicial gravity at the
covariant level (as it is the case for all current spin
foam models).

(iii) In the case considered, the nontrivial phase space
structure gives naturally rise to quantum correc-
tions into the classical action in the path integral
formulation of a quantum theory. Similar correc-
tions are to be expected in the LQG/spin foam
context. Moreover, our results support the choice

of the specific ?-product structure we use, and thus
of the associated (Duflo) quantization map (opera-
tor ordering) [9,36], also in LQG. This may lead in
general to different spectra for observables with
respect to the commonly used ones. This point is
also discussed, for example, in [42].

(iv) The use of noncommutative dual variables is going
to be advantageous in the study of the semiclassical
approximation of the theory, exactly because it
brings the quantum dynamics in the form of a
path integral. As we have seen, this also clarifies
the reason behind the expression which spin foam
amplitudes take in this approximation.

(v) Finally, our results indicate that an additional pa-
rameter encoding the scale (volume) of the group
manifold, here called l�, which can be made explicit
also in the LQG/spin foam context, could play an
important role in studying further the commutative
or continuum approximations of the theory, inde-
pendent from the semiclassical one.

All the above points deserve to be further explored
in the quantum gravity context, on the basis of the intuition
provided by our results. Further possible developments
include extending the group Fourier transform to general
Lie groups, in which case the avoidance of representation
theory can become even more advantageous. Altogether,
our results further indicate that the new noncommutative
variables make sense, both mathematically and physically,
and that the noncommutative methods can be applied
successfully, in general, where found advantageous.
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