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In a theory where the cosmological constant � or the gauge coupling constant g arises as the vacuum

expectation value, its variation should be included in the first law of thermodynamics for black holes. This

becomes dE ¼ TdSþ�idJi þ��dQ� þ�d�, where E is now the enthalpy of the spacetime, and �,

the thermodynamic conjugate of �, is proportional to an effective volume V ¼ � 16��
D�2 ‘‘inside the event

horizon.’’ Here we calculate� and V for a wide variety of D-dimensional charged rotating asymptotically

anti-de Sitter (AdS) black hole spacetimes, using the first law or the Smarr relation. We compare

our expressions with those obtained by implementing a suggestion of Kastor, Ray, and Traschen,

involving Komar integrals and Killing potentials, which we construct from conformal Killing-Yano

tensors. We conjecture that the volume V and the horizon area A satisfy the inequality R �
ððD� 1ÞV=AD�2Þ1=ðD�1ÞðAD�2=AÞ1=ðD�2Þ � 1, where AD�2 is the volume of the unit (D� 2) sphere,

and we show that this is obeyed for a wide variety of black holes, and saturated for Schwarzschild-AdS.

Intriguingly, this inequality is the ‘‘inverse’’ of the isoperimetric inequality for a volume V in Euclidean

(D� 1) space bounded by a surface of area A, for which R � 1. Our conjectured reverse isoperimetric

inequality can be interpreted as the statement that the entropy inside a horizon of a given ’’volume’’ V is

maximized for Schwarzschild-AdS. The thermodynamic definition of V requires a cosmological constant

(or gauge coupling constant). However, except in seven dimensions, a smooth limit exists where � or g

goes to zero, providing a definition of V even for asymptotically flat black holes.

DOI: 10.1103/PhysRevD.84.024037 PACS numbers: 04.70.�s

I. INTRODUCTION

In theories where physical constants such as Yukawa
couplings, gauge coupling constants or Newton’s constant
G and the cosmological constant � are not fixed a priori,
but arise as vacuum expectation values and hence can vary,
their variation should be included in thermodynamic for-
mulae such as the first law of black hole thermodynamics.
In fact such ‘‘constants’’ are typically to be thought of as
the values at infinity of scalar fields. In the case of modulus
fields, the conjugate thermodynamic variables are scalar
charges [1]. The cosmological constant � behaves like a
pressure,

P ¼ �D� 2

16�
� ¼ hV i; (1.1)

where V is the potential of any scalars, and the conjugate
thermodynamic variable V is an effective volume inside
the horizon, or alternatively a regularized version of the
difference in the total volume of space with and without
the black hole present [2–5].1 Thus the first law of ther-
modynamics for black holes reads

dE ¼ TdSþX
i

�idJi þ
X
�

��dQ� þ VdP (1.2)

and E should be thought of as the total gravitational
enthalpy, which is the analogue of

H ¼ Uþ PV; (1.3)

where U is the total internal energy, so that

dU ¼ TdSþX
i

�idJi þ
X
�

��dQ� � PdV: (1.4)

(Some further discussion of varying the cosmological
constant in the black hole thermodynamical context has
recently been given in [6,7].)
Of course if the cosmological constant is not treated as a

variable, then H, U and E coincide. However, even if the
cosmological constant is not varied the quantities P and �
enter the generalized Smarr-Gibbs-Duhem relation, since
� affects the scaling properties of the thermodynamic
variables. The Smarr-Gibbs-Duhem relation is a simple
consequence of the first law (1.2), combined with dimen-
sional analysis. In D spacetime dimensions it reads [4,5,8]

E ¼ ðD� 2Þ
�
TSþX

i

�iJi

�
þX

�

��Q� � 2

D� 3
VP:

(1.5)

Moreover, in the simplest case of the Schwarzschild anti-
de Sitter metric, and in its single charged version, Reissner-
Nordström anti-de Sitter, one finds that1The term VdP is also written as �d�.
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V ¼ AD�2

D� 1
rD�1
H ; (1.6)

whereAD�2 is the area of the unit (D� 2)-sphere and rH
is the radius of the horizon expressed in terms of the
Schwarzschild radial coordinate.

These general considerations become especially inter-
esting in the case of gauged supergravity and string theo-
ries, where the cosmological constant and the gauge
coupling constant g are related by

� ¼ �ðD� 1Þg2; P ¼ ðD� 2ÞðD� 1Þ
16�

g2: (1.7)

Such theories can be obtained by means of sphere reduc-
tions from the eleven- or ten-dimensional ungauged
supergravity theories. The most interesting gauged super-
gravities arise in D ¼ 4, obtained by an S7 reduction from
11 dimensions; inD ¼ 5, obtained by an S5 reduction from
ten dimensions; and in D ¼ 7, obtained by an S4 reduction
from eleven dimensions. In these cases the cosmological
constant and gauge coupling constant are related to the
curvature of the compactifying sphere; that is, they are
proportional to ðradiusÞ�2. Thus in these cases the term
VdP in the first law incorporates the thermodynamics of
the extra dimensional sphere, and its inclusion would be
important if the size of the extra dimensions, i.e., the radius
of the sphere, were to change with time.

If one is contemplating time-dependent extra dimen-
sions, one should bear in mind that in descending from
(nþD) toD spacetime dimensions on a compact manifold
Kn one has the relation

GD ¼ GDþn

VolðKnÞ (1.8)

between the Newton constants. Thus ifGDþn is regarded as
fundamental and hence unchanging, then if VolðKnÞ
changes with time, so will GD, and its variation should
also be contained in the first law.

In the remainder of this paper, we shall use the cosmo-
logical constant � rather than the pressure P as the inten-
sive thermodynamic variable, and the conjugate extensive
variable will be taken to be �. Thus the first law will be

dE ¼ TdSþ�idJi þ��dQ� þ�d�; (1.9)

where the metric in D dimensions is asymptotically AdS,
with the Ricci tensor equal to (or, in the case of charged
black holes, approaching) R�� ¼ �g��. We take � ¼
�ðD� 1Þg2, where for solutions in gauged supergravities,
g is the gauge coupling constant.

From dimensional scaling arguments, the generalized
Smarr relation is

E ¼ D� 2

D� 3
ðTSþ�iJiÞ þ��Q� � 2

D� 3
��: (1.10)

The pressure and cosmological constant are related by
(1.1), and so � is related to the volume by

� ¼ �ðD� 2Þ
16�

V: (1.11)

In this paper, we investigate the role of the volume term
in the thermodynamics of asymptotically AdS black holes
from various points of view. First of all, we note that since
all the other quantities in the generalized Smarr relation are
already known, we can simply use (1.10) to furnish a
definition of � in all the known black hole examples.
This will necessarily also be consistent with the general-
ized first law (1.9). It then becomes of interest to see
whether V calculated via (1.11) admits a natural physical
interpretation as a ‘‘volume’’ of the black hole.
In simple cases such as a Schwarzschild-AdS or

Reissner-Nordström-AdS, it turns out that the volume cal-
culated from (1.11) coincides with a ‘‘naive’’ integrationZ rþ

r0

dr
Z

d�
ffiffiffiffiffiffiffi�g

p
(1.12)

over the interior of the black hole, where the radial coor-
dinate ranges from the singularity at r ¼ r0 to the outer
horizon at r ¼ rþ. In fact, in such cases the volume V turns
out to be expressible as

V ¼ rþA
D� 1

; (1.13)

where A is the area of the outer horizon. With an appro-
priate modification in the case that there are running scalar
fields, a naive volume integration again allows the potential
� to be calculated for static charged asymptotically AdS
black holes.
We find, however, that the situation becomes more com-

plicated in the case of rotating black holes. If, for example,
we consider the Kerr-AdS black hole in D dimensions,
then a natural integration over the volume interior to the
horizon, of the form (1.12), again, remarkably, gives rise to
the expression on the right-hand side of (1.13) (if one uses
the standard radial coordinate that appears in the metrics
given in [9,10]).2 However, this volume, which we shall
now call V0, is not the one that gives rise to the correct
thermodynamic potential �. Rather, it gives

V 0 � � 16�

ðD� 2Þ�
0 ¼ rþA

ðD� 1Þ ; (1.14)

where A is the area of the outer horizon. �0 is related to
the true thermodynamic potential [defined via (1.9) or
(1.10)] by

�0 ¼ �þ 1

2ðD� 1Þ
X
i

aiJi; (1.15)

2In four dimensions, the notion of a ‘‘black hole volume,’’
obtained by integrating

R
d4x

ffiffiffiffiffiffiffi�g
p

, was discussed previously in
[11,12].

CVETIČ et al. PHYSICAL REVIEW D 84, 024037 (2011)

024037-2



where ai are the rotation parameters and Ji the angular
momenta of the black hole. We may refer to the associated
volumes V and V 0 as the ‘‘thermodynamic volume’’ and
the ‘‘geometric volume,’’ respectively.

Since in general we now have two different candidate
definitions, it becomes of interest to investigate the pos-
sible physical interpretations of each of the volumes V and
V 0. In view of the fact that the geometric volume for Kerr-
AdS has the remarkable feature that V0 ¼ rHA=ðD� 1Þ, as
if it were just the volume inside a sphere in Euclidean
space, it is interesting to test whether V0 and A satisfy the
isoperimetric inequality of Euclidean bounded volumes.
Indeed, we find that�ðD� 1ÞV 0

AD�2

�
1=ðD�1Þ �

�
A

AD�2

�
1=ðD�2Þ

(1.16)

for all Kerr-AdS black holes, with equality attained when
the rotation vanishes. However, we find that for electrically
charged black holes, evenwithout rotation (and henceV and
V 0 are the same), the isoperimetric inequality is violated.

If we instead use the thermodynamic volume V, then we
find that the isoperimetric inequality is always violated by
rotating Kerr-AdS black holes. Furthermore, we find strong
indications that using V, the isoperimetric inequality is
violated for all black holes, with or without rotation and/
or charge. This leads us to conjecture that all black holes
satisfy the reverse isoperimetric inequality, which asserts
that �ðD� 1ÞV

AD�2

�
1=ðD�1Þ �

�
A

AD�2

�
1=ðD�2Þ

; (1.17)

where V is the thermodynamic volume of the black hole
and A is the area of the outer horizon. Equality is attained
for Schwarzschild-AdS.

The reverse isoperimetric inequality may be rephrased
as the statement that for a black hole of given thermo-
dynamic volume V, the entropy is maximized for
Schwarzschild-AdS.

The Smarr relation for black hole solutions of the vac-
uum Einstein equations can be derived by the Komar pro-
cedure, based on the integration of the identity d � d� ¼ 0
over a spacelike hypersurface intersecting the horizon,
where � ¼ ��dx

� and �� is a Killing vector that is timelike

at infinity. A generalization to the case with a cosmological
constant� has been discussed in [5,13,14]. One writes � in
terms of a 2-form Killing potential ! as � ¼ �d �!, and
then integrates the identity d � d�þ 2�d �! ¼ 0 over the
spacelike hypersurface. After using Stokes’ theorem the
integration of �! contributes a term on the sphere at infinity
that removes a divergent contribution from �d� to give a
finite expression for the mass E, and a term on the horizon
that furnishes an expression for�. One might hope that this
could provide a further insight into the question of whether
the ‘‘thermodynamic’’ or the ‘‘geometric’’ � is to be pre-
ferred. Unfortunately, however, there is an ambiguity in the

definition of the Killing potential (the freedom to add a co-
closed but not co-exact 2-form to !), and this allows the
expressions forE and for� to be adjusted in tandem. As we
discuss later, the best that one can do is to choose a gauge for
! such that the mass E comes out to be the correct value, as
already determined by other means. Necessarily, the inte-
gral yielding � then produces the ‘‘thermodynamic’’ ex-
pression rather than the geometric one.
We shall see that although the concept of the thermody-

namic volume V requires that one consider an asymptoti-
cally AdS black hole in a theory with a nonvanishing
cosmological constant, it is possible (except in D ¼ 7) to
take a smooth limit in the expression for V in which the
cosmological constant is set to zero. Since the thermody-
namic volume still, in general, differs from the geometric
volume in this limit, one may define, for an asymptotically
flat black hole, the thermodynamic volume by first obtain-
ing its expression in the more general asymptotically AdS
case, and then taking the limit where the cosmological
constant goes to zero. We find that this limit exists for
all the known asymptotically AdS black holes except
for those in seven-dimensional gauged supergravity. This
case is exceptional because of the existence of an
odd-dimensional self-duality constraint in the seven-
dimensional theory. It has the consequence that the volume
diverges in this case if the three rotation parameters and the
electric charge are all nonvanishing.
The organization of the paper is as follows. In Sec. II, we

use the Smarr relation, or, equivalently, the first law of
thermodynamics, to calculate� for the various static multi-
charged black holes in four, five and seven-dimensional
gauged supergravities, and we show how � is related to a
volume integral of the scalar potential. In Sec. III, we use
the same methods to calculate the thermodynamic expres-
sions for � for the rotating Kerr-AdS black holes in arbi-
trary dimensions. We also show how these expressions are
related to the geometric quantities�0 that are directly given
by volume integrations. We also perform similar calcula-
tions for some examples of charged rotating black holes in
four and five-dimensional gauged supergravities. In Sec. IV
we examine the isoperimetric inequality, and we show, in
particular, that the reverse isoperimetric inequality holds for
all the black hole examples we have considered. In Sec. V
we review the derivation for the Smarr relation using the
generalization of the Komar procedure, and then we give a
detailed construction of the required Killing potentials !
for Kerr-AdS, making use of the conformal Killing-Yano
tensors that exist in these backgrounds. The paper ends with
conclusions in Sec. VI. In an appendix, we present some
explicit results for the Killing potentials in four and five-
dimensional Kerr-AdS.

II. STATIC CHARGED BLACK HOLES

In this section, we consider charged static black hole
solutions in gauged supergravities in D ¼ 4, 5, and 7
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dimensions. We shall work in conventions where Newton’s
constant is set to 1, and the action takes the form

I¼
Z ffiffiffiffiffiffiffi�g
p �

1

16�
R� 1

16�
fð�ÞF��F���V ð�Þþ���

�
;

(2.1)

where F�� is a Uð1Þ field strength (there may be just one,

or several), fð�Þ represents the coupling of scalar fields,
and V ð�Þ is the potential term for the scalar fields. In the
solutions we shall consider, the scalar fields go to zero at
infinity, and then fð�Þ approaches 1, and the potential
approaches

V ! �ðD� 1ÞðD� 2Þ
16�

g2; (2.2)

where g is the gauge coupling constant. Thus the
black hole solutions are asymptotic to AdSD with R�� !
�ðD� 1Þg2g��. Details of the black hole solutions can be

found in [15–17], where they were constructed, and further
discussion of their thermodynamics can be found in [18].
In what follows, we summarize the pertinent properties of
the black holes for each of the dimensions 4, 5, and 7, and
we calculate the quantity � in each case.

A. Charged AdS black holes in D ¼ 4

The metric, electromagnetic potentials, and scalars
fields are given by [16]

ds24 ¼ �Y4
i¼1

H�1=2
i fdt2 þY4

i¼1

H1=2
i ðf�1dr2 þ r2d�2

2Þ;

Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qiðqi þ�Þp
2ðrþ qiÞ dt; Xi ¼ H�1

i

Y4
j¼1

H1=4
j ; (2.3)

where

f ¼ 1� 2m

r
þ g2r2

Y4
i¼1

Hi; Hi ¼ 1þ qi
r
: (2.4)

The four scalar fields Xi, subject to the constraintQ
4
i¼1 Xi ¼ 1, have the potential

V ¼ � g2

16�

X
i<j

XiXj: (2.5)

The relevant thermodynamic quantities are given by

E ¼ mþ 1

4

X
i

qi; Qi ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qiðqi þ 2mÞ

q
;

S ¼ �
Y
i

ðrþ þ qiÞ1=2; T¼ f0ðrþÞ
4�

Q
i
H�1=2

i ðrþÞ;

�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qiðqi þ 2mÞp
2ðrþ þ qiÞ ; (2.6)

where the outer horizon is located at r ¼ rþ, the largest
root of fðrþÞ ¼ 0.
Substituting into the first law (1.9) or the Smarr relation

(1.10), we find that � is given by

� ¼ �ðrþÞ ¼ � r3þ
24

Y
i

HiðrþÞ
X
j

1

HjðrþÞ : (2.7)

To interpret our result we note the nontrivial relation

��
d�ðrÞ
dr

¼
Z

d�2V
ffiffiffiffiffiffiffi�g

p
: (2.8)

Thus we may introduce a quantity r0 so that

�� ¼ �W; (2.9)

where W is the integral of the scalar potential

W ¼
Z rþ

r0

dr
Z

d�2V
ffiffiffiffiffiffiffi�g

p
: (2.10)

It is easily seen that r0 is the largest root of

4r30 þ 3r20
X
i

qi þ 2r0
X
i<j

qiqj þ
X

i<j<k

qiqjqk ¼ 0: (2.11)

The appearance of W in (2.9) is not unexpected since it
appears in the classical action but we do not, as yet, have an
independent definition of r0 other than via (2.10). The
situation is similar in all of the examples which follow
and we shall give the analogues of (2.9), (2.10), and (2.11)
without further detailed comment.

B. Charged AdS black holes in D ¼ 5

The metric, electromagnetic potentials, and scalar fields
are given by [15]

ds25 ¼ �Y3
i¼1

H�2=3
i fdt2 þY3

i¼1

H1=3
i ðf�1dr2 þ r2d�2

3Þ;

Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qiðqi þ 2mÞp
ðr2 þ qiÞ

dt; Xi ¼ H�1
i

Y3
j¼1

H1=3
j ; (2.12)

where

f ¼ 1� 2m

r2
þ g2r2

Y3
i¼1

Hi; Hi ¼ 1þ qi
r2

: (2.13)

The three scalar fields Xi, subject to the constraintQ
3
i¼1 Xi ¼ 1, have the potential

V ¼ � g2

4�

X
i

1

Xi

: (2.14)
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The relevant thermodynamic quantities are given by

E¼1

4
�½3mþq1þq2þq3�; Qi ¼ 1

4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qiðqiþ2mÞp

;

S¼1

2
�2

Y
i

ðr2þþqiÞ1=2; T¼f0ðrþÞ
4�

Y
i

H�1=2
i ðrþÞ;

�i¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qiðqiþ2mÞp
ðr2þþqiÞ

; (2.15)

where the outer horizon is located at r ¼ rþ, the largest
root of fðrþÞ ¼ 0.

Substituting into the first law (1.9) or the Smarr relation
(1.10), we find that � is given by

� ¼ ��r4þ
32

Y
i

HiðrþÞ
X
j

1

HjðrþÞ : (2.16)

With the integral of the scalar potential defined by

W ¼
Z rþ

r0

dr
Z

d�3V
ffiffiffiffiffiffiffi�g

p
; (2.17)

where r0 is taken to be the largest root of

3r40 þ 2r20
X
i

qi þ
X
i<j

qiqj ¼ 0; (2.18)

we find that � can again be written as

� ¼ � 1

�
W: (2.19)

C. Charged AdS black holes in D ¼ 7

The metric, electromagnetic potentials, and scalars
fields are given by [17]

ds27 ¼ �ðH1H2Þ�4=3fdt2 þ ðH1H2Þ1=5ðf�1dr2 þ r2d�2
5Þ;

Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qiðqi þ 2mÞp
ðr4 þ qiÞ

dt; Xi ¼ H�1
i ðH1H2Þ2=5; (2.20)

where

f ¼ 1� 2m

r4
þ g2r2H1H2; Hi ¼ 1þ qi

r4
: (2.21)

The two scalar fields Xi have the potential

V ¼� g2

4�

�
4X1X2þ2X�1

1 X�2
2 þ2X�1

2 X�2
1 �1

2
ðX1X2Þ�4

�
:

(2.22)

The relevant thermodynamic quantities are

E¼1

8
�2½5mþ2ðq1þq2Þ�; Qi¼1

4
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qiðqiþ2mÞ

q
;

S¼1

4
�3rþ

Y
i

ðr4þþqiÞ1=2; T¼f0ðrþÞ
4�

ðH1ðrþÞH2ðrþÞÞ�1=2;

�i¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qiðqiþ2mÞp
ðr4þþqiÞ

; (2.23)

where the outer horizon is located at r ¼ rþ, the largest
root of fðrþÞ ¼ 0.
Substituting into the first law (1.9) or the Smarr relation

(1.10), we find that � is given by

� ¼ ��2r6þ
96

½H1ðrþÞH2ðrþÞ þ 2H1ðrþÞ þ 2H2ðrþÞ�:
(2.24)

With the integral of the scalar potential defined by

W ¼
Z rþ

r0

dr
Z

d�5V
ffiffiffiffiffiffiffi�g

p
; (2.25)

where r0 is taken to be the largest root of

5r80 þ 3ðq1 þ q2Þr40 þ q1q2 ¼ 0; (2.26)

we find that � can again be written as

� ¼ � 1

�
W: (2.27)

III. ROTATING BLACK HOLES

A. Kerr-AdS black holes in all dimensions

The Kerr-(A)dS solution in all dimensions, which gen-
eralizes the asymptotically flat rotating black hole solu-
tions of [19], was obtained in [9,10]. The metric obeys
the vacuum Einstein equations R�� ¼ �ðD� 1Þg2g��.

In the ‘‘generalized’’ Boyer-Lindquist coordinates it takes
the form

ds2 ¼ �Wð1þ g2r2Þdt2 þ 2m

U

�
Wdt�XN

i¼1

ai�
2
i d�i

�i

�
2

þXN
i¼1

r2 þ a2i
�i

ð�2
i d�

2
i þ d�2

i Þ þ
Udr2

V � 2m

� g2

Wð1þ g2r2Þ
�XN
i¼1

r2 þ a2i
�i

�id�i þ �r2�d�

�
2

þ �r2d�2; (3.1)

where
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W�XN
i¼1

�2
i

�i

þ��2; V� r��2ð1þg2r2ÞYN
i¼1

ðr2þa2i Þ;

U� V

1þg2r2

�
1�XN

i¼1

a2i �
2
i

r2þa2i

�
; �i¼1�g2a2i : (3.2)

Here N � ½ðD� 1Þ=2�, where ½A� means the integer part
of A and we have defined � to be 1 forD even and 0 for odd.
The coordinates �i are not independent, but obey the
constraint

XN
i¼1

�2
i þ ��2 ¼ 1: (3.3)

In the remainder of the paper, we shall not in general
indicate the range of the i index in summations or products;
it will always be understood to be for 1 � i � N, with
N ¼ ðD� 1Þ=2 in odd dimensions, and N ¼ ðD� 2Þ=2 in
even dimensions.

The calculation of� is slightly different in the two cases
that the dimensionD is odd or even. We discuss these cases
in the following two subsections.

1. Odd-dimensional Kerr-AdS black holes

Here, we take D ¼ 2N þ 1. As discussed in [8], the
various thermodynamic quantities are given by

E ¼ mAD�2

4�
Q
j
�j

�X
i

1

�i

� 1

2

�
;

Ji ¼ maiAD�2

4��i

Q
j
�j

;

S ¼ AD�2

4rþ

Y
i

r2þ þ a2i
�i

;

T ¼ rþð1þ g2r2þÞ
2�

X
i

1

r2þ þ a2i
� 1

2�rþ
;

�i ¼ ð1þ g2r2þÞai
r2þ þ a2i

;

(3.4)

where m and ai are the ‘‘mass’’ and the N rotation pa-
rameters appearing in the Kerr-AdS metrics, the summa-
tions and products are taken over 1 � i � N, the horizon
radius is determined by the relation

2m ¼ 1

r2þ
ð1þ g2r2þÞ

Y
i

ðr2þ þ a2i Þ; (3.5)

and the �i are given by �i ¼ 1� g2a2i . The quantity
AD�2 is the volume of the unit-radius (D� 2) sphere,
and is given by

AD�2 ¼ 2�ðD�1Þ=2

�½ðD� 1Þ=2� : (3.6)

After substituting into (1.9) or (1.10), we find that � is
given by

�� ¼ mAD�2

8�
Q
j
�j

�X
i

1

�i

þD� 3

2
� D� 2

1þ g2r2þ

�
(3.7)

¼ 1

2
E�mðD� 2ÞAD�2

16�
Q
i
�i

1� g2r2þ
1þ g2r2þ

: (3.8)

This may in fact be written more simply if we introduce
another quantity �0, such that

� ¼ �0 � 1

2ðD� 1Þ
X
i

aiJi; (3.9)

with �0 being given by

�0 ¼ � ðD� 2ÞmAD�2

8�ðD� 1ÞQ
i
�i

r2þ
1þ g2r2þ

¼ �ðD� 2Þ
ðD� 1Þ

rþA
16�

;

(3.10)

where A ¼ 4S is the area of the horizon. Remarkably, rþA
is related to the spatial integral of

ffiffiffiffiffiffiffi�g
p

up to the horizon

radius. Specifically, we define

VðrþÞ ¼
Z rþ

r0

dr
Z

d�
ffiffiffiffiffiffiffi�g

p
; (3.11)

where d� denotes the integration over the coordinates
parameterizing the (D� 2)-sphere surfaces, and r0 is
given by r20 ¼ �a2min, where a2min is the smallest amongst

the values of the a2i . (The (D� 2) spheres are not round
spheres, of course.) Using the expression for

ffiffiffiffiffiffiffi�g
p

obtained

in the appendix of [8], we then find after some algebra that

VðrþÞ ¼ rþA
D� 1

: (3.12)

This therefore implies that

�0 ¼ � ðD� 2Þ
16�

VðrþÞ: (3.13)

(Note that in performing the integration in Eq. (3.11), it is
really more appropriate to use x ¼ r2 as the radial variable,
since in odd dimensions r2 can be negative.)
It is interesting also that �0 can be obtained from a

Smarr relation if one works in a certain frame that is
rotating at infinity. Specifically, we have

E0 ¼ D� 2

D� 3
ðTSþ�0

iJiÞ þ��Q� � 2

D� 3
�0�;

(3.14)
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where E0 and �0
i are the energy and the angular velocities

of the horizon measured with respect to a frame defined by
sending the azimuthal coordinates �i in the black hole
metrics to �i þ aig

2t. This implies that3

E0 ¼ E� g2
X
i

aiJi ¼ ðD� 2ÞmAD�2

8�
Q
i
�i

; (3.15)

�0
i ¼ �i � aig

2 ¼ ai�i

r2þ þ a2i
: (3.16)

The Einstein action in D dimensions is (with G ¼ 1)

I D ¼ 1

16�

Z ffiffiffiffiffiffiffi�g
p ½R� ðD� 2Þ��dDx: (3.17)

Thus if we define the potential W to be

W � ðD� 2Þ�
16�

Z rþ

r0

dr
Z

d�
ffiffiffiffiffiffiffi�g

p
; (3.18)

then we have

�0 ¼ � 1

�
W: (3.19)

2. Even-dimensional Kerr-AdS black holes

Here, we take D ¼ 2N þ 2. As discussed in [8], the
various thermodynamic quantities are now given by

E ¼ mAD�2

4�
Q
j
�j

X
i

1

�i

;

Ji ¼ maiAD�2

4��i

Q
j
�j

;

S ¼ 1

4
AD�2

Y
i

r2þ þ a2i
�i

;

T ¼ rþð1þ g2r2þÞ
2�

X
i

1

r2þ þ a2i
� 1� g2rþ

4�rþ
;

�i ¼ ð1þ g2r2þÞai
r2þ þ a2i

;

(3.20)

and the location of the horizon is determined by the
equation

2m ¼ 1

rþ
ð1þ g2r2þÞ

Y
i

ðr2þ þ a2i Þ; (3.21)

where the summations and products are over 1 � i � N.
We find from (1.9) or from (1.10) that

�� ¼ mAD�2

8�
Q
j
�j

�X
i

1

�i

þD� 2

2
� D� 2

1þ g2r2þ

�
(3.22)

¼ 1

2
E�mðD� 2ÞAD�2

16�
Q
i
�i

1� g2r2þ
1þ g2r2þ

: (3.23)

Again we find that � can be expressed more simply in
the form (3.9), with �0 given by (3.10). As in the odd-
dimensional case, we again find that if we define a volume
‘‘inside the horizon’’ as in (3.11), then the relation (3.12)
again holds, and hence �0 is again related to the potential
W by Eq. (3.19). The only difference from the odd-
dimensional case is that in the volume integral (3.11), the
lower limit for the radial integration should now be r0 ¼ 0.
(This is really the same rule as is used in odd dimensions,
since in even dimensions there is effectively a ‘‘missing’’
rotation parameter that is equal to zero.)

B. Rotating pairwise-equal 4-charge black
hole in D ¼ 4 gauged supergravity

The metric for this black hole is obtained in [20]. The
various thermodynamic quantities are given by [21]

E ¼ mþ q1 þ q2
�2

; S ¼ �ðr1r2 þ a2Þ
�

;

J ¼ aðmþ q1 þ q2Þ
�2

; Q1¼ Q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ðq1þmÞ

p
2�

;

Q3 ¼ Q4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ðq2 þmÞp

2�
; T ¼ �0

r

4�ðr1r2þa2Þ ;

� ¼ að1þ g2r1r2Þ
r1r2 þ a2

; �1¼ �2 ¼ 2r1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ðq1þmÞ

p
r1r2þa2

;

�3 ¼ �4 ¼ 2r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ðq2 þmÞp

r1r2 þ a2
; (3.24)

where r1 ¼ rþ 2q1, r2 ¼ rþ 2q2,

�r ¼ r2 þ a2 � 2mrþ g2r1r2ðr1r2 þ a2Þ; (3.25)

and all r-dependent quantities in (3.24) are evaluated at the
horizon radius rþ, determined as the largest root of
�rðrþÞ ¼ 0.
Substituting into either (1.9) or (1.10), we can determine

�. As usual in rotating black holes, the expression is quite
complicated, and it is most elegantly expressed, via (3.9),
in terms of �0 defined in the rotating frame:

� ¼ �0 � 1
6aJ; (3.26)

where

3It should be noted, however, that the thermodynamic varia-
bles E0 and �0

i do not satisfy the first law of thermodynamics.
Thus, for example, if we hold � fixed then dE0 is not equal to
TdSþ�0

idJi, and indeed, the latter is not even an exact differ-
ential. (See [8] for a detailed discussion.)

BLACK HOLE ENTHALPY AND AN ENTROPY INEQUALITY . . . PHYSICAL REVIEW D 84, 024037 (2011)

024037-7



�0 ¼ � rþ q1 þ q2
6�

ðr1r2 þ a2Þ; (3.27)

(evaluated at r ¼ rþ).
There is a scalar potential in the four-dimensional

gauged supergravity, given by

V ¼ � g2

16�
ð4þ 2 cosh’þ e’�2Þ; (3.28)

and in the black hole solution we have [20]

e’ ¼ r21 þ a2cos2	

r1r2 þ a2cos2	
; � ¼ aðr2 � r1Þ cos	

r21 þ a2cos2	
: (3.29)

If we define

UðrÞ ¼
Z 2�

0
d�

Z �

0
d	V

ffiffiffiffiffiffiffi�g
p

; (3.30)

then we find that

d�0

drþ
¼ � 1

�
UðrþÞ: (3.31)

In integral form, if we define the potential term

W ¼
Z rþ

r0

dr
Z 2�

0
d�

Z �

0
d	V

ffiffiffiffiffiffiffi�g
p

; (3.32)

then

�0 ¼ � 1

�
W; (3.33)

where the lower limit of integration is taken to be

r0 ¼ �q1 � q2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1 � q2Þ2 � a2

q
: (3.34)

C. Charged rotating black hole in minimal
D ¼ 5 gauged supergravity

The metric for this black hole is obtained in [22]. It has
the thermodynamic quantities

E ¼ m�ð2�a þ 2�b ��a�bÞ þ 2�qabg2ð�a þ�bÞ
4�2

a�
2
b

;

S ¼ �2½ðr2þ þ a2Þðr2þ þ b2Þ þ abq�
2�a�brþ

;

Ja ¼ �ð2amþ qbð1þ a2g2Þ�
4�2

a�b

;

Jb ¼ �ð2bmþ qað1þ b2g2Þ�
4�2

b�a

;

Q ¼
ffiffiffi
3

p
�q

4�a�b

;

T ¼ r4þ½1þ g2ðr2þ þ a2 þ b2Þ� � ðabþ qÞ2
2�rþ½ðr2þ þ a2Þðr2þ þ b2Þ þ abq� ;

� ¼
ffiffiffi
3

p
qr2þ

ðr2þ þ a2Þðr2þ þ b2Þ þ abq
;

�a ¼ aðr2þ þ b2Þð1þ g2r2þÞ þ bq

ðr2þ þ a2Þðr2þ þ b2Þ þ abq
;

�b ¼ bðr2þ þ a2Þð1þ g2r2þÞ þ aq

ðr2þ þ a2Þðr2þ þ b2Þ þ abq
;

(3.35)

where the location of the horizon is determined by the
equation

2m ¼ ðr2þ þ a2Þðr2þ þ b2Þð1þ g2r2þÞ þ q2 þ 2abq

r2þ
:

(3.36)

From (1.9) or from (1.10) we find that

� ¼ �0 � abq�

16�2
a�

2
br

2þ
� ½2r2þ þ a2 þ b2 � g2ðr2þða2 þ b2Þ þ 2a2b2Þ�

� �q2ða2 þ b2 � 2a2b2g2Þ
32�2

a�
2
br

2þ
; (3.37)

where �0 is the value for five-dimensional Kerr-AdS, as
given in (3.7) forD ¼ 5. As in the Kerr-AdS examples, the
quantity�0 evaluated in the asymptotically rotating frame,
and defined by (3.9), is much simpler, and is given in this
case by

�0 ¼ � �

32�a�b

½3ðr2þ þ a2Þðr2þ þ b2Þ þ 2abq�: (3.38)

The metric in [22] has

ffiffiffiffiffiffiffi�g
p ¼ r sin	 cos	ðr2 þ a2cos2	þ b2sin2	Þ

�a�b

; (3.39)

and hence if we define
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UðrÞ � � 3g2

4�

Z 2�

0
d�

Z 2�

0
dc

Z ð1=2Þ�

0
d	

ffiffiffiffiffiffiffi�g
p

¼ 3g2�rð2r2 þ a2 þ b2Þ
4�a�b

; (3.40)

(where �3g2=ð4�Þ is the coefficient of the cosmological
term in the Lagrangian), then we see that

d�0

drþ
¼ � 1

�
UðrþÞ: (3.41)

To integrate this we introduce the radial variable x ¼ r2,
and integrate from x ¼ x0 to x ¼ r2þ, where x0 is the less
negative of the two possibilities

x0 ¼ � 1

2
ða2 þ b2Þ 	 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 � b2Þ2 � 8

3
abq

s
: (3.42)

IV. REVERSE ISOPERIMETRIC INEQUALITY

The isoperimetric inequality for the volume V of a
connected domain in Euclidean space ED�1 whose area is
A states that �ðD� 1ÞV

AD�2

�
D�2 �

�
A

AD�2

�
D�1

(4.1)

with equality if and only if the domain is a standard round
ball. Thus we may restate the inequality as R � 1, where
we define

R �
�ðD� 1ÞV

AD�2

�
1=ðD�1Þ�AD�2

A

�
1=ðD�2Þ

: (4.2)

It is interesting to examine whether or not the area of the
black hole horizon and the ‘‘volume’’ defined via either �
or �0 satisfy the isoperimetric inequality. Let us first con-
sider the case of electrically neutral black holes; i.e., the
rotating Kerr-AdS black holes in arbitrary dimensions.
Intriguingly, we find that if we use the quantity�0 to define
the volume of the black hole, then the isoperimetric in-
equality is always satisfied in Kerr-AdS, with equality
being attained for the nonrotating Schwarzschild-AdS
limit. If, on the other hand, we use the quantity �, which
arises naturally from thermodynamic considerations, to
define the volume, then the opposite is true, and the iso-
perimetric inequality is always violated, except in the
nonrotating limit.

A. Isoperimetric inequality for the �0 volume

For the Kerr-AdS metrics, if A is the area of the event
horizon, then in all cases

V 0 ¼ � 16�

D� 2
�0 ¼ rþA

D� 1
; (4.3)

and if D is odd

A ¼ AD�2

rþ

Y
i

r2þ þ a2i
�i

; (4.4)

while if D is even

A ¼ AD�2

Y
i

r2þ þ a2i
�i

: (4.5)

A simple calculation shows that in both odd and even
dimensions, R0 defined by (4.2), and using the volume V 0,
given by

R0 ¼ Y
i

�
1þ a2i =r

2þ
�i

��1=ððD�1ÞðD�2ÞÞ
: (4.6)

Since �i ¼ 1� g2a2i � 1 for each i, it is evident that
R0 � 1, with equality when all ai vanish.
Thus remarkably, the geometrical V 0 and the surface

area A of the black hole satisfy the standard isoperimetric
inequality for a ball in flat Euclidean space ED�1. There is
an obvious analogy here with the liquid drop model, which
regards a nucleus as a ball of incompressible fluid, whose
volume is thus fixed. If the energy is solely due to positive
surface tension, then the configuration which minimizes
the energy is spherical.

B. Reverse isoperimetric inequality for the � volume

We saw in Eq. (3.9) that the thermodynamic quantity �
in Kerr-AdS is more negative than�0, and hence it follows
that the associated volume V is larger than V0. In fact, from
(4.3) and (3.9) we find that

V ¼ rþA
ðD� 1Þ

�
1þ ð1þ g2r2þÞ

ðD� 2Þr2þ
X
i

a2i
�i

�
: (4.7)

This suggests the possibility that although V0 and A satisfy
the isoperimetric inequality, as we saw above, it might be
that the volume V and the area A could violate it in Kerr-
AdS black holes. This is indeed exactly what we find.
Since, as it turns out, this violation seems to be a universal
property, for all rotating and/or charged black holes, we
may elevate this to the status of a conjecture in its
own right. Thus we make the conjecture that the ratio R
defined in (4.2) actually satisfies the reverse isoperimetric
inequality

R � 1 (4.8)

for all black holes, if one uses the ‘‘thermodynamic’’
definition of the volume V. We now demonstrate the va-
lidity of the conjecture for a variety of black hole solutions.

1. Kerr-AdS

Defining the (necessarily non-negative) dimensionless
quantity
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z ¼ ð1þ g2r2þÞ
r2þ

X
i

a2i
�i

; (4.9)

we consider RD�1, where R is given by (4.2), and observe
that in odd dimensions

RD�1 ¼ rþ
�
1þ z

D� 2

��
1

rþ

Y
i

ðr2þ þ a2i Þ
�i

��1=ðD�2Þ

¼
�
1þ z

D� 2

��Y
i

ðr2þ þ a2i Þ
r2þ�i

��1=ðD�2Þ

�
�
1þ z

D� 2

�

�
�

2

D� 1

�X
i

1

�i

þX
i

a2i
r2þ�i

���ðD�1Þ=ð2ðD�2ÞÞ

¼
�
1þ z

D� 2

��
1þ 2z

D� 1

��ðD�1Þ=ð2ðD�2ÞÞ

� FðzÞ; (4.10)

where the inequality follows from ðQixiÞ1=N � ð1=NÞPixi
for non-negative quantities xi.

Noting that Fð0Þ ¼ 1, and that

d logFðzÞ
dz

¼ ðD� 3Þz
ðD� 2ÞðD� 2þ zÞðD� 1þ 2zÞ ; (4.11)

which is positive for non-negative z in D> 3 dimensions,
it follows that FðzÞ � 1, and hence the reverse isoperi-
metric inequality (4.8) is satisfied by all odd-dimensional
Kerr-AdS black holes.

In even dimensions the calculation is rather similar,
since now we have

RD�1 ¼ rþ
�
1þ z

D� 2

��Y
i

ðr2þ þ a2i Þ
�i

��1=ðD�2Þ

¼
�
1þ z

D� 2

��Y
i

ðr2þ þ a2i Þ
r2þ�i

��1=ðD�2Þ

�
�
1þ z

D� 2

��
2

D� 2

�X
i

1

�i

þX
i

a2i
r2þ�i

���ð1=2Þ

¼
�
1þ z

D� 2

��
1þ 2z

D� 2

��ð1=2Þ

� GðzÞ: (4.12)

Thus Gð0Þ ¼ 1 and d logGðzÞ=dz � 0, and so again we
conclude that R � 1. Thus the reverse isoperimetric in-
equality holds for even-dimensional Kerr-AdS black holes
also.

2. Charged static black holes

All of the charged static black hole solutions in gauged
supergravity satisfy the reverse isoperimetric inequality
also. There is no distinction between the V and V 0 volumes
in this case, since there is no rotation. Consider, for

example, the 4-charge solution given in Sec. II A. The
volume and area are given by

V ¼ 1

3
�
X
i

1

rþ þ qi

Y
j

ðrþ þ qjÞ;

A ¼ 4�
Y
i

ðrþ þ qiÞ;
(4.13)

and so from (4.2) we have

R3 ¼ 1

4

X
i

1

rþ þ qi

Y
j

ðrþ þ qjÞ1=4; (4.14)

and so using the inequalityY
i

ðrþ þ qiÞ�ð1=4Þ � 1

4

X
i

1

rþ þ qi
; (4.15)

we see that R � 1.
Very similar calculations show that the inequality R � 1

holds for the static charged black holes in D ¼ 5 and
D ¼ 7 also.

3. Charged rotating black holes

We have verified explicitly that R � 1 for the rotating
black hole in four-dimensional gauged supergravity with
pairwise equal charges (described in Sec. III B), and also
for the charged rotating black hole in five-dimensional
ungauged minimal supergravity (i.e., setting g ¼ 0 in the
solution described in Sec. III C). In each case, the calcu-
lations are quite complicated, and we shall not present
them here.
In the case of the rotating black hole in five-dimensional

gauged minimal supergravity, we have constructed an
analytical proof that R � 1 in the case that the product
abq is non-negative. Numerical investigations indicate that
R � 1 also if abq is negative.
It is worth remarking that while we can obtain an ex-

pression for the volume V of an asymptotically flat black
hole in ungauged supergravity (or with zero cosmological
constant) by sending g ! 0 or � ! 0 in the expressions
obtained for an asymptotically AdS black hole, we do not
have an intrinsic way in general of defining V for an
asymptotically flat black hole if the more general asymp-
totically AdS solution is not itself known.
The dependence of volume on g is smooth; there are no

discontinuities for g ! 0 or in the large to small black hole
transition. To illustrate this point we display the V ¼ VðgÞ
dependence for a Kerr-AdS black hole of fixed mass in
Fig. 1.
We have not checked our Reverse Isoperimetric

Conjecture for all the known examples of charged rotating
black holes in gauged supergravities. We have, however,
examined the recent construction in [23] of the rotating
black hole in four-dimensional maximal gauged supergrav-
ity with two zero charges and the other two freely speci-
fiable. With nonzero gauge coupling the complexity of the
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metric has so far prevented us from obtaining an analytic
proof, but the indications from numerical analysis are that
the conjecture is satisfied. The expression for the thermo-
dynamic volume V is much simpler in the limit that g ¼ 0,
and in this case we have been able to show analytically that
the reverse isoperimetric conjecture is satisfied.

We have evaluated the volume for all solutions known to
us in all dimensions D � 7. When g � 0, the volume may
be obtained from the Smarr formula (1.10) by dividing by
�
�g2. If D � 6, the numerator is always found to be
proportional to g2, and hence a smooth limit exists as g
tends to zero. In D ¼ 7, however, the numerator contains
in addition terms proportional to g (times the product of the
three rotation parameters ai), and hence the g ! 0 limit
diverges if all the ai are nonvanishing. The fact that the
D ¼ 7 solutions [24] are not invariant under g ! �g may
be traced back to the self-duality constraint for the 3-form
gauge potential in the seven-dimensional gauged super-
gravity theory (see for example, Eq. (3.8) in [24]), since
this equation contains a term linear in g.

V. KOMAR INTEGRATION, SMARR FORMULA
AND KILLING POTENTIALS FOR KERR-ADS

BLACK HOLES

A. Komar derivation of the Smarr relation

In a D-dimensional stationary, axisymmetric black hole
spacetime, let � denote a spacelike hypersurface that

intersects Hþ, a Killing horizon of � ¼ kþ�imi, in a
(D� 2) sphere H. Here, k is a Killing vector that is
timelike at infinity, mi are Uð1Þ Killing fields that generate
rotations in the orthogonal spatial 2-planes, and �i are
the corresponding angular velocities of the horizon.
Since any Killing vector satisfies r�K

� ¼ 0 and

hK� þ R��K
� ¼ 0 it follows that if the metric is Ricci

flat, corresponding to the case of an asymptotically flat
black hole, then d � d� ¼ 0, and hence

0 ¼
Z
�
d � d� ¼

Z
@�

�d� ¼
Z
S1

�d��
Z
H
�d�; (5.1)

where S1 denotes the sphere at infinity. One can show that
the Komar integrals constructed using the Killing vectors k
and mi give the energy and angular momenta of the
asymptotically flat black hole

E ¼ � ðD� 2Þ
16�ðD� 3Þ

Z
S1

�dk; Ji ¼ 1

16�

Z
S1

�dmi;

(5.2)

while the integral of �d� over the horizon gives

1

16�

Z
H
�d� ¼ 
A

8�
¼ TS; (5.3)

and so from (5.1) one obtains the Smarr relation

E¼ðD�2Þ
ðD�3Þ

�

A

8�
þ�iJi

�
¼ðD�2Þ
ðD�3ÞðTSþ�iJiÞ (5.4)

for an asymptotically flat black hole.
If the cosmological constant is negative rather than

zero, then the above Komar derivation of the Smarr re-
lation requires modification. Following the arguments in
[5,13,14], one may note that since any Killing vector
satisfies d � K ¼ 0, there must always exist, locally, a 2-
form Killing potential !K such that K may be written as
K ¼ �d �!K. In view of the fact that with R�� ¼ �g��

we now have d � d�þ 2� � � ¼ 0, and it follows that

d � d�þ 2�d �!� ¼ 0: (5.5)

By integrating this over �, one thereby obtains

0 ¼
Z
�
ðd � d�þ 2�d �!�Þ ¼

Z
@�
ð�d�þ 2� �!�Þ

¼
Z
S1
ð�dkþ 2� �!�Þ þ�i

Z
S1

�dmi

�
Z
H
�d�� 2�

Z
H
�!�: (5.6)

Of course the Killing potential !� is not unique; one

may add any co-closed 2-form � to !�. If � is co-exact,

� ¼ �d � � for any 3-form �, then the integrals of �!� in

(5.6) will be unaltered, since

5
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FIG. 1. Thermodynamic volume of the Kerr-AdS black hole.
The graph displays the dependence of V on gauge coupling g,
� ¼ �3g2, for various rotation parameters, while we keep the
total gravitational enthalpy fixed, E ¼ 1 (J ¼ a). The upper
curve represents Schwarzschild-AdS (a ¼ 0), the lower curves,
in descending order, correspond to Kerr-AdS with a ¼ 0:5,
a ¼ 0:7, a ¼ 0:9 and a ¼ 0:99, respectively. Obviously, the
smooth limit exists for g ! 0, the volume is smooth also in
the transition between large and small black holes.
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Z
S1

d � � ¼
Z
@S1

�� ¼ 0;
Z
H
d � � ¼

Z
@H

�� ¼ 0:

(5.7)

However, if � is co-closed but not co-exact, each of the
integrals

R
S1 �!� and

R
H �!� will be separately changed

by the addition of �, although their difference will be
unaltered, since

Z
S1

���
Z
H
�� ¼

Z
�
d � � ¼ 0: (5.8)

By analogy with the asymptotically flat case we dis-
cussed above, one would like to interpret the integrals over
S1 in (5.6) as being proportional, respectively, to the
energy and the angular momenta of the black hole.
Indeed, one again finds that the integrals of �dmi give
the angular momenta, as in (5.2). The integral

R
S1 �dk by

itself now diverges, as does
R
S1 �!�, but remarkably, the

combination
R
S1ð�dkþ 2� �!�Þ turns out to be finite.

Since, however, as we remarked above, its value is altered
if one exploits the gauge freedom to add a co-closed 2-form
� to!�, one cannot use

R
S1ð�dkþ 2� �!�Þ to provide an

unambiguous definition of the energy of the black hole.
The best that can be done is to make a gauge choice for !�

such that

E ¼ � ðD� 2Þ
16�ðD� 3Þ

Z
S1
ð�dkþ 2� �!�Þ (5.9)

yields the true mass E of the black hole, which itself is
determined by other means.

The easiest and most reliable way of calculating the
mass of an asymptotically AdS black hole is by means of
the conformal definition of Ashtekar, Magnon, and Das
(AMD) [25,26]. This has the great advantage over other
methods, such as that of Abbott and Deser [27], that it
involves an integration at infinity of a finite quantity,
computed from the Weyl tensor, that does not require any
infinite subtraction of a pure AdS background. The AMD
mass for the Kerr-AdS black hole in arbitrary dimension
was calculated in [8], and it was shown to be consistent
with the first law of thermodynamics.

Having chosen a gauge for !� for which the integration

in (5.9) yields the AMD mass E, the remaining integrals in
(5.6) can be evaluated. Defining

� ¼ ðD� 2Þ
16�

Z
H
�!�; (5.10)

we recover precisely the Smarr relation (1.10) for the un-
charged case,

E ¼ D� 2

D� 3
ðTSþ�iJiÞ � 2

D� 3
��: (5.11)

B. Killing potentials from the conformal
Killing-Yano tensor

In this subsection we review the work of [28], which
shows how one may construct the towers of hidden and
explicit symmetries of a spacetime that admits a principal
conformal Killing-Yano (PCKY) tensor. In this discussion
we closely follow [29], and then we present a new method
for constructing the Killing potentials for the Killing
vectors.
The PCKY tensor h is a nondegenerate closed conformal

Killing-Yano 2-form [28]. This means that there exists a
1-form � such that

r�h�� ¼ 2g�½����: (5.12)

The condition of nondegeneracy means that at a generic
point of the manifold, the skew-symmetric matrix h�� has

the maximum possible (matrix) rank, and that the eigen-
values of h�� are functionally independent in some space-

time domain. The Eq. (5.12) implies

dh ¼ 0; � ¼ 1

D� 1
� d � h: (5.13)

This means that there exists a 1-form PCKY potential b,
such that

h ¼ db: (5.14)

The 1-form� associated with h is called primary, and turns
out to be a Killing 1-form.
The PCKY tensor generates a tower of closed conformal

Killing-Yano (CKY) tensors [28]

hðjÞ � h^j ¼ h ^ � � � ^ h|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}total of j factors: (5.15)

The CKY tensor hðjÞ is a ð2jÞ form, and in particular

hð1Þ ¼ h. Since h is nondegenerate, one has a set of
N þ " nonvanishing closed CKY tensors in dimension
D ¼ 2N þ 1þ ", where " ¼ 0 in odd dimensions and
" ¼ 1 in even dimensions. In an even-dimensional space-

time, hðNþ1Þ is proportional to the totally antisymmetric
tensor, whereas it is dual to a Killing vector in odd dimen-
sions. In both cases such a CKY tensor is trivial, and can be
excluded from the tower of hidden symmetries. Therefore
we take j ¼ 1; . . . ; N � 1þ ".
The CKY tensors (5.15) can be generated from the

potentials bðjÞ,

bðjÞ ¼ b ^ h^ðj�1Þ; hðjÞ ¼ dbðjÞ: (5.16)

For each ð2jÞ form hðjÞ, its Hodge dual is a (D� 2j) form,
denoted by

fðjÞ ¼ �hðjÞ: (5.17)

In their turn, these tensors give rise to the Killing

tensors KðjÞ,
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KðjÞ
�� � 1

ðD� 2j� 1Þ!ðj!Þ2 f
ðjÞ

��1...�D�2j�1
fðjÞ� �1...�D�2j�1 :

(5.18)

(The coefficient in this definition (5.18) is a convenient
choice in the canonical basis, see [29].) The metric itself
trivially satisfies the conditions for a Killing tensor, and it

is convenient to define Kð0Þ
�� ¼ �g��, extending the range

of the j index so that j ¼ 0; . . . ; N � 1þ ".
The PCKY tensor also naturally generates (N þ 1) vec-

tors �ðkÞ (k ¼ 0; . . . ; N) which turn out to be the indepen-
dent commuting Killing vector fields. These are given as

�ðjÞ� ¼ KðjÞ�
��

�; j ¼ 0; . . . ; N � 1þ "; (5.19)

where �� is the Killing vector given by (5.13). In odd
dimensions the last Killing vector is in the tower is given
by the N-th Killing-Yano tensor

�ðNÞ ¼ � 1

N!
fðNÞ: (5.20)

The canonical spacetimes with all these symmetries
were constructed in [30,31]. When the Einstein equation
is imposed, they are the general Kerr-NUT-AdS spacetimes
constructed in [32].

1. Killing potentials

We shall now show how the PCKY tensor may be used
in order to construct the Killing potentials for the Killing
vectors. We define the following 2-forms, for j ¼
0; . . .N � 1þ ":

!ðjÞ
�� ¼ 1

D� 2j� 1
KðjÞ

��h��; !ðNÞ ¼
ffiffiffiffiffiffiffi�c

p
N!

� bðNÞ;

(5.21)

where the second expression, for !ðNÞ, applies only in odd
dimensions.

ffiffiffiffiffiffiffi�c
p

is some appropriately chosen constant
(see [29]). It is easy to verify (for example in the canonical
basis) that these are Killing potentials for the previously
constructed Killing fields, i.e., we have

�ðiÞ ¼ �d �!ðiÞ: (5.22)

Note that although in odd dimensions the gauge freedom

b ! bþ d
 affects !ðNÞ,

!ðNÞ ! !ðNÞ þ
ffiffiffiffiffiffiffi�c

p
N!

� dð
hðN�1ÞÞ; (5.23)

its divergence �d �!ðNÞ remains unchanged. Since any
Killing vector � in a canonical spacetime is a linear com-

bination of the �ðiÞ, of the form � ¼ P
N
i¼0 ci�

ðiÞ, the prob-
lem of finding its Killing potential reduces to the algebraic
problem of finding the constant coefficients cið�Þ of this
expansion:

� ¼ �d �!�; !� ¼ XN
i¼0

cið�Þ!ðiÞ; (5.24)

where !ðiÞ are given by (5.21).

C. Kerr-AdS black holes

The Kerr-AdS black hole metrics (3.1) possess a closed
conformal Killing-Yano 2-form h [33] which can be de-
rived from the potential b, h ¼ db, given by

b ¼ 1

2

��
r2 þXN

i¼1

a2i �
2
i

�
1þ g2

r2 þ a2i
�i

��
dt

�XN
i¼1

ai�
2
i

r2 þ a2i
�i

d�i

�
: (5.25)

The 2-form h is nondegenerate, i.e., it is a PCKY tensor
when all rotations ai are nonzero and distinct. In that case
any Killing vector of the spacetime is a linear combination

of the (independent) Killing fields �ðiÞ, and its Killing
potential is given by (5.24), where in odd dimensions we
identify the constant

ffiffiffiffiffiffiffi�c
p ¼ Q

N
i¼1 ai.

4

The outer Killing horizon of the Kerr-AdS metric (3.1) is
located at r ¼ rþ, the largest root of VðrþÞ � 2m ¼ 0. It is
a Killing horizon for the Killing field

� ¼ @t þ�i@�i
; �i ¼ aið1þ g2r2þÞ

r2þ þ a2i
: (5.26)

The Killing potential !�, (5.24), now reads

!� ¼ r2NþQN
i¼1ðr2þ þ a2i Þ

XN
j¼0

1

r2jþ
!ðjÞ: (5.27)

Before using!� in (5.6) to derive the Smarr relation, we

must first consider the gauge freedom to add to it a non-
trivial co-closed 2-form �. Since co-closure, or divergence
freedom, can be written as

@�ð ffiffiffiffiffiffiffi�g
p

���Þ ¼ 0; (5.28)

it is clear that a co-closed � is obtained if we take all its
contravariant components to vanish except for �tr ¼
constant=

ffiffiffiffiffiffiffi�g
p

. This is equivalent to the statement that

� � ¼ ��D�2; (5.29)

where � is a constant and �D�2 is the volume element of
the unit (D� 2) sphere. Evaluating (5.9) with !� given by

(5.27) plus �,

!� ! ~!� ¼ !� � � ��D�2; (5.30)

4If the ai are not distinct or if some of them vanish, then h is
degenerate. In such a case one does not recover all the Killing
fields of the spacetime by the construction (5.19) and (5.20).
However, the formula for the Killing potential!� obtained in the
next section, Eq. (5.27), still applies.
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we find that in order for (5.9) to produce the correct AMD
mass for the Kerr-AdS black holes, we must choose

� ¼ � 2m

ðD� 1ÞðD� 2ÞðQ
j
�jÞ

X
i

a2i
�i

: (5.31)

Using ~!� in this gauge in (5.10), we find that it indeed

reproduces the expressions for � that we obtained in
Sec. III from the thermodynamic calculations.

The construction of the Killing potential (5.27) by means
of Killing-Yano tensors that we have described is essen-
tially unique. It is interesting, therefore, to observe that if
we choose not to add the ‘‘gauge correction’’ term � to the
Killing potential given in (5.27), then the integral (5.10)
over the horizon produces precisely the modified quantity
�0 that we discussed in Sec. III, which can be written in
terms of the geometric volume V 0 ¼ rþA=ðD� 1Þ as in
(3.10). It is not clear whether there is some simple geomet-
rical explanation for this.

VI. CONCLUSIONS

In this paper, we have investigated some of the conse-
quences of treating the cosmological constant, or the gauge
coupling constant in a gauged supergravity, to become a
dynamical variable. In particular, this means that it should
then be treated as a thermodynamic variable in the first law
of thermodynamics for black holes. Since the cosmological
constant can be thought of as a pressure, this means that its
conjugate variable in the first law is proportional to a
volume. Using the first law, we have calculated this ‘‘ther-
modynamic volume’’ V for a wide variety of black holes,
including static multicharge solutions in four, five and
seven-dimensional gauged supergravities; rotating Kerr-
AdS black holes in arbitrary dimensions; and certain
charged rotating black holes in four and five-dimensional
gauged supergravities.

When there is no rotation, the thermodynamic volume V
can be interpreted as an integral of the scalar potential over
the volume ‘‘inside the event horizon’’ of the black hole. In
cases without scalar fields, this corresponds precisely to a
naive geometrical notion of the ‘‘volume’’ inside the hori-
zon. When there is rotation, however, the thermodynamic
volume V differs from the notion of the ‘‘geometric vol-
ume’’ V 0 by a shift related to the angular momenta of the
black hole. We showed that although in some examples
the geometric volume has certain intriguing characteris-
tics suggestive of a volume in Euclidean space that is
‘‘excluded’’ by the black hole, it appears that the thermo-
dynamic volume has a more universal character. In par-
ticular, we have found that it and the horizon area obey
the ‘‘reverse isoperimetric inequality’’ (1.17), which can be
restated as the property that at fixed geometric volume V,
the black hole with the largest entropy is Schwarzschild-
AdS.

Although the concept of the thermodynamic volume V
requires that one consider an asymptotically AdS black
hole in a theory with a nonvanishing cosmological con-
stant, interestingly it is nevertheless possible (except in
D ¼ 7) to take a smooth limit in the expression for V in
which the cosmological constant is set to zero. Since the
thermodynamic volume still, in general, differs from the
geometric volume in this limit, it appears that to give a
definition of V for an asymptotically flat black hole, one
needs first to obtain the expression in the more general
asymptotically AdS case. For example, for the Myers-
Perry asymptotically flat rotating black holes, the thermo-
dynamic volume is given by setting g ¼ 0 in (4.7). As we
discussed in Sec. IV, this limiting procedure also works for
the known rotating black holes in all gauged supergravities
except inD ¼ 7. The caseD ¼ 7 is exceptional because of
the g dependence of the odd-dimensional self-duality con-
straint in the seven-dimensional gauged supergravity. As a
consequence, the volume diverges in the g ! 0 limit if the
electric charges and all three rotation parameters are
nonzero.
We also studied the derivation of the Smarr relation

when the cosmological constant is allowed to become a
thermodynamic variable. This procedure, which is a gen-
eralization of the Komar method for asymptotically flat
black holes, involves the introduction of a Killing potential
2-form ! whose divergence gives the asymptotic time-
like Killing vector. Because of the gauge freedom to add
a co-closed 2-form to!, the procedure does not provide an
unambiguous computation of the conjugate variable �
unless one first fixes the gauge ambiguity by requiring
that the integration at infinity yield the correct expression
for the mass of the black hole. Having made this gauge
choice, we showed that one then recovers the thermody-
namic result for �.
We also presented a method for constructing the Killing

potentials for the Killing vectors in the Kerr-AdS black
holes, based on the existence of conformal Killing-Yano
tensors in these metrics. They occur because of certain
‘‘hidden symmetries’’ in the Kerr-AdS metrics, associated
with the separability of equations such as the Dirac equa-
tion in these backgrounds. The procedure for constructing
the Killing potential from the Killing-Yano tensors is an
essentially unique one, and it yields the result in a very
specific gauge. Interestingly, it is the gauge in which the
integral

R
H �! generates the ‘‘geometric volume’’ V0. This

suggests that the other remarkable properties of the geo-
metric volume, such as the fact that it is given by the
Euclidean space formula (3.12), might be related to the
existence of the hidden symmetries of the Kerr-AdS
metrics.
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APPENDIX A: KILLING POTENTIALS
IN D ¼ 4 AND D ¼ 5 KERR-ADS

In this appendix, for illustrative purposes, we present
explicit results for the Killing potentials in the four-
dimensional and five-dimensional Kerr-AdS metrics.

1. D ¼ 4 Kerr-AdS

In the frame that is nonrotating at infinity, the
four-dimensional Kerr-AdS metric, satisfying R�� ¼
�3g2g��, can be written as

ds24 ¼ �ð1þ g2r2Þ�	dt
2

�
þ ðr2 þ a2Þsin2	d�2

�
þ �2dr2

�r

þ �2d	2

�	

þ 2mr

�2�2
ð�	dt� asin2	d�Þ2; (A1)

where

�r¼ðr2þa2Þð1þg2r2Þ�2mr; �	¼1�a2g2cos2	;

�2¼ r2þa2cos2	; �¼1�a2g2: (A2)

The 1-form potential b given by (5.25) is

b ¼ 1

2
ðr2 þ a2sin2	Þdt� aðr2 þ a2Þsin2	

2�
ðd�� ag2dtÞ:

(A3)

Following the steps described in Sec. VB for constructing

the Killing potentials!ð0Þ and!ð1Þ in this case, we find that
their contravariant components are given by

!ð0Þtr ¼ � rðr2 þ a2Þ
3�2

; !ð0Þt	 ¼ � a2 sin	 cos	

3�2
;

!ð0Þr� ¼ arð1þ g2r2Þ
3�2

; !ð0Þ	� ¼ a�	 cot	

3�2
; (A4)

!ð1Þtr¼�a2rðr2þa2Þcos2	
�2

; !ð1Þt	¼a2r2 sin	cos	

�2
;

!ð1Þr�¼a3rð1þg2r2Þcos2	
�2

; !ð1Þ	�¼�ar2�	cot	

�2
:

(A5)

These Killing potentials give rise to the corresponding
Killing vectors

r�!
ð0Þ��@� ¼ @

@t
þ ag2

@

@�
;

r�!
ð1Þ��@� ¼ a2

@

@t
þ a

@

@�
:

(A6)

Thus the Killing potential for the Killing vector

� ¼ @

@t
þ�

@

@�
(A7)

that is null on the horizon is

!� ¼ r2þ
ðr2þ þ a2Þ

�
!ð0Þ þ 1

r2þ
!ð1Þ

�
: (A8)

2. D ¼ 5 Kerr-AdS

In the frame that is nonrotating at infinity, the five-
dimensional Kerr-AdS metric, satisfying R�� ¼
�4g2g��, can be written as

ds25¼�ð1þg2r2Þ�	dt
2

�1�2

þðr2þa21Þsin2	d�2
1

�1

þðr2þa22Þcos2	d�2
2

�2

þ�2dr2

�r

þ�2d	2

�	

þ2m

�2

�
�	dt

�1�2

�a1sin
2	d�1

�1

�a2cos
2	d�2

�2

�
2
; (A9)

where

�r ¼ ðr2 þ a21Þðr2 þ a22Þð1þ g2r2Þ
r2

� 2m;

�	 ¼ 1� a21g
2cos2	� a22g

2sin2	;

�2 ¼ r2 þ a21cos
2	þ a22sin

2	;

�1 ¼ 1� a21g
2;

�2 ¼ 1� a22g
2:

(A10)

The 1-form potential b given by (5.25) is

b ¼ 1

2
ðr2 þ a21sin

2	þ a22cos
2	Þdt

� a1ðr2 þ a21Þsin2	
2�1

ðd�1 � a1g
2dtÞ

� a2ðr2 þ a22Þcos2	
2�2

ðd�2 � a2g
2dtÞ: (A11)

Following the steps described in Sec. VB for constructing

the Killing potentials !ð0Þ, !ð1Þ and !ð2Þ in this case, we
find that their contravariant components are given by
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!ðaÞtr ¼ �ðr2 þ a21Þðr2 þ a22Þ
4r�2

�
1;
2ð1� �	Þ

g2
; a21a

2
2

�
;

!ðaÞt	 ¼ ða21 � a22Þ sin	 cos	
4�2

½�1; 2r2; a2b2�;

!ðaÞr�1 ¼ a1ðr2 þ a22Þ
4r�2

�
ð1þ g2r2Þ; 2ð1þ g2r2Þð1� �	Þ

g2
;

a22ðr2 þ a21Þ
�
;

!ðaÞr�2 ¼ a2ðr2 þ a21Þ
4r�2

�
ð1þ g2r2Þ; 2ð1þ g2r2Þð1� �	Þ

g2
;

a21ðr2 þ a22Þ
�
;

!ðaÞ	�1 ¼ a1 cot	

4�2
½�	;�2r2�	; a

2
2ða21 � a22Þsin2	�;

!ðaÞ	�2 ¼ � a2 tan	

4�2
½�	;�2r2�	;�a21ða21 � a22Þcos2	�;

(A12)

where the components for !ðaÞ with a ¼ 0, 1 and 2 corre-
spond to the first, second and third entries of the square
bracketed factors, respectively.

The three Killing potentials give rise to the following
Killing vectors:

r�!
ð0Þ��@� ¼ @

@t
þ a1g

2 @

@�1

þ a2g
2 @

@�2

;

r�!
ð1Þ��@� ¼ ða21 þ a22Þ

@

@t
þ a1ð1þ a22g

2Þ @

@�1

þ a2ð1þ a21g
2Þ @

@�2

;

r�!
ð2Þ��@� ¼ a21a

2
2

�
@

@t
þ 1

a1

@

@�1

þ 1

a2

@

@�2

�
: (A13)

Thus the Killing potential for the Killing vector

� ¼ @

@t
þ�1

@

@�1

þ�2

@

@�2

(A14)

that is null on the horizon is

!� ¼ r4þ
ðr2þ þ a21Þðr2þ þ a22Þ

�
!ð0Þ þ 1

r2þ
!ð1Þ þ 1

r4þ
!ð2Þ

�
:

(A15)
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[10] G.W. Gibbons, H. Lü, D.N. Page, and C.N. Pope, Phys.
Rev. Lett. 93, 171102 (2004).

[11] M.K. Parikh, Phys. Rev. D 73, 124021
(2006).

[12] W. Ballik and K. Lake, arXiv:1005.1116.
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[15] K. Behrndt, M. Cvetič, and W.A. Sabra, Nucl. Phys.
B553, 317 (1999).

[16] M. J. Duff and J. T. Liu, Nucl. Phys. B554, 237
(1999).
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Phys. B717, 246 (2005).
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Lett. 95, 161301 (2005).

[23] D. D.K. Chow, arXiv:1012.1851.
[24] D. D.K. Chow, Classical Quantum Gravity 25, 175010

(2008).
[25] A. Ashtekar and A. Magnon, Classical Quantum Gravity

1, L39 (1984).
[26] A. Ashtekar and S. Das, Classical Quantum Gravity 17,

L17 (2000).
[27] L. F. Abbott and S. Deser, Nucl. Phys. B195, 76

(1982).
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