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We generalize the virial theorem to the warped Dvali, Gabadadze, and Porrati brane-world scenario and

consider its implications on the virail mass. In this theory the four-dimensional scalar curvature term is

included in the bulk action and the resulting four-dimensional effective Einstein equation is augmented

with extra terms which can be interpreted as geometrical mass, contributing to the gravitational energy.

Estimating the geometrical mass MðrÞ using the observational data, we show that these geometric terms

may account for the virial mass discrepancy in clusters of galaxies. Finally, we obtain the radial velocity

dispersion of galaxy clusters �rðrÞ and show that it is compatible with the radial velocity dispersion profile

of such clusters.
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I. INTRODUCTION

In recent times, theories with higher dimensions have
become popular in high energy physics, especially in the
context of the hierarchy problem and cosmology [1]. In this
scenario it is purported that our four-dimensional Universe
is a subspace called the brane, embedded in a higher-
dimensional space-time called the bulk. One of the most
successful of such higher-dimensional models is that pro-
posed by Randall and Sundrum whose bulk has the geome-
try of an anti–de Sitter space admitting Z2 symmetry [2].
They were successful in explaining what is known as the
hierarchy problem: the enormous disparity between the
strength of the fundamental forces. The Randall-Sundrum
(RS) scenario has greatly increased our understanding of
the Universe and has brought higher-dimensional gravita-
tional theories to the fore. In certain RS-type models, all
matter and gauge interactions reside on the brane while
gravity can propagate into the bulk. Using the Israel junc-
tion conditions [3] and the Gauss-Codazzi equations, one
can obtain the field equations on the brane, as employed by
Shiromizu, Maeda, and Sasaki [4]. There are two very
important results that arise from the effective four-
dimensional Einstein equations on the brane. The first
one is the quadratic energy-momentum tensor, ���, which

is relevant in high energy and the second one is the pro-
jected Weyl tensor, E��, on the brane which is responsible

for carrying on the brane the contribution of the bulk gra-
vitational field. The cosmological evolution of such a brane
universe has been extensively investigated and effects such
as a quadratic density term in the Friedmann equations
have been found [5–7].

An alternative scenario was subsequently proposed by
Dvali, Gabadadze, and Porrati (DGP) [8]. The DGP pro-
posal rests on the key assumption of the presence of a

four-dimensional Ricci scalar in the bulk action. There are
two main reasons that make this model phenomenologi-
cally appealing. First, it predicts that four-dimensional
Newtonian gravity on a brane-world is regained at dis-
tances shorter than a given crossover scale rc (high energy
limit), whereas five-dimensional effects become manifest
above that scale (low energy limit) [9]. Second, the model
can explain late-time acceleration without having to invoke
a cosmological constant or quintessential matter [10]. An
extension of the DGP brane-world scenario have been
constructed by Maeda, Mizuno, and Torii, which is the
combination of the RS II model and DGP model [11]. In
this combination, an induced curvature term appears on
the brane in the RS II model. This model has been called
the warped DGP brane-world in the literature [12]. In this
paper, we consider the effective gravitational field equa-
tions within the context of the warped DGP brane-world
model and obtain the spherically symmetric equations in
this scenario. So much for the success of the DGP model,
a word of caution is in order; the theory predicts the
existence of ghostlike excitations. Many scenarios have
been undertaken to explain away such ghosts, but as yet
no satisfactory solution exists. The interested reader should
consult [13] for further insight. We do not discuss such
excitations since our aim lies in studying the virial mass
discrepancy in warped DGP models.
Modern astrophysical and cosmological models are

faced with two severe theoretical difficulties which can
be summarized as dark energy and dark matter problems.
The problem of dark matter is a longstanding problem in
modern astrophysics. Two important observational issues,
the behavior of the galactic rotation curves and the mass
discrepancy in clusters of galaxies led to the necessity of
considering the existence of dark matter at the galactic and
extra-galactic scales [14]. The total mass of a cluster can be
estimated in two ways. One can apply the virial theorem to
estimate the total dynamic massMV of a rich galaxy cluster
from measurements of the velocities of the member gal-
axies and the cluster radius from the volume they occupy.
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The second is obtained by separately estimating the mass
of each individual members and summing them up to give
a total baryonic mass M. It is always found that MV is
greater thanM. This is known as themissing mass problem.
Nevertheless, the existence of dark matter was not firmly
established until the time when the measurement of the
rotational velocity of stars and gas orbiting at a distance r
from the galactic center was performed. Observations show
that the rotational velocity increases near the center of
galaxy and remain nearly constant. This discrepancy be-
tween the observed rotation velocity curves and the theo-
retical prediction from Newtonian mechanics is known
as the galactic rotation curves problem (Fig. 1). These
discrepancies are explained by postulating that every gal-
axy and cluster of galaxy is embedded in a halo made up of
some dark matter [14]. To deal with the question of dark
matter, a great number of efforts has been concentrated on
various modifications to the Einstein and the Newtonian
gravity [15–19]. Several theoretical models, based on a
modification of Newton’s law or of general relativity, have
been proposed to explain the behavior of the galactic
rotation curves. In the modified Newtonian dynamics the-
ory which has been proposed by Milgrom [20], the Poisson
equation for the gravitational potential, r2� ¼ 4�G�, is
replaced by an equation of the form r½�ðxÞðjr�j=a0Þ� ¼
4�G�, where a0 is a fixed constant and �ðxÞ a function
satisfying the conditions �ðxÞ ¼ x for x � 1 and �ðxÞ ¼
1 for x � 1. The force law, giving the acceleration a
of a test particle, becomes a ¼ aN for aN � a0 and a ¼ffiffiffiffiffiffiffiffiffiffiffi
aNa0

p
for aN � a0, where aN is the usual Newtonian

acceleration. The rotation curves of the galaxies are pre-
dicted to be flat, and they can be calculated once the
distribution of the baryonic matter is known. A relativistic
modified Newtonian dynamics inspired theory was devel-
oped by Bekenstein [21]. In this theory gravitation is
mediated by a metric, a scalar field, and a four-vector field,
all three dynamical. For alternative theoretical models to
explain the galactic rotation curves, see [22]. One other
such modification is that of the RS brane-world scenario
[23]. It has been argued that a modified theory of gravity
based on the RS brane-world scenario can explain the

observations of the galactic rotation curve of spiral
galaxies and the virial theorem mass discrepancy in
clusters of galaxies without introducing any additional
hypothesis [23].
Our main purpose in this paper is to obtain the general-

ized form of the virial theorem in the warped DGP
brane-world model by using the collisionless Boltzmann
equation. In what follows, we first give a brief review of the
warped DGP brane-world model and the gravitational
field equations that are derived in this model. Next, we
use the relativistic Boltzmann equation to derive the virial
theorem, which is modified by an extra term that may be
used to explain the virial mass discrepancy in clusters of
galaxies. Finally, we identify the geometrical mass of
cluster in terms of the observable quantities and obtain
the radial velocity dispersion of galaxy clusters.

II. EFFECTIVE FIELD EQUATIONS ON
WARPED DGP BRANE

Let us start by presenting the model used in our calcu-
lation [11]. Consider a five-dimensional space-time with a
four-dimensional brane that is located at YðXAÞ ¼ 0, where
XA, (A ¼ 0, 1, 2, 3, 4) are five-dimensional coordinates.
The effective action is given by

S ¼ Sbulk þ Sbrane; (1)

where

S bulk ¼
Z

d5X
ffiffiffiffiffiffiffiffiffi
�G

q �
1

2�2
5

RþLð5Þ
m

�
; (2)

and

S brane ¼
Z
Y¼0

d4x
ffiffiffiffiffiffiffi�g

p �
1

�2
5

K� þLbraneðg�	; c Þ
�
; (3)

where �2
5 ¼ 8�G5 is the five-dimensional gravitational

constant, and R and Lð5Þ
m are the five-dimensional scalar

curvature and the matter Lagrangian in the bulk, respec-
tively. Also, x�, (� ¼ 0, 1, 2, 3) are the induced four-
dimensional coordinates on the brane, K� is the trace
of extrinsic curvature on either side of the brane [24,25]
and Lbraneðg�	; c Þ is the effective four-dimensional

Lagrangian, which is given by a generic functional of the
brane metric g�	 and matter fields.

The five-dimensional Einstein field equations are given
by

R AB � 1
2RGAB ¼ �2

5½Tð5Þ
AB þ 
ðYÞ�AB�; (4)

where

Tð5Þ
AB � �2


Lð5Þ
m


GAB
þGABL

ð5Þ
m ; (5)

and

FIG. 1. Observed rotation velocity curve of the NGC3198
(dotted line) and the prediction from Newtonian theory (solid
line).
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��� � �2

Lbrane


g�� þ g��Lbrane: (6)

We study the case with an induced gravity on the brane due
to quantum corrections [8]. The interaction between bulk
gravity and the matter on the brane induces gravity on the
brane through its quantum effects. If we take into account
quantum effects of matter fields confined on the brane, the
gravitational action on the brane is modified as

L braneðg�	; c Þ ¼ �2

2
R� �b þLm; (7)

where � is a mass scale which may correspond to the four-
dimensional Planck mass, �b is the tension of the brane and
Lm presents the Lagrangian of the matter fields on the

brane. We note that for �b ¼ 0 and �ð5Þ ¼ 0 action (1)
gives the DGP model and gives the RS II model if � ¼ 0.

We obtain the gravitational field equations on the brane-
world as [4]

G�� ¼ 2�2
5

3

�
Tð5Þ
ABg

A
�g

B
� þ g��

�
Tð5Þ
ABn

AnB � 1

4
Tð5Þ

��

þ �2
5��� � E��; (8)

r��
�
� ¼ �2Tð5Þ

ABn
AgB�; (9)

where r
 is the covariant derivative with respect to g��

and the quadratic correction has the form

��� ¼ �1
4����

�
� þ 1

12���� þ 1
8g���

�	��	 � 1
24g���

2;

(10)

and the projection of the bulk Weyl tensor to the surface
orthogonal to nA is given by

E �� ¼ Cð5Þ
ABCDn

AnBgC�g
D
�: (11)

The symmetry properties of E�� imply that in general

we can decompose it irreducibly with respect to a chosen
4-velocity field v� as [6]

E �� ¼ �
�
�5

�4

�
4
�
U

�
v�v� þ 1

3
h��

�
þ 2Qð�v�Þ þ P��

�
;

(12)

where h�� ¼ g�� þ v�v� projects orthogonal to v� and

the factor ð�5=�4Þ is introduced for dimension reasons.
Here

U ¼ �
�
�4

�5

�
4
E��v

�v�;

is an effective nonlocal energy density or ‘‘dark radiation’’
term on the brane, arising from the free gravitational field
in the bulk, Q� ¼ ð�4=�5Þ4h��E�	v

	 is an effective non-

local energy flux, and

P�� ¼ �
�
�4

�5

�
4
�
hð�

�h�Þ
	 � 1

3
h��h

�	

�
E�	;

is a spatial, symmetric, and trace-free tensor. In what
follows for the static spherically symmetric brane we
have Q� ¼ 0, and we may choose P�� ¼ PðrÞ�
ðr�r� � 1

3h��Þ, where the ‘‘dark pressure’’ PðrÞ is a scalar
function of the radial distance r, r� is a unit radial vector,

and at any point on the brane in inertial frame v� ¼ 

�
0 ,

h�� ¼ diagð0; 1; 1; 1Þ [26].
In order to find the basic field equations on the brane

with induced gravity, we have to obtain the energy-
momentum tensor of the brane ���, given by definition

(6) from the Lagrangian (7), yielding

��� ¼ ��b

�
� þ T�

� ��2G�
� : (13)

Assuming that the five-dimensional bulk space includes

only a cosmological constant �ð5Þ and inserting Eq. (13)
into Eq. (8), we find the effective field equations for four-
dimensional metric g�� as
�
1þ �b

6
�4
5�

2

�
G�� ¼ 1

6
�b�

4
5T�� ��4g��

� �4
5�

2K���	G
�	

þ �4
5½�ðTÞ

�� þ�4�ðGÞ
�� � � E��; (14)

where

K���� ¼ 1
4ðg��T�� � g��T�� � g��T��Þ
þ 1

12½T��g�� þ Tðg��g�� � g��g��Þ�; (15)

�ðTÞ
��¼�1

4T��T
�
� þ 1

12TT��þ 1
8g��T�	T

�	� 1
24g��T

2;

(16)

�ðGÞ
�� ¼ �1

4G��G
�
� þ 1

12GG�� þ 1
8g��G�	G

�	 � 1
24g��G

2;

(17)

and the effective cosmological constant on the brane is
given by

�4 ¼ �2
5

2

�
�ð5Þ þ 1

6
�2
5�

2
b

�
: (18)

We note that for � ¼ 0 these equations are exactly the
same effective equations as in Ref. [4].

III. FIELD EQUATIONS FOR A CLUSTER
INCLUDING IDENTICAL AND COLLISION-LESS

POINT PARTICLES

Now we consider an isolated and spherically symmetric
cluster being described by a static and spherically sym-
metric metric

ds2¼�e�ðrÞdt2þe�ðrÞdr2þr2ðd�2þsin2�d’2Þ: (19)
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Suppose that the clusters are constructed from identical
and collisionless point particles (galaxies). This multipar-
ticle system can be described by a continuous non-negative
function fBðx�; p�Þ, distribution function, which is defined
over the phase space. In terms of the distribution function
the energy-momentum tensor can be written as [27,28]

T�� ¼
Z

fBmv�v�dv; (20)

where m is the mass of each galaxy, v� is the four-velocity

of the galaxy, and dv ¼ 1
vt
dvrdv�dv’ is the invariant

volume element of the velocity space. We also assume
that the matter content of the bulk is just a cosmological

constant �ð5Þ and the energy-momentum tensor of the
matter in a cluster of galaxies can be represented in terms
of spherically symmetric perfect fluid as

T�� ¼ ðpb þ �bÞv�v� þ pbg��; (21)

where v�v
� ¼ �1. Use of Eqs. (20) and (21) leads to the

following relation for �b and pb:

�b ¼ �hv2
t i; pb ¼ �hv2

ri ¼ �hv2
�i ¼ �hv2

’i; (22)

here hv2
t i represents the usual macroscopic averaging

which is defined as hv2
t i ¼ 1

�

R
fBv

2
t mdv, where � is the

mass density and in terms of fB is given by � ¼ R
fBmdv

[29,30].

Using Eq. (14), the gravitational field equations on the
brane become�

1þ �b

6
�4
5�

2

�
e��

r2
ð�1þ r�0 þ e�Þ

¼ 1

6
�b�

4
5�b þ�4 þ �4

5�
2K0

0 þ
�4
5

12
�2
b

� �4
5�

4�0ðGÞ
0 þ 6

�2
4�b

UðrÞ; (23)

�
1þ �b

6
�4
5�

2

�
e��

r2
ð1þ r�0 � e�Þ

¼ 1

6
�b�

4
5pb ��4 � �4

5�
2K1

1 þ
�4
5

12
ð�2

b þ 2�bpbÞ

þ �4
5�

4�1ðGÞ
1 þ 2

�2
4�b

½UðrÞ þ 2PðrÞ�; (24)

�
1þ �b

6
�4
5�

2

�
e��

2r
ð2�0 � 2�0 � �0�0rþ 2�00rþ �02rÞ

¼ 1

3
�b�

4
5pb � 2�4 � 2�4

5�
2K2

2 þ
�4
5

6
ð�2

b þ 2�bpbÞ

þ 2�4
5�

4�2ðGÞ
2 þ 4

�2
4�b

½UðrÞ � PðrÞ�; (25)

where UðrÞ and PðrÞ are the dark radiation and dark
pressure and the K���	G

�	 � K�� term is given by

K0
0 ¼�e��

8

�
2�0

r
ð�bþpbÞ�4pb

�0

r
� 2

r2
ð�bþpbÞþpb�

0�0 �2pb�
00 �pb�

02þ 2

r2
ð�bþpbÞe�

�

�e��ð�b�3pbÞ
24

�
2e�

r2
þ2�0

r
� 2

r2
�4�0

r
þ�0�0 �2�00 ��02

�
þ�be

��

24

�
4�0

r
�4�0

r
� 4

r2
þ�0�0 �2�00 ��02þ4e�

r2

�
;

(26)

K1
1 ¼ � e��

8

�
p�0�0 � 2p�00 � p�02 � 2�0

r
ð�b � pbÞ þ 2

r2
ð�b þ pbÞe� þ 2

r2
ð�b þ pbÞ

�
� e��ð�b � 3pbÞ

24

�
4�0

r
þ 2e�

r2

� 2

r2
� 2�0

r
þ �0�0 � 2�00 � �02

�
� pbe

��

24

�
4�0

r
þ 4e�

r2
� 4

r2
� 4�0

r
þ �0�0 � 2�00 � �02

�
; (27)

K2
2 ¼K3

3 ¼
e��

4

�
pb�

0

r
þ�b�

0

r
þð�b�pbÞe�

r2
�ð�b�pbÞ

r2

�
� e��ð�b�3pbÞ

48

�
6�0

r
þ8e�

r2
� 8

r2
�6�0

r
þ�0�0 �2�00 ��02

�

�pbe
��

24

�
4�0

r
þ4e�

r2
� 4

r2
� 4�0

r
þ�0�0 �2�00 ��02

�
; (28)

and the use of Eq. (17) leads to the components of ��ðGÞ
� as

�0ðGÞ
0 ¼ e��

24

��6�0

r3
� 2�0

r3
� �0�0

r2
þ 2�00

r2
þ �02

r2

�
þ e�2�

192

�
48�0

r3
þ 16�0

r3
� 8�0�00

r
þ 16�0�0

r2
� 4�0�00�0 � 8�0�00

r

þ 4�0�02

r
þ �02�02 � 2�03�0 þ 4�00�02 � 12�02

r2
� 4�03

r
� 16�00

r2
þ 4�002 þ �04 � 4�02

r2

�
; (29)
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�1ðGÞ
1 ¼ e��

24

�
2�0

r3
þ 6�0

r3
� �0�0

r2
þ 2�00

r2
þ �02

r2

�
þ e�2�

192

�
� 16�0

r3
� 48�0

r3
þ 8�0�00

r
þ 16�0�0

r2
� 4�0�0�00

þ 8�0�00

r
� 4�0�02

r
þ�02�02 � 2�03�0 þ 4�00�02 þ 4�02

r2
þ 4�03

r
� 16�00

r2
þ 4�002 þ �04 � 20�02

r2

�
; (30)

�2ðGÞ
2 ¼ �3ðGÞ

3 ¼ � e��

24

�
4

r4
þ �0�0

r2
� 2�00

r2
� �02

r2
� 2e�

r4

�
� e�2�

48

�
� 2�02�0

r
� 2�00�0

r
� 4

r4
� 10�0�0

r2

þ 2�0�00

r
þ �0�02

r
� 2�02

r2
þ �03

r
þ 4�00

r2

�
; (31)

where a prime represents differentiation with respect to r.
In the next section, we will investigate the influence of the
bulk effects on the dynamics of the galaxies in warped
DGP brane-world model.

IV. THE VIRIAL THEOREM IN WARPED
DGP BRANE

In order to derive the virial theorem for galaxy clusters,
we have to first write down the general relativistic
Boltzmann equation governing the evolution of the distri-
bution function fB. The galaxies, which are treated as
identical and collisionless point particles, are described
by this distribution function. For the static spherically
symmetric metric given by Eq. (19) we introduce the
following frame of orthonormal vectors [27–29]:

eð0Þ� ¼ e�=2
0
�; eð1Þ� ¼ e�=2
1

�;

eð2Þ� ¼ r
2
�; eð3Þ� ¼ r sin�
3

�; (32)

where g��eðaÞ� eðbÞ� ¼ �ðaÞðbÞ. The four-velocity v� of a
typical galaxy with v�v� ¼ �1, in tetrad components is

written as

vðaÞ ¼ v�eðaÞ� ; a ¼ 0; 1; 2; 3: (33)

The relativistic Boltzmann equation in tetrad components
is given by

vðaÞe�ðaÞ
@fB
@x�

þ �ðaÞ
ðbÞðcÞv

ðbÞvðcÞ @fB
@vðaÞ ¼ 0; (34)

where fB ¼ fBðx�; vðaÞÞ and �ðaÞ
ðbÞðcÞ ¼ eðaÞ�;�e

�
ðbÞe

�
ðcÞ are the

distribution function and the Ricci rotation coefficients,
respectively. Assuming that the distribution function is
only a function of r, the relativistic Boltzmann equation
becomes

vr

@fB
@r

�
�
v2
t

2

@�

@r
�ðv2

�þv2
’Þ

r

�
@fB
@vr

�vr

r

�
v�

@fB
@v�

þv’

@fB
@v’

�

�e�=2v’

r
cot�

�
v�

@fB
@v’

�v’

@fB
@v�

�
¼0; (35)

where we have defined

vð0Þ ¼ vt; vð1Þ ¼ vr; vð2Þ ¼ v�; vð3Þ ¼ v’:

(36)

Since we have assumed the system to be spherically
symmetric, the term proportional to cot� must be
zero. Multiplying Eq. (35) by mvrdv where dv ¼
1
vt
dvrdv�dv’, and integrating over the velocity space

and assuming that the distribution function vanishes rap-
idly as the velocities tend to �1, we obtain

r
@

@r
½�hv2

ri� þ 1

2
�½hv2

t i þ hv2
ri�r @�@r

� �½hv2
�i þ hv2

’i � 2hv2
ri� ¼ 0; (37)

where � is the mass density and hv2
ri represents the average

value of v2
r . Multiplying Eq. (37) by 4�r2 and integrating

over the cluster leads to

Z R

0
4��½hv2

ri þ hv2
�i þ hv2

’i�r2dr

� 1

2

Z R

0
4�r3�½hv2

t i þ hv2
ri� @�@r dr ¼ 0: (38)

This equation is reduced to

2K � 1

2

Z R

0
4�r3�½hv2

t i þ hv2
ri�@�@r dr ¼ 0; (39)

where the total kinetic energy of the galaxies is defined as

K ¼
Z R

0
2��½hv2

ri þ hv2
�i þ hv2

’i�r2dr: (40)

Now, using these relations and adding the gravitational
field equations (23)–(25) and Eq. (22) we find
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�
1þ �b

6
�4
5�

2

�
e��

�
�0

r
� �0�0

4
þ �00

2
þ �02

4

�

¼ �2
4

2
�½hv2

t i þ hv2
ri þ hv2

�i þ hv2
’i� þ �2

4

2�b

�2½hv2
t i2 þ hv2

ri2 þ hv2
�i2 þ hv2

’i2� ��4

þ �4
5�

2

2
½K0

0 �K1
1 � 2K2

2� �
�4
5�

4

2
½�0ðGÞ

0 � �1ðGÞ
1 � 2�2ðGÞ

2 � þ 6

�2
4�b

UðrÞ; (41)

where 1
6�b�

4
5 ¼ �2

4. In order to obtain the generalized virial theorem we have to use some approximations. First,
since the dispersion of the velocity of galaxies in the clusters is of the order 600–1000 km=s, i.e., ðvcÞ2 � 4� 10�6 �
1:11� 10�5 � 1, we can neglect the relativistic effects in the relativistic Boltzmann equation and use the small velocity
limit approximation. In other words, hv2

ri � hv2
�i � hv2

’i � hv2
t i � 1. Second, the intensity of the gravitational effects

can be estimated from the ratioGM=R, which for typical clusters is of the order of 10�6 � 1. Therefore, inside the galactic
clusters the gravitational field is weak and we can use the weak gravitational field approximation. Then the term
proportional to �0�0 and �02 in Eq. (41) may be ignored. Thus, assuming that e� � e� � 1 inside the cluster [23], we
can write Eqs. (41) as

�
1þ �b

6
�4
5�

2

��
�0

r
þ �00

2

�
¼ �2

4

2
�½hv2

t i þ hv2
ri þ hv2

�i þ hv2
’i� þ �2

4

2�b

�2½hv2
t i2 þ hv2

ri2 þ hv2
�i2 þ hv2

’i2�

��4 � �4
5�

2

6r
�½3�0hv2

t i þ 2�0hv2
t i þ �00rhv2

t i þ 3�0hv2
ri� þ 6

�2
4�b

UðrÞ: (42)

On the other hand, for clusters of galaxies the ratio of the
matter density and of the brane tension is much smaller
than 1, �=�b � 1, so that one can neglect the quadratic
term in the matter density in above equation. These con-
ditions certainly apply to test particles in stable circular
motion around galaxies, and to the galactic clusters. Thus,
we can rewrite Eq. (42) as�

1þ �b

6
�4
5�

2

�
1

2r2
@

@r

�
r2

@�

@r

�

¼ �2
4

2
���4 þ �4

5�
2½P ðrÞ þ 3UðrÞ� þ 6

�2
4�b

UðrÞ;
(43)

where

U ðrÞ ¼ ���0

6r
; P ðrÞ ¼ � �

6r2
@

@r

�
r2

@�

@r

�
:

Multiplying Eq. (43) by r2 and integrating from 0 to r
yields

�
1þ �b

6
�4
5�

2

�
1

2

�
r2

@�

@r

�
� �2

4

8�
MðrÞ þ 1

3
�4r

3

� �2
4

8�
MDGPðrÞ � �2

4

8�
MRSðrÞ ¼ 0: (44)

The total baryonic mass and the geometrical masses of the
system are given by

MðrÞ ¼ 4�
Z r

0
�ðr0Þr02dr0; (45)

and

�2
4MRSðrÞ ¼ 48�

�2
4�b

Z r

0
Uðr0Þr02dr0; (46)

�2
4MDGPðrÞ ¼ 8��4

5�
2
Z r

0
½P ðr0Þ þ 3Uðr0Þ�r02dr0; (47)

where

M ðrÞ ¼ MRSðrÞ þMDGPðrÞ: (48)

Multiplying Eq. (44) by dMðrÞ
r and integrating from 0 to R,

we finally obtain the generalized virial theorem in warped
DGP scenario as�

1þ �b

6
�4
5�

2

�
2K þW þ 1

3
�4I þW ¼ 0; (49)

where

W ¼ � �2
4

8�

Z R

0

MðrÞ
r

dMðrÞ; (50)

W ¼ ��2
4

2

Z R

0
MðrÞ�rdr; (51)

and

I ¼
Z R

0
r2dMðrÞ; (52)

whereW is the gravitational potential energy of the system.
At this point it is worth nothing that for � ¼ 0, we have
MDGP ¼ 0 and the virial theorem in the warped DGP
brane-world is reduced to the virial theorem in the RS
brane scenario [23]
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2K þW þ 1
3�4IþWRS ¼ 0; (53)

where

WRS ¼ ��2
4

2

Z R

0
MRSðrÞ�rdr: (54)

As one can see the gravitational energy modified by WRS

which has its origin in the global bulk effect due to the E��

term. We can also recover the virial theorm in the standard
general relativity from Eq. (53) in the limit ��1

b ! 0. A
alternative possibility in recovering the four-dimensional
virial theorem is to take the limit �5 ! 0, while keeping
the Newtonian gravitational constant �2

4 finite [11].

In the case �b ¼ �ð5Þ ¼ 0, the virial theorem in the
warped DGP brane-world is reduced to the virial theorem
in the DGP brane scenario [19]

2K þW þWDGP ¼ 0; (55)

where

WDGP ¼ ��2
4

2

Z R

0
MDGPðrÞ�rdr: (56)

Note for a Minkowski DGP bulk space we have E�� ¼ 0,

thus, in the above equation WRS ¼ 0. There is difference
between our model and Refs. [19,23]. The virial theorem in
the warped DGP brane-world is modified by bothWRS and
WDGP, which the first is due to the global bulk effect
whereas the second term has its origins in the induced
gravity on the brane due to quantum correction.

Now, we introduce the radii RV , RI, and R as

RV ¼ M2ðrÞR
R
0
MðrÞ
r dMðrÞ ; (57)

R2
I ¼

R
R
0 r

2dMðrÞ
MðrÞ ; (58)

R ¼ � �2
4

8�

M2ðrÞ
W

; (59)

where RV is the virial radius and R is defined as the
geometrical radius of the clusters of galaxies. Defining
the virial mass as [29]

2K ¼ � �2
4

8�

M2
V

RV

; (60)

and using the following relations:

W ¼ � �2
4

8�

M2

RV

; I ¼ MR2
I ; (61)

the generalized virial theorem (49) is simplified as

�
1þ �b

6
�4
5�

2

��
MV

M

�
2

¼ 1� 8��4

3�2
4

RVR
2
I

M
þ

�
M
M

�
2
�
RV

R

�
: (62)

We have three types of mass in Eq. (62), namely, the total
baryonic mass of the system represented by M (including
the baryonic mass of the intracluster gas and of the stars,
other particles like massive neutrinos), the virial mass
represented by MV , and finally, the geometrical mass rep-
resented by M.
On large distance scales associated with galaxies, we

can ignore the contribution of the effective cosmological
constant to the mass energy of the galaxy. Also, it is found
that MV is considerably greater than M for most of the
clusters and we can neglect the term unitary in Eq. (62).
Therefore, the virial mass is given by

MVðrÞ ’ MðrÞ
�
RV

R

�
1=2

: (63)

This equation shows that the virial mass is proportional to
the geometrical mass.

V. ASTROPHYSICAL APPLICATIONS

In this section, we emphasize that the astrophysical
observations together with the cosmological simulations
have shown that the virilized part of the cluster is a measure
of a fixed density such as a critical density, �cðzÞ at a
special red-shift, so that �V ¼ 3MV=4�R

3
V ¼ 
�cðzÞ,

where MV and RV are the virial mass and radius, respec-
tively. As is well known, �cðzÞ ¼ h2ðzÞ3H2

0=8�G, where

the Hubble parameter is normalized to its local value, i.e.,
h2ðzÞ ¼ �mð1þ zÞ3 þ��, where �m and �� are the
mass density and dark energy-density parameters, respec-
tively, [31]. By knowing the integrated mass of the galaxy
cluster as a function of the radius, one can estimate the
appropriate physical radius for the mass measurement.
The radii commonly used are r200 or r500. These radii lie
within the radii corresponding to the mean gravitational
mass density of the matter �tot ¼ 200�c or 500�c. A
useful radius is r200 to find the virial mass. The numerical
values of the radius r200 for the cluster NGC 4636 are in the
ranges r200 ¼ 0:85 Mpc and r200 ¼ 4:49 Mpc for the clus-
ter A2163, so one can deduce that a typical value for r200 is
2 Mpc. The masses corresponding to r200 and r500 are
denoted by M200 and M500, respectively, and it is usually
assumed that MV ¼ M200 and RV ¼ r200 [32].

A. Geometrical mass estimated using
the Jean’s relation

Now, we are going to obtain MðrÞ as a function of r by
comparing the virial theorem results with the observational
data for galaxy cluster which can be obtained from the
X-ray observation of the gas in the cluster. The most of the
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baryonic mass in clusters is in the gas form, therefore we
assume that the energy density and pressure in T�� is that

of a gas as

� ¼ �gðrÞ; p ¼ pgðrÞ: (64)

In a majority of clusters most of the baryonic mass is in the
form of the intracluster gas. The gas mass density �gðrÞ
distribution can be fitted with the observational data by
using the following expression for the radial baryonic mass
distribution [32]:

�gðrÞ ¼ �0

�
1þ r2

r2c

��3	=2
; (65)

where rc is the core radius, and �0 and 	 are cluster
independent constants. A static spherically symmetric sys-
tem of collisionless particles that is in equilibrium can be
described by the Jean’s equation [14]

d

dr
½�gðrÞ�2

r� þ
2�gðrÞ

r
ð�2

r � �2
�;’Þ ¼ ��gðrÞ d�ðrÞ

dr
;

(66)

where �ðrÞ is the gravitational potential, and �r and �2
�;’

are the mass-weighted velocity dispersions in the radial
and tangential directions. We assume that the gas is iso-
tropically distributed inside the cluster, so �r ¼ ��;’. The

gas pressure is related to the velocity dispersion and gas
profile density by pg ¼ �g�

2
r . By assuming that the gravi-

tational field is weak so that it satisfies the usual Poisson
equation 2r2� � �2

4�tot, where �tot is the energy density
including �g and other forms of matter, like luminous

matter and the geometrical matter, etc., the Jean’s equation
becomes

dpgðrÞ
dr

¼ ��gðrÞd�ðrÞ
dr

¼ ��2
4Mtot

8�r2
�gðrÞ; (67)

where MtotðrÞ is the total mass inside the radius r. The
observed X-ray emission from the hot ionized intracluster
gas is usually interpreted by assuming that the gas is in
isothermal equilibrium. Therefore, we assume that the gas

is in equilibrium state having the equation of state pgðrÞ ¼
kBTg

�mp
�gðrÞ, where kB is a Boltzmann constant, Tg is the gas

temperature, � ¼ 0:61 is the mean atomic weight of the
particles in the gas cluster, and mp is the proton mass.

Equation (67) then gives

MtotðrÞ ¼ � 8�kBTg

�mp�
2
4

r2
d

dr
ln�gðrÞ: (68)

Now, use of the density profile of the gas given by Eq. (65)
leads to the mass profile inside the cluster as

MtotðrÞ ¼
24�kBTg	

�mp�
2
4

r3

r2 þ r2c
: (69)

On the other hand, using Eqs. (45) and (48) we can obtain
another expression for the total mass

dMtotðrÞ
dr

¼ 4�r2�gðrÞ þ 48�

�2
4�b

UðrÞr2

þ 8��4
5�

2

�2
4

½P ðrÞ þ 3UðrÞ�r2; (70)

substituting Eqs. (69) and (65) into Eq. (70) we obtain the
following expression:

12

�2
4�b

UðrÞ þ 2�2
5�

2

�4
4

½P ðrÞ þ 3UðrÞ�

¼ 6kBTg	

�mp�
2
4

r2 þ 3r2c
ðr2 þ r2cÞ2

� �0

�
1þ r2

r2c

��3	=2
: (71)

Finally, substituting above equation into Eq. (48), in the
limit r � rc considered here, we obtain the following
geometrical mass:

M ðrÞ ’
�
24�kBTg	

�mp�
2
4

� 4��0r
3	
c

r2�3	

3ð1� 	Þ
�
r; (72)

which includes both the local and nonlocal bulk effects.
Observations show that the intracluster gas has a small
contribution to the total mass [31–34], thus we can neglect
the contribution of the gas to the geometrical mass and
rewrite Eq. (72) as

M ðrÞ ’
�
24�kBTg	

�mp�
2
4

�
r: (73)

Now, let us estimate the value of MðrÞ. First, we note
that kBTg � 5 KeV for most clusters. The virial radius

of the clusters of galaxies is usually assumed to
be r200, indicating the radius for which the energy density
of the cluster becomes �200 ¼ 200�cr, where �cr ¼
4:6975� 10�30h250 gr=cm3 [32]. Using Eq. (72) we find

rcr ¼ 91:33	1=2

�
kBTg

5 KeV

�
1=2

h�1
50 Mpc: (74)

The total geometrical mass corresponding to this value is

M ðrÞ ¼ 4:83� 1016	3=2

�
kBTg

5 KeV

�
1=2

h�1
50 M	; (75)

which is consistent with the observational values for the
virial mass of clusters [32].

B. Radial velocity dispersion in galactic clusters

Radial velocity dispersion in galactic clusters plays an
important role in estimating the virial mass of the clusters.
It can be expressed in terms of the virial mass as [34]
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MV ¼ 3

G
�2

1RV: (76)

Assuming that the velocity distribution in the cluster is
isotropic, we have hv2i ¼ hv2

ri þ hv2
�i þ hv2

’i ¼ 3hv2
ri ¼

3�2
r , the radial velocity dispersion �2

r for clusters in the
warped DGP model can be obtained from Eq. (37) as

d

dr
ð��2

rÞ þ 1

2
��0 ¼ 0; (77)

where �1 and �r are related by 3�2
1 ¼ �2

r . On the other
hand, by neglecting the cosmological constant the Einstein
field equation (43) becomes

�
1þ �b

6
�4
5�

2

�
1

2r2
@

@r

�
r2
@�

@r

�

¼ �2
4

2
�þ �4

5�
2½P ðrÞ þ 3UðrÞ� þ 6

�2
4�b

UðrÞ: (78)

Integrating, we obtain

�
1þ �b

6
�4
5�

2

�
1

2

�
r2
@�

@r

�
¼ �2

4

8�
MðrÞ þ �2

4

8�
MðrÞ þ C1;

(79)

where C1 is an integration constant. By eliminating �0 from
Eqs. (77) and (79), we obtain

�
1þ �b

6
�4
5�

2

�
d

dr
ð��2

rÞ

¼ ��2
4MðrÞ
8�r2

�ðrÞ � �2
4MðrÞ
8�r2

�ðrÞ � C1
r2

�ðrÞ: (80)

Integration now gives the following solution:
�
1þ �b

6
�4
5�

2

�
�2

r

¼ � 1

�

Z �2
4MðrÞ
8�r2

�ðrÞdr� 1

�

Z �2
4MðrÞ
8�r2

�ðrÞdr

� 1

�

Z C1
r2

�ðrÞdr� C2
�
; (81)

where C2 is an integration constant. For most clusters
	 
 2

3 and therefore, in the limit r � rc, the gas density

profile (65) can be written as [23]

�gðrÞ ¼ �0

�
r

rc

��3	
; 	 
 2

3
: (82)

Now, substituting Eqs. (45), (73), and (82) into Eq. (81), for
	 � 1 we obtain

�
1þ �b

6
�4
5�

2

�
�2

r ¼ � �0�
2
4

12ð1� 	Þð1� 3	Þ r
2

�
r

rc

��3	

þ kBTg

�mp

þ C1
ð1þ 3	Þ

1

r
� C2

�0

�
r

rc

�
3	
;

(83)

and for 	 ¼ 1 we find

�
1þ �b

6
�4
5�

2

�
�2

r ¼ �0�
2
4

8
r3c

�
1

4r4
þ lnr

r4

��
r

rc

�
3 þ kBTg

�mp

þ C1
4

1

r
� C2

�0

�
r

rc

�
3
: (84)

As is well known, the simple form �2
rðrÞ ¼ B=ðrþ bÞ for

the radial velocity dispersion and the relation �ðrÞ ¼
A=rðrþ aÞ2 for the density of the galaxies in cluster,
with B, b, a and A constants, can be used to fit the
observational data [34]. For r � a, �ðrÞ ’ A=r, while for
r � a, �ðrÞ behaves like �ðrÞ ’ A=r3. Here, our expres-
sion for �2

r can be also used to fit the observational data.
Therefore, the comparison of the observed velocity disper-
sion profiles of the galaxy clusters and the velocity disper-
sion profiles predicted by the warped DGP brane-world
model may give a powerful method to discriminate be-
tween the different theoretical scenarios.
Finally, we compare the radial velocity dispersion in the

warped DGP brane-world model with the radial velocity
dispersion in the other theoretical models. As we noted

before for �ð5Þ ¼ �b ¼ 0, the warped DGP model reduces
to the DGP model and Eq. (84) for 	 ¼ 1 reduces to

�2
r ¼ �0�

2
4

8
r3c

�
1

4r4
þ lnr

r4

��
r

rc

�
3 þ kBTg

�mp

þ C1
4

1

r
� C2

�0

�
r

rc

�
3
; (85)

which is the radial velocity dispersion in the DGP model,
Eq. (65) in [19]. The radial velocity dispersion of galaxy
clusters in Palatini fðRÞ gravity for � ¼ 3, which is corre-
sponding to 	 ¼ 1, is also presented as [18]

�2
r ¼ �r3

Z F0

2F
r�3drþ kBTg

�mp

þ �G�0

�
1

4r
þ lnr

r

�

þ c

4

1

r
� c0

�0

r3; (86)

where FðRÞ ¼ dfðRÞ
dR . For fðRÞ ¼ R this relation reduces to

�2
r ¼ �2

4�0

8

�
1

4r
þ lnr

r

�
þ kBTg

�mp

þ c

4

1

r
� c0

�0

r3; (87)

which is Eq. (84) with 8�G ¼ �2
4 and �

ð5Þ ¼ �b ¼ 0. The
same relation has been also obtained in the Randall-
Sundrum II model with this difference that the origin of
the geometrical mass in fðRÞ gravity is the extra terms in
the Einstein-Hilbert action whereas in the latter it is the
global bulk effect. In Fig. 2 we have plotted the radial
velocity dispersion for the cluster NGC 5813. The numeri-
cal values of it are in the ranges 	 ¼ 0:766, rc ¼ 25 Kpc,
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kBTg ¼ 0:52 Kev, r200 ¼ 0:087 Mpc [32] and the radial

velocity is about 240 km=s [35]. As one can see the radial
velocity dispersion in the warped DGP brane-world is
compatible with the observed profiles and for the same
value of constants C1 and C2 is slower than the DGP brane-
world model.

VI. CONCLUSIONS

The virial theorem plays an important role in astrophys-
ics because of its generality and wide range of applications.
One of the important results that can be obtained with the
use of the virial theorem is to derive the mean density of
astrophysical objects such as galaxy clusters and it can be
used to predict the total mass of the clusters of galaxies.
In the present paper, using the collisionless Boltzmann
equation, we have obtained the generalized virial theorem
within the context of the warped DGP brane-world model.

The additional geometric terms due to the induced curva-
ture term on the brane and nonlocal bulk effect in the
modified gravitational field equations provide an effective
contribution to the gravitational energy, Eq. (44), which
may be used to explain the well-known virial theoremmass
discrepancy in clusters of galaxies. Finally, we have com-
pared the virial theorem results with the observational data
for galaxy cluster which can be obtained from the X-ray
observation of the gas in the cluster and expressed the
geometrical mass in term of observational quantities, like
the temperature and the gas profile density.
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